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Identification in the Presence of
Feedback—A Discovery of New
Capacity Formulas

RUDOLF AHLSWEDE anp GUNTER DUECK, MEMBER, IEEE

Abstract —The main contribution of our earlier work, *“Identification via
Channels,” was that N=exp{exp{nR}} objects can be identified in
block length n with arbitrarily small error probability via a discrete
memoryless channel (DMC), if randomization can be used for the encod-
ing procedure and if R < C(W). Moreover, in this case the second-order
identification capacity equals Shannon’s transmission capacity C(W),
where W is the transmission matrix of the DMC. Here we study the
identification problem in the presence of a noiseless feedback channel and
determine the second-order capacity C; (resp. Cy) for deterministic (resp.
randomized) encoding strategies. We encounter several important phenom-
ena. 1) Although feedback does not increase the transmission capacity of a
DMC, it does increase the (second-order) identification capacity. We
actually prove that

C/(W)=in:;H(W(-1x))

and

Cr(W)=maxH(P-W), il C(W)>0,

2) Notice that C; =0 if W is a matrix with 0 and 1 as entries only. Thus
noise increases C;! 3) The structure of the new capacity formulas is
apparently much simpler than Shannon’s familiar formula. This has the
effect that proofs of converses become easier than in our previous work.

1. THE RESULTS

N THE BEGINNING of [1], we discussed the notions
Iof classical transmission codes and (randomized) identi-
fication codes. Since [1] appears in this issue, we refer the
reader to it for definitions, and we start right away with
the analogous concepts for discrete memoryless channels
with feedback.

For the classical transmission problem an (n, M,A)
feedback code {(f, 9))|j=1,---, M} is described as fol-
lows. There is given a finite set of messages A =
{1,---, M }. One of these messages is to be sent over the
channel. Message j € # is encoded by a (vector-valued)
function

U /AENA (1)

where, fort € {2, -, n}, fj’ is defined on %! and takes
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values in Z. f! is an element of 4" It is understood that
after the received elements Y,---,Y,_, have been made
known to the sender by the feedback channel, the sender
transmits f/(Y},- -+, ¥,_;). At =1 the sender transmits 1

The distribution of the random variables (RV’s)
Y,(t=1,2,---,n) is determined by f; and W. We denote
the probability of receiving y"=(y. -, y,)E€¥", if
j has been encoded, by W"(y"|f;)=Wnlf")-
WO D)) WOl f (- v,)). Again the ©,C &
(j=1,---, M) are disjoint decoding sets and we require
that

W"(@juj)z]—}\, for j=1,--, M. (2)

Now let M/(n,X) be the maximal integer M for which an
(n, M, M) feedback code exists.

Theorem S—- K — K (Shannon - Kemperman — Kesten):

1
nli_{nw—glogM/(n,)\)=C, forall A€ (0,1).

The proof and the apportionment of the credit for it can
be found in [3] and [4].

Remark 1: It is also known that randomization in the
encoding or /and decoding does not increase the capacity.

Now let us turn again to the identification problem. We
consider two concepts, deterministic and randomized iden-
tification-feedback (IDF) codes, and make the following
important observations:

1) Even in the deterministic case, feedback causes the
maximal codelength to grow doubly exponentially in block
length.

2) If, in addition, we allow randomization in the encod-
ing, this results in a further improvement to the extent that
the aforementioned double exponent increases.

3) In both cases the capacities are characterized in terms
of entropy measures. Mutual information, however, plays
no role!

4) The formulas for the capacities show that “noise”
typically increases capacity!

We now formulate the exact results. Let %, be the set
of all possible encoding functions of the kind defined in
(1). A (deterministic) (n, N, A) IDF code for W is a system

((£.2)li=1,--- N} vith fe€Z, 3,co",
for ie{l,---,N}
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and
”’”(gl(‘fl) SA Wn(@/ij.l) SA (3)

foralli, j& {1,---. N} with i # j. A randomized (n, N, A)
IDF code for W is a system

{(Qp(-1i).2)i=1.--- N}

with Q. (+|)EP(F,), 2, C¥U", and
T 0r(gli) " (Dilg) <A (@
L Qr(gl))W(2)g) <A (5)
g €%

forall i, je{1,---, N} with i+ j.

