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ABSTRACT 

The problem of synchronization and detection of random pulse-position-modulation 
. .  pp?.I 1 sqct ! :ces  :s ~:~~;e~ti~:...!.p(! ::z?.t.r ~ ~ ~ ~ ! : : : n + ~ n i i  nf ~ p r f p ~ f  ~ !n t  c \ - ~ ~ c ! h r r > ~ ~ i z = t i f i ~ ~  r . a > > - -  

~ I a x i ~ ~ ~ u ~ n - l i k e l i l i c , o t l  PPhl synibol syiicliroxiiza.t.iori and receiver algorit.linis are derived 

that 111ilkt’ decisions 1 x 1 ~ ~ 1  bot 11 0 1 1  soft as well as hard clat a: t liese algorit lims are seen 

to be easily implementable. We derive bounds on the synbol error probabilit,y as well 

as t,he probability of false synchronizat,ion that indicate t lie exist.ence of a rather severe 

performance floor: which can easily be the limiting factor in the overall syst,em performance. 

The performance floor is inherent in the PPM format and random data and becomes more 

serious as the PPM alphabet size Q is increased. A way to eliminate the performance floor 

is suggested by inserting “special” PPM symbols in the random data stream. 

. 
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I. INTRODUCTION 

Pulse-position-modulation is a modulation format known to be optimal in various 

ways for the direct-detection optical channel (see for example [1,2,3]). Under Q-ary PPM, 

inforniation is contained in the position of a signal pulse in only one of Q subintervals, 

known as slots. dividing the symbol interval. 

When pulse-position-modulation is used in communication systems, the practice is to 

first achieve slot synchronization before attempting higher order synchronization and sym- 

bol decoding. Slot synchronization is usually obtained by using a tracking-loop as recently 

st.udied. for example. by Chen and Cardrier j41 and Ling and Gagliardi !.5j. Although op- 

timal ( i n  t he xiiaxiniuni-likelilio(~d as well as t,lie xiiean-scluare-error sense) PPM slot. and 

syiiibol synchronizers have also been recexit.ly derived [O;.'i], they have the disadvantage of 

being more coriiplicat,ed to  implement compared' t40 the tracking-loop synchronizers that, 

are well underst.ood and easy to implement,. The difficu1t.y in impleiiieiiting the optimal 

syiichroxiizers st.enis froiii t.lie need to record the exact arrival t.inie of each det.ect.ed pIiot.on. 

a task that may be difficult. to achieve at high data rates and large signal intensities. A 

further reason that makes tracking-loops more desirable for slot. synchronization is that 

t.liey have been shown to result in receivers wit.h symbol error probability performance 

wjbhin a fraction of a dB from the perfect slot synchronization case at reasonable signal 

levels [4]. We point out. here that the aut.liors in [4] are investigating the effects of slot 

synchronization errors only and thus assume that once slot synchronization is achieved, 

syiiibol synchronization is automatically oht.ained. This is equivalent. to assuming that the 

only anibiguity in synibol sync1ironizat.ion is the ain1iguit.y in slot synchronization, which 

i n  practice is not. a valid assuiiiptioii since slot synchronization does not imply symbol 

S ~ I I  chroiiization. 

1x1 t.liis paper we investigate the problem of PPM symbol synchronization and decoding 

iinder t lie assuiiiption of perfect. slot. syiicliroiiiza.t,ion. For Q-ary PPM, t.he existence 

of slot svnchronization still leaves unresolved a Q-ary axiibiguit,y as t,o t.he posit,ion of 

t,he PPM symbols. However. in conbrast. to t lie slot. synchronization case where syst.ein 

error probabilit,y degrades gracefully wit,li t.lie slot synchronization error, the effect, of iioii- 
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perfect symbol synchronization is catastrophic. One can easily see that a sequence of N 

random PPM symbols decoded under non-perfect symbol synchronization will result in all 

N symbols being decoded erroneously, irrespect,ive of the size of the error. This observation 

leads to the conclusion that the real bottleneck in system performance is due to the symbol 

synchronization subsystem which we investigate in the sequel. 

111 section I1 we investigate and characterize the synchronization properties of random 

PPM sequences. In section 111, we derive ML symbol synchronization algorithms for the 

PPM, optical Poisson channel. both from soft as well as hard data. Here we also derive a 

bound on the synchronization probability, valid a t  high signal-to-noise levels. Section IV 

cont airis the derivation of optimal receivers that. make sequence decisions in the absence 

o f  symbol syiicliro~iization. Also included in this section is a bound on tlie minimuiii 

achievable symbol error probability. Finally, we conclude with section V. 

11. SYNCHRONIZABILITY OF PPM SEQUENCES 

I n  ihis h e c t i o n  we iiitestigate the sy~ichronizatioii properties of randoiii PPM se- 

quences. Broadly speaking. these are properties associated with our ability to identify 

uniquely (o r  not ) the locutzon of PPM symbols within a sequence of such syiiibols when 

only slot boundaries are known. Before we proceed further. we introduce some definitions 

and terminology to establisli a coiiimon ground and facilitate later analysis. 

Definition 1: A binary sequence of Q digits is said to satisfy the PPM constraint. and, 

thus. be a Q-ary PPM syiiihol only if exact,ly one out. of the Q digits is a "one"; Q will be 

referred t.o as the PPM alphabet size. 

It is easily seen from tlie above definition that for a given sequence length A' t,liere are 

QiY valid PPM sequences and that they can be thought of as a subset of the 2 N Q  binary 

sequences of length N Q .  

Definition '2: A sequence o f  biiiary digits is said t o  he a valid Q-ary PPhl sequence if. 

startirig froiii the first b i t .  C P C  1.y consecutive siibsequeiice in i t  of leiigtli Q is a Q-ary PPhl 

sy1nbol. 



