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More on the covering radius of BCH codes *
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Résumé

Nous présentons de nouvelles bornes sur la longueur & partir de laquelle le rayon de recou-
vrement du code BCH binaire t-correcteur est au plus 2t.

Mots-clef : rayon de recouvrement, codes BCH, systémes d’équations sur les corps finis.

Abstract

New lower bounds on the minimum length of t-error correcting BCH codes with covering
radius at most 2¢ are derived.
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More on the covering radius of BCH codes

1 Introduction

Covering radius is an important parameter of error-correcting codes (see e.g. [2, 3]). It
characterizes the largest multiplicity of errors that can be corrected by maximum likelihood
decoder in BSC. A code is called mazimal if one can not add a word to it without decr=asing
its minimum distance. Indeed, maximality can be guaranteed by proving that the covering
radius of the code is less than the minimum distance. :

Covering radius of BCH codes has gained a great deal of interest. For two- and three- error
correcting BCH codes, it was determined in [1, 4, 5, 8]. Further research on the topic was
initiated by a paper of T.Helleseth [6]. In [13] A.Tietdvainen proved that the covering radius
of t—error correcting BCH codes of length (2™ — 1)/N is less than or equal to 2t provided

9™ > ((2t — 1)N)*+2, (1)

~ A.Skorobogatov and S.Vladuts [15] determined the covering radius of very long primitive
BCH codes to be exactly 2t — 1. Estimates for the lengths from which it is true were given
by O.Moreno and C.Moreno [11] and Y.Kaipainen [9]. For t of the form 2* + 1 the same
result was obtained by A.Tietavainen [14] for much smaller lengths. For non-primitive BCH
codes it was shown in [15] that the covering radius is lowerbounded by 2t.

In this paper we further improve the estimates on the length of BCH codes starting from
which the covering radius is upperestimated by 2t. It thus gives a new range when primitive
BCH-codes are surely maximal, and answers a question of [7]. For the non-primitive case
we simplify the proof of [15] that 2t is the lower bound. Using a similar technique as in the
primitive case we further extend the set of possible lengths for which we know the covering
radius exactly.

2 The primitive case

Theorem 1 The t-error correcting BCH-code of length 2™ — 1 has covering radius B < 2t,
provided

1. m > 15 fort =4,

2. m 2> 20 fort =5,

3. 2™ > 4(1+¢€(t))(t—1)%(¢")?, wheree(t) is a decreasing function of t and £(t) < Eig)%m
fort > 5.
Proof

Let BCH(2t + 1) stand for the t-error correcting BCH code of length 2™ — 1.



¥

By the form of the parity-check matrix of BCH(2t + 1), we have that R is the smallest
integer such that, for any (by,...,5) in Fim \ {0} and for at least one i < R, the system

$1+...+$,' = bl

2t—1 2t—1
TR SR = b

has a solution (z,,...,z;) = (Fam\{0})!, with z; # z; for | # j. (Note that, if (by,...,b) = 0,

it corresponds to the zero todeword, and, by convention, we assume in this case that i = 0).

Using an idea of Tietavainen [13], we consider the homogeneous system

i+ ...+ = by
2 +...+a} = by? 3

2t-1 2t-1 -
i+ ...+ 2] = by*?

)

If this system has a solution (z1,...,z;,y) = (&1,..-,&, (), with { € Fzm \ {0}, then the first
one has the solution (¢/¢,...,&/().

A straightforward consequence of the fact that

Z (_I)Tr(a:r) — 2m6q'0

IGFQM

(T'r being the trace function from F;m onto F';), is that the number of solutions (1, ..., z;,y) €

(Fam \ {0})"*! of (3), with z; # z; for i # j, is

1
Ni=sw %

0<zy <...<;g,y¢0
z (_1)Tr(ax(z1+...+xg+bly)) Z (_1)Tr(a.(zf‘-’+...+z§*-l+b.y2r—1))
.o . b
a1€Fm at€Fam
(after having chosen an order on Fim).

