
212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996 

[I91 A. K. Parekh and R. G. Gallager, “A generalized processor sharing 
approach to flow control in integrated services networks: The single 
node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357, 
1993. 

[20] -, “A generalized processor sharing approach to flow control: The 
multiple node case,” IEEE/ACM Trans. Networking, July 1994. 

[21] K. Sriram, “Methodologies for bandwidth allocation, transmission 
scheduling, and congestion avoidance in broadband ATM networks,” 
Comput. Net. and ISDN Syst., vol. 26, pp. 43-59, 1993. 

[22] M. Wernik, 0. Aboul-Magd, and H. Gilbert, “Traffic management for 
B-SSDN services,” IEEE Network, Sept. 1992. 

[23] W. Whitt, “Tail probabilities with statistical multiplexing and effective 
bandwidths in multi-class queues,’’ Telecomm. Syst., vol. 2, pp. 71-107, 
1993. 

[24] 0. Yaron and M. Sidi, “Generalized processor sharing networks with 
exponentially bounded burstiness arrivals,” in IEEE INFOCOM Proc., 
1994, vol. 2, pp. 628-635. 

[2S] Z. L. Zhang, D. Towsley, and J. Kurose, “Statistical analyisis of 
generalized processor sharing scheduling discipline,” preprint, 1994. 

Lower Bounds on Expected Redundancy 
for Nonparametric Classes 

Bin Yu, Member, IEEE 

Abstruct- This correspondence focuses on lower bound results on 
expected redundancy for universal coding of independent and identically 
distributed data on [0, 11 from parametric and nonparametric families. 
After reviewing existing lower bounds, we provide a new proof for 
minimax lower bounds on expected redundancy over nonparametric 
density classes. This new proof is based on the calculation of a mutual 
information quantity, or it utilizes the relationship between redundancy 
and Shannon capacity. It therefore unifies the minimax redundancy lower 
bound proofs in the parametric and nonparametric cases. 

I. INTRODUCTION 

One important ingredient of Rissanen’s stochastic complexity 
theory is his (almost) pointwise lower bound on expected redundancy 
for regular parametric models, and a minimax counterpart follows 
from Clarke and Barron [ l ]  (cf. [SI). A similar lower bound was 
proved by Rissanen et al. [ l l ]  and Yu and Speed [13] on expected 
redundancy for the Lipschitz nonparametric class of densities. This 
lower bound was shown in two different senses: one extending the 
parametric pointwise bound to an artificial parameter space with a 
dimension depending on the sample size [ l l ] ,  and the other in the 
minimax sense [13]. 

On the other hand, Rissanen’s pointwise lower bound can be 
viewed in the broader picture of the relationship between redundancy 
and Shannon capacity. The study of this useful relationship can be 
traced back to Gallager [5] ,  who showed that the Shannon capacity 

Manuscript received December 4, 1994; revised July 27, 1995. This work 
was supported by the Army Research Office under Grant DAAH04-94-G- 
0232 and by the National Science Foundation under Grant DMS-9322817. The 
material in this correspondence was presented at the IEEE ST/IMS Workshop, 
Virginia, Oct. 1994. 

The author is with the Department of Statistics, University of California, 
Berkeley, CA 94720-3860 USA. 

Publisher Item Identifier S 001 8-9448(96)00009-0. 

serves as a lower bound on the minimax expected redundancy over 
a parametric source class. Haussler [6] extended the result to general 
classes of sources. Merhav and Feder [9] showed that the same 
Shannon capacity is a lower bound on the expected redundancy 
also in the pointwise or “almost sure” sense. Thus the Shannon 
capacity serves as a lower bound on the expected redundancy both in 
minimax and pointwise senses. It follows that in the parametric case 
the mutual information corresponding to any prior on the parameter 
space is a lower bound on redundancy in both senses. Using the 
expansion of the mutual information from a smooth prior in [l], 
Rissanen’s pointwise lower bound can be rederived through this 
redundancy-capacity paradigm. In general, however, calculating or 
lower bounding the capacity or mutual information can be difficult. 

The focus of this correspondence is on minimax redundancy 
lower bounds for nonparametric source classes of independent and 
identically distributed ( i id . )  data strings. Our contribution is the 
calculation of the mutual information corresponding to a uniform 
prior on a specially selected finite source subclass, therefore providing 
a minimax lower bound on redundancy. Since the old approach for 
nonparametric minimax lower bounds in [13] is based on accumulated 
prediction error, not on capacity or mutual information, our current 
approach unifies the parametric and nonparametric cases. 