Definition 3: Consider a Q-ary PPM sequence ( N  + 1) symbols long ( ( N + l ) Q  slots) 

and a sliding window of N Q  slots applied to the PPM sequence. For a given slot shift j ,  

j = 0,1,2.  . . . , (Q - l) ,  we will refer to the binary sequence within the window as a PPM 

binary subsequence at (slot shift) j .  It is obvious from the definition that a PPM binary 

subsequence is not necessarily a PPM sequence, i.e., not all consecutive binary sequences of 

length Q within tlie window are PPM symbols. -41~0 obvious is the fact that if j = 0, then 

the PPM binary subsequence is a PPM sequence that coincides with the first N symbols 

of the original sequence. Similarly, for j = Q the PPM binary subsequence is a PPM 

sequence that coincides with the last A' symbols in the original sequence. Notice that slot 

shift J = Q does not need to be investigated in searching for syiiibol locations since it  is 

equivalent t o  J = 0. 

Given the above definitions. we are now ready to derive some results. As a first step in 

charact eriziiig t lie syrichronizat ion  properties of random PPM sequences, we are interested 

iii the following prohlein. 

Consider a Q-ary PPhl sequence of length (h' -r 1 ) symbols. chosen at random from 

the set of Q(&+l )  possible PPM sequences. arid a given slot shift j .  We are interested in the 

probability that exactly A' out of the ,IL' syriibols withixi the PPM binary Subsequence at 

slot shift j are Q-ary PPM syiiibols. The usefulness of this quantity should be apparent in 

the context of symbol synchronization when only slot synchronization is present. Leaving 

the details of the derivation for Appendix A, we can show that this probability, defined by 

P( K ;  1. Q, 9). is given by 

P ( K ;  j .  Q. N )  = (i) { ( j / Q ) ( I ' + ' ) ( I  - j/Q)"-*-' + (1 - j / ~ ) ( ~ - + x ) ( j / ~ ) ( ~ - I ~ )  

(1 1 

It  is obvious froni the above expression that P(h'; j .  Q,  A') = P( h-; Q - j, Q ,  X). which 

iniplies that P ( K :  j, Q, IV) is symnietric with respect to forward and backward slot 

shifts from the correct slot for synibol syxiclironization. Another observation that caii he 

readily made is that tlie above yrobabilit y is a convex function of j ,  achieving a niiniinuni 

at j = Q / 2  when Q is even. as is usually the case. This implies that slots closer to the 

correct. syndml synchronizat,ion slot have a higher prohabilit. y of being erroneously chosen 
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for symbol synchronization than slots further away. 

Of special interest is the case when K = N ,  P ( X ;  j, Q, N ) ,  i.e., the probability that 

the PPM binary subsequence at slot shift j is a PPM sequence. Easily obtained from ( l ) ,  

it is 

( 2 )  NS 1 Jv+ 1 P ( X ;  j ,  Q,  N )  = ( j / Q )  + (1 - j / Q )  . 

Equation ( 2 )  implies that there is a nonzero probability of identifying symbol locations 

erroneously, even in the absence of noise. A bound on t.he probability of erroneous symbol 

synchronization is derived in the next section. 

In passing. we note that P ( K ;  j. Q. N )  can be expressed as the ratio of the iiuinber 

of PPM secliimces that. for a given j, result in exactly A- PPM syiiihols wit.hin the PPhl 

binary subsequence at j ,  to tlie total number of distinct PPM sequences of length ( N  + 1). 

neiwtiii,q the number of sequences resulting in Ii matches bv D(h’: j ,  Q. -V) ,  we then 

11 ave 

D(I i ;  j. 4. -v) = ~ ( ~ ‘ ‘ + l )  P(A-:  j .  4. S ) .  ( 3 )  

We now turn our attention tfo the irnplications of ( 1 )  on symbol synchronization in 

the limit as the sequence length iY tends to infinity. I t  is readily seen that for any fixed 

h’,P(K; 3 ,  Q .  N )  -+ 0 as N 4 ‘XI, which implies that the fraction of sequences that 

result in exactly A- matches diminishes with N .  However, the niore important quantity is 

the probability that the number of matches K will exceed a given number T .  Specifically. 

of interest is the smallest value of T such that the probability of more than T matches goes 

to zero as S 4 ‘x. for 4 slot shifts 3 = 1. 2 .  . . . , (Q - 1). Obviously. this niiniiiiuiii value 

of r is a function of the PPM niodulation format and the alphabet size 4 only; moreover, 

the siiialler it is, tlie better the syiiibol synchronizer will be able to perforrii in the presence 

of noise for large N .  

Tlie following proposotion establislies the range of values of r such that tlie prohahilit y 

of iiiore than r symhol iiiatclies teiids t o  zero with -1’. 

Proposition 1: Let Pr[I< 3 r ;  j , Q ,  be tlie prohahility that  tlie number of syiiibol 

matches h- within a PPhl binary subsequence at slot shift j exceeds T for a given Q and 



If. Then, if ( r / N )  > (1 - 1/Q) 

lim PrjK 2 r ;  j ,  Q ,  Nj = O ( 4 )  iv-03 

for slot. shifts j .  Conversely, for ( r / N )  < (1 - l / Q ) ,  there is some slot shift j such that 

lim PrjK 2 r ;  j ,  Q, N ]  = 1. 