Let N,(n, ) (resp. Ng(n, X)) be the maximal integer N
for which a deterministic (resp. randomized) (n, N,A) IDF
code exists. (We add f (resp. F) to the notation to
indicate the model with which we are working).

Theorem 1 (Coding Theorem and Strong Converse): 1f
the transmission capacity C of W is positive, then we have
for all A € (0,1/2):

1
a) lim mf—loglong(n )\)<maxH( W(-x))

n =

b) lim sup — ! loglong(n, A< m:)ﬁ(rH(WHx)).
In particular, for deterministic feedback strategies the
second-order identification capacity C, (W) equals
max H(W(-|x)) provided that C(W)>0. C(W)=0 if
and only if C(W)=0 or W is a noiseless channel, ie.,
W(y|x) € {0,1} for all x,y. This result says that C(W)
depends solely on the maximal per letter “output entropy”
H(W(-|x*)) = max . y HW(-|x)).

Also, C; increases if H(W(|x¥)), ), “the measure of noise
caused by x*” increases. Indeed, for noiseless channels, C;
is zero.

This behavior is in surprising contrast to the familiar
properties of the transmission capacity. The reader will
gain a complete understanding in the course of the proof
of part a) of Theorem 1; here we give some of the underly-
ing ideas.

In [1] we showed that a large amount of randomization
in the encoding is necessary to achieve a positive doubly
exponential rate. In case of feedback, the sender has
another way of performing a random experiment, namely,
to send (possibly repeatedly) a letter x with H(W(-|x)) > 0.
Its outcome is known to the sender via the feedback link.
The maximal amount of randomness is achieved if one
uses a letter x* € & with

H(W(-|x*)) =

The proof of Theorem 1 shows that all good deterministic
encoding strategies use such letters x* most of the time.
The situation here is quite different from what we are used

max H(W(-|x)).!

"The results explain why, to identify the state of the world in a
universal philosophical system, one has to proceed as follows: first choose
your position and then create a lot of noise.
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to in classical coding problems. As a consequence there is
almost no connection between the capacities C; and C.

However, if we allow randomized feedback strategies,
then by [1, theorem 1] we know that C. > C. Actually,
strict inequality holds here except for those cases which are
specified in Remark 2.

Theorem 2 (Coding Theorem and Strong Converse): 1f
the transmission capacity C of W is positive, then, for all
A€(0,1/2),

a) lim mf—loglogN (n,A\)> max H(P-W)

n— o0 Pe®Pd)
1
b) lim sup — loglog No(n,A) < max H(P-W).
n— o0 e.@(f)

Remark 2: We call W essentially noiseless if there exist
subsets F*C &, %*C % and a bijection g: * - ¥* such
that

W(g(x)x)=1, xEL*
W(-|x'y€ convexhull {W(-|x):x€Z*},

for all

(6)

for x'eXZ.

(7)
We claim that C,=C if and only if C=0 or W is
essentially noiseless.

If W is essentially noiseless and C > 0 then C = log ||
and Cp=log|%*|=C. Conversely, if C=Cy and C >0,
then for every P’ satisfying

I(P,W)=H(P"W)- H(W|P)=

we have H(W|P') = (. This and the optimality of P’ imply
that W is essentially noiseless.

