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Abstract

If p; (i =1,...,N) is the probability of the i-th letter of a memoryless source,
the length I; of the corresponding binary Huffman codeword can be very different
from the value —logp;. For a typical letter, however, [; =~ —logp;. More pre-
cisely, P, = Z pj <27 and P} = Z pj < 9—c(m=2)+2

jeilli<—logp;—m} je{illi>—log p;+m}
where ¢ ~ 2.27.

Introduction

Concepts from information theory gained new importance in physics [}, B] when Bennett [J]
realized that Landauer’s principle [[]], which specifies the unavoidable energy cost kg7 In 2
for the erasure of a bit of information, is the clue to the solution of the problem posed by
Maxwell’s demon. This problem can be summarized as follows: A demon knows initially
that a system is in the i-th possible state (i = 1,..., N) with probability p;. The demon
then finds the actual state state of the system—thereby lowering the system’s entropy
by the amount H = — > p;logp;. This is in apparent violation of the second law of
thermodynamics, since the entropy decrease corresponds to a free-energy increase AF =
HEpT In2 that can be extracted as work. Bennett solved this inconsistency by noting
that in order to return to its original configuration the demon must erase its record of the
system state. The second law is saved since, due to Shannon’s noiseless coding theorem, the
average length of the demon’s record cannot be smaller than H. Therefore, the Landauer
erasure cost cancels the extracted work on the average.

If the demon wants to operate with maximum efficiency, it must use an optimal cod-
ing procedure, i. e., Huffman coding [{]. In this context, the question arises as to how
the record length [; for the i-th state can be interpreted. Zurek [[] discusses two alter-
native (sub-optimal) coding procedures for the demon: minimal programs for a universal
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computer, where the record length is the algorithmic complexity [f] of the state; and
Shannon-Fano coding, where the record length is determined by the state’s probability
through the inequality —logp; < [; < —logp; + 1. The length of a Huffman codeword,
on the other hand, is neither determined by the state’s complexity nor by its probability.
Given p;, the Huffman codeword length can, in principle, be as small as 1 bit and as large
as [log((v/5 +1)/2)]7! ~ 1.44 times — log p; [[].

In this correspondence, we show that the lengths of both Huffman and Shannon-Fano
codewords have a similar interpretation. The probability of the states for which the Huff-
man codeword length differs by more than m bits from — logp; decreases exponentially
with m. In this sense, one can say that, for a typical state, the Huffman codeword satisfies
l; =& —logp;, just as for Shannon-Fano coding. This is especially relevant in a thermo-
dynamic context where entropies are of the order of 2% bits and where an error of a few
hundred bits in the length of a typical record would be unnoticeable.

Result

In this section we return to the terminology of the abstract and consider a discrete mem-
oryless N-letter source (N > 2) to which a binary Huffman code is assigned. The i-th
letter has probability p; < 1 and codeword length ;. The Huffman code can be represented
by a binary tree having the sibling property [§] defined as follows: The number of links
leading from the root of the tree to a node is called the level of that node. If the level-n
node a is connected to the level-(n + 1) nodes b and ¢, then «a is called the parent of b and
c; a’s children b and c are called siblings. There are exactly N terminal nodes or leaves,
each leaf corresponding to a letter. Each link connecting two nodes is labeled 0 or 1. The
sequence of labels encountered on the path from the root to a leaf is the codeword assigned
to the corresponding letter. The codeword length of a letter is thus equal to the level of
the corresponding leaf. Each node is assigned a probability such that the probability of
a leaf is equal to the probability of the corresponding letter and the probability of each
non-terminal node is equal to the sum of the probabilities of its children. A tree has the
sibling property iff each node except the root has a sibling and the nodes can be listed
in order of nonincreasing probability with each node being adjacent to its sibling in the
list [§].

Definition: A level-l node with probability p—or, equivalently, a letter with probability p
and codeword length —has the property Xt (X, ) iff [ > —logp+m (I < —logp —m).
Theorem 1: P, =3 ,c;-p; < 27™ where I, = {i[l; < —logp; —m}, i. e., the probability
that a letter has property X, is smaller than 27", (This is true for any prefix-free code.)
Proof: P, =2""% ;- Qlogpjtm o 9-m el 27l < 2™ The last inequality follows
from the Kraft inequality.

Lemma: Any node with property X+ has probability p < 274"~ where ¢ = (1—log g) ' —
12227 with g = (V5 + 1)/2.

Proof: Property X, implies [ > | —log p+m| where | x| denotes the largest integer less than
or equal to z. It is shown in Ref. [[f] that, if p and [ are the probability and level of a given



node, p > 1/F, implies [ < n—2 for n > 3 where F,, = [¢" — (—g)™"]/V/5 > ¢" 2 is the n-th
Fibonacci number (n > 1). Therefore, if | —logp+m] > 1, the inequality [ > | —logp+m]
implies p < (F|_jogpim|42) t < g loleptml < glogp=m+l - For |—logp+m] < 1, p <
g'°8P~m+1 holds trivially. Solving for p proves the lemma.

Theorem 2: P = Y. p; < 27°"2%2 where I} = {ill; > —logp; + m}, i. e., the
probability that a letter has property X is smaller than 27¢(m=2)+2,

Proof: Suppose there is at least one letter—and hence a corresponding leaf—having the
property X;. Then, among all nodes having the property X' there is a nonempty subset
with minimum level ng > 0. In this subset, there is a node having maximum probability
po- In other words, there is no node having property X! on a level n < ng, and on level
no, there is no node with probability p > py. Thus property X} implies

Po > gnotm

Now let ko be the number of nodes on level ny — 1, and define the integer Iy < ng such
that 20 < kg < 200F!. Then the number of level-ny nodes is less than 272 Since all nodes
having property Xt are on levels n > ny, it follows that

Pr—rt < 2l0+2p0 .

In order to turn this into a useful bound, note the following. The sibling property or,
more directly, the optimality of a Huffman code implies that all level-(ny — 1) nodes have
probability p > po. Since there are at least 2 level-(ny— 1) nodes, it is again a consequence
of the sibling property that there exists a level-(ng — 1 — ly) node with probability p; >
2lopy > 27motm+lo and thus having property X;b ;. Using the lemma, one finds p; <
27¢(m=2) and therefore

Pr—;i; < 2lo+2p0 < 22p1 < 2—c(m—2)+2 )
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