Proof We first prove (4). Using the Chernoff bound we have 

Il'=>Oc 

where 

is t.he chara.ct.eristic funct,ion of bhe raiidoiii variable A-. easily obtained from (1). In order 

t o  guarantee that (4) holds for all j. i t  is enough to make sure that, ( 4 )  holds for the j 

that makes t,he right-hand side of ( 6 )  largest. From the easily est,ablished convexity of 

o(s; j ?  Q. iV) arid ibs syiiimetry around j = Q / 2 .  we conclude t.liat the niaxiriium occurs 

at one of t,he boundaries, say j = 1. Let,t.ing p = 1/Q we have 

Ol>serving now that. the second term in ( 8 )  is the larger term we can further bound the 

right-hand side of (8)  by twice this term; coiiibining with the bound in (6) .  we get 

Furt,lier tightening the bound with respect. t.0 s, we finally obtain for (./Ar) 2 f 1  - 1 I Q )  



In ( l o )  E[qljh] and h b ( Z )  are the cross entropy (inaccuracy) and binary entropy functions 

defined respectively by 

Jqqllhj = -q h ( h )  - (1  - q)ln( 1 - h )  (11) 

hb(r)  = --z In ( r )  - (1 - E )  In (1  - z )  (12) 

for some probabilities q,  h and 2. It is well known that the inaccuracy is always greater 

than or equal to the entropy (see for example [8]), which implies that the exponent in (10) 

is non-positive. Thus, in the region ( r / N )  > (1 - 1/Q) where the bound is valid, taking 

the liniit as N -+ (30 yields (4 ) .  

1Ia-e iiow turn our at tention t o  the converse in ( 5 ) .  Since we only need to sliow coil- 

vergence to unity for some j ,  we choose j = ( Q  - 1) (an  educated choice). We start by 

deriving the following C‘hernoff bound 

Following arguments paralleling those above we obtain for j = ( Q  - 1 )  and ( r / X )  5 

( 1  - 1 / Q )  

where we have used the fact that Pr[K < r ;  j .  Q, N ]  5 P r [ K  5 r ;  1, Q, N ] .  The 

condition (r , ’ -V)  5 (1  - 1 /Q)  gives a range of values of r for which the bound is valid 

and is derived froiii the condition s 5 0. Taking limits as iY -+ m in (14 )  we obtain 

PrjA- < r ;  j . Q. .VI -+ O’when ( T / I V )  < (1 - l /Q) .  which in turn implies (5). This 

completes the proof of the proposition. 

One of the implicat.ions of the theorem is that for large (theoretically infinite) IV. the 

fraction of symbols within aiiy PPM biliary subsequence that are valid PPM symbols can 

lie quaranteed to lie less than (1 - l / Q ) .  111 other words. the iiumber of PPRl synhol 

niatches A’ for aiiy slot shift j = 1, 2, - , ( Q  - 1). satisfies, for large N 
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which implies that the number of mismatched symbols, call it d, satisfies 

From (16)  we can see that for large N ,  the minimum number of symbol mismatches for 

any  slot shift j ,  call it is 

dmin = N / Q .  (17)  

The quantity dmin can easily be paralleled to the minimum distance of a block code, only 

now dmin is the minimum average distance between random PPM sequences for any slot 

shift j = 1. 2.. - - , ( Q  - 1 ) away from the correct synchronization slot. Clearly, the larger 

d,,,,, is. the better the sq-nibol synchronizer will 11e able to identify synibol locations in the 

presence of noise. Another obvious observation from ( 1 7 )  is that dmin is nionotonically 

decreasing with the PPM alphabet size Q. which in turn implies that  synchronization 

performance deteriorates as Q is increased. This observation was made also in [4] and [7] 

for t lie slot and PPhI symbol s~ncli~c~~iization problenis respectively. Later in  this paper we 

relate the iiiiniinuiii distance dmin for random PPM sequences to the smallest achievable 

syichroiiizat ion error probability. 

In concluding this section. we note t,liat. the minimum average distance dmin derived 

above is for random PPM sequences, which indicates the existence of sequences with larger 

dmin. The problem of designing such sequences is briefly investigated in the next section. 

IVe next turn our attention to the problem of deriving optimal PPM symbol synchro- 

nization when slot synchronizat.ion is present.. 

111. ML SYNCHRONIZATION 

Our application area here is t lie direct-detection optical Poisson channel. For this 

channel, i t  can be easily established that when oxily slot synchronization is present. the 

sufficient statistic is the nunil~er of photons (events) observed in each slot interval of T’ 

5eCondS. For the Poisson direct-detection cliannel. the iiuiiiber of counts observed in dis- 

tinct slot intervals are independent Poisson random variables wit h intensity (A, I A, ) if a 

signal pulse is present in the correspoiidirig slot and A, otherwise: A, and A, are known 
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as t.he signal and noise intensities respectively. We derive synchronization algorithms from 

two kinds of observations, defined in the sequel. 

a )  Soft-data observations: 

In deriving the M L  synchronization algorithm here, we assume that the receiver has 

available an observation vector R = (Kl . h-2. . - . K Q ,  - - e ,  K N Q )  with elements being 

the number of counts in NQ observed. consecutive slots. We will refer to the data in R as 

soft-data. Within this observation window there are ( N  + 1) symbols, two of them at the 

boundaries partially contained. The problem is to estimate the location of symbols within 

the ohservat ion interval. 

Denoting by n? the variable associated with the start of a symbol within the first Q 
slots in the observation interval. a 31L synchronizer implements the following 

where d = ( d i .  d2. e . .  , d q .  .. . d x ~ )  is the randoni riiodulatioii vector of intensities 

within the observation interval. In writing (18). we assume that all modulation vectors 

are equiprobable. Following the general approach described in [6, 71 and making the 

assumption that the first, partially contained symbol within the observation interval is a 

continuation of the last partially contained symbol, we obtain as the likelihood statistic 

1 = 1  

I n  (19 ) .  S = ( 1  - X s i X , )  and h', is the number of counts observed in the 1 - t h  slot in  the 

observation interval. The indexes in (19) are interpreted ~iiodulo Qh- to account for our 

approximation above. We note here that t liis approxiniation was not necessary in deriving 

the M L  synclironizer but was made to reduce coxiiplexity at no practical performance loss 

for values of of LY greater than four i6. 7 : .  

