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This article is an extension of a recent paper by McEliece and Swanson dealing with 
the decoder error probability for Reed-Solomon codes (more generally, linear MDS 
codes). McEliece and Swanson offered an upper bound on PE (u), the decoder error prob- 
ability given that u symbol errors occur. This upper bound is slightly greater than Q, the 
probability that a completely random error pattern will cause decoder error. In this 
article, by using a combinatoric technique-the principle of inclusion and exclusion- 
an exact formula for PE (u) is derived. 

The PE (u)’s for the (255,223) Reed-Solomon Code used by NASA, and for the (31,15) 
Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the 
PE(u)’s are observed to approach the Q’s of the codes rapidly as u gets large. An upper 
bound for the expression IIPE(u)/Q/ - 11 is derived, and is shown to decrease nearly 
exponentially as u increases. This proves analytically that PE (u) indeed approaches Q as u 
becomes large, and some laws of large numbers come into play. 

1. Weight Distribution Formula for 
Decodable Words in a Linear 
MDS Code 

A. Introduction 

We begin with the following definitions. Let C be a linear 
code of length n ,  dimension k, and minimum distance d.  Let 
q be a positive power of a prime. An (n,k,d) linear code Cover 
GF(q) is maximum distance separable (MDS) if the Singleton 
bound is achieved; that is, d = n - k t 1. A code is terror cor- 
recting if for some integer t ,  2 t  < d - 1. 

The class of Reed-Solomon (RS) codes is a subclass of MDS 
codes. Reed-Solomon codes are used in many sectors of to- 

day’s industry. Some examples are the (255, 223) 16-error 
correcting RS code (the NASA code) in deep space communi- 
cations, the (31,15) 8-error correcting RS code (the JTIDS 
code) in military communications, and the Cyclic Interleaving 
RS Code (CIRC) in the compact disc industry. A detailed 
treatment of MDS codes, their properties and open questions 
about them is given in [ 11 . The weight distribution of a linear 
MDS code with the parameters n ,  k, d ,  t ,  and q was indepen- 
dently found by three groups of researchers: Assmus, Mattson 
and Turyn [2], Forney [3], and Kasami, Lin and Peterson 
[41. 

In Section I,  we rederive the weight distribution formula 
for a linear MDS code by using the principle of inclusion and 
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exclusion, and then extend this method to obtain the exact 
weight distribution formula for “decodable words” in any 
linear MDS code. By decodable words, we mean all the words 
that lie within distance f from a codeword. If we assume the 
decoder to be a bounded distance decoder, then the weight 
distribution formula for the decodable words can be used to 
find the undetected error probability for linear MDS codes. 
This will be discussed in detail in Section 11. 

Section I is divided into 5 parts. Part 1.A is a brief intro- 
duction. In I.B, we review some basic mathematical tools that 
are needed to derive the formulae. In I.C, we first derive the 
weight distribution formula for the number of codewords in 
a linear MDS code, and then we derive the weight distribution 
formula for the number of decodable words in a linear MDS 
code. In I.D, we give some numerical examples, and finally, 
in I.E, we end Section I of this article with some concluding 
remarks. 

9. Some Basic Tools 

In this part, we review the basic tools that are required to 
derive the weight distribution formulae for the number of 
codewords in a linear MDS code and for the number of decod- 
able words in a linear MDS code. 

Let C be an ( n ,  k )  code over GF(q) ,  not necessarily linear. 
If we examine any set of k - 1 components of the codewords, 
we find that there are only qk-l possibilities for the q k  code- 
words. Thus, there must be a pair of codewords that agree on 
these k - 1 components, and so the minimum distance d of 
the code must satisfy d < n - k + 1. This upper bound on d 
is known as the Singleton bound, and a code for which d = 
n - k t 1 is called an MDS code. RS codes and cosets of RS 
codes are examples of MDS codes. 

