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Abstract

This paper describes a structured vector quantization approach for stationary mem-
oryless sources that combines the scalar-vector quantizer (SVQ) ideas (Laroia and Far-
vardin) with trellis coded quantization (Marcellin and Fischer). The resulting quantizer is
called the trellis-based scalar-vector quantizer (TB-SVQ); The SVQ structure allows the
TB-SVQ to realize a large boundary gain while the underlying trellis code enables it to
achieve a significant portion of the total granular gain. For large block-lengths and powerful
(possibly complex) trellis codes the TB-SVQ can, in principle, achieve the rate-distortion
bound. As indicated by the results obtained here, even for reasonable block-lengths and
relatively simple trellis codes, the TB-SVQ outperforms all other reasonable complexity

fixed-rate quantizers.

f This work was supported in part by National Science Foundation grants NSFD MIP-9109109 and
NSFD CDR-85-00108.



I. Introduction

Quantizers can be broadly classified into two different types — scalar quantizers and
vector quantizers. Scalar quantizers quantize one source sample at a time and are very
simple to implement. The simplest kind of scalar quantizer is the fixed-rate uniform scalar
quantizer [1], [2]. This quantizer has quantization (or reconstruction) levels uniformly
spaced in a certain interval I = (b,al], b < a and a,b € R; the quantization thresholds are
midway between the levels. The rate of this quantizer, in bits/sample, is the logarithm
(base 2) of the number of levels. When the source sample to be quantized is inside the
interval I, the resulting quantization distortion is called granular noise; when the source
sample is outside I, this event is referred to as an overload event and the resulting distortion
is called overload noise. For a given source and rate, the spacing between the levels of this
quantizer is determined to minimize the average distortion which is a weighted sum of
the granular noise and the overload noise. Let us take the uniform scalar quantizer as
the baseline quantization system and study the various gains obtained by more complex

quantization schemes against it.

Optimal fixed-rate scalar quantizers introduced by Max [2] and Lloyd [3], minimize
the average (squared-error) distortion for a given number of quantization levels (or rate)
and are known as Lloyd-Max quantizers (LMQs). As expected intuitively, the quantiza-
tion levels of these quantizers are relatively closely spaced in regions where the source
probability density p(z) is large and widely spaced where it is small, resulting in better
performance than uniform quantizers. This type of gain over uniform quantizers will be
called the non-uniform density gain and is dependent on the source probability density. In
spite of this gain, there exists a big gap between the LMQ performance and the optimum
achievable performance given by the rate-distortion theory. To explain this gap, consider a
block x of m source samples (m-vector) from a stationary memoryless source X'. According
to the asymptotic equipartition property (AEP), as m becomes large, the m-dimensional
probability density function p(x) becomes increasingly localized to a region R, € R™
inside which the density p(x) is almost uniform. For a Gaussian source the region R, is
an m-sphere shell while for a Laplacian source it is an m-pyramid shell [112], [13]. Scalar
quantizers quantize the source samples based on the one-dimensional density p(z) and fail
to capitalize on this localization of density that occurs in higher dimensional space, thus

resulting in poor performance.



To improve the performance of scalar quantizers one could use variable-length en-
coding of the quantizer output. Optimal entropy-constrained scalar quantizers (ECSQs)
[4], [27] minimize the average distortion for a given output entropy and are known to
asymptotically (at high rates) perform within 1.53 dB of the rate-distortion bound [5].
This increased performance comes at the cost of a variable-rate output with its concomi-
tant difficulties. In this paper we focus our attention only on fixed-rate quantization of

memoryless sources.

Vector quantizers (m-dimensional) quantize an m-vector of source samples at a time,
enabling the placement of codevectors (reconstruction vectors) in high probability density
regions of the m-space. For memoryless sources there are three different gains that vector
quantizers can realize over uniform scalar quantizers. The first is the boundary gain [6], [7],
[29] (called the shape advantage in [29]) and, as the name suggests, is realized by selecting
an appropriate codebook boundary which ensures that most of the codevectors are placed
in the high probability region R,, as dictated by the AEP. In contrast, the uniform scalar
quantizer output (in m-dimensions) lies on a cubic-lattice bounded by an m-cube. A
quantizer that has all its codevectors uniformly distributed in R,, asymptotically achieves
the optimal boundary gain as m — oo. The second type of gain over uniform scalar
quantization is the granular gain [6], [7], [29] (called the space filling advantage in [29]) that
is achieved by having more spherical (assuming squared-error distortion measure) Voronoi
regions of codevectors than the m-cubes for uniform scalar quantizers. The boundary and
granular gains are realized only by vector quantizers. As noted in [6], quantization and
transmission are dual problems. The granular gain in quantization is analogous to the
shaping gain [8] in transmission and the boundary gain is analogous to the coding gain in
transmission. Finally, there is the non-uniform density gain and just as in the scalar case,
it results from having the codevectors closely spaced in higher probability density regions
and farther apart in lower probability density regions of R™. Note’tha’c due to the uniform
density nature of the region R, this gain disappears in optimally shaped codebooks for

a large m. The non-uniform density gain has no analog in transmission.