'4 further approxiiiiation to  (19) can he ot)lained Iyi iisiiig only the largest term in tlie 

sum over j t'o yield 

(20) 
I =  1 

9 



We will refer to  (20) in the sequel as the max-rule. In (20),  j i  is the value of j ,  1 5 j 5 Q, 
that, for a given i and m maximizes A-(z-l)Q+j+m. 

Computer simulation results comparing the probability of correct synchronization, 

P,,, for the synchronizers in (19) and (20) are reported in Figures 1,2 and 3 for different 

values of Q and h-. These results indicate that the niuch simpler synchronizer in (20) 

performs practically as well as the significantly more complicated one in (19). Also ev- 

ident from the graphs is that for the same signal energy per slot X,T', synchronization 

performance degrades with Q and improves with N, as predicted in the previous section. 

Finally. it is clear from the figures that a performance floor exists which is practically in 

effect for signal levels of about X,T' = 10.0. This error-floor is investigated later in this 

sect ion. 

We now turn our attent.ion to deriving synchronization algorithms when t.he receiver 

observations consist of hard-dat a. ohtainecl froni t.he soft -data vector R by niaking hard 

decisions in each slot interval. 

b )  Hard-data observations 

Here we assume that the receiver has available the binary vector of observations X = 

( X I ,  2 2 ,  - - .  . ZQ, - - e ,  ZNQ) obtained by making hard-decisions on the vector R. By 

this we mean that the receiver looks at A-,, i = 1. 2, - e . ,  N Q .  and decides that E ,  = 1 

or z, = 0 according to whether a signal pulse is detected ( a  "one") or not (a  "zero") 

respectively; i .e.. 

111 (21) .  R, is the (Poisson) randoin variable associateed with the number of counts in the 

i-tli slot and Ii, are the observed counts. The above test can easily be shown to reduce to 

( 2 2 )  

where the optinial threshold 1 is given I)! 

A,  T' - l n  ( Q  - 1 )  
In( 1 - X s / X n )  

e -  

; -  (23) 
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It is obvious that further processing on the vector X to derive synchronization and perform 

decoding is much easier to implement compared to the soft-data case. Another advantage of 

algorithms derived from hard-data is that their structure does not depend on the complete 

st,atistics of the channel. The above reasons were partly why hard-data was employed in 

19:. 

Before we proceed with the derivation of the ML synchronization algorithm, we intro- 

duce t.he following quantities: 

Then 

The above probabilities can be easily precomputed given T'.  Q and t,he signal and 

noise intensities A, and A, respectively. Iynder the assumption of equiprobable PPM 

symbols. the ML synchronization rule maximizes over 0 5 m 5 ( Q  - 1 )  the following 

statistic 

d 
A'-I Q Q 

N-I Q 

r = O  J = l  

The second equa1it.y above is a result, of the independence bet.ween choice of PPM sym- 

bols. which lireaks t.he expectat,ion over sequences bo expectations over individual symbols. 
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The third equality should be self evident. Observing now that the product over all j ' s  and 

2's of P r [ X i ~ + j + ~  = ziQ+j+m/m, diQ+j+m = 0] is not a function of m, we can equiva- 

lentlv maximize. 

where 

(28) I - - Pr[-rzQ+k+rn = 2tQ+k+rn/m* drQ+k+rn = 11 
l z Q + k f m  Pr[XtQ+k+rn = 2zQ+k+rn/m,drQ+&+rn = 01 . 

In deriving (27), we have dropped terms not dependent on m and taken the logarithm 

of the resulting expression. Further noting that by multiplying Z : Q + k + m  by any constant 

does not. affect. t.he maximizat,ion. we  finally oht,ain 

n- h er e 
P I  1 

(1 - POO) 
l , Q + k + n ~  = 1: Q+ k + "1 . 

It is clear that l l Q + k A m  t,akes one of two values according to 

1 if z, = 1 
if z t  = 0, li = { 6, 

where 

(23 )  

Since for a practical system PI1 2 ( 1  - P I ] )  and Po0 2 ( 1  -  PO^). i t  is 0 <_ C 5 1. For a 

good system (PI] > > (1 - Pl ) and Po, > > (1 - PO*)) C will be very close to zero and 

exactly zero wlieii either Po0 or P I 1  is unity. In this case. the oyt.ima1 synchronizer from 

hard data reduces to 
N-I  r Q 1 

(33 )  

-A situation when Puo = 1 arises. for example. when A, = 0 resulting in an erasure 

chanriel. It is then seen tsliat the optiinal synchronization rules for a perfect channel where 

botli "zeros" and "ones" are decoded correctly with probability one is the same as that 



for the erasure channel where only “zeros” are detected correctly all the time. This of 

course does not imply that the performance of the synchronizers for the two channels are 

identical. From the information theory point of view, for both the perfect and the erasure 

channels, it is the presence of a pulse that carries all synchronization information, utilized 

fully by (33). 

In general, for channels with small noise intensities A, and relatively large signal 

intensities A,, (33) can be used as an approximation to (29) to further reduce complexity. 

Having derived optimal synchronization under the assumptions of both soft as well 

as hard-dat.a. we now t.urn our at.t.ention t,o the iiivest.igation of the ultimate performance 

achievable hy such synchronizers. 