One important tool that we need is the basic combinatoric 
property of the MDS code. Let K be a subset of k coordinate 
positions of an MDS code. If two codewords were equal on K ,  
the distance between them would be at most n - k .  This 
contradicts the fact that d = n  - k t 1. Thus, all qk codewords 
are different in K .  Let a = (a1, a,, . . . , ak) be a k-tuple of 
elements from GF(q) .  From the above argument, there exists 
a unique codeword whose k coordinates in K equal the k com- 
ponents of a. We call this important fact the basic combina- 
torial property of MDS codes. 

Another important tool that we need is the principle of 
inclusion and exclusion [SI . Suppose we have N objects and a 
number of properties P(1), . . * , P ( n ) .  Let Ni be the number 
of objects with property P(i ) ,  and &l,i,%...,ir be the number 
of objects with propertiesP(il), P ( i , ) ,  . . . , P ( i r ) .  The number 
of objects N(0)  with none of the properties is given by the 
following formula: 
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N(0)  = N -  c Ni+ c N .  I t  . +.*-+(-1)‘  
1 2  i il < i2 

The proof can be found in [5] 

The basic combinatorial property of MDS codes and the 
principle of inclusion and exclusion will be referred to in the 
proofs in later sections. 

C. Derivation of Formulae 

This part is divided into three subparts. In the first, we 
derive the formula for the number of codewords of weight u 
in a linear MDS code, using the principle of inclusion and 
exclusion. In the second, we extend this idea by deriving a 
general formula for the number of decodable words of weight 
u .  Last of all, in the third, we simplify the key formula by 
using some combinatoric identities. 

1. Formula for the number of codewords of weight u.  Let 
t be some codeword of C. Let Z have a Hamming weight u ,  
u > d.  Let the coordinates of codeword C be indexed by 
(0, 1, 2, . . . , n - 1 ). Define v = n - u.  Then C has v zeros. We 
now want to find the number of codewords of weight u in C 
having exactly v zeros at some particular v coordinates where 
v = n(u = 0) or v < n - d = k - l(u 2 d ) .  Since the code is 
linear, the number of codewords of weight zero (u  = 0) is 
one-the all zero codeword. The following discussion applies 
only to codewords with weight u 2 d.  

Let V be a set of v coordinates, I VI = v. Let t i l ,  i,, . . * , 
ii> C { 1 ,  2 ,  . . . , n )  - V be a set of j coordinates. Define 
S( i l ,  i,, . . . , $) = { C  : F E C and ’E has zeros in V and 
t i l ,  i,, . . .  , i i ) ) .  For j < k - v ,  the number of zeros in a 
codeword in S( i ,  , i, , . . . , ii) is at least j t v < k ( j  t v < k). 
By using the basic combinatorial property of MDS code, for 
each particular choice of t i l ,  i,, . . . , ii> we can specify 
qk-”-i  codewords having zeros at V and t i l ,  i, , . . . , $ ). So 

For j 2 k - v + 1, the number of zeros in a codeword is j t v 
> k t 1. This implies that the weight of the codeword is less 
than d,  so S(i, , i,, . . . , ii) = (8). That is, 



Note that we choose i ,  , i,, * . , ij from a set of u = n - v coor- 
dinates so that for every choice of j ,  we have ( r ) S ( i l ,  i,, * , 
ij,'s. 

By the principle of inclusion and exclusion, the number of 
codewords with exactly v zeros at V equals 

k-w-1 

j =  0 j=k-w 

We have ( z )  = ( E )  ways to choose v zeros from IO,], 2 , .  . . , 
n - 1) .  Thus, the number of codewords of weight u, which is 
denoted by A, ,  is given by the following expression: 

(4) 

After deriving this relatively simple formula for the number 
of codewords of weight u in a linear MDS code, we proceed to 
derive the more complicated formula for the number of de- 
codable words of weight u in a linear MDS code. 