For ‘uniform’ (lattice or trellis code based) vector quantizers the definitions of bound-
ary and granular gains given in [6] quantify these gains. The boundary gain of an m-
dimensional uniform vector quantizer with a codebook bounded by a region R is defined

as the inverse ratio of the normalized (to two dimensions) volume of the region R to the
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normalized volume of an m-cube that has the same overload probability!. The granu-
lar gain of an m-dimensional uniform vector quantizer (assuming squared-error distortion
measure) is the inverse ratio of the second moment of the Voronoi regions of its codevectors

to the second moment of an m-cube of the same volume.

These definitions are however too restrictive as they apply only to uniform vector
quantizers. In practice, most vector quantizers are ‘non-uniform’ and the sizes and shapes
of the Voronoi regions of their codevectors can be very different. For these quantizers the
distinction between overload and granular noise becomes weaker and hence it can be dif-
ficult to differentiate between boundary and non-uniform density gains. Another problem
with the above definition of the boundary gain, which is motivated by the coding gain in
transmission, is that it effectively assumes the distortion measure to be the overload prob-
ability. This is rarely the case in quantization where the most commonly used distortion
metric is the squared-error distortion. In spite of their drawbacks, these definitions are
useful for uniform quantizers and it is shown in [6] that at high quantization rates, the
boundary gain of these quantizers is decoupled from the granular gain and the two can
be realized independently. The granular gain in this case is upper-bounded by 1.423 (1.53
dB) for the squared-error distortion and is independent of the source probability density.
The boundary gain is usually larger for most non-uniform sources and is dependent on the
source density. Next, we classify the various vector quantization schemes [6]-[15] in terms

of the gains they realize.

Locally optimal m-dimensional vector quantizers introduced by Linde, Buzo and Gray
in [9], perform arbitrarily close to the rate-distortion bound as m becomes large. Their
implementation complexity (both computational and storage) is exponential in mr (where
r is the per sample rate), making them impractical even at modest rates and dimensions
(mr > 12). Suboptimal tree-searched vector quantizers [10] solve the computational com-
plexity problem but only at the cost of added storage complexity. Other vector quantizers
such as multi-stage vector quantizers [11], are implementable for a large mr but can result

in a significant performance degradation over optimal vector quantizers.

To solve these problems, a variety of vector quantizers motivated by the AEP have

1 An overload event in vector quantization occurs when the source vector lies outside the codebook

boundary and results in overioad noise. When the source vector is inside the codebook boundary, the

resulting distortion is called granular noise.



- been proposed for memoryless sources. Among these are the pyramid vector quantizer for
Laplacian sources and the spherical vector quantizer for Gaussian sources [12], [13]. These
quantizers place their codevectors at the intersection of a cubic lattice with the region R,
(m-pyramid shell for Laplacian and m-sphere shell for Gaussian sources) and as dictated
by the AEP, for a large m, achieve the optimal boundary gain. Although asymptotically
in m these quantizers can realize all the boundary gain, for any fixed value of m, it is
always preferable to place the codevectors not only on the m-shell but also inside it. This
is because the probability density is higher inside the shell than on it. No granular gain
or non-uniform density gain is realized by these quantizers as they are based on a cubic

lattice.

The pyramid and the spherical vector quantizers described above are essentially spe-
cial cases of a structured fixed-rate vector quantizer, called the scalar-vector quantizer,
introduced by Laroia and Farvardin in [14]. This scalar-vector quantizer (denoted by
SVQ) is a vector quantizer derived from a variable-length scalar quantizer and, for a class
of useful sources, can (asymptotically in m) achieve optimal boundary gains by placing
the codevectors on and inside the region R,,. In addition, the SVQ allows non-uniformly
spaced codevectors and hence the possibility of achieving some non-uniform density gain.

No granular gain is realized by the SVQ as the underlying grid is rectangular.

The trellis coded quantizer (TCQ) introduced by Marcellin and Fischer in [15] is also
derived from a scalar quantizer and uses Ungerboeck’s idea of coding by set partitioning
[16] to realize a significant portion of the maximum granular gain of 1.53 dB. This quantizer
also realizes some non-uniform density gain by allowing the underlying scalaf quantizer to
have non-uniformly spaced levels, but makes no explicit attempt to exploit the boundary
gain. The entropy-constrained TCQ (ECTCQ) of Fischer and Wang [28] uses variable-
length coding to realize a gain equal to the optimal boundary gain (in addition to the
granular gain of the TCQ) and for most sources with smooth densities performs within
0.5 dB of the rate-distortion bound. The problems associated with variable-length coding

however limit the usefulness of the ECTCQ in most practical situations.