Our interest liere is deriving an upper bound to the prohabilit y of correct synchro- 

iiizatioii. P, * .  I t  is clear t,liat the syncliroiiizat i o i i  prohal>ility is bountled from above by 

t lie proinl>ilit y that one or more PPhI hinary subseclueiices are PPM sequences. in which 

case a randoin selection must be made. Denoting this random sequence limited probability 

by P,,,l. we have 

k=O 

where DA. is the number of PPM sequences resulting in exactly k slot shifts for which PPM 

binary subsequences are valid PPM sequences. The probability of k such matches, P,( k), 

(3 .5)  

( 3 6 )  

( 3 7 )  

(31) 



and 

The derivation of the above equations was obtained by repeated use of the following 

observation. 

Proposition 2: For a given PPM sequence. in order for the PPM binary subsequence at 

j to be a valid PPhl sequence i t  is necessary and sufficient that either all pulses (pulsed 

slots) are before the j - t h  slot 9 all after the j - t h  slot. 

The proof of the above proposition is easily seen by coiistruct.ion. 

LVe are now ready t.o derive a lmund on the randoni sequelice liiiiited probability P,.,l, 

arid by extension t o  the probability of correct sy~iclironizat,ion Pc3. 

Proposition 3: 

holds for all Q and -I' 

The following bound on the random sequence limited probability P,.,, 

wit,h equality for Q = 2 and Q = 3. 

Proof: The following iiiequa1it.y is obvious 

where equality is when Q equals two  or three. I-sing the fact that 

and the expressions for the various probalilities in equat.ions (37). (39) and (41 )  we obt.ain 

the required bound. 
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We note that the bound in (42)  will be tight for all values of Q when N is sufficiently 

large t*o make the probability of two or niore slot shifts for which PPM binary subsequences 

are PPM sequences negligibly small. This fact is verified in Table 1,  where simulation 

results are compared to our bound. 

-4 lower bound on t.lie probabilit,y of erroneous synchronization Pes = (1 - Pc8) is 

which is achieved at  high signal-to-noise levels and sufficiently large N .  It is clear from (45) 

that the error-floor rises with increasing Q and decreasing iV as predicted by the decrease 

in dn1in in ecluatioxi ( 1 7 ) .  Let us now show that the distance dmin enters the bound on 

erroneous synchronization probability in a natural way as ,I; -+ 3c. For a given dmin. we 

have Q = iV/dmin. Then 

Since the second term above is at  least, an order of iiiagnitude smaller than the first. for 

reasonably large dmin ( say dmin _> 3) ,  we obtain, for very large (theoretically infinite X )  

and reasonably large dmin 

p > c--dmin 
es - (47)  

Equation ( 4 7 )  indicates an exponential decrease in the error-floor with increasing dmin. 

As  an example of how the bound in (4.5) can he used in a system design we derive 

next the niixiiniuxii nuiriber of slots that need to be processed in order to quarantee a given 

perforxilance. The nuxiiber of slots ohserved. 11- = Q( + 1 ). is a measure of the receiver 

coiiiplexity and is an iiiiport ant parameter in practical iniplexiientation. We show that the 

followiiig proposition is true. 

Proposition 4: The sniallest nuniber of slots Il-,ll,n t hat need 

an error-floor riot niore than some Per is 

t.o be processed to guarantee 



and is achieved with binary PPM. 

Proof: We have W = Q( N + 1) 2 2( N + 1) with equality iff Q = 2. Further, we have 

wliich iiiiplies ( K  + 1) 2 - log, (P,f) wit,h equalit,y iff Q = 2. Combining the two inequal- 

ities above. we get 

M’ 2 -21og, ( P e t )  

with equality iff Q = 2. This proves the proposition. 

We end this subsection by noting that the bound in (42) is valid also for the re- 

sults reported in 112i where PPM synibol synchronization is derived in the absence of slot 

synclironization. Kext. we investigate ways to reiiiove the error floor predicted above. 

(1) Sequence Design 

Li,*e start w i t h  a defiiiitioii. 

Definition 4: -4 PPM sequence will be said to be svnchronizable if no PPM binary sub- 

sequence in it  is a valid PPM sequence. Equivalently. a PPM sequence is synclironizable 

if each PPM binary subsequence of it cont.ains at least one symbol t,hat is not a PPM 

symbol. 

It. is clear from the above definition that symbol locations within synchronizable PPM 

sequences can be uniquely identified in the absence of noise. As we derived earlier, for a 

given Q and S there are Do synchronizable PPM sequences as given hy equation (36 ) .  

We are now ready to prove the following propositions. 

Proposition 5: When a synchronizable PPM sequence is inserted in another PPhl se- 

quence. t lie resulting longer sequence is synchronizable. 

Proof: By the definition of a PPhl sequence syiiihols within it iiiust be PPM syml>ols. 

However. for any slot shift j = 1. 2 .  . ( Q  - 1 ). there is at least one symbol in the 

inserted synchronizable sequence that is riot a PPM symbol (by definition). Since the 

inserted sequence is a part of the longer sequence. this implies that at least one symbol in 

tlie longer sequence is not a PPM symbol for all 1 = 1. 2 ,  . . , ( Q  - 1 ). This iiiiylies by 



definition 4 that the longer sequence is synchronizable, which completes the proof. 

Proposition 6: A Q-ary sequence is synchronizable if and only if it contains both symbols 

1 and Q; symbol 1 has the pulse in the first slot and symbol Q has the pulse in the Q-th 

slot. 