2. General formula for the number of decodable words of 
weight u.  Let D be the set of decodable words in an MDS 
code. Let V be a set of v coordinates, I VI = v. Let t i l ,  i,, . . , 
i j }  be a set of j coordinates, where t i l ,  i,, * . . ,ji}-C (0, 1, 
2, * , n - 1) - V .  Define S(il ,  i,, . . .  ,ii)= {d  : d E D a n d  
2 has zeros in V and t i l ,  i,, * * . , $ }  } . We proceed to derive 
the weight distribution formula for the number of decodable 
words of weight u in a linear MDS code by using the principle 
of inclusion and exclusion. Our problem is now reduced to 
fmding the cardinality of S(il , i,, . * * , I;.) for all j subjected to 
a given V .  This problem is solved with the help of the follow- 
ing theorems. 

Theorem 1: 

(5) 

where 

Proof: The argument here is similar to the derivation given 
in I.C.1, above. We note that each coset of a linear MDS code 
is also an MDS code. Also, since all words lying within the 
Hamming spheres (with volume V , ( r ) )  that surround code- 
words are decodable words, we have V,  ( t )  disjoint cosets that 
contain decodable words. From the basic combinatorial prop- 
erty of the MDS code we can, for each particular choice of 
{il , i,, . . . , ii>, specify qkLW-j  = q u - d + l - i  decodable words to 
each of these cosets. Thus, we have altogether q u - d + l - j  V n() t 
decodable words having zeros at V and {il , i,, . * . , $}. This 
completes the proof. 

Theorem 2: 

for u - d  t 1 < j  < u -d  t t .  

Proof: For u - d t 1 = k - v < j ,  the number of zeros in a 
decodable word is equal to v t j 2 k. Since z is a decodable 
word, can be uniquely decomposed into a codeword c a n d  
an error pattern .?with weight that is less than or equal to t. 
If we "project" F onto V U { i l ,  i?, 1 . * , ii}, then the result 
will be a certain (v t j ,  k) code. Smce the parent code has a 
minimum distance d = n - k t 1, the new code must have a 
minimum distance d' 2 d - (n - v - j )  = (v t j )  - k t 1. Since 
it is impossible for d' of the (v t j ,  k) code to be greater than 
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(v t j )  - k t 1 (because of the Singleton bound), d’  must be 
equal to d -(n - v -  j ) =  (v t j )  - k  t 1. 

If C t Fvanishes on V U {il , i,, . . . , i j } ,  then cmust have 
weight that is less than or equal to f on V U {il , i,, . . * , ii}. 
Let w be the weight of c o n  V U  { i l ,  i,, . . . , ii}. From the 
above argument we also know that C, when restricted to V U  
{il,  i,, . . . , i j } ,  is a linear ( v  t j ,  k )  MDS code with a mini- 
mum distance d - ( n  - v - j )  = (v t j )  - k t 1. Thus, w is 
either 0 (in the case of the all-zero codeword) or between 
d - u t j and t .  So the number of codewords of weight w in 
the ( u  t j ,  k )  MDS code is (by using Eq. (4)) 

for d - u t j Q w < t and 1 for w = 0. For each codeword C 
with weight w in V U { i l ,  i,, . , $}, where d’ < w Q t 
(d ‘  = v t j - k t l), we must count the number of 3 s  such that 
Ct Fvanishes on V U  { i l ,  i,, . . .  , i j } .  Suppose that Z has 
weight s 2 w. must match c exactly on V U t i l ,  i,, . . . , 
ij}, but the s - w other nonzero components can be arbitrarily 
placed outside V U {il , i,, . * . , ii}. Then the total number of 
P’S for agiven Fofweight w on V U  {i,,i,, . . . , ii} is 

When w = 0,  all components of e m u s t  lie outside the set 
V U  { i l , i z ;~~, i i} .Sothereare  

e ‘ s  for the case w = 0. Combining the above results, we obtain 
the theorem. rn 

Theorem 3: 

for u - d t  t t 1 Q j Q u  - c - 1 .  