We have :
2™N; = Z Z(_1)T’(albw+.-.+a‘b,y?'-l)

Z (’_l)Tr(alzl+a2:::i*+...+ang"l) L (_1)Tr(alz,~+tx2z?+...+a.x?'_l)
0<z) <...<25 )
Let 3 be a primitive element in Fom. Denote by fu(2), the polynomial f,(z) = T4, a;2%~!
where a = (ay,...,a;).
In the inner sum S, = Zoql<m<x.,(—l)T"("m+°’22?+---+°‘t’?'_1) .. (—1)T"("""+°2z?+---+0w?'-1),
every choice of (zy,...,z;) corresponds to a choice of ¢ distinct positions in the word Coq =

(Tr(fo(B%),- .., Tr(fa(B™"))) of the dual of BCH(2t + 1) (see e.g. {10, p.280]).

b
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A typical term in the sum S, thus equals 1 if the correspondmg positions of ¢, constitute
an even sub-vector, and (— ) if they constitute an odd-subvector. Recalling the definition
of MacWilliams transform, we get :

PN = 30 Pifwg) 3 (1)t (4)

o S YRR 13 y#O

where P; is the :-th Krawtchouk polynomial, and w, is the weight of the word ¢, :

_ 2" =1 = Feepm\oy(= DTt
Wy = 5 - )

We are interested in showing that, for m large enough, there exists (at least one) ¢ < 2t,
such that N; # 0. If, for a non-zero tuple (ao,...,as), we have :

2t
Z aiNi # Oa

=0

then at least one N; is non-zero, and thus R < 2.

In fact we show here that, for a non-zero (2t + 1)-tuple (aq,...,as) we give explicitly,
2t ,a;N; > 0 starting from some length. We have :

2tha N Za, Z P wa 2(_1)Tr(a,b,y+,,,+a‘b‘y2t—l)

=0 =0 o), y#0

Z (- )Tr(a,bw+...+mbty""’)iail’i(wﬂ)- ®)

----- ot y£0 =0

The sum % a;P:(z) represents the expansion of a polynomial of degree 2t in the basis of
Krawtchouk polynomials (Po(z), ..., Px(z)). We denote by g:(z), the polynomial gy(z) =
2t
=0 a,~P,-(:1:).

We have

2t
Y AN = (2"~ Dgu(0) + Y garlwa) Y (—1)TrertvtotetaTh,
1=0 2€F}m\{0} v#0 -

" As w, is a weight of BCH*(2t + 1), we have [10, p.280] :
d’ _<_ wg S 2m - dl,

whére d' > 2™~1 — (t —1)27.
We choose at this point a polynomial g,;(z), non-negative in [d’,2™ — d'}, and positive at 0.
By the Carlitz-Uchiyama bound [10, p.280] : :

Z(_1)Tr(a;b;y+...+agbgy2"‘) > —(t _ 1)2%4-1 _ 1’ »
y#0



thus-

2t "
2™y aiN; 2 (2™ - Dgat(0) = [t = 1224 +1] 30 ga(we). (6)
=0 a€Fym\{0)

According to expression (5), we have

2t
Z 92t(wa) = 2 Za,'N?,

gGF;m =0

where N? is the number of solutions of system (2) (or system (3)) with RHS zero (i.e. with
(by,...,b) being the zero t-tuple).

N? is exactly the number of words of weight i in BCH(2t + 1). As the minimum distance
of this code is at least 2t + 1, it follows that N? =0 for 1 <: <2t (and N = 1). Thus:

Z ggg(wg) = 2’"ta0.

QGF;m

Replacing this value in (6), we get :

2™ i aiN; > (2™ — 1)g2:(0) — [(t — 1)25*! + 1][2™ 2o — g2t(0)].

1=0

Thus to show %, a;N; > 0, it suffices to show

[2™ + (¢ — 1)2F%gy,(0) — [(¢ — 1)25 ! +1]2™ao > 0. (7)
In order to find the best lower bound for 2™, we have to choose a polynomial g(z), non-
negative in [d’, 2™ — d'], positive in 0 and of degree 2t, with maximum ratio 9%(()92.
We choose the polynomial

9u(z) = (L Af))” ®

In Appendix 4.1, it is shown that this polynomial is optimal in a certain sense.

We then obtain t

a0=2< T: ), and g:(0) =a(2,.