Remark 3: We make some comments concerning the
proofs. In [1] we built ID codes from large subsets of a
given channel code (for transmission). In this paper (Sec-
tion III), we show that [1, theorem 1a)] can be proved in
another simple manner. the ID code is “combined” from
two ordinary transmission channel codes. The first one has
the sole purpose of providing sender and receiver with the
(common) knowledge of the outcome of a random experi-
ment. Its entropy per time unit determines the second-order
rate of the ID code. This important observation also makes
the role of feedback for identification transparent. Feed-
back makes it possible to provide sender and receiver with
the knowledge of the outcome of other random experi-
ments. In the deterministic case it is the experiment ob-
tained by sending the letter x* n times and in the case of
randomized feedback strategies it is the experiment
(#",I1}P-W), which can be performed by sending the
outcome of (", P") over the channel. Notice that H(P-
W)= I(P,W)+ H(W|P). Theorem 2 says that the doubly
exponential rates I(P, W) (which are achievable with ran-
domized encoding and no feedback) and H(W|P) (which
is achievable with feedback and no randomization) add up
to the rate H(P-W) (which is achievable with both feed-
back and randomization). We choose of course a P, which
maximizes H(P-W). The proofs of the converses essen-
tially say that common random experiments of higher
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per-letter entropies do not exist under the respective cir-
cumstances.

For the second code used in the proofs of the direct
part, it is only essential that its rate be positive. Thus the
condition C > 0 enters. It can be seen by inspection of the
proof that, as long as C>0, an infinite identification
capacity can be achieved, if sender and receiver have
knowledge of the outcome of the same random experiment
of an infinite entropy. It is well-known that such random
experiments (also with finite entropy) can be used to
increase the transmission capacity of systems of channels
such as arbitrarily varying channels [5]. Their effect on the
identification capacity is dramatic!

II. NortaTioN AND KNOWN FACTS

For the basic notation we again refer the reader to [1,
sect. [-D]. We state here only two additional simple lem-
mas. For channels V, V'€ #  let

1V =Vl = max|V(y1x) = V(1))
Lemma I: For every € > 0, there is a §' = 8'(¢) > 0 such
that
wH({y ey e T (x")
fora V with |V -W| <e}|x") <1-27"%

for n > ny(e).
Lemma 2: For every e > 0 there is a c(¢) > 0 such that
for n > ngy(¢)

a) U g’;(xn) 22n(H(W|Pxn)—r(c))
Vi -wi<e

b) U f;(x") S2n(H(W§P,‘n)+c(c))
ViV -wi<e

C) Ig-l;r(xn)|22n(H(W|Pxn)*t'(t))’

if |[V-W|<e and J/(x")#0,
and c(e) 2> 0if e > 0.

III. A New PROOF OF THE DIRECT PART IN
[1, THEOREM 1]

The proof in [1] uses in the encoding procedure proba-
bility distributions which are uniform distributions on the
sets of codewords in some classical channel codes (as
defined in [1]). There is a lot of freedom in selecting
systems of such codes (see Remark 4 below). Here we
choose a system consisting of codes, which are extensions
of a single channel code. This system is designed so that,
with some modifications, it can be used for the feedback
case as well. It is again produced by a random selection
and allows a fairly simple analysis.

We begin with two fundamental codes ¢’ and €. By
Shannon’s coding theorem (stated in [1]) we know that for
every €>0, e <C, there is a §=0(¢) >0 and an n(e)
such that for n > ny(€) an (n, M’,27"%) code

¢={(«,9)j=1. 1) (8)
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and an (Yn ). M".2" \”"6) code
€= G/ Nk=1-- M"} (9)

exist with M’=[2"""“]and M" =[2"].
We use the abbreviation m = n +[yn]. Now any family
{T|i=1.---. N} of maps

Ti {1 M) = {1

. M)
can be used to build an ID code {(Q(:|i).Z)|i=
1,2,--- N} from €' and €". Here Q(-|i) is the uniform

distribution on the set of codewords
% = {u;'u,T'.(/)U=]"”‘M'} ca”

and
M
2= D XDy,
=1
We choose at random an ID code of such a structure in the
following way.