Proof: Fo rk  - v t t Q j  Q u - r - 1, the number ofzeros in 
a decodable word is greater than or equal to k t r but less than 
or equal to n - c - 1. Thus any decodable words in S ( i , ,  
i, , . . . , ij) have weight that is less than or equal to d - t - 1. It 
is not hard to see that the element of S(i,, i,, . . ., i j )  cannot 

be decoded into a codeword of weight other than g. There- 
fore, S(il ,  i,, . . . , ij) contains all words having weight that is 
less than or equal to t in the coordinates (0 ,  1, . . . , n - 1) - 
( V U  { i l  , i, , . . . , ij  }). This completes the proof. rn 

Theorem 4: 

IS(i,,  i,, . . . , i.) 1 = qu-J for u - t < j < u 
I 

Proof: Since j is greater than or equal to u - t ,  the number 
of zeros is equal to v t j and is greater than or equal to n - r .  
Therefore, the number of nonzero components is less than or 
equal to r .  Thus, all words with zeros on V U  { i, , i,, . . . , i j }  
are decodable and this completes the proof. 

As inI.C.1,wechoosei1,iz;~~,ijfromv=n-ucoor- 
dinates. Thus, for every choice of j ,  we have ( 7 )  S ( i ,  , i, , . . . , 
5)’s. Denote A$ = ( 7 )  I S(i, , i,, . . . , $) I .  Again, by the 
principle of inclusion and exclusion, we see that the number 
of decodable words which have exactly v = n - u zeros at V 
equals 

U 

(-1)i q 
j =  0 

However, we have (:) = ( z )  ways to choose u zeros from 0, 
1, . . . , n - 1. Thus, the number of decodable words of weight 
u is given by 

3. Simplification of the key formula. The weight enumera- 
tor formula that we have just derived is complicated and 
clumsy. There are four different expressions for A$’s, and these 
expressions are combined together by the inclusion and exclu- 
sion formula. The following theorem will show that the weight 
distribution formula for the number of decodable words in a 
linear MDS code can be simplified, and that there are only two 
expressions for the 9 ’ s .  
Theorem 5: 

0 
j = u - r  

21 6 



Proof: 

U 

= (4 - 1)" - c (4 - 1)' 
i = t+  1 j = O  

= (4  - l)' - ( 4  - 

u-1 

i=?+ 1 

Notice that 

and 

then 

f o r t  + 1 < i < u  - 1 .  

Thus, A = 0 and the theorem is proved. 

With Theorem 5 and Eqs. (S), (6), (7), (8), and (9), the 
weight enumerator formula can be simplified as follows: 

u-d+t 

0, = (1) (-1)jq 
j = O  

ford  - t < u < n 

for 0 < j < u  - d 

ly = (j[ 1":+j) 
w=d-u+ j 

x 2 ( u - j )  s - w  (4 - 1)'-W] 

s = w  

for u -d  + 1 < j < u - d + t. 

Examples will be found in Tables 1 and 2. 

D. Remarks 

The formula for the number of decodable words of weight 
u ,  where d - t < u < n, has been derived in the previous 
parts of this section. If we set t = 0, then we get back the 
weight enumerator for linear MDS code-Eq. (4). In the case 
of u = d - t ,  for example, we have 

and the answer is consistent with the result derived in [ 6 ]  

The formula is a bit clumsy, but can be easily imple- 
mented by computer program. 

II. Decoder Error Probability of a 
Linear MDS Code 

A. Number of Decodable Words vs. 
Decoder Error Probability 

Let C be an (n, k ,  d) linear code capable of correcting 
t errors. When a codeword c E C is transmitted over a com- 
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munication channel, channel noise may corrupt the transmit- 
ted signals. As a result, the receiver receives the corrupted 
version of the transmitted codeword C t P, where Z is an error 
pattern of some weight u.  If u < r ,  then a bounded distance 
decoder on the receiver's end detects and corrects the error 
and recovers F. If u > r ,  then the decoder fails and does one of 

I two things: 

I (1) It detects the presence of the error pattern but is 
unable to correct it. 