=0

Thus we have to determine the smallest value of m such that

25 - DRER () - e 02F s o)
holds. We have
‘ n 2mt e
;(i>>t_!(l_@r)2(t—-l))‘ (10)



(see Appendix 4.2 for a proof). Now. to prove inequality (9). it is sufficient to show :

m m oy, 2 =
[2F70 + (¢ - 1)2F (1 - ﬁﬁ) -t =125 12 2 0.
or. . # ¢!
27 > 9 1)t —-1)+

(1 = =) (1—(,—;3%.7,)2?'

By the estimate we derived on 2™, we see that to satisfy the previous inequality. it is sufficient
to have

)3 5 A=)

_(I-Eﬁ)

t!

The inequality

(T——_JI)E<1+61:

is true for 0 < z < 0.182. As (-E;h < 0.182 for t > 5. we obtain the following lower

bound :
2™ > 4(1 + (t))(t = 1)%(t!)?,

with (1) < (t_ljzf,_,, for t > 5. The bounds for ¢t = 4 and ¢ = 5 given in the theorem have

been calculated by inequality (9). 0

3 The non-primitive case

In the same spirit as in the primitive case, we shall give an upper bound on the covering
radius of non-primitive BCH codes.

Theorem 2 The t-error correcting BCH-code of length n = 2":\.'1 has covering radius R <

2t, provided

‘ 2™ > (1 +en(t))((2t = )N = 1)%(21)%,
where ex(t) is a decreasing function of t satisfying, for N > 2, ex(4) < 0.347, =n(3) < 0.008,

)
- 4 2t -
and en(t) < ((2:-1)1\'-18)2(:-1)2('-2; fort > 5.

Proof
It is essentially the same as the one in the primitive case, so that we just outline the main
steps.

Instead of system (3), we consider the system

zy +.o.+ z ' = bly‘\'.
1:13.\ _+_ . + I?.\ _ b2y3.\
1:(12f—l).\' 4.+ ISZ!—I);\' bty(gt_l)_\'



If N; denotes the number of distinct non-zero solutions of this system, we have, just like
equation (4),
E E : N 2t-1)N
2m‘Ni - R(wg) (_I)Tr(oub,y +otaeby(2t-1) ),

[o S RTINS ag y¢0
where now s
- — om _ | _ erprn\{o}(_l)Tr(alz+...+agz: )
o = 2N .
We have o
d<w, <——-4d,
S W & N
with

&> %[2"*-1 —(D—1)2%"Y, D = (2t — )N,
The Carlitz-Uchiyama bound here gives

Do (—1)Triettashobeda®TN) > (D —1)2% — 1
v#0

I

so that we get

2t
™S @GN > (2"~ Dg(0) ~ (D -12F +1] T guilwe).
i=0 a€FL,\{0)

As [d', % — d'] C [0,n], we can choose the same polynomial

t

gu(z) = (Z P,-(a:))2.

=0

thus, instead of inequality (9), we have to determine the smallest value of m such that

t
[2?+(D—1)]2%Z(?)-[(0—1)2"3“]2'"‘ >0 (11)
1=0
holds.
A preliminary lower bound on 2™ can be derived from this and we get :
m D=1
27 > (t—= 1),

2

t
and, again using ¢! > (i) :




This vields :

Substituting it in (11), we obtain :

27 > ( ) t!
1— 4¢3
(D-1)2 (452 )"
We conclude in the same way as in the primitive case. O

We will now prove that in the non-primitive case the covering radius can not be less than
2t. It was first shown in {15]. Here, for the sake of completeness, we give a simpler version
of their proof.

Theorem 3 Provided 2t — 2 < 231, the t-error correcting BCH code of length n = =,
N > 1, has covering radius R > 2t.

Proof

The assumption on t ensures that the dimension of this code is n — mt. We recall that its
covering radius is the smallest integer ¢ such that, given (b;,....b;) € Fjm \ {0}, the system

.tz = b
:r?"\ 4+ ...+ x?"\ = b,

i (12)
I(lzz-n_.\' I 1521—1).‘\' ~ b,

has a solution (zi,...,z;) with z¥ # z¥ for k # L

We prove that there exists RHSs for which this system has no solution in (strictly) less than
2t variables.