For ie{1,2,--- N} and je(l,---, M’} let U, be
independent RV’s such that U, takes the value /- u} with
probability 1/M"” for k€ {1,---,M"”). We consider the
random sets

@lz {Ul'”

e U ) fori=1,---.N. (10)
The uniform distributions Q(-|i) on these sets become
random distributions. The random decoding sets are

5(7)- Us(u,) o)

where
2(U,) = 2)x 9,

. e 1 g
fU,=uuj.

(12)

We now analyze the maximal error performances of
{((QC-li), D(¥,))|i=1,---,N}. Itis clear from the defini-
tions (8)—(12) that for every realization %, of @,

1 .

— ¥ WM 2(%) ) <27 "2 (13)
Thus only errors of the second kind remain to be consid-
ered. For this analysis we again use a large deviational
approach to bound the probability that there does not
exist a realization with a prescribed error of the second
kind A for two indices, without loss of generality say
i =1,2. That bound yields the final result for all indices i
since the probability for the union of events does not
exceed the sum of the probabilities of these events. Actu-

ally, it suffices to compare the random set @72 with any
realization %, of %,. Fix %, and define for j=1,---, M’

— 1, if %,. €%
1!’]:‘1“](%2):{ ¥y = (14)

0, otherwise.
Since the random variables U, , are independent, 3,
*+ -, ¢, are also independent. Furthermore, by our defi-
nitions
1

BT

for j=1,---, M’. (15)
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An elementary calculation shows that. for M” =[2¥"¢],
DIN1/M") 2 X-Vn-e~1. (16)
Therefore, [1. lemma LD] implies the following,.
Corollary 1: For A€ {0.1)and 1/M" <)
g

z v, > MA ’ <2 Mhe-)

=1

Pr

We need one other elementary fact. Suppose that %, = x,
and u € ¥, — ¥,; then
Wm(2(¥,)|u) <2 " +27 8 (17)
To see this, let w=uj-uy. Notice that for u& %,,
DUy (Z) X 2,')=2 and that therefore
W (2(U) ) <W™((9x D) |u).

Equation (17) follows, because the definitions (8) and (9)
imply that
wm((2: x D) u) <2778 +27V78,

An upper bound on the error of the second kind is now
readily established:

2 Wm(g(q?z)lu)

ued,

= Y wr(2(%)u

we N,
+ L wr(2(a))
wed, -
<|U O U+ U~ Uy (27" 4278,
where we have used (17). Since |%, N #,| =T} 4, (%,).

1 1M
R W'"(@(ollz)[u)s—ﬂf§1¢j(@2)+2~2_ﬁa.

ue
(18)
Now fix A € (0,1). By Corollary 1 for large n we have that
with positive probability
1
M’

Y wm(2(%,)u) <x+2-27" (19)

ue

and similarly

— Y wm(2())|u) <h+2:277 (20)
M ue@z

Hence there is a realization %, =%, for which (19) and
(20) hold. We use this argument repeatedly for i=
3,4,--+,N (as in [1]). An (n,N,A+2:2""%) ID code
exists, if

(N-1)Pr

M
Z¢j>M’)\)<1. (21)
=1

From Corollary 1 and M’=[2"(¢~9] (21) holds for every
N with

N < 21/ (Wre~ 1)2€-o
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This proves the result.

Remark 4: Instead of extending the code €', one can
prove the same result by making a random selection of
subcodes of %’ whose lengths are small but proportional
to |€|.

IV. Proor ofF THE DIRECT PART OF THEOREM 1

We know already from [1] that randomization in the
encoding causes N(n,A) to grow doubly exponentially in
n. In the preceding proof we gained additional insight. The
amount of ‘““correlated randomization,” that is, the size of
a random experiment, whose outcomes are known to the
sender and to the receiver (with very small error probabil-
ity), is the decisive quantity determining the growth of
N(n, A).

As our random experiment we used the uniform distri-
bution on the set of codewords of the code %'. The
outcome u;; € {uy,- - -, u).} 15 known to the sender. Then
the outcome is transmitted over the channel and made
known to the receiver with high probability. The parame-
ter M’ =[2"C"9] is the size of this random experiment.

