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The bound can also be adapted to continuous alphabets by 
replacing the probability distribution p( . )  by a density, the 
cardinality lB,( p)l by a volume, and the entropy H ( p )  by the 
corresponding differential entropy. With these substitutions- 
and provided that a density p( . )  of the form ( 3 )  and satisfying (4) 
exists-the nonasymptotic part of the first proof, and thus the 
bound (2), is still valid. We conclude with the following example 
due to G. D. Forney, Jr., (private communication). 

Example: Let A be the real line with weight w ( a )  = a2;  then 
B,J p )  is the n-dimensional sphere (ball) of radius 6 around 
the origin. The probability density p ( . )  is Gaussian with variance 
p,  whose differential entropy is log, fi. According to (the 
continuous version of) (21, the volume of B,( p )  is upper bounded 
by ( 2 ~ e p ) ” ’ ~ .  The comparison of this bound, for n = 2m, 
with the exact formula ( 2 m p ~ ) ~ / m !  for the volume yields the 
Stirling-type bound 

m !  2 (m/e)” ,  
derived purely from information theory and geometry. (The 
Stirling approximation is m! = f i z ( m / e ) m . )  

APPENDIX 
PROOF OF THE PROPOSITION 

To simplify notation, we write w, and p ,  instead of w(a l )  and 
p(a l ) ,  respectively. All logarithms are to the base 2. 

We assume, without loss of essential generality, that w,;.’, w,,, 
are the elements of A that have minimal weight. For A = 0, p( . )  
is uniform over A ,  and thus E [ w ]  = W and H ( p )  = log IAl. The 
limits as A -+ K- of p ( . )  is the distribution p ,  = l / m  for 1 I i I 
m and p ,  = 0 otherwise, which makes it clear that 1imA+= E [ w ]  
= w,,, and limA+x H ( p )  = log m. 

We next show that ( d / d A ) E [ w ]  < 0 for all A. Let f ( A )  A 
E l  w,e-”,. 

d d 
d h  d h  

= -Z”( A)  -f( A) - f( A) -Z( A) 

= - Ce--hrtCw:e-”j + CWle-Aw,CW,e-AwJ 
I 1 I 1 

= - Ce-Q+,+WJ’W](W] - wl) 

e - A ( u , + w J ’ ( W l  - WI 12, 

1 1  

= - ce-A(w’+wJ’[w,(w, - w,) + W l ( W I  ~ w,)] 
I / > I  

- _  - 

I / > I  

which is negative unless all weights are equal. Since -Z”(A) > 0, 
we have proved that ( d / d A ) E [ w ]  < 0 for all A. 

The monotonic decrease of H ( p )  follows from the relation 
( d / d A ) H ( p )  = A log e ( d / d A ) E [ w ] ,  which results from the fol- 
lowing calculation: 

d d dP, 
- H ( p )  = - H ( p ) -  
d A  dp; d A  

dP, (log p ,  + log e) -  = - 

I d h  
= c ( A w i l o g e  + logZ(A)  

I 

dP1 log e) - 
d h  

= Alogecw,-  dP1 

I d A  

= A l o g e x  - (p lw l ) -  d dP, 
, dP, d h  

d 
d h  

= A log e - E [ w ] .  
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Asymptotic Results on Codes for Symmetric, 
Unidirectional, and Asymmetric Error Control 

Jos H. Weber 

Abstract-The asymptotic behavior of the rates of optimal codes 
correcting and/or detecting combinations of symmetric, unidirectional, 
and/or asymmetric errors is studied. These rates are expressed in terms 
of the rate of optimal codes with a certain Hamming distance. As a 
consequence, well-known bounds on the latter rate can also be applied to 
bound the former rates. Furthermore, it turns out that, without losing 
rate asymptotically, any error control combination can be upgraded to 
simultaneous symmetric error correction/detection and all unidirec- 
tional error detection. 

Index Terms-Asymmetric errors, code rate, error correction, error 
detection, symmetric errors, unidirectional errors. 