The lattice-bounded lattice and trellis-bounded trellis quantizers introduced by
Eyuboglu and Forney [6] for Gausgsian sourees derive their motivation from data tranemic-
sion and are dual of the multidimensional lattice-bounded lattice and the trellis-bounded

trellis constellations, respectively. Like the TCQ, these quantizers use a lattice and a trellis
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the TB-SVQ are also described and their complexities considered. The design of the TB-
SVQ is discussed in Section V along with the results on the performance of this quantizer
for the generalized Gaussian source with three different parameters (including Gaussian
and Laplacian sources). These results are also compared against those of some of the other

quantization schemes described above.

I1. The Scalar-Vector Quantizer

The scalar-vector quantizer (SVQ) is a specific kind of vector quantizer in which
the codebook structure is derived from a variable-length scalar quantizer [14]. Consider
an n-level scalar quantizer S described in terms of the set of quantization levels @ =
{¢1,492,-..,9-} and the corresponding set of positive integer lengths £ = {f1,%s,...,£,},
where £; is the length associated with the level ¢;, i € J, = {1,2,...,n}. These lengths
are not required to be the codeword lengths of a uniquely decodable code such as the
Huffman code. If each component of an input m-vector (block of m input samples) is
separately quantized using &, the quantized vector is in @™ which is an m-dimensional
grid of n™ points. The codebook Z of the SVQ V derived from § = (Q, L) is a subset of
Q™. Specifically, if V is a rate r bits/sample SVQ, a vector in @™ is a codevector of V
only if its total length (defined as the sum of the lengths of its components) is no greater
than a threshold L, where L is chosen such that the codebook contains no more than 2™"

codevectors. A formal definition of the SVQ now follows.

Definition 1: An m-dimensional SVQ V derived from a the variable-length scalar quantizer

S =(Q, L) is a vector quantizer with a codebook Z given as,
Z = {Z = (Zl,ZQ,.. .,Zm) eQm Ef(z1) +cf(22) + .- +£f(zm) < L}’ (1)

where the index function f(-): @ — J, is defined as,

flgi) =1, i€ Jn. (2)

For a rate r bits/sample SVQ, the threshold L is selected as the largest integer such that
card(Z) < 2™".

An m-dimensional SVQ V is completely defined in terms of the triple (Q, £, L), i.e., the
quantization levels of the scalar quantizer S, the set of lengths associated with these levels

and a threshold. It is shown in [14] that this simple structure of the SVQ codebook results
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in fast and efficient algorithms for codebook search and codevector encoding/decoding.
Several algorithms for the design of the SVQ) are also given in [14]. Next we show that by
choosing an appropriate set of lengths the SVQ can realize the boundary gain.

The AEP dictates that for a Gaussian source an m-sphere bounded codebook asymp-
totically realizes the optimal boundary gain as m increases. Also, for a given dimension
m and rate r, an m-sphere codebook boundary minimizes the overload probability and
maximizes the boundary gain [6]. An m-sphere bounded cubic lattice based codebook can
be expressed as an SVQ codebook by choosing the underlying scalar quantizer § as a uni-
form scalar quantizer and defining the length ¢; associated with the level ¢; as £; = |¢;|*.
Similarly, the asymptotically optimal codebook boundary for a Laplacian source is an
m-pyramid. The SVQ can accomplish this if the level ¢; is assigned a length ¢; = |q:|.

While for the generalized Gaussian family of sources ? the optimal codebook boundary
Rm can be easily determined and visualized, for other sources with arbitrary distributions
it is generally not easy to determine R,, and then place the codevectors on or inside it.
Most AEP-motivated asymptotically optimal structured quantization schemes will there-
fore be difficult to implement for such sources. However, for these sources the SVQ can be
derived from the optimal ECSQ designed for the source distribution. As shown in [14], this
SVQ asymptotically (in block-length) achieves the ECSQ performance which is inferior to

the rate-distortion limit only by an amount equal to the maximum granular gain (at high

rates) [5], [27].

II1. Trellis Coded Quantization (TCQ)

In the previous section we have shown that the SVQ can asymptotically (in block-
length) achieve the optimal boundary gain by placing its codevectors only in the high
probability density region of the source space. However, the underlying lattice (grid) on
which the codevectors are located is cubic (rectangular) and hence no granular gain is
realized by the SVQ. To realize the granular gain the codevectors must be placed on a
more densely packed multidimensional lattice than the cubic lattice. A dense lattice has a

more spherical Voronoi region which therefore has a smaller second moment than a cube of

? The pdf of the generalized Gaussian distribution is parameterized by & and is of the form p(x) =
cre~c2lel®

, where c; is the normalization constant and ¢9 determines the variance of the distribution.
For & = 2 the generalized Gaussian distribution reduces to the Gaussian distribution and for & = 1 it

reduces to the Laplacian distribution.
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the same volume. Quantizers based on dense lattices hence result in a smaller (up to 1.53
dB) average squared-error distortion than those based on a cubic lattice. The granular
gain of several lattices is given in [6]. Among these is the 24-dimensional Leech lattice,
which is the densest known 24-dimensional lattice. The Leech lattice gives a granular gain

of 1.03 dB but has a fairly high implementation complexity.

