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Abstract

If pi (i = 1, . . . , N) is the probability of the i-th letter of a memoryless source,
the length li of the corresponding binary Huffman codeword can be very different
from the value − log pi. For a typical letter, however, li ≈ − log pi. More pre-
cisely, P−

m =
∑

j∈{i|li<− log pi−m}

pj < 2−m and P+
m =

∑

j∈{i|li>− log pi+m}

pj < 2−c(m−2)+2

where c ≈ 2.27.

Introduction

Concepts from information theory gained new importance in physics [1, 2] when Bennett [3]
realized that Landauer’s principle [4], which specifies the unavoidable energy cost kBT ln 2
for the erasure of a bit of information, is the clue to the solution of the problem posed by
Maxwell’s demon. This problem can be summarized as follows: A demon knows initially
that a system is in the i-th possible state (i = 1, . . . , N) with probability pi. The demon
then finds the actual state state of the system—thereby lowering the system’s entropy
by the amount H = −∑

pi log pi. This is in apparent violation of the second law of
thermodynamics, since the entropy decrease corresponds to a free-energy increase ∆F =
HkBT ln 2 that can be extracted as work. Bennett solved this inconsistency by noting
that in order to return to its original configuration the demon must erase its record of the
system state. The second law is saved since, due to Shannon’s noiseless coding theorem, the
average length of the demon’s record cannot be smaller than H . Therefore, the Landauer
erasure cost cancels the extracted work on the average.

If the demon wants to operate with maximum efficiency, it must use an optimal cod-
ing procedure, i. e., Huffman coding [5]. In this context, the question arises as to how
the record length li for the i-th state can be interpreted. Zurek [1] discusses two alter-
native (sub-optimal) coding procedures for the demon: minimal programs for a universal

∗Submitted to IEEE Transactions on Information Theory.
†Supported by a fellowship from the Deutsche Forschungsgemeinschaft.

1

http://arxiv.org/abs/adap-org/9303001v1


computer, where the record length is the algorithmic complexity [6] of the state; and
Shannon-Fano coding, where the record length is determined by the state’s probability
through the inequality − log pi ≤ li < − log pi + 1. The length of a Huffman codeword,
on the other hand, is neither determined by the state’s complexity nor by its probability.
Given pi, the Huffman codeword length can, in principle, be as small as 1 bit and as large
as [log((

√
5 + 1)/2)]−1 ≈ 1.44 times − log pi [7].

In this correspondence, we show that the lengths of both Huffman and Shannon-Fano
codewords have a similar interpretation. The probability of the states for which the Huff-
man codeword length differs by more than m bits from − log pi decreases exponentially
with m. In this sense, one can say that, for a typical state, the Huffman codeword satisfies
li ≈ − log pi, just as for Shannon-Fano coding. This is especially relevant in a thermo-
dynamic context where entropies are of the order of 280 bits and where an error of a few
hundred bits in the length of a typical record would be unnoticeable.

Result

In this section we return to the terminology of the abstract and consider a discrete mem-
oryless N -letter source (N ≥ 2) to which a binary Huffman code is assigned. The i-th
letter has probability pi < 1 and codeword length li. The Huffman code can be represented
by a binary tree having the sibling property [8] defined as follows: The number of links
leading from the root of the tree to a node is called the level of that node. If the level-n
node a is connected to the level-(n+ 1) nodes b and c, then a is called the parent of b and
c; a’s children b and c are called siblings. There are exactly N terminal nodes or leaves,
each leaf corresponding to a letter. Each link connecting two nodes is labeled 0 or 1. The
sequence of labels encountered on the path from the root to a leaf is the codeword assigned
to the corresponding letter. The codeword length of a letter is thus equal to the level of
the corresponding leaf. Each node is assigned a probability such that the probability of
a leaf is equal to the probability of the corresponding letter and the probability of each
non-terminal node is equal to the sum of the probabilities of its children. A tree has the
sibling property iff each node except the root has a sibling and the nodes can be listed
in order of nonincreasing probability with each node being adjacent to its sibling in the
list [8].

Definition: A level-l node with probability p—or, equivalently, a letter with probability p
and codeword length l—has the property X+

m (X−
m) iff l > − log p+m (l < − log p−m).

Theorem 1 : P−
m =

∑
j∈I−m

pj < 2−m where I−m = {i|li < − log pi −m}, i. e., the probability
that a letter has property X−

m is smaller than 2−m. (This is true for any prefix-free code.)

Proof : P−
m = 2−m

∑
j∈I−m

2log pj+m < 2−m
∑

j∈I−m
2−lj ≤ 2−m. The last inequality follows

from the Kraft inequality.

Lemma: Any node with property X+
m has probability p < 2−c(m−1) where c = (1−log g)−1−

1 ≈ 2.27 with g = (
√
5 + 1)/2.

Proof : PropertyX+
m implies l > ⌊− log p+m⌋ where ⌊x⌋ denotes the largest integer less than

or equal to x. It is shown in Ref. [7] that, if p and l are the probability and level of a given
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node, p ≥ 1/Fn implies l ≤ n−2 for n ≥ 3 where Fn = [gn−(−g)−n]/
√
5 ≥ gn−2 is the n-th

Fibonacci number (n ≥ 1). Therefore, if ⌊− log p+m⌋ ≥ 1, the inequality l > ⌊− log p+m⌋
implies p < (F⌊− log p+m⌋+2)

−1 ≤ g−⌊− log p+m⌋ ≤ glog p−m+1. For ⌊− log p + m⌋ < 1, p <
glog p−m+1 holds trivially. Solving for p proves the lemma.

Theorem 2 : P+
m =

∑
j∈I+m

pj < 2−c(m−2)+2 where I+m = {i|li > − log pi + m}, i. e., the
probability that a letter has property X+

m is smaller than 2−c(m−2)+2.

Proof : Suppose there is at least one letter—and hence a corresponding leaf—having the
property X+

m. Then, among all nodes having the property X+
m, there is a nonempty subset

with minimum level n0 > 0. In this subset, there is a node having maximum probability
p0. In other words, there is no node having property X+

m on a level n < n0, and on level
n0, there is no node with probability p > p0. Thus property X+

m implies

p0 > 2−n0+m .

Now let k0 be the number of nodes on level n0 − 1, and define the integer l0 < n0 such
that 2l0 ≤ k0 < 2l0+1. Then the number of level-n0 nodes is less than 2l0+2. Since all nodes
having property X+

m are on levels n ≥ n0, it follows that

P+
m < 2l0+2p0 .

In order to turn this into a useful bound, note the following. The sibling property or,
more directly, the optimality of a Huffman code implies that all level-(n0 − 1) nodes have
probability p ≥ p0. Since there are at least 2

l0 level-(n0−1) nodes, it is again a consequence
of the sibling property that there exists a level-(n0 − 1 − l0) node with probability p1 ≥
2l0p0 > 2−n0+m+l0 and thus having property X+

m−1. Using the lemma, one finds p1 <
2−c(m−2) and therefore

P+
m < 2l0+2p0 ≤ 22p1 < 2−c(m−2)+2 .
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