I. INTRODUCTION 
We consider binary channels over which codewords from a 

block code E are sent. If a received word differs in e coordi- 
nates from the transmitted word, we say that e (symmetric) 
errors have occurred. If these transitions are all of the same type 
(either 1 + 0 or 0 - 1), the error pattern is said to be unidirec- 
tional, while if all transitions are of the 1 - 0 type, the error 
pattern is said to be asymmetric. So any asymmetric error 
pattern is also unidirectional, and any unidirectional error pat- 
tern is also symmetric. We call e the weight of the error pattern. 
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We call a code t,-SyEC t,-UEC t,-AsEC d,-SyED d,-UED 
d,-AsED (with I ,  I t ,  I t,, d, i d, I d,, 0 I t, I d,) if and 
only if it can simultaneously correct up to t ,  symmetric errors, 
up to t ,  unidirectional errors, and up to t, asymmetric errors, as 
well as detect more than t ,  up to d, symmetric errors that are 
not of the unidirectional type, more than t ,  up to d, unidirec- 
tional errors that are not of the asymmetric type, and more than 
t ,  up to d, asymmetric errors. Hence, for an error pattern of 
weight e, the control capabilities of such codes are as follows. In 
case all errors are of the 1 -+ 0 type, the errors are corrected if 
e I t ,  and detected if t ,  < e I d,. In case all errors are of the 
0 + 1 type, the errors are corrected if e I t, and detected if 
t ,  < e I d,. Finally, in case the errors are of a mixed type, the 
errors are corrected if e I t ,  and detected if t ,  < e I d,. 

A necessary and sufficient condition for a code to have the 
property described above is given in the next theorem. For a 
proof, we refer to [2]. For two vectors x and y of equal length, 
we define N ( x ,  y )  = I(i : x ,  = 0 A y ,  = 111, while D ( x ,  y )  denotes 
the Hamming distance between x and y ,  i.e., D ( x ,  y )  = N ( x ,  y )  
+ N ( y ,  XI. 

Theorem I [2]: A code E' is t,-SyEC f,-UEC t,-AsEC d,- 
SyED d,-UED d,-AsED (with t l  I 1, I t,, d, I d, I d,, 0 I t ,  
I d,)  if and only if all x, y E E' with x # y and N ( x ,  y )  2 
N ( y ,  x) satisfy 

' D ( x ,  y )  2 t ,  + d, + 1 

D ( x ,  y )  2 t ,  + d, + 1 
A D ( x ,  y )  2 t ,  + d ,  + 1 

A D ( x , y )  2 t ,  + d,  + 1 

A N ( x , y )  2 d, + 1 

if N ( y ,  x) = 0,  

if 1 5 N ( y ,  x)  I t,, 

n 
(2) 

When studying the asymptotic behavior of (2), it is convenient to 
define 

log, A ( n ,  n6> 
a ( 6 )  = limsup _ _  (3) 

In order to study the asymptotic behavior of (11, we now 
similarly define 
P(71,72,731 61,6z, 63) 

(4) 

for T ,  I T ,  I T,, 8, 5 6, I 8,, 0 I T~ I 6, I 1. Hence, we fix 
the ratios between the error control parameters and the length, 
and consider the rate when n is large. Next, we derive two 
lemmas, which are useful in evaluating (4). 

Lemma 2: For t,  _< t ,  I t,, d, 5 d, I d,, 0 I t i  I d, I n, we 
have 

log, M(n,n~,,n~,,n~,,nS,,ns,,n6,) 
n = limsup 

n - r  

M(n, t , , t , , t , , d , , d , , d , )  
- < ( n  + l ) A ( n , t ,  + max(t, + l ,dll  + 1). 