The presence of feedback allows the design of another
random experiment. Feedback is used here solely for this
purpose. Otherwise the coding scheme is essentially the
same as previously. We now describe this random experi-
ment and the coding scheme. Let x*€ % be a letter with

H(W(-1x*)) = max H(W(-[x)). (22)
x e
Choose again as total block length

m=n+[Vn] (23)

and define ¥ as in (9). We now describe the substitute
for €.

Regardless which object i € {1,---, N} is presented to
the sender, he first sends x*"=(x*---,x*)€ 4" The
received sequence y" € ¥" becomes known to the sender
by the feedback channel.

The resulting correlated random experiment (%",
W"(-]x*")) needs a modification, because W"(-|x*") is far
from being uniform on #". However, W"(-|x*") is essen-
tially uniform on the set

o= U 7).

VilV-W<e

(24)

which carries essentially all its probability. We lump the
small-probability set #" — 2* together in an erasure sym-
bol e with the understanding that

W(e|x*") = WH(F" — D*x*n). (25)

We choose as our random experiment (2*U {e},
W"(-|x*")). The price paid for more uniformity is a small
error probability, if e occurs. However, previously we still
had to deal in €’ with small error probabilities. By Lemma
2, |2*| ~ 2"HWCI) and this quantity now takes the role
of M’

Instead of the maps T;: {1,-+-, M'} = {1,--+, M"}, we
now use maps F: 2*—{1,---.M"} in the block [n +
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1,---,m]. This means that after y" € %* has been re-
ceived, the sender sends p’F’i( )y if i€{1,2,---,N} is
given to him. '

In case y" & @* an error is declared and the sender can
fill the [n!/2] positions in any way, for instance by sending
x*[n'/?] times again. Clearly, for each F,, we have defined
an encoding function f;€ %, as introduced in Section I.
For the decoding we define the sets
2(F)="U (»")x%,n,

y'e g+
The astute reader can avoid the following formal analysis,
which is necessary only because our random experiment is
not exactly uniform.

With respect to the error of the first kind notice that
W™(D(E){f) < W(2%) |x*")+2" V"8 and thus by
Lemma 2,

fori=1,---,N. (26)

Wm(2(F)f) <27 +27 V"3, (27)

To achieve a small maximal error probability of the second
kind we find suitable maps F; again by random selection.

For i€ {1,2,---,N} and y"€ 9* let F(y") be inde-
pendent random variables such that F,(y") takes every
value k € {1,---, M”} with probability 1/M”. Let F, be
any realization of fl.

In analogy to the ¢, in Section III, we define random
variables ¢/ . = xpv"(fz) for every y" € 2* by

[1. iR =FK(")
0, otherwise.

b= (28)
These random variables are independent and have ex-
pected value 1/M". Application of [1, lemma LD] in
conjunction with Lemma 2 yields the following.

Corollary 2: For A€ (0,1), 1/M” <X, and for a chan-
nel V with ||V~ W|| <g,

Pr Yy

y'eTHx*")

¥y > [ TP (x*") A

< QBT (e b,
if n 2 ny(e). Consequently, with probability at least
1= (n+ 1)Lz o e
F, satisfies, for all V with W-Wi<e,
Lo s T

Y eTP(x*)
We now derive_an upper bound on W"‘(.@(f_’z)| f,) for
those values of F,:
wr(2(E)If) swm((2*x )| 1)
+Wm((2*x ¥V )N 2(F)|f,)
w((2*) x*")

L Wy
yegr
F(y"y# K(y"

LY
y'ezr
ARG =FR/OM)

(29)

W (yrix*m).
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By Lemma 1 we have W"(Z*x*"y>1-2 .