Proof: a )  \Ve first. prove the forward statement. If both symbols 1 and Q are in the 

sequence. then there is no slot shift j = 1. 2, - : ( Q  - 1) for which all pulses are before 

or after j .  Thus, by proposition 2 no PPM binary subsequence is a PPM sequence and, 

thus, by definit.ion 4 the sequence is synchronizable. 

b )  If not both symbols 1 and Q are in the sequence, we distinguish three possibilities: 

only syiil>ol 1 or only synbol Q is present o_r neither is present. If symbol 1 only is present, 

then tlie statement "all pulses are before slot ( Q  - 1)" is true which by proposition 2 it 

implies the sequence is not synchronizable. Similarly, if symbol Q only is present, then 

the stateiiieiit pulse\ are after slot 1" is true which ixiiplies again that the sequence 

is i i o t  \yicliroiiizal>le. Finally. if neither ~y11iI)ol is present. h t l i  of the above statements 

in qiiotat ion marks are true. which again implies the sequence is riot synchronizable. This 

coniplet es the proof. 

To facilitat,e reference in the sequel? we will refer t.o the pair of synibols 1 and Q as 

t,he synchronizable pair. 

It, is clear from the above proposition that Do in equation (36) gives the number of 

sequences from t,he set of Q ( N + ' )  possible sequences that, contain at, least one synchro- 

iiizable pair. Obvious from t.he proof of t.he proposit.ion. also, is t,he fact, that. it. doesn't. 

x1iat.t er where the t.wo symbols are 1ocat.ed witliixi a sequence t.0 make it. synchronizable. 

Finally. we observe t,hat. the more syiiclironizahle pairs a sequence contains, t,lie bet,t.er it.s 

syxichronizat.ion properties in t lie presence of noise. 

One way of removing the error-floor predicted by (42)  is to periodically insert i n  

tlie random data streaiii a syiclironizal>le pair. If. for example. a synchronizable pair is 

inserted every L PPM synibols. all PPhI sequences of length greater or equal to L will be 

synclironizable according to proposit ion 5. The efficiency E of such a scheme as measured 



by the number of information symbols per transmitted symbol will be 

= 1 - 2 / L ,  
L E=- 

L i 2  (49) 

which approaches unity as L is increased. It is clear, however. that the smaller L is, 

the better chances for correct synchronization in the presence of noise will be. In cases 

where a special synchronization pattern is inserted in the data stream to facilitate frame 

synchronization (see for example [ lo ,  11, 12]), the extra reduction in efficiency to improve 

symbol synchronization can be avoided by choosing a pattern with as many synchronizable 

pairs as possible. Such a pattern will aid in both symbol as well as frame synchronization 

when they are obt aiiied separately. 

I n  the next section. we investigate the problem of deciding what the synibols within 

an ol,servattion interval are as opposed to where they are which we analyzed above. We do 

t liis under the assuniption of slot sy~icliroiiization only. 

IV. DETECTABILITY OF PPM SEQUENCES 

a )  M L  Receivers: 

In this section we turn our attention to the problem of PPM sequence estimation 

when only slot 1ocat.ions are exactly known. Our observations consist of the vector R = 

(h-1. h-2,. a .  A-Q.. e .  K N Q )  of slot counts. 

T.Tnder the assumption of equiprobable sequences, an opt.ima1 receiver is a ML receiver 

that chooses as its sequence estiniat e the sequence d that. maximizes 

(50) 

111 ( 5 0 ) .  Pr(  111) is the a priori prohability that the first PPhl symbol in tlie int.erva1 (O.4T’ 

star ts  at time mT’. ~4ssuiiiiiig that 110 a priori knowledge exists. then Pr(n7)  = l / Q  for all 

111. I-sing tlie fact t h a t  the  eleiiients of R are conditionally independent Poisson random 

variables and dropping terms not dependent on t lie modulation sequence. we obtain as our 



optiniai receiver 
Q-1 r 1 

In deriving (51) we have assumed that the first symbol in the observation interval is a 

continuation of the last, partially contained symbol. As for the synchronization case, this 

approximation reduces subst antially tlie complexity of the receiver at no practical per- 

formance loss for K greater than about four 1111. To accommodate this approximation, 

indexes in (51) are interpreted modulo Q N .  The set A is the set of all possible distinct 

Q-ary PPM sequences of length 11’ and J,(d). i = 1 , 2 , - - - ,  N ,  is a set of indexes indicat- 

ing the slots within sequence d that  contain the pulses. For example, the Q = 4 PPM 

sequence consisting of the = 5 symbols { 1 . 3 . 3 . 4 . 2 }  caii be described equivalently by 

{ J , ( d ) } , = ,  = {1.7,11.16.22}. Finally S = (1 4 X,/X,) is as defined earlier. Y 

.\ltliouqli each computation of ( -51)  is relatively easy to perform, tlie complexity of 

the receiver is still overwhelming since 0” statistic need to be evaluated before a decision 

is iiiacle. However. following arguiiients siiiiilar t o  those in i 11 . we caii show that only Q 

of the QJv sequences are iiiost likely to have been sent. Denoting tlie set of Q candidate 

sequences by A * ,  t.he receiver in (.51) 

Tlie set of Q candidat,e sequences A *  

becomes (with no loss in performance) 

iiiax [ (d)  . 

is obtain in the following way: 

dEA,’ 

Step 1: Croup the observation vector into Q consecutive slots per symbol and decode it into 

a sequence of il; PPM sj-nibols. Store the decoded sequence as a possible candidate. 

Note that decoding the observation vector into PPpVl syiiibols is done by choosing the 

largest number of counts in each group of Q slots. which is tlie optimal strategy when 

synchronization is present. 

Step 2 :  Cyclically shift the oliservation vector by one slot to the left and go back to step 1. 

Repeat until the oliservatiori vector is cyclically shifted 13)- ( Q  - 1) slots. 