Proof Let t? be a tl-SyEC t,-UEC t,-AsEC d,-SyED 
d,-UED d,-AsED code of length n and size M ( n ,  t,, 
t,, t , ,  d,, d,, d,). Let denote all codewords in 5T of weight w. 
Let x and y be any two different codewords in %#,. Suppose 
N ( y ,  x) I t,; then either N ( x ,  y >  = N ( y ,  x) = 0, which would 
imply x = y ,  or 1 I N ( x ,  y )  = N ( y ,  x) I t,, which would imply 
d, + 1 I N ( x ,  y )  I t ,  by Theorem 1. Because of these contra- 
dictions, we have N ( x ,  y )  = N ( y ,  x) > t ,  + I, and thus by Theo- 
rem 1, it follows that D ( x ,  y )  2 m a  { t ,  + d, + 1, 2(t, + 1)). 
Hence, 

M(n , t , , t , , t , , d , , d , , d , )  = IgI = I R I  
n 

w = o  

- < ( n  + I )A(n , t ,  + max{t, + l ,d l l  + 1). 
0 

Lemma 3: For t ,  _< t ,  I t,, d,  I d, I d,, 0 I t ,  I d, 5 n, we 
have 

A ( n ,  t ,  + max { t ,  + 1, dl} + 1) 
n + l  M ( n ,  t , ,  t ,  7 t,, 4 ,  d,,d,) 2 

Pro08 Let %2 be a code of length n,  size A(n,  t ,  + max(t, 
+ 1, d,} + l), and Hamming distance at least t ,  + max{t, + 
1, d,)  + 1. Let gw denote all codewords in tT of weight w. For 
any two different x , y  E Sw, we have N ( x , y )  = N ( y ,  x) = 

D ( x ,  y ) / 2  2 t ,  + 1 and D ( x ,  y )  2 t ,  + d, + 1. By Theorem 1, 
5Tw is t,-SyEC t,-UEC t,-AsEC d,-SyED d,-UED d,-AsED, 
and so 

A ( n , t ,  + max(t, + l , d , I  + 1) = IgI = 

n 

le,,l 
w =  0 

- ( n  + l)M(n,t,,t,,t,,d,,d,,d,). 
0 

By applying Lemmas 2 and 3 to (4), we easily obtain the 

Theorem 4: For 7 ,  I T ,  I T,, 8,  I 6, I 8,, 0 I r, 5 6 ,  I 1, 
following theorem. 

we have 
P(T,,  r z , T , ,  61, 62, 6,) 

log, A ( n , n r ,  + maxInT, + l , n 6 , )  + 1) 
n = limsup 

n + x  
0 

By taking into consideration that A(n,  d )  is nonincreasing in 
d, we can further evaluate the result from Theorem 4. On one 
hand, we have, 

P ( T I ,  7 2 ,  733 81, 6 2 ,  6,) 
Iog,A(n,nT, + max{m, + 1,n8 ,1  + 1) 

n 
log, A(n,n(T,  + max(T,, 6 , ) ) )  

n 

= limsup 

- < limsup 

n - t x  

n - t x  

= a ( ~ ,  + max{r3, SI)) ,  ( 5 )  
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and on the other hand, we have 

C L ( T l , ~ , , ~ , >  61, 62,6,) 

log, A(n,nT, + max{nr, + l , n 6 , }  + 1) 

n 
= limsup 

n - t x  

log, A ( n , n ~ , + m a x ( n ~ , + n E / 2 , n S , }  + n ~ / 2 )  
2 lim sup 

n + =  n 

log, A(n ,  n(T3 + max(T3, 6,l + E))  

n 
2 limsup 

= (~(7, + max(T3, 6,) + E )  

I1 + r 

(6) 

for all E > 0. Hence, we have the following result. 

we have 

( ~ ( 7 ~  +max{r3,6,1) 2 ~ U ( T ~ , T ~ , T , , S ~ , & , ~ ~ )  

Corollary 5: For r 1  I r2 I T ~ ,  S, I 6, I 6,, 0 I r, 6, I 1, 

2 lim (Y(6). 
6 - t ( T ) +  I I I d X ( T ~ .  61))- 

U 

By Corollary 5 ,  we can easily apply well-known bounds on 
a ( S )  in order to bound p ( r l ,  T,, T,, S,, 6,, 6,). An overview of 
bounds on a ( S )  can be found in [l, ch. 51. Since it is known that 
a ( 6 )  = 0 if 6 2 1/2, we thus have 