The second summand is obviously not larger than 2+
For an upper bound on the third summand we use (29).
We get

Wm(@(—z)’fx) <2 p18'+2—‘/n&

X

Vol - Wi e
!
Z L 4%
\_" < ‘7""1( ‘t")

720

nd

u,-n( ',7"'1( .\.*n ) !'\.*n )

<2 Mg Ly
The same arguments yield the same bound for
W (2(F)If).

if fz denotes the encoding function defined by the map F..
We repeatedly use this argument as in Section 11l and
construct a code length .V satisfying

Nz (n +1)_2‘gt4“{y|.22nlh“'t AT ) e 1

and an error of the second kind less than 2 "™ +2 V"8 4 ).

V1. PROOF OF THE DIRECT PART OF THEOREM 2

Since now randomization in the encoding and feedback
are available, we can combine the two kinds of random
experiments used for the proofs of the direct parts in [,
theorem 1] and Theorem 1, respectively. Of course such a
combination imposes restrictions to the effect that now
the doubly exponential capacities max,I/(P, W) and
max , H(W(-|x)) =max,H(W|P) do not simply add. In-
stead, the capacity is now given by

m}e}x(l(l’, W)+ H(W|P))= m}:}xH(P-W). (30)

To show this, choose a P* such that for Q*= P*.W,
H(Q*) = max , H(P-W) and define as random experiment

((QI I[QL—JQ'IIst%n)U{e}’Q*")'

This can be realized as follows. The sender chooses
a sequence x" according to the random experiment
(Z", P*") and sends it over the channel. O*"(y") is the
probability for receiving y”. This sequence is also known
to the sender via feedback. We can therefore substitute in
the previous proof 2* by

GF* = U

Q:10-0Q%ll<e

7 (31)

and get Theorem 2-a).

VIL.  PrROOF OF THE CONVERSE PART OF THEOREM 1

We have already mentioned that in the case of feedback
the proofs of the converses become much simpler than the
proofs in [1]. We need here only one auxiliary result.

Lemma 3 (Image Size for a Deterministic Feedback Strat-
egy): For any n-length feedback strategy f and any p €
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(0. 1).

min |6 < K = 2w Cixmn~afn
EC T WA Y-

where H(W(-|x*)) = max _, H(W(-|x)), a=\B/v, and
B = max(log*3.log> |%|). Before we prove Lemma 3 we
show that it implies Theorem 1-b).

Let {(/,,%,): 1<i< N} bean (n, N,A) IDF code with
A €(0,1/2). We can choose » such that 1-y~A>1/2.
For f, let &, be a set for which the minimum is assumed in
(32). Thus we have W"(2,N&,|f)>1/2 and the sets
2,né, (i=1,2,---,N) are necessarily distinct because
the errors of the second kind are smaller than A <1/2.
Therefore, by Lemma 3, N <IK_ (1) <2m¢1®'X and
Theorem 1-b) follows.

(32)

Proof of Lemma 3: The cardinality of the set
¢*={y"|~logW"(y"|f) <log K }
is clearly smaller than, K, and it suffices to show that
W"(&*|f) =1—w. For this we first give another descrip-

tion of W"(&*|f). Strategy f induces the random vari-
ables Y*=(Y,,---,Y,); s=1,---, n; with distributions

Pr(Y: =y ) =W'()’lf), €
Defining Z, = —logW(Y,|f(Y'™ ")), we can write
w(&*f) =Pr( Y Z,slogK).