Trellis codes are generalizations of finite dimensional lattices to infinite dimensional
space (sequence space) just as convolutional codes are generalizations of block codes. Trellis
codes are constructed by using a trellis diagram to select a sequence of subsets (cosets of a
sublattice) of a redundant lattice and were first proposed by Ungerboeck in his celebrated
paper [16] which combines coding with modulation. Since then they have extensively been

studied in the context of data transmission [18]-[22].

Marcellin and Fischer were the first to apply Ungerboeck’s trellis coding ideas to
quantization [15]. They showed that for a given complexity, trellis codes can result in
higher granular gains than dense lattices. As pointed out in [6] and worth repeating here,
the gains obtained in using trellis codes in transmission and quantization are of a different
nature. Consider a trellis code and a cubic lattice with the same normalized point density.
The coding gain in transmission results from a larger minimum distance between trellis
sequences as compared to the cubic lattice. On the other hand, the granular gain in
quantization results from a smaller second moment of the Voronoi region of the trellis

sequence compared to the Voronoi region of the cubic lattice.

In [15], Marcellin and Fischer have studied the granular gains of several Ungerboeck’s
one-dimensional trellis codes based on partitioning Z into the four cosets of 4Z. These
codes have a redundancy of 1 bit/dimension. The granular gains obtained in [15] for 4,
8, 16, 32, 64, 128 and 256-state trellis codes are given in Table 1. These values were
obtained by high-rate trellis coded quantization of uniform sources. Because of the 1
bit/dimension redundancy of the trellis codes, the quantizer alphabet of the trellis coded
quantizer (TCQ) has twice as many quantization levels as a scalar quantizer at the same
rate. Since no boundary gain can be realized for uniform sources, the gain over uniform
scalar quantization in this case is the granular gain. The gains in Table 1 are for large
quantization delays and will be somewhat less for smaller delays. Due to the similarity
between granular gain and the shaping gain in transmission, the dependence of granular

gain on delay is the same as that of the shaping gain on delay as studied by Forney for
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trellis shaping [23].

The granular gain of the simple 4-state Ungerboeck trellis code is about 1 dB which
is close to the 1.03 dB of the 24-dimensional Leech lattice. The 4-state code is however
considerably simpler to implement. The trellis diagram of this code along with the four
partitions of the quantizer alphabet are shown in Fig. 1.

Trellis coded quantization has also been applied to some non-uniform sources such as
Gaussian and Laplacian sources [15]. For these sources, the quantization levels are not
restricted to (scaled) integers but can have non-uniform spacing, permitting the TCQ to
realize some non-uniform density gain. The underlying ‘trellis code’ hence 1s no longer a
geometrically uniform code [24] and we shall call it a non-uniform trellis code. In spite of
the fact that no explicit attempt is made to realize the boundary gain, the TCQ performs

remarkably well for both Gaussian and Laplacian sources at rates of 3 bits/sample and

less [15].

IV. Trellis-Based Structured Vector Quantizer (TB-SVQ)

Having studied the boundary gain property of the SVQ and the granular gain property
of the TCQ, the most logical next step is to try and combine these two into a single
quantizer that realizes both these gains. We call this quantizer the trellis-based scalar-
vector quantizer (TB-SVQ). The TB-SV(Q uses the SVQ idea to shape the ‘codebook’
boundary, but unlike the SVQ the ‘codevectors’ of the TB-SV(Q — referred to as code-
sequences, do not lie on a rectangular grid but are sequences from a (non-uniform) trellis
code3. Note that the SVQ as defined in Section II has a finite block-length m while the TB-
SVQ code-sequences are vectors in an infinite dimensional sequence space. We will use the
term TB-SVQ block-length (or dimension) to refer to the block-length of the underlying
SVQ. The TB-SVQ is now defined as follows.

An m-dimensional TB-SVQ is specified by an alphabet (set of quantization levels)
Q = {q1,92,---,92n}, a corresponding set of lengths £ = {{1,0,...,£2,} (where £; is
the length of ¢;), a threshold L and a trellis code 7(Q) whose branches are labeled with
elements in Q. The TB-SVQ ‘codebook’ is a collection of code-sequences such that every
code-sequence {c;} is a sequence from the trellis code 7(Q) with the additional constraint

that when {c;} is partioned into m-vectors (each in Q™), the total length of each vector is

3 Unless stated otherwise, for the rest of this paper we will assume that the trellis code is one dimen-

sional and has a redundancy of 1 bit/dimension.



no greater than the threshold L. As before, the total length of a vector is the sum of the

lengths of its components.