Tlie result of the above procedure is Q candidate sequences which are then used 

to evaluate 4 ( d )  and make a final decision by choosing the largest.. The idea beliiiid tlie 

19 
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tremendous reduction in the number of evaluations of e( d )  is simple: we know that symbols 

start at one of the times mT', rn = 0 , l -  - a ,  (Q - 1)  corresponding to  the start of the first 

Q slots in the observation interval. Thus, by decoding the observation vector for each 

possible rn = 0, 1, - . . , ( Q  - 1) .  we are assured that one of the Q decoded sequences is 

the one we would have obtained have we had perfect synchronization. This implies that 

liiiiitirig our search in the set A -  does not increase our error probability, since the best we 

can hope to  achieve is the performance of a perfedy synchronized receiver. 

To illustrate the above approach, we take a simple example. 

Example 1: Let Q = 3. X = 4 and the observation vector R = (0 .4 ,2 ,1 ,5 ,3 ,2 ,3 ,1 ,6 ,3 ,5 ,  ) 

Decoding this vector into a PPhl sequence. we obtain do = (2 ,5 ,8 ,10 ) .  Cyclically shifting 

R b y  one slot t o  the left and decoding we obt.ain dl = (1 .4 ,9 ,11 ) .  Finally shifting by 

another slot we get dz = (3 ,4 .8 ,10 ) .  Evaluating (52)  using Zn(X.) = 1.3 we get l(do) = 

1.462 10"'. C(dl) = 1.957 x 10" and I(d2) = 5.335 x lo1' and thus tlie decision is 

d = dl = (1.4.9.  11).  111 a practical iin~~lenientatior~ of ( 5 2 )  only the first (-Y - 1 )  syii~bols 

in the decoded sequence will he retained as valid syiiibols since the last. one is actually 

the concatenation of two partially coniplete symbols and is likely to be in error. For our 

example above only the subsequence (1.4,9\ will be retained. By properly allowing overlap 

bet ween consecutive observation intervals, all symbols are effectively decoded. 

Approximations to (51) can be derived that further reduce complexity. An obvious 

one is to maximize with respect. to d E A* not the suin over all rn but, only the largest. 

term in the sum. i.e. 

111 ( .53) n ? - ( d )  is the value of ni = O.l:..,(Q - 1 )  that maxiniizes tlie inside suiii in  (51 )  

-for a given d. What we  have in effect is a joint estimation of the modulation sequence and 

~;-ticlironizatiori. i.e. (5 .3 )  is equivalent to 

\Ye next t,urn our att.ention to the performance achievable by t,he above receivers. 
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b )  A bound on error probability 

As with the synchronization problem, here we are interested in finding a bound on 

the ultimate performance that, can be achieved by the receivers described above. 

Our start,ing point is the observation that, when a receiver det,ects a sequence at. the 

wrong location. then the sequence is detected erroneously. This implies that, the probability 

of sequence detection P 8 d  is bounded by the probability of correct synchronization PcS,  i.e.. 

PSd 5 p c 8 ,  which in turn yields 

LVe observe that t lie PPkI foriiiat imposes a severe error-floor on t lie sequence detectioii 

probability when symbol synchronization is absent. 

Lye now turn our attention to  the syiiil>ol detection prohali1it.y PSyd and prove the 

1; ) I  1 ( ) iv i 11 

Proposit i o n  i: The s y i i i h l  detection prol>al,ilit y is l)ou~itlecl 1)y 

11 I'( ) p s i  t i ( ) I  1 . 

Proof: Letting PSyd be the symbol detection probability in the absence of any channel 

noise. we have P S y d  5 Psyd. We further observe that. in the absence of noise. when a 

sequence error is made (due to wrong synchronization ). &l the syiibols in a sequence are 

received incorrectly; otherwise, all symbols are received correctly. From this observation 

we infer that psyd equals the probability of sequence detection in the absence of noise, 

wliich in turn equals P,.,r.z.e..Psyd = P,.$l . We thus have Psyd 5 PrSl which with equation 

( 4 2 )  imply (.56). This coiiipletes the proof. 

- 

The syinbol error probability floor predicted by (56) in the absence of symbol syn- 

chronization can lie very severe. especially for large values of Q. A s  an exaniple. Q=256 is 

an alpliahet size condered  for so1i1e applications: if an error-prolmbilit y floor of at niost 

lo-: is required. a siiiiple calculation shows that at least 435,200 slots need to be processed 

( N = l 7 0 0 )  in order to satisfy the perforniance requirenients. 



V. CONCLUSIONS 

We have considered the problem of synchronization and detection of random PPM 

synibols in the presence of only slot synchronization. In characterizing the synchroniza- 

tion properties of PPM symbols imbedded in long random PPM sequences, we introduced 

the niinixiiuni distance d,,, . From our analysis we concluded that synchronization per- 

formance improves with the length of the observed sequence and degrades with increasing 

PPM alphabet size. 

In section I11 we derived optimal and suboptimal symbol synchronizers and a lower 

boiind to the synchronization error probability; the error floor was seen to be due to the 

PPhl Inodulation foriiiat. A way to remove the error-floor was suggested which consists of 

inserting periodically in the random data stream a pair of "special" synibols. The insertion 

of these svmbols may be necessary to remove the error-floor, especially for large values of 

4 where i t  is most severe. Maximu~ii- likeliliood receivers that. make sequence decisions in 

I he presence of  slot synchronization o n l y  are derived in  section 11. as well as l~ounds t o  the 

sequence and symbol detection yrobabilit ies. We observed here that. the symbol detection 

probability is bounded by the prohahilit y of correct synchronization. 

