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The Multivariate Complex Normal
Distribution—A Generalization

A. van den Bos

Abstract— The multivariate complex normal distribution usually em-
ployed in the literature is a special case since certain restrictions have
been imposed on the covariances of the real and imaginary parts of its
variables. A more general distribution is proposed of which the usual
distribution is shown to be a special case.

Index Terms— Normal distribution, complex distributions, complex
stochastic variables.

I. INTRODUCTION

Since its introduction [ 1], the multivariate complex normal distribu-
tion employed in the literature has been a special case: the covariance
matrix associated with it satisfies a number of restrictions in addition
to those required to guarantee positive semidefiniteness. The reason
given in [1] for these restrictions is closely connected with the
particular application studied. It concerns a complex valued stochastic
process with an in-phase real part and a quadrature imaginary part.
Other authors adopted this distribution in subsequent papers. For a
review, see Miller [2]. In the same paper, Miller states that the restric-
tions imposed on the covariance matrix are an automatic consequence
of defining the complex distribution in a manner analogous to the
real case.

These developments have probably convinced later authors that
this specialized complex normal distribution is the most general
one. In any event, this is the only form found by the author in
the recent literature. For an example, see [3, p. 110]. Thus the
specialized distribution has become the generally accepted complex
normal distribution. The purpose of this correspondence is to show
that there is a more general alternative.

In the next section, the usual, specialized, form of the complex
normal distribution is reviewed. The more general alternative is
proposed in Section IIL. In Section IV, it is shown that the usual
description is a specialized case of this alternative distribution. In
addition, an important special case, the univariate complex normal
distribution, is discussed.

H. THE USUAL DESCRIPTION OF
THE COMPLEX NORMAL DISTRIBUTION

The usual definition of the complex normal distribution is [1], [3,
p- 110], [4, p. 77], [5]

mexp(—z“z*m )
where z € CV*! is a vector of complex stochastic variables defined
as
z= (21" :;\-)T 2)
with
Zn = Ln + JYn 3)

where @, y, € R ' To simplify the notation, it will be assumed that

Elzp) = Elwy] + jE[yn] =0 )]
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for all n, where E[ ] is the expectation operator. In these expressions,
the superscript T denotes transposition, the superscript H denotes
complex conjugate transposition, and j = / — 1. Furthermore, the
matrix Z € CV*Y is the complex covariance matrix of z defined as

Z = E[(z — El2])(z — E[2])"]. (5)

Since it has been assumed that E'[z] is equal to zero, this simplifies to
Z = E[zz"]. By definition, Z is positive semidefinite and Hermitian
symmetric. By assumption, it will be positive definite, hence, its
inverse exists. ‘

Substitution of (3) for the z,, in (1) produces the real multivariate
normal distribution of the elements x,, and y, of the vector w €
R*YX1 defined as

w=(r1y - anyn) . (6)

The expression for the covariance matrix associated with this distri-
bution shows that [11, [2], {4, p. 79], (5]

E[In-/l'm] = E[yn ym] (@)
and
Elenym} = —Elrmyn] (8)

,N. By (7) the covariance of x,, and x,, is equal
to the covariance of y, and y,,, for all n and m. This implies that the
variance of .r,, is equal to the variance of y,. By (8) the covariance
of 2, and y,, is the additive inverse of the covariance of ,,, and y,.
This implies that the covariance of z,, and y, is equal to zero. For
what follows it is useful to notice that (7) and (8) also imply that

Elznzm] = 0. (O]

forn,m=1..--

From these considerations it is clear that the chosen definition (1)
for the multivariate distribution of the complex normal variables =,
is very restrictive with respect to the allowable covariance matrices
of the real parts », and the imaginary parts y,, .