Unlike a TCQ, the number of quantization levels (2n) of a TB-SVQ is not restricted
to 27!, where r is the quantizer rate in bits/sample. In general, the TB-SVQ has more
than 2"t levels (n > 27). This additional alphabet expansion is similar to the shaping
constellation expansion in transmission [8]. If there is no additional alphabet expansion
(n = 27), the TB-SVQ effectively reduces to a TCQ which is analogous to an unshaped

trellis-coded constellation.

Given a sequence {z;} of source samples, the quantization operation of the TB-SVQ
consists of searching for the code-sequence that is closest to {z;} in some given distortion
metric — usually squared-error. Later in this section we will describe an algorithm to do
the code-sequence search but first we address the problem of encoding and decoding these
sequences. It is shown next that by imposing some minor constraints on the TB-SVQ the
corresponding algorithms of the SV(Q can be used for this purpose. The encoding and
decoding algorithms described here are respectively similar to the decoding and encoding

algorithms for the SVQ-shaped trellis-coded constellations given in [25].
A. Encoding and decoding algorithms for the TB-SVQ

A convolutional code based implementation of a trellis code provides a natural map-
ping from a bit sequence to a trellis sequence and vice versa. This leads to simple encoding
and decoding algorithms for the TCQ. Since in general, all trellis sequences are not code-
sequences of the TB-SVQ, the task of encoding and decoding for the TB-SV(Q) is not as
straightforward. However, by placing the following two constraints on the TB-SVQ we will
show that the corresponding SVQ algorithms can be used for this purpose.

(1) The trellis code 7(Q) must partition the alphabet Q (containing 2n quantization
levels) into two subsets @4 and Qp such that both Q4 and Qp have n levels each
and all outgoing transitions from every trellis state are either associated with levels in
Q4 or @p but not both. In other words, the set of allowed outputs in any trellis state

1s either @4 or Qp. This constraint is satisfied by all of Ungerboeck’s trellis codes.

(i1) It should be possible to pair every level a; in @4 with a distinct level b; in Qp,
such that a; and b; have the same length. Let the set of pairs be denoted by P =
{P1,Ps,...,P,}, where P; = (a;,b;). To every pair P;, 7 € J,, assign a length [;

equal to the length of the level a; (or b;). Note that according to the first constraint,
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codebook search algorithm of the SVQ [14] and the Viterbi trellis search algorithm of the
TCQ [15]. Before describing the algorithm we introduce some notation that will be helpful
for this purpose. ‘

Consider a v-state trellis code 7(Q) defined on an alphabet @ with 2n quantization
levels. The trellis diagram for this code can be thought of as a v-state finite-state machine
(FSM). In the k** sample interval, the input 6, € © = {0,1,2,...,n — 1} to the FSM
chooses its output oy from one of n quantization levels allowed in the current state s; €
¥ ={0,1,2,...,v — 1} and also determines the state sxt1 for the next sample interval.
The FSM can be completely described by two functions, the next-state function n and the
output function O. The next-state function n(:,-) : £ x @ — X, with sp+1 = n(sk, 6k)
and the output function O(+,-) : ¥ x © — Q, with o = O(sk, k). For all trellis codes of
interest, the next-state function 7 is invertible for a given input §; and hence we can define
a previous-state function u(-,-) : ¥ x © — £, with sx = p(sk+1,60k). The above notation
will simplify the presentation of the search algorithm as the details of the trellis code are
now buried in the two functions O and n (or O and u).

Let d(z,y) denote the distortion between a source sample z and its reproduction y.
We wish to quantize the given source output sequence to the code-sequence that minimizes
the average distortion. Partition the source sequence into blocks of m samples (m-vectors)
and let {x;} denote the sequence of source m-vectors, where xx = (1, T2k, - - -, Tmk )-

Denote by Aj the minimum distortion that results when the first k source vectors
are quantized to a code-sequence such that the final trellis state is s, where s € £. Now
consider the quantization of the kt* source vector. Denote by D{ ' the minimum cumulative
distortion (sum of the distortions of all source samples up to the :** sample of the k** source
vector) that results when the first ¢ components of the k' quantized vector have a total
length 5 and the final trellis state is s. To make the notation simpler, we shall suppress

the dependence on k and write this distortion as Dlj ®,

The distortion D{_’fl can recursively be obtained as,
fol = {oréig[D.ij—l(e)ys’ + d(m(i-\"l)k - q(e))L 1= Oa 1727 cee M — 1’ (3)

where s' = u(s,6), ¢(8) = O(s',0) and £(6) is the length of the quantization level ¢(6),
ie., £(0) =Ly, , f being the index function of (2). Also, define Df-"s =ooforj <0, <0

0
and Do’s = i‘——l‘



By using a dynamic programming algorithm similar to the one in [14], the equations
in (3) can be solved for DJ;*, Vj € Ji = {1,2,...,L} and Vs € &. From the D};* we can
obtain Aj as,

= ]rrenJrLl Di¥ sex. (4)

If in the dynamic programming algorithm for solving (3), we not only keep track
of the distortion of the survivor path but also the path itself, we can easily obtain the
code-sequence that resulted in the distortion A, s € .