Our conclusion is that for channels where the mechanisms that can cause random slot 

shifts are such that the phase in a given observation interval cannot be reliably predicted 

from previous observat,ion intervals, the symbol error-floor is severe, especially for large Q. 

In these cases, some signal design to eliminate the error-floor is necessary. 
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APPENDIX -4 

Derivation of Equation (1) 

For a given alphabet size and sequence length ( N  + 1) let P r  [h';j/S1 = i] be the 

probability that A' of the N symbols within the PPM binary subsequence at 3 are PPM 

symbols. given that the first symbol in the sequence is S I  = 1 ,  i = 1.2. - e , Q.. For a givexi 

J ,  we distinguish two cases: either z 5 1 or z > 3 .  For z 5 j ,  the probability that A' of the 

-V synibols are PPM symbols is the probability that K of these symbols have pulses in the 

first j slots. Since symbols within a sequence are randomly chosen, the probability that K 
of the N symbols have pulses before or at the j - th  slot is ( j / Q ) K (  1 - j / Q ) N - * - .  Since 

there are ( h' ) sets of A- symbols we have A. 

Now. for Q 2 i ,> J .  in order for Ii synibol matches to occur it  xiiust he that Ei symbols 

have  pulsed ~ 1 0 1  s att er t lie I - t h slot. wliicli implies 

A11 we need to do now is expectate over all Q first. symbols i, all equiprobable. Per- 

forming the expectat,ion yields equation (1 ). 
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APPENDIX B 

Derivation of Equations (36) - (  41 ) 

We first derive equation (36). Here we are interested in the number Do of sequences 

for which no PPM binary subsequence is a PPM sequence. Our approach is to  start 

wit11 the Q( -1' - 1) possible sequences and then subtract all unwanted sequences. Using 

proposition 2, we must subtract all sequences that, have all their pulses after the j - f h  

slot for j = 1,2, - - -, ( Q  - 1 )  and all sequences that have all their pulses before the j - t h  

s l o t , j  = 1 . 2 , . - . , ( Q - l ) .  It iseasily seenthat thereare(Q-l)(NS')oft.heformerandas 

many of the letter; ( Q  - 2 ) ( N + 1 )  of these sequences belong to both categories. Subtracting 

' ( Q  - - 1)'"''' from Q'S"' aiid adding ( Q  - 2)'"") to avoid subtracting sequences twice 

yields (36  ). ( 3 7 )  is oht aiiied b y  dividing (36) by Q"+' '. 

Let us now compute the number D1 of sequences that have exactly one PPM binary 

subsequence which is a PPM sequence at some shift j = 1.2.. - - .  ( Q  - 1). If we let X ( j )  

he t lie Iiiiiiilwr o f  sequences wliose PPhl hinary suhsequeiice at I is a PPhI sequence, we 

have 

For a given j, S ( j )  is the number of all t.he sequences t.hat have eit.her all pulses before j or 

all after j. It is easily seen that t,here are jN+' of t,he foriner and ( Q  - j )N"  of the latter. 

Froin the j N + l  sequences we must suhract  sequences that. have all pulses after slot 1 or 

before slot. ( j  - 1 ) since t.1iese are sequences t.liat. result. in PPM sequence at. sollie slot. shift 

i << j ;  tliere are 2 ( j  - 1) lV+l - ( j  - 2)"+' such sequences for Q > 2 .  Similarly, from tile 

( Q  - j ) " - '  sequences we must subt,ract. all those that have eidher all pulses after t.he ( j  - 1 ) 

slot or all pulses before (Q-1) ( and aft,er j ) ;  t,liere are [2 (Q - j - 1)"+' - ( Q  - j - 2)s+1-: 

such sequences. Denot.ing by 1 1  ( j )  the nuniber of sequences that have exactly one mat.cll 

a t  j & Iiave all pulses hefore j arid b y  IL( j )  those t,hat have exact,ly one Iiiat.ch at j a& 

all piilses after j .  we 1ia.w for Q > '1. 



and 

O , ( Q - j )  = 1 
Iz(j) = { ( Q - j ) " + '  - 2 ( Q - j - 1 ) N S 1  + ( Q - j - 2 )  N + l  , ( Q - j ) =  2 , 3 , . . . , ( Q - l )  . 

( W  
It is clear that, X ( j )  = I,(j) + Iz(j) and that X ( j )  = X ( Q  - j ) .  Then 

Q-1 0-1 
D1 = X ( j )  = 2 & ( j )  

j =  1 j =  1 

= 2 [ ( Q  - 1 )  N+l - ( Q  - 2)N+' - 13, Q > 2. 

For the special case Q = 2 it is easily seen by inspection that D1 = 2 which along 

with (4B) yields ( 3 8 ) .  Ecluat,ion (39 )  is obtained by dividing by Q("+').  

Finally. to obtain (40) and (41). we observe that in order for all PPM binary subse- 

quences at j = 1.3 . . . .  , ( Q  - 1 )  to  be valid PPhl sequences it  must be that all (Ar + 1) 

svnilmls in a wxluence arc the same. Since tliew are Q such sequences. we obtain (40)  from 

WlliCh I11 ) follows. 



FIGURE CAPTIONS 

Figure 1- Simulation results for the synchronization probability P,, for Q = 2, h- = 

5? 10. 

Figure 2: Simulation results for the synchronization probability P,, for Q = 8. N = 

'20.40. 

Figure 3: Simulation results for the synchronization probability P,, for Q = 16, X = 

20.40. 

TABLE CAPTIONS 

Table 1: Coniparison between siniulat.ions and the bound in (42).  
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TABLE I. COMPARISON BETWEEN SIMULATIONS 

AND THE BOUND IN (42) 
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