11. A REVIEW 
In this section we review the existing lower bounds on redundancy 

in the i.i.d. case. For a given i.i.d. data string XI, 2 2 , .  . . , zn and 
without knowing the distribution f which generated the data, we 
would like to compress the data in an efficient way. When f (z)  = 
f s (2)  belongs to a smooth k-dimensional parametric model class 
such that the parameter 8 can be estimated at the nT1/’ rate, Rissanen 
[lo] showed that we need at least H ( f )  + 5 logn bits for the string, 
asymptotically. That is, for any joint density qn on n-tuples, if we 
view -logq,(z“) as the code length of an idealized prefix code, 
then its expected redundancy is 

E,; log(f;/un). 

Rissanen ([lo]) showed that 

limiiif E f z  1 o g ( f ~ / q n ) / ( k l o g n / 2 )  2 1 

for all 0 values except for a set which depends on q and has 
Lebesgue measure zero. With a prefix code achieving this lower 
bound, Rissanen justified that 5 log n can be viewed as the coding 
complexity measure of the model class. For more general classes, 
Merhav and Feder [9] showed that the Shannon capacity replaces 

As we can derive from [l], $* is naturally the leading term in 
the capacity in the regular parametric case. 

When f is known to be in the smooth’nonparametric density class 
of bounded derivatives (or Lipschitz class) on [O, 11, a complexity 
rate measure of n113 was established by Rissanen et al. in [ I l l  by 
embedding the nonparametric class in a parametric class of dimension 
of order n ‘ I 3  /log n. This embedding reflects the fact that a smooth 
nonparametric class is in essence a parametric class whose dimension 
increases with the sample size. 

The other approach to obtain lower bounds on expected redundancy 
is minimax (cf. [2], [3]). Let w(8) be a prior on the parameter space 
and q7% a joint density on n-tuples; then Gallager [5] has shown that 

k w  ~ 

as the pointwise or almost sure lower bound on redundancy. 
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the minimax expected redundancy is bounded from below by the 
maximum of the mutual information over all priors, i.e., the Shannon 
channel capacity. That is 

=max I ( w )  
W 

where 

I ( w )  := I(@, X"), with 8 N w. 

Conditionally on 8, XI, . . .  ,x, N, ,  d fe, and maxw I ( w )  is the 
Shannon channel capacity. 

When the parameter space is one-dimensional, asymptotic expan- 
sions of 1 ( w )  are given by Ibragimov and Has'minsky [8] under 
regularity conditions on f e  and w(8). For general cases, see Clarke 
and Barron [l], where they showed that the first term in the expansion 
of the Bayes redundancy or mutual information I ( w )  is the Rissanen 
coding complexity of e log n. Hence this complexity measure also 
serves as the minimax lower bound on expected redundancy. 

For the Lipschitz class mentioned above, any Bayes redundancy 
or mutual information still provides a lower bound. However, no 
prior seems to exist on the whole density class for which the mutual 
information can be approximated analytically. On the other hand, 
the expected redundancy is simply the accumulated prediction or 
estimation error in terms of Kullback-Leibler divergence: 

Ef , "Wfe" /4")  = C E f g t l D ( f 0 ( . )  II U ( .  I X"- ' ) ) .  
t 

Techniques such as Assouad's (cf. [4]) have long been developed 
to obtain minimax lower bounds on density estimation errors in the 
nonparametric case [12]. By lower-bounding the divergence D by 
the Hellinger distance and mimicing Assouad's technique (cf. [ 121) 
from the density estimation literature, a minimax rate lower bound 
of n 1 / 3  was established and shown to be the optimal rate by Yu and 
Speed in [13]. 

Note that in applying Assouad's technique, one does not calculate 
the Bayes estimation error over the whole class, but only over a 
conveniently chosen subclass, and the Bayes estimation error over 
this subclass provides a lower bound on the minimax estimation 
error. It turns out that the detour to accumulated prediction or 
estimation error is not necessary since we can use the subclass 
directly with the redundancy. Recently, Haussler [7] gave useful 
general bounds on mutual information. Using one of his lower bounds 
to the subclass and with a uniform prior, we obtain in the next 
section minimax lower bounds for general smooth density classes; 
thus we reconcile the proofs of minimax redundancy lower bounds 
in parametric and nonparametric cases, because our new proof is 
based on mutual information rather than the accumulated prediction 
error. As a corollary to our theorem, we rederive the minimax lower 
bound rate ~7,''~ given in [13] for the Lipschitz class. 