(2) It misinterprets (miscorrects) the received pattern 
Z t F for some other codeword C' if the received pat- 
tern falls into the radius t Hamming sphere of C'. i 

Case (2) is, in most cases, more serious than case (1). This 
can occur (with a nonzero probability) when an error pattern 
F is of weight u 2 d - r .  Let us further assume that all error 

PE(u)  [7] to denote the decoder error probability given that 
an error pattern of weight u occurs. It is not hard to see that 
PE(u) is given by the following expression: 

I patterns of weight u are equally probable, and let us use 

That is, PE(u) is the ratio of the number of decodable 
words of weight u to the number of words of weight u in the 
whole vector space. Thus, the problem of finding the P'(u)rs 
is essentially the same as the problem of finding the weight 
distribution of the set of decodable words. Equations ( l l ) ,  
(12) and (13) of Section I and Eq. (14) of Section I1 together 
enable us to find the exact decoder error probability of a 
linear MDS code. 

Let the probability that a completely random error pattern 
will cause decoder error be denoted by Q. It is the ratio of 
the number of decodable words to the cardinality of the whole 
vector space. That is, 

(qk - 1) V"(d 
Q =  z q-r V , ( r )  (1 5) 

q" 

is the volume of a Hamming sphere of radius r .  It is shown in 
the next part of this section that if q 2 n, which is generally 
true, then PE(u) approaches Q very rapidly as u increases. 

B. Examples and Obsewations 

Two well-known examples of linear MDS codes-the NASA 
code and the JTIDS code-are tabulated in Table 3 and Table 
4, respectively. In these two examples, we observe that P,(u) 
approaches the constant Q as u increases. In fact, PE(u) 
approaches Q rapidly for u << n. In the case of large q and 
q 2 n ,  PE(u) approaches Q even for u < d. The P,(u) and Q 
of the NASA code agree to eight significant digits for u 2 
26 (d = 33). If P'(u) and Q are interpreted combinatorically 
as ratios, then we have the following relationshp: 

#of decodable words of weight u -* #of decodable words 
#of words in vector space #of vectors of weight u 

This astonishing relationship cited above implies that a linear 
MDS code, which possesses rigid algebraic and combinatoric 
structures, behaves (in some sense) like a random code with no 
structure at all. Some laws of large number come into play 
somehow. 

In order to describe analyticdly how fast PE(u) approaches 
Q when u is large, an upper bound on the expression I [PE(u)/Q] 
- 1 I is derived in the following paragraphs. This upper bound is 
denoted by U(u), where u 2 d. It will be shown that U(u) 
approaches a very small number E as u increases. 

As in Section I, let D, denote the exact number of decod- 
able words of weight u.  Let 9 ' s  be the corresponding terms 
in the inclusion and exclusion formula of L), as expressed in 
Eqs. (1 l ) ,  (12), and (13) of Section I .  Let 0, denote the esti- 
mated number of decodable words of weight u .  Let 4 ? s  be the 
%orresponding terms inAthe inclusion and exclusion formula of 
0,. The expression of Nj, 0 d j d u is constructed by extrapo- 
lating the first term on the right-hand side of Eq. (12) of 
Section I from 0 < j <: - d t o  0 d j < u.  We now have the 
following equations for 0, and h$ : 

A 

where r = n - k is the code's redundancy and I O d j d u  (17) 

Now we want to find an upper bound, denoted by C$, for 
h$ in Eq. (13) of Section I for u - d t 1 dj < u  - d  t r .  
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w-d+u-j 

( - l ) i  (r) (qw-d+u-j-i+l - 1 )  
i=O \ ' f  

= (;) w =d-u i + j ( n - ; t i ) ( 4 - l )  

x k ( - 1 Y W  
s=w 

Note that (7) qu-d+l-j Y n ( t )  = 8. < L$, and so q > max 
{Iy, J.}. Also, with the additional assumption that 4 2 n, 
which is generally true, L$ is a descending function of j .  