III. A MORE GENERAL ALTERNATIVE

Let again z,, = xr,, + jyn, n = 1.--- . N be complex stochastic
variables and suppose that the real quantities ., and y,.n =
1,-++. N are normally distributed. Consider the vector w € R2V*1

(10)

w=(riy - -anyn)’

and suppose that E[r,,] = E[y,] = 0 for all n. Therefore, the matrix
W ¢ R2Nx2N
W = E[ww"] (1)

is the covariance matrix of w. Then the distribution of the .r,, and
yn is described by

1 Tyr—1
= -1 .
flw) B (et W12 exp(—1/2w' W™ 'w) (12)
If
~1: =20 = JYn (13)
is defined as the complex conjugate of z, it follows from (3) and
(13) that :
=gt 14
(2)=2(:) @
where the matrix J € C?*? is defined as
(1 J
J= ( . _j>. (15)
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For what follows it is important to note that

Jt=1/2J8. (16)
Next define the vector v € C*V*! as
v={(z12] - zn z*N)T. a7
Then, by (14)
v=Aw (18)
where the block-diagonal matrix A € C?M*2V is defined as
A = diag(J--- J). (19)
Hence, by (16)
w=Alv=1/24" 20
and since w is real
w=1/24Tv". @n
The covariance matrix V € C?™ 2N of v is defined as
V = Ejve"). (22)
Hence, by (18)
V = AWA". (23)
Next consider the quadratic form in (12):
w'Wlw. (24)
By (20), (21), and (23) this form may be written
o (1/2A)W ™ (17247 v = o7 (AW AT )
=o'V (25)
Furthermore, the determinant in (12) may be written
detW = det(1/247V1/24)
= (1/2)*" (det 7)™ det V' (1/2)*" (det )™
= (1/2)*N(25)V (=25) detV = (1/2)*" detV. (26)
Substitutionvof (25) and (26) in (12) yields
flvy = W exp(—1/20"Vw) @7

with v defined by (17). This is the main result of this correspondence.
It has been derived without any assumption with respect to the
covariance matrix -W of the x, and y. with the exception of
nonsingularity.

IV. Special CASES

Under the restrictions (7) and (8) the distribution (27) should
produce the distribution (1) as a special case. To show this the
elements of », defined by (17), are first rearranged as follows

wu=Po=_(z- -2y 25 23)7 (28)

where P € R?"*2VN js the appropriate permutation matrix. The
elements of a permutation matrix are either equal to one or to zero.
In addition, exactly one element of each row and column is equal to
one. A permutation matrix is orthogonal [6, p. 360] and the absolute
value of its determinant is equal to one [6, p. 25]. That is

Pl =p! (29)
and

det P| = 1. (30)

Using (29) the following transformation of the quadratic form in (27)
may be carried out:

IV Ty =W PV Pl

=2 (PVP )y 'u =u U . 31
In this expression, the matrix U € CVX2N defined as
U=prPvPT (32)

is, by (28), equal to the covariance matrix of u. But since, by (9),
Elzmzn] = 0
U=diag(Z Z") (33)

where the matrix Z € CV*V is the covariance matrix Z of
z=1(z1--- zN)T. From (28), (31), and (33) it is concluded that

vV =227 4 T2

=2:"7712. (34)
Furthermore, from (29), (30), (32), and (33)
detV = det PT detU det P
=detl =detZdetZ" = (det Z)>. (35)

Substituting (34) and (35) in (27) yields (1). Therefore, it is concluded
that the usual distribution (1) is a special case of the proposed general
distribution (27). '
As a second special case consider (27) for N = 1. Denote 2z, = z,
21 = z, and y; = y. Then
CZI
cz“ z )

V= ( sz*
where C..+ = E[zz"] and the other elements are defined accord-

Cvon (36)
ingly. Hence

-1 _ 1 Cz*z _sz .
Vi =@ (—CM Cuu ) 37
with
dE‘V = sz* Cz*z - szCz'z“- (38)

It is observed that C...» = C.». = E[|2|’] = 67 = E[z*]|+E[y*] =
02 + 05 and C: = (Ceesr)* = E[2%] = 02 — 02 + 2jpuy0.0y
where p.y = Elzy]/o0,. Therefore

-1
V =
2 2
0'I+a'y

1 _ a2 2 _ 92
2 5 ! Oy + Jy 2]szﬂ'za'y (39)
detV \—oz + oy +2jpzy0:0y

2 2
or +oy,

with

detV = do2o2(1 - p2,). (40)
Substitution of (39) and (40) in (27) yields f(v) with v = (z +
Jjy = — jy)T. Notice that this expression applies to any [pz,| < 1
and any ¢, and 0y. If p.y is equal to zero and o2 is equal to 0'3 the
following expression is obtained:

1 z|?
f(z)= = exp (— |alg )

This is the usual expression found in the statistical literature [5],
and in the signal processing literature [3, p. 110] for the univariate
complex normal distribution.