111. MINIMAX LOWER BOUNDS FOR SMOOTH DENSITY CLASSES: 
AN INFORMATION-THEORETIC PROOF 

In nonparametric density estimation, it is well known that con- 
straints must be imposed on the density class over which a minimax 

result is sought (cf. Devroye [4]). Smoothness constraints are com- 
monly used since the minimax rates obtained reflect the difficulty of 
estimation as a function of the smoothness of the class and the sample 
size-the smoother the class and the larger the sample size, the 
easier the estimation. The density classes LIP(s.  C) defined below 
are standard smooth classes in nonparametric density estimation. 
(See [12] and the references cited therein.) Because of the close 
relationship between estimation and compression or redundancy, 
these classes are appropriate in our setting as well. In this section, 
a minimax lower bound on expected redundancy over a class is 
derived by lower-bounding the mutual information corresponding to 
a uniform prior over a chosen subclass and using a result in Haussler 
[7]. Moreover, the minimax rates in these lower bounds are believed 
to be optimal. 

Let the smooth density class L I P ( s ,  C) on [0, 11 contain those 
f ' s  such that 

sup lf("(z)I 5 C, for i = 1,. . , k 
O < x ~ 1  

and 

lf'"(z) - .+k)(y)l 5 clz - ylv,  f o r o  5 x, y 5 1 

where C is a fixed constant, k is a positive integer, and v is such 
that 0 < v 5 1 and s = k + v 2 1. Note that taking k = 0 and 
v = 1 gives the Lipschitz class studied in [13] and [ l l ] .  

For any finite subclass Fn of 

LIP(s ,  C)" := {f" : f E LIP(s ,  C)} 

h : =  f " P ( f " )  

and a prior p on Fn with the corresponding mixture 

f % € 3 n  

we have 

min max E p  log ( f " / q , )  
Qn f € L I P ( s , C )  

Qn f€F, 
2 min max E p  log ( f n /q , )  

2EPE.f" log(f" /h)  

= I b ) .  
Thus a minimax lower bound on redundancy can be obtained if we 
appropriately choose a subclass Fn and a prior p on it, and bound 
I ( p )  from below. 

We can expect I ( p )  to give a good lower bound on the minimax 
redundancy only when the subclass Fn accurately reflects the com- 
plexity of the underlying class, relative to the sample size. Because 
redundancy and estimation error are intimately related, it is not 
surprising that the hypercube subclass from density estimation serves 
us well here (cf. [4] and [12]). 

The hypercube subclass is constructed by perturbing the uniform 
density on [0, 11 over m equally sized subintervals. The perturbation 
is done on each subinterval by adding a positive or a negative "signal" 
or properly shifted and scaled perturbation function 9 (see Fig. 1). 
Since there are m subintervals and two choices for each interval, 
the total number of such perturbed functions is 2", which may be 
regarded as corresponding to an m-dimensional hypercube, hence the 
name. The number of subintervals m will be chosen later according 
to the sample size n so that the complexity of the hypercube class 
increases with n and the redundancy rate on this hypercube class 
approximates that of the full class 

To be more precise, let the perturbation function g be a fixed 
( k  + 1)-times differentiable function on [0, 11, which is bounded 
by cg and for which 1' g(x) dx = 0 and ax = a,  > 0. 
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where T and T* are independent product distributions of i.1.d. 
symmetric Bernoulli trials, that is, T~ (and T;) are i.i.d. with = 
0) = P(TJ = 1) = l / Z .  

Let 

cm 1 ll (JGK - ~1-91)~ 

(JG- JE)', for 1 I ,J 5 m. = l3 
It is easy to see that 

m 

U U U U U U ~ ~ ( f r -  f r * ) =  J (JI+ (2T3 - 1)g j  - 4-)2 
,=1 '3 

m (a) 

7 1  U U U U U 

. (a) An example of perturbation function: g(z) = -cos (47rz) + 1 
0.51 and g(z) = cos(4.irz) - 1 on (0.5, 11. (b) Shifted and scaled 

perturbation functions are added to U(.) G 1 for m = 4 and c = 0.1. 

Moreover, we require g ( 0 )  = g ( 1 )  = 0 ,  and the right derivatives of g 
at x = 0 and the left derivatives of g at z = 1 are zero up to the kth 
order. These requirements ensure that when we piece together shifted 
and rescaled g's as below, the resulting function is in LIP(s ,  C). 