It is impractical in any system to wait for the entire source sequence (possibly very
long) before deciding the code-sequence to which it should be quantized. Such a system
would have very large quantization delays. In practice little is lost by making these deci-
sions after a fixed delay of d source m-vectors. Hence, decision about the k** quantized
vector v of the desired code-sequence can be made after determining Aj_ ,;, Vs € X. The
performance of the TB-SVQ will depend on the quantization delay d and this dependence
is examined in the next section.

The complexity of the search algorithm presented above is higher than the complexity
of the SVQ codebook search algorithm. This 1s because the Dzj’s must be determined
not only for all ¢ € J,, and j € Jr but also for s € £. Hence the complexity of the
TB-SVQ search increases approximately linearly with the number of trellis states. For
Ungerboeck’s 4-state one-dimensional trellis code, the complexity is approximately four
times that of the equivalent SVQ search complexity. The SVQ however realizes no granular
gain while the TB-SVQ can easily realize up to 1 dB granular gain. Because of the granular
gain advantage, the TB-SVQ complexity can be reduced significantly while maintaining
a performance better than the SVQ. This can be done by assigning smaller lengths to
quantization levels (coarser length quantization as described in [14]) and hence reducing
the threshold L. For some applications however, the complexity can still be quite high
if the quantization rate r is high, or the trellis code has a large number of states v, or
the block-length m is large. To overcome this problem, in the next section we describe
a suboptimal code-sequence search algorithm that performs very well but has a very low

complexity.

V. Design and Performance

We consider two different approaches for designing the TB-SVQ. In the first approach
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(Method 1), the boundary gain of the TB-SVQ is obtained by deriving it from an entropy-
constrained scalar quantizer and the granular gain is realized by the trellis code. The
second approach (Method 2) uses the AEP to realize the boundary gain and works only
for those sources for which the region R,, has a simple geometrical shape such as an m-
sphere or an m-pyramid. While the latter approach requires the explicit knowledge of the
source probability density and works only for a small (but important) class of sources, the
former has the advantage that it can be used to design quantizers from a training sequence
of source samples. Assuming squared-error as the distortion measure, we now describe
these two design methods and present their performance results based on simulations. To
reduce the search complexity, a suboptimal code-sequence search algorithm is presented
for Method 2. The corﬁple’xity of this algorithm is effectively that of a trellis search as in
a TCQ.

A. Method 1

In this method the TB-SVQ is first derived from an ECSQ designed for the source
probability distribution; its quantization levels are then optimized using an algorithm
similar to the Step A of the SVQ design algorithm [14]. In practice, a uniform-threshold*
scalar quantizer (UTSQ) is used in place of the optimal ECSQ. The UTSQ is considerably
simpler to design and its performance is very close to the performance of the optimal
ECSQ for most sources [4], [27]. The spacing 3 between the quantization thresholds of the
(symmetric) UTSQ is determined such that its output entropy is equal to the desired rate r
(bits/sample) of the TB-SVQ. Since all trellis codes considered here have a redundancy of
1 bit/sample, we actually start with a symmetric UTSQ that has a spacing of 5/2 between
its thresholds and has an even number of levels. The quantization levels are placed between
the thresholds at the center of the probability mass. Asin the SVQ design, the length ¢; of
the quantization level ¢; is determined as, £; = [blog 1/p;], where p; is the probability of the
quantization region of ¢;, square brackets indicate rounding off to the nearest integer and b
is a scalar factor that determines the effective round-off error [14] (for all results obtained
here, we have taken b = 1). For this length assignment, the second constraint in Section

IV.A will automatically be satisfied for sources with symmetric® pdf's provided the trellis

4 Not to be confused with the threshold L of the TB-SYQ.
For sources that are not symmetric, the lengths determined above might have to be altered to satisfy

the constraint.
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showing the variation with quantization delay d (in number of source m-vectors; m = 32)
of the TB-SVQ performance at 1 bit/sample for a Gaussian source. A similar plot for a
Laplacian source at 3 bit/sample is given in Fig. 3. As expected, these plots indicate that
the delay required to saturate the performance is smaller when the TB-SVQ has fewer
states. A 4-state TB-SVQ requires a delay of only 1 source vector (32 samples) to perform
within 0.03 dB of the results in Table 2.