(41)
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On Lower Bounds for the Smallest Eigenvalue
of a Hermitian Positive-Definite Matrix

Evan M. Ma and Christopher J. Zarowski, Senior Member, IEEE

Abstract—This correspondence presents an improvement to Dembo’s
lower bound on the smallest eigenvalue of a Hermitian positive-definite
matrix. Unlike Dembo’s bound the improved bound is always positive.

Index Terms—Hermitian positive-definite matrices, eigenvalue bounds.

1. INTRODUCTION

Dembo [1] presents a set of upper and lower bounds on the largest
and smallest eigenvalues of Hermitian positive-definite matrices.
When employed with certain parameters generated by the well-known
Levinson—Durbin algorithm [2], [3] these bounds may be applied
to the important special case of Hermitian positive-definite Toeplitz
matrices.

However, the lower bound on the smallest eigenvalue of a Hermi-
tian positive-definite matrix as given in [1, Theorem 1] can at times be
negative. We present here, based on [4], an improved lower bound
that is never negative.

II. SUMMARY OF DEMBO’S BOUND

Consider the n x n Hermitian positive-definite matrix K, -1 in
partitioned form, i.e.,
Ro—2 b
R, = = 1
11 b, c (1
where ¢ > 0, and b, = [ra_10 oot Tn—1.n—2]. Because

R, is Hermitian, R,,_1 = R_,, where the superscript H denotes

Hermitian transposition.
According to Dembo [1, Theorem 1] we have
Theorem 2.1: Let A; denote the smallest eigenvalue of R, 1, then

N 2
_ctm 7\/(( 4m) b by < M @)

|5~

L 2

where 7)1 is the lower bound on the minimum eigenvalue of R, _».
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To see that the bound in (2) may be negative, consider the Toeplitz
matrix of dimension three, and all the entries of which are unity. In
this case A, = —1.

III. AN IMPROVED BOUND

Recall first of all that the eigenvalues of Hermitian matrix R,
are the roots of the secular equation [1], [5]

ok
f=x—c+dy 2= 3)
ki A
where ¢ is the number of distinct eigenvalues of R, _;, which is

partitioned as in (1), and 7, is an eigenvalue of R,_» such that
< T < - < 7y and kj = (uflbn,l)u,', with u; being the
eigenvector associated with 7;.

With the aid of the secular equation (3), we have

Theorem 3.1:

. . 2
A = c+mo \/((+1/1) — (e =bU_ R b m <M (&)

2 4
where 7, is the lower bound on the minimum eigenvalue of R, 2.
Proof: Over the interval A € {0, 1), since 1 < 72 < -+ < 7y,
we have

I=XMr) ' 2= "2 2 (1=Nn) ()

and, therefore, we have established
g H t o1
k 9 k J 1 kiR 1 —
< ERE R bE Ry ba
;rj - 1fA/nZ] 7 T—/m izt
= =1
6)
where the equality follows from a consideration of the singular value

decomposition of R ',. Now define

i

() = A— 1 kT, ;
g(A) = C+1—_—/\/—T]Z . ()

7

=1

Via (6) and the fact that f(\) is a monotonically increasing function
over the interval [0, 1), g(A) is therefore an overbounding function
of f(A) over the same interval. Since the eigenvalues of R,
satisfy the well-known interleaving property of eigenvalues of leading
principal submatrices (i.e., Ay < 71 < A < T2 < -+ < 71 < Aggr)
for Hermitian matrices [5], the minimal root of g(A) can be used as
a lower bound for A;. Letting A, be the minimal root of g(A) and
setting the left side of (7) to zero, one obtains

(r1+ )£ \/(7'1 + )2 — 4(c— b,’j_]R-l

n—

2b71~1 )71

A= 5 ®)

By completing the square inside the square root of (8) we may see that

(ri+ )4 /(n + )2 =4e= bl By bu_1)m

1 < 2 )]

Thus the lower bound on Ay is as stated in (4). n
There is an alternative proof based on consideration of the matrices

A= [mﬂ;ﬂf 0]
o 0

1

1BA = |:7]lIn71 d:|

a1 - (10)

where B = R,,_,, and dd = nlbf,]R;lzbn_l. IfAand I — A
are nonnegative-definite then the eigenvalues of AB.A lower bound
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