1=1

(33)

We now analyze this expression by considering the condi-
tional expectations E(Z Y™ 1).
Since

Pr(Y,= v =y ) =W (yif(y 7)),
we have for y' le® "1,

E(Zly ") == % w(nf(y " ogW(nlf(y)
ned

< H(W(-|x*)),
and therefore

E(Z1y'") < HW(-1x*)). (34)
Finally, we introduce the RV’s
U=2z-E(z)y'"1), (35)
which obviously satisfy
E(UY~')=0, EU=0. (36)

Moreover, since U, is a function of Y,,--,Y,, this implies
for s <t E(UJU,) =0. Therefore, the RV’s U,,- -, U, are
uncorrelated, i.e.,

EUU,=0, fors#t. (37)
Notice that (33)-(36) and the definition of K imply
W"(é"*lf)zPr( Y U,sm/;). (38)
r=1

By Chebyshev’s inequality,
n
Pr( Z U,Sa\/;) >1-v»
t=1

35

provided that
var U, < 8,

Verification of (39) completes the proof.

fort=1,2,---,n. (39)

Using (36) we can write
varU, = EUZ =E(U,~E(yy'"))’
=ZPr(Y"1=y"1)

~-E((a—E(U,|Y'-1))2|Y'—‘———y'-l)

and by the well-known minimality property of the ex-
pected value this can be upper-bounded by

L pr(y =y (U -z iy = )

."

- Z Pr(yt—l;. yl—l)E(ZIZlyhlr_yr-l).
},171
By the definition of Z,
E(Zy =y = ¥ wilf(»'™)

»ey

Tog?W(ylf (»'~1)).

Since x log?x is bounded in [0,1], this quantity is bounded
by a function of |#| uniformly in ¢ and y"~!. A Lagrange
multiplier argument gives the bound

B = max (log?3,l0g%|¥|).
Thus, varU, < B.

VIII. PRrOOF OF THE CONVERSE PART OF THEOREM 2

The proof is based on the same ideas as the previous
one. Here we need the following auxiliary result.

Lemma 4 (Image Size for a Randomized Feedback Strat-
egy): For any n-length randomized feedback strategy F
and any » € (0,1),

min |6’ < K'=2"H@ e (40)

ECH" WEIF)21—v
where H(Q') = max, H(P-W), a=yB/v, and B=
max (log?3,log2|%)).

Replacing Lemma 3, &, and K in the derivation of
Theorem 1-b) by Lemma 4 and the corresponding quanti-
ties &/, K’ we get Theorem 2-b).

Proof of Lemma 4: The randomized strategy F can be
viewed as a probability distribution Q, on the set % of
n-length deterministic feedback strategies. Therefore,

wr(&'|F) = EyQp(g)W"(é”ﬂg)-

Qr induces the RV Y" with distribution

Pr(Y"=y")= ZgQr(g)W"(y"Ig)-

We write Q( y") =Pr(Y"= p"). The cardinality of the set
&*={y"|-logQ(y") <logK'}

(41)
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is clearly smaller than K, and it suffices to show now that
Q(&E™) =1—n. Defining Z/=—logQ(Y,|Y'"!), we can
write
Q(&%) =Pr( Y Z,’slogK’). (42)
i=1 /
For its analysis, we consider now E(Z/|Y'™1).
Notice that
E(Z1y )=~ X 0(xnly"")ogQ(y/y"")

=
and that Q(-|y'™") is a distribution of the form P-W,
because
t—1 )
[Tw(ris(y7)
71

ZQ;r(zaz)‘lj1 W(yig(y 1))

o(yy )= ¥ 0xlg)

g€ Z

W(rlg(y' "))
Therefore we have
E(Z)y"") < H(Q). (43)

This is the substitute for (39). Otherwise, we continue
exactly as before. We define functions

U'=2-E(Z)Y"),
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which again have the desired properties EL, = 0. EL]L =0
for s #1, and varU; <. Application of Chebyshev's in-
equality again establishes the result.

Remark 5: The method for proving the converse parts
of Theorems 1 and 2 resembles the approach of Kemper-
man [4] for proving the strong converse of the coding
theorem for memoryless channels with feedback. This
“analytical” approach turns out to be better suited for
coding problems involving feedback than the “typical se-
quences” approach. Other such instances are the coding
theory for nonstationary and infinite alphabet channels. In
fact, we have alternative proofs for the converse parts of
Theorems 1 and 2 via typical sequences, but they are much
more complicated.
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