B. Method 2

This method of designing TB-SVQs is based on the AEP and uniformly places the
codevectors on (and inside) the region R,,. This is similar to the approach presented in
[6] for Gaussian and Laplacian sources, except that for these sources the TB-SVQ can
implement the optimal codebook boundary exactly instead of approximating it by the

(generalized) Voronoi region of some lattice®

. For a Gaussian source, the region R, 1s
an m-sphere and therefore the desired trellis-based ‘codebook’ has an m-sphere boundary.
This can be implemented by the TB-SVQ if the quantization levels are uniformly spaced
—Q=1{...,-33,-8,8,36,...} and the lengths are are assigned as £; = |q;|*/f%. The
threshold L is determined such that the primary codebook has 2™" codevectors. The
resulting codebook boundary is hence an m-sphere of squared-radius 82?L. The trellis
code 7(Q) here is geometrically uniform and no non-uniform density gain is realized.
This is however not a big drawback since the suboptimal code-sequence search algorithm
described below enables quantization at large block-lengths, reducing the significance of
the non-uniform density gain. For a Laplacian source the region R, is an m-pyramid.
The m-pyramid codebook boundary in this case can be implemented as above provided
the lengths are assigned as ¢; = |g;|/8. The only parameter that needs to be determined
to design quantizers for Gaussian and Laplacian sources is the spacing 23 between the
quantization levels. This can be done by plotting the quantizer distortion as a function of
B and choosing that value of g for which the distortion is minimized.

To reduce the implementation complexity of the TB-5VQs designed using Method 2,
we have used the following suboptimal code-sequence search algorithm. A simple trellis

search is first performed on the given sequence of source m-vectors. In other words, the

source sequence 1s quantized just as in a TCQ. If a source m-vector 1s quantized to a

6 Even for most other generalized Gaussian sources, the TB-SV(Q implements a much better approxi-

mation of the optimal codebook boundary than the approach given in [6].

16



vector of total length less than or equal to L, the quantized output i1s accepted and the
next m-vector in the source sequence is quantized. If, on the other hand, the source
m-vector is quantized to a vector of total length greater than L — corresponding to an
overload event — the source vector is (gradually) moved towards the closest point on the
codebook boundary and the trellis search is attempted again starting from the previous
quantized vector that did not result in an overload. This process continues until the
resulting quantized vector satisfies the total length constraint. For the Gaussian source
the ‘overload’ source m-vector can be moved towards the closest point on the m-sphere
codebook boundary by simply scaling by a factor less than unity. For Laplacian sources
this is done by subtracting a fixed amount from the magnitude of each of the m components

of the source vector.

The suboptimality of the above search algorithm arises from the fact that in case of an
overload, the search does not necessarily result in quantization to the closest vector inside
the codebook boundary. In general, we found that the performance of this algorithm is
not significantly affected even if the overload source vector is moved towards the codebook

boundary in large steps.

The complexity of this search algorithm is essentially equal to the complexity of a TCQ
based on the same trellis code, and is significantly less than the complexity of the optimal
search algorithm of Section IV. This reduced complexity makes it possible to increase
the block-length of the TB-SVQ, possibly compensating for some of the loss due to the
suboptimality. Table 3 gives the performance of the suboptimally searched TB-SVQs of
Method 2 for Gaussian and Laplacian sources at a block-length m = 64. A comparison with
Table 2 reveals that for a Gaussian source the performance of the suboptimally searched
quantizer for m = 64 is similar (within 0.2 dB) to the performance of the optimally
searched TB-SVQ of Method 1 for m = 32. For the Laplacian case, the performances are
comparable at rates 2 and 3 bits/sample but the suboptimal search performs considerably

worse (up to about 0.6 dB) at 1 bit/sample.

We have also tried to use a two codebook approach similar to the one described in [7].
A second codebook — called the overload codebook — is used to quantize the overload
source vectors directly without having to move them inside the boundary. It was found
that at rates less than or equal to 2 bits/sample, this did not result in any performance

improvement. For higher rates this leads to some gain. The results for Gaussian and
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Laplacian sources at a rate of 3 bits/sample are given in Table 4. These results were
obtained for equal number of vectors in the two codebooks and the spacing between the
quantization levels for each codebook was determined by experimentation. The results in
Table 4 are even better than the corresponding results for the optimally searched quantizers
(Table 2) and are the best results reported for the fixed-rate quantization of Gaussian and

Laplacian sources at 3 bits/sample.

VI. Conclusions

In this paper we have combined the scalar-vector quantizer of [14] with the trellis
coded quantizer of [15] and proposed a new quantizer called the trellis-based scalar-vector
quantizer. The SVQ structure enables the TB-SVQ to realize a significant boundary gain
while the trellis code. allows it to realize the granular gain. In addition, by having non-
uniformly spaced quantization levels in the TB-SVQ alphabet, some non-uniform density
gain can also be attained. The TB-SVQ is hence capable of realizing all the three gains
over the baseline uniform scalar quantizer. It can, in principle, approach the rate-distortion
bound at large block-lengths and with powerful (possibly complex) trellis codes while
maintaining a fixed rate. Even with the relatively simple Ungerboeck’s one-dimensional
trellis code, it can realize a significant portion of the total granular gain and performs

better than all other reasonable complexity fixed-rate quantizers.
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States 4 | 8 | 16 | 32 | 64 | 128 | 256
Gain (dB) | 0.99 | 1.10 | 1.15 | 1.23 | 1.28 | 1.33 | 1.36

Table 1: Granular gains of Ungerboeck’s one-dimensional 4 to 256-state trellis codes

obtained by Marcellin and Fischer [15].