Now let us consider the second term on the right-hand side 
of Eq.  (12)  o f  Section I ,  and denote it by O(u). We want to 
find an upper bound for O(u). 

where 

i = O  j = O  

= 2 i=O ( ; ) (q  - 1)' 2u-i 

t 

= 2u E ( T i ( 9 ) l  

21 9 



We then want to  find an upper bound of ID, - Eu 1 ,  where We are finally ready to derjve an upper bound for I [PE(u)/Q] 
- 11.  By the definition of D,  in Eqs. (16) and (17),  it is not 
hard to see that 

d G u < n .  We have 

Now for d < u < n ,  

j=u-d+l 

(set? = 0 for u - d + r + 1 < j  < u )  

j=u-d+l 1 qd-' ( 
d - 1  ) d 

(4  - 

(l$ is a descending function) where 
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and 

Thus, the upper bound U(u) of 1 [PE(u)/Q] - 11, which is a 
function of u for d < u <n, is given by the following equation: 

The upper bounds of I [PE(u)/Q] - 1 I of the NASA code and 
the JTIDS code are tabulated in Table 5 and Table 6, respec- 
tively. 

C. Remarks 
With the assumptions that q is greater than or equal to n 

and that u is large compared to d ,  Eq. (18) shows that the 
upper bound of I [PE(u)/Q] - 1 I is dominated by the denomina- 
tor term (q - l)u. Thus, the upper bound of I [PE(u)/Q] - 1 I 
decays nearly exponentially as a function of u.  This upper 
bound i s  not a very tight bound, but it is sufficient to illustrate 
the point that PE(u) approaches Q very rapidly as u increases. 
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Table 1. (4,2) MDS code over GF(5) with t = 1 

Weight Number of decodable words Upper bound [6] 

0 1 - 
1 16 - 
2 
3 

48 
192 

48 
272 

4 168 272 

Total number of decodable words = @V,(t) = 425. 

Table 2. (6,3) MDS code over GF(4) with t = 1 

Weight Number of decodable words Upper bound 161 

0 1 - 
1 18 - 
2 0 - 
3 180 180 
4 405 85 5 

5 378 1026 
6 234 513 

Total number of decodable words = qkV,(t) = 1216. 

Table 3. NASA Code: (255,223); RS code: q = 256, t = 16 

PE(17) = 9.4641648 X lo-'' 

PE(18) = 1.9130119 x 

PE(19) = 2.4010995 x 

PE(20) = 2.6598044 x 
PE(21)  = 2.6017177 x 

PE(22) = 2.6076401 x 
PE(23) = 2.6087596 x 

P'(24) = 2.6088773 x 

PE(25) = 2.6088880 x 

PE(26) = 2.6088888 X 

PE(27) = 2.6088888 x 

PE(28) = 2.6088888 x 

PE(29) = 2.6088888 x 

P'(30) = 2.6088888 x 
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Table 4. JTlDS Code: (31,15); RS code: q = 32, t = 8 

~- 

PE(9) = 3.7493431 X lo-' 
PE(lO) = 1.4392257 X 

PE(ll) = 2.9507015 X 

PE(12) = 4.3287703 X 

PE(13) = 5.1888955 X 

P'(14) = 5.5466000 X 

PE(15) = 5.6291887 X 

PE(16) = 5.6296979 X 

P'(17) = 5.6255686 X 

P'(18) = 5.6256673 X 

PE(J9) = 5.6259065 X 

PE(20) = 5.6258313 X 

PE(21) = 5.6258455 X 

PE(22) = 5.6258434 X 

~ ~ ( 2 3 )  = 5.6258437 x in-6 
PE(24) = 5.6258437 X 

Table 5. NASA Code: (255,223); RS code: q = 256, t = 16 

U U ( U )  

33 
34 
35 
36 
37 

5.133 
0.3422 
0.0157 

5.526 x 
1.512 X 

Table 6. JTlDS Code: (31,15): RS code: q = 32, t = b 

U U ( U )  

17 19.35 
18 5.618 
19 
20 

1.148 
0.1851 

21 0.02508 
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