P ( T , , T , ,  T ~ ,  a,, 6,, 6,) = 0 if r ,  + max(r3, 6,)  2 1/2. 
(7) 

If r3 + max{T3, 6,) < 1/2, then we can bound p ( ~ ~ ,  
r,, r3, 6,, 6,, 6,) by taking the best known lower and upper 
bounds on ( ~ ( 6 1 ,  i.e., the Gilbert-Varshamov bound and the 
McEliece-Rodemich-Rumsey-Welch bound, respectively, both 
at 6 = T~ + m a x ( ~ ~ ,  aI) .  

By observing from Theorem 4 that p ( r l ,  r2,  r3, 6,, 6,, 6,) only 
depends on r ,  and SI ,  we have the following result. 

Corollary 6: For r ,  I T ,  I T ~ ,  6, I 6, I S,, 0 I r, I 6, I 1 ,  
we have 

0 
We can thus conclude that asymptotically any error control 

combination can be upgraded to simultaneous symmetric error 
correction/detection and all unidirectional error detection, 
without losing rate. In other words, speaking of costs in terms of 
rate, we can say that correction of unidirectional and/or asym- 
metric errors is as expensive as correction of symmetric errors, 
while detection of unidirectional and/or asymmetric errors is 
free. 
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A Bounded-Distance Decoding Algorithm for 
Lattices Obtained from a Generalized 

Code Formula 

Mauro A. 0. da Costa e Silva, Member, IEEE and 
Reginald0 Palazzo, Jr., Member, IEEE 

Abstrucf-A multistage decoding algorithm is given for lattices ob- 
tained from a multilevel code formula. The algorithm is shown to have 
the same effective error-correcting radius as maximum-likelihood decod- 
ing, so that the performance loss is essentially determined by the 
increase in the effective error coefficient, for which an expression is 
given. The code formula generalizes some previous multilevel construc- 
tions to constructions of known single-level binary lattices with many 
levels, and then to decoders for them with the proposed algorithm. The 
trade-off between complexity reduction and performance loss is evalu- 
ated for several known lattices and two new ones, indicating that the 
approach is effective provided the binary codes involved in the code 
formula are not too short. 

Index Terms-Bounded-distance decoding, generalized code formula, 
complexity reduction, performance loss, lattices, maximum-likelihood 
decoding, effective error-correcting radius. 

I. INTRODUCTION 
The recently intensified use of multidimensional lattices in 

block or trellis codes for bandlimited channels has focused the 
attention of many researchers on the problem of complexity 
reduction in lattice decoding [ 11-[4], [6]. For multilevel binary 
lattices expressible in terms of code formulas based on the chain 
Z/2Z/4L/ ... of two-way lattice partitions, Forney [5] has pro- 
posed a suboptimum algorithm that offers an advantageous 
compromise between complexity reduction and performance loss 
when the number of levels in the code formula is greater than 
one. However, the decoding of binary lattices with single-level 
code formulas like H,,, X,,, and X,, cannot benefit directly 
from this algorithm. The present work extends in some sense the 
previous approach by generalizing its multistage algorithm to 
more general code formulas based on chains of two-way lattice 
partitions other than L/2Z/4L/ ... , therefore achieving a 
broader range of trade-offs between complexity reduction and 
performance loss. 

The ideas of multistage decoding and multilevel codes has 
been applied in various ways to the problems of complexity 
reduction and code construction. Imai and Hirakawa [lo] intro- 
duced constructions using binary codes in multiple levels and 
proposed multistage decoders for them, showing that these de- 
coders could achieve the same effective error correcting radius 
as ML decoding. Sayegh [ l l ]  constructed many signal sets using 
multilevcl constructions based on two-way set partitions. Also, 
Ginzburg [ 121 proposed constructions based on multilevel parti- 
tion chains. Calderbank [13] and Pottie and Taylor [16] designed 
multilevel codes using multilevel codes on multipart labels de- 
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