Divide [0, 11 into m disjoint intervals I3 of size l /m .  For j = 
1, 2 , .  . . , m, let the shifted and scaled g be the signal added to the 
1 th subinterval 

g3( lc )  = cm-' g[m(x - ( j  - l ) /m)l  

with c small enough so that 1g31 < 1. Let the collection of such 
perturbed uniform densities be 

m 

M ,  = f T  = 1 + C(2TJ - 1) x { 3 = 1  

} g3(z)I13:  7- = ( T l , " ' . T m )  E (0, l}" 

and define the hypercube class 

.Fn = M z  = {fr" : fr E M,} 

For any two density functions U and U on [0, I], define their 
Hellinger distance H through 

H ' ( U ,  w )  = (6- 6)' J 
Let us take the uniform prior p m  on Fn, or equivalently, the 

product distribution of i.i.d. symmetric Bernoulli trials for T = 
( T I , .  . . , 7,) .  The first inequality of Haussler [7, Theorem 11 can 
now be stated in our notation as 

I (pm)  2 -ET* log Ere-"/" x 2 ( f T  f 7 * )  

j=1 

Lemma: For positive constant B, = agc2 

Proof: It is easy to see that 

2 4/Ifm gl d z / 4  
0 

0 = agc 2 m -2s-1 

Now fix T* and let 

k = 

Without loss of generality, assume T: = 1 for 1 I .i 5 k and 
7,' = 0 for k + 1 I j 5 m. Then 

m 

is binomial (m,  1/2)  

- - Ee-"/4 cmw 

Recall that the moment generating function of a Binomial(N, p )  
variable IV' is 

E C t w  = ( p C t  + 1 - P ) ~ .  

For our W ,  N is m and p is 1/2.  Therefore, for t ,  = n/4 .  Cm 
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Because the last expression is independent of k or T * ,  its negative 
logarithm is a lower bound on I ( p m ) ,  that is 

I ( ~ ~ )  2 - E ~ *  i og~re -” /4 .H2( f” f7 , )  

= - E ~ *  log E ~ - ~ / ~  cmw 

= -log(2-”(1+ e-*m)“) 
= m l o g 2  - m l o g ( l +  ePtm) 

= m log2 - m log (1 + e-fcm) 

Choosing m = An1/(’”+’) (A > 0) to maximize the rate in the 
above lower bound, we get the following theorem. 

Theorem: 

Taking k = 0, Y = 1 therefore s = 1 in the theorem, we obtain the 

Corollary: 
optimal rate lower bound in [13], as shown in the corollary below. 

Remarks: 

In general, we can consider the LIP(s ,  C) classes on 
[0, lId ( d  2 1). Minimax lower bounds on redundancy of rates 
O(nd/ (2s+d))  can be obtained. These rates are believed to be 
optimal in the sense that universal codes can be constructed 
to achieve these rates. In the case of LIP(  1, C) the rate n1/3 
has been shown to be optimal in [13]. 
The proof for the minimax lower bound logn in the para- 
metric case follows from the asymptotic expansion of I(p) in 
[l] or [8] for smooth priors. Superficially, this approach has 
a continuous flavor since p needs to have nice smoothness 
properties on the whole parameter space, whereas the proof 
in the nonparametric case as we just saw has a discrete 
flavor because of the hypercube subclass over which I(@”) 
is estimated. Heuristically, however, the continuous prior can 
be made discrete. Under regularity conditions, we believe that 
I ( p )  should give the same lower bound logn even for a 
discrete uniform prior p on a grid subset of the parametric 
space, as long as the grid size is of the order or smaller than 
n-1/2. Note that the nearest neighbors on the hypercube for the 
optimal choice m = nl/(”+l) also have Hellinger distances of 
order n-’/’, the rate at which n i.i.d. data points can possibly 
distinguish two probability densities. In other words, what 
seems essential to both the parametric and the nonparametric 
case is to find a subclass of densities whose closest elements 
are n-’/’ apart from each other in terms of Hellinger distance. 
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Error Exponents for Successive Refinement by Partitioning 

Angelos Kanlis and Prakash Narayan 

Abstract-Given a discrete memoryless source (DMS) with probability 
mass function P, we seek first an asymptotically optimal description of the 
source with distortion not exceeding AI,  followed by an asymptotically 
optimal refined description with distortion not exceeding A2 < Al. The 
rate-distortion function for successive refinement by partitioning, denoted 
R(P, Al. Az), is the overall optimal rate of these descriptions obtained 
via a two-step coding process. We determine the error exponents for 
this two-step coding process, namely, the negative normalized asymptotic 
log likelihoods of the event that the distortion in either step exceeds 
its prespecified acceptable value, and of the conditional event that the 
distortion in the second step exceeds the prespecified value given the rate 
and distortion of the code for the first step. We show that even when the 
rate-distortion functions for one- and two-step coding coincide, the error 
exponent in the former case may exceed those in the latter. 

Index Terms-Covering Lemma, error exponent, rate-distortion func- 
tion, successive refinement by partitioning. 
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