TB-SVQ (States)
Rate | SVQ 4 8 16 32 | TCQ | ECSQ | R(D)
1 4.63 | 5.14 5.27 5.29 5.32 | 5.56 | 4.64 6.02

2 1040 | 11.11 | 11.19 | 11.25 | 11.31 | 11.04 | 10.55 | 12.04

3 |15.97| 16.77 | 16.86 | 16.92 | 16.95 | 16.64 | 16.56 | 18.06
(2.98) | (2.98) | (2.98) | (2.98)

Table 2a: Performance (SNR in dB) of the TB-SVQ (Method 1) for four different trellis
codes (4, 8, 16 and 32-state) and three different rates (1, 2 and 3 bits/sample). The source
is Gaussian, the block-length of the SVQ and the TB-SVQ is 32 and the TCQ has 256

states [15]. The numbers in () indicate the actual rate if different from the desired rate.



TB-SVQ (States)
Rate | SVQ 4 8 16 32 | TCQ | ECSQ | R(D)
1 5.99 | 5.85 5.91 5.95 5.96 5.04 5.76 6.62

2 10.87 | 11.52 | 11.62 | 11.67 | 11.72 | 11.22 | 11.31 | 12.66
(1.99) | (1.99) | (1.99) | (1.99)
3 16.14 | 17.08 | 17.15 | 17.23 | 17.30 | 16.96 | 17.20 | 18.68

Table 2b: Performance (SNR in dB) of the TB-SVQ (Method 1) for four different trellis
codes (4, 8, 16 and 32-state) and three different rates (1, 2 and 3 bits/sample). The source
is Laplacian, the block-length of the SVQ and the TB-SVQ is 32 and the TCQ has 256

states [15]. The numbers in () indicate the actual rate if different from the desired rate.

TB-SVQ (States)
Rate | SVQ 4 8 16 32 | TCQ | ECSQ | R(D)
1 7.80 | 818 | 8.23 8.25 | 8.28 — 8.53 —
(0.99) | (0.99) | (0.99) | (0.99)
2 13.58 | 13.90 | 14.02 | 14.08 | 14.16 | — 14.53 —
3 18.53 | 18.81 | 18.95 | 19.10 | 19.17 — 20.41 —

Table 2c: Performance (SNR in dB) of the TB-SVQ (Method 1) for four different trellis
codes (4, 8, 16 and 32-state) and three different rates (1, 2 and 3 bits/sample). The source
is generalized Gaussian with a = 0.5, the block-length of the SVQ and the TB-SV(Q is 32
and the SVQ has 256 states [15]. The numbers in () indicate the actual rate if different

from the desired rate.



TB-SVQ (States)

Rate 4 8 16 32
1 539 | 543 | 546 | 5.49
(1.02) | (1.02) | (1.02) | (1.02)
2 11.18 | 11.22 | 11.25 | 11.28

3 16.92 | 16.98 | 17.01 | 17.05

Table 3a: Performance (SNR in dB) of the 64-dimensional TB-SVQ designed using
Method 2 for a Gaussian source. The code-sequence search algorithm is suboptimal. The
results for four different trellis codes (4, 8, 16 and 32-state) and three different rates (1, 2
and 3 bits/sample) are given. The numbers in () indicate the actual rate if different from

the desired rate.

TB-SVQ (States)

Rate 4 8 16 32
1 5.22 5.29 5.34 5.39
(0.99) | (0.99) | (0.99) | (0.99)
2 1144 | 11.50 | 11.54 | 11.57

3 17.15 | 17.20 | 17.24 | 17.27

Table 3b: Performance (SNR in dB) of the 64-dimensional TB-SVQ designed using
Method 2 for a Laplacian source. The code-sequence search algorithm is suboptimal.
The results for four different trellis codes (4, 8, 16 and 32-state) and three different rates
(1, 2 and 3 bits/sample) are given. The numbers in () indicate the actual rate if different

from the desired rate.



TB-SVQ (States)
Source 4 8 16 32
Gaussian | 17.09 | 17.13 | 17.16 | 17.19
Laplacian | 17.44 | 17.48 | 17.51 | 17.54

Table 4: Performance (SNR in dB) of the 64-dimensional TB-SVQ with an overload
codebook. The results for four different trellis codes (4, 8, 16 and 32-state) at rate 3

bits/sample are given.



Fig. 1: Ungerboeck’s 4-state one-dimensional trellis code.
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Fig. 2: TB-SVQ performance as a function of the quantization delay d in number of

m-vectors (m = 32) for a Gaussian source at 1 bit/sample.
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Fig. 3: TB-SVQ performance as a function of the quantization delay d in number of

m-vectors (m = 32) for a Laplacian source at 3 bits/sample.