Consider system (12) with RHS (by,...,b;) where b; € Fom \ {0}, and b; = bfj'l. Let us
denote this system by (S5).

Let (£1,...,&) be a solution of (S), with &Y # &Y for k # I. Then the system, say (.5'),

n+...+u = b
it +yl = b
yft—l +"'+yi2t-l — bft-l

has the solution ((i,...,() with (x = &, and the assumption on the &s gives (x # ( for
k # 1. That means that every solution of (S) gives rise to a solution of (5’). (In fact, the
solutions of (S) are exactly those of (S’) that are n-th roots of unity in Fom).

8



Clearly, a possible solution ((,...,{;) of (S') is the set of locators of a word in a coset of
minimum weight 1 of the primitive t-error correcting BCH code. As this code has minimum °
distance at least 2t + 1, such cosets have weight w with w = 1 or w > 2¢. So the only
possible solutions of (S’) are those in ¢ = w variables. It follows that the possible solutions
of system (S) occur only for : = 1 and ¢ > 2¢t. If i = 1, then (S) has no solution if
by € {zV, 2 € Fom \ {0}}. This proves that the covering radius of the considered code is at
least 2t. ' a

Combining corollary 2 and theorem 3, we get

Theorem 4 Let N > 1 and en(t) be as defined in theorem 2. Provided
2™ > (1 +en(t)) ((2t — 1)N —1)? (21)?,

the covering radius of the t-error correcting BCH-code of length n = T"T‘l is ezactly 2t.

4 Appendix

4.1 Optimality of the polynomial defined in (8)
We prove here the following lemma :

Lemma 1 Let f(z) = T%,a;P:(z) be the expansion of a polynomial f(z) of degree 2t in the
basis of Krawtchouk polynomials. A polynomial satisfying f(z) > 0 on [0,n] that achieves
the mazimum ratio La(?, is the polynomial, say gy (z), given by : '

galz) = (3 Pa))2

=0
Every polynomial f(z) of degree 2¢, non-negative in [0, n], can be represented as
f(z) = A(z)* + z(n — 2) B(z)’,

with deg A < ¢, and deg B < t — 2. For this we refer to a theorem of Lukacs, expression
(1.21.1) in the book of Szegd [12].

As every polynomial can be expanded in the basis of Krawtchouk polynomials, we have that
f(z) can be represented as :

flz) = (z‘; u,-P,-(a:)>2 +2(n —z) ('z_f v;P,'(:c))z .

=0 =0

The proof will be in two 'steps'.
e The maximum La(g) is achieved by a polynomial which is a square.

As P;(0) = ( 7: ), we have :

o= ()

9



On the other hand, the MacWilliams transform (10, chap.5, §2] of f gives

1 <& n
ao=§§)f(1)( l)

_ Qig ( p ) [(z’:uié(z)')z +(n - 1) (tz_f v,~P,~(I))2 .

1=0 1=0

The orthogonality relations for Krawtchouk polynomials [10, chap.5, th. 16] give :
t n 1 & n t—2 2
i=0 t 2" =0

As the second term is always non-negative, and by the fact that f(0) does not depend on
the v;’s, we get that %09) is maximal when all the v;’s are equal to 0.

Thus let f(z) = (Zf=0 u;P;(z))Q.

¢ The maximum La(g) is achieved when all u;’s are equal to 1. |

We have : ‘ ,
_ 1) [zt (7))

14 = ’
ag t 2f M
=0 ul' 1'

and by the Cauchy-Schwartz inequality :

If all u;’s are equal to 1, then ¢ = T!_, ( r: ) Thus ¢ achieves its maximum for example

when all ;’s are equal to 1. : O

4.2 Proof of inequality (10)

We have

: ' Z': n)yo (), n (N
2o\ t t-1 )=\t )’

with V = 2™. By Stirling’s formula,

Vorkktie b < bl < 27rkk+%e'k+ﬁ,

) —12t—
N ﬁt_exp(IZ(l?N-{-tl)(lN—t))
t tlet (1 - 4)N-t+3

10



'Using the inequality (true for 0 < z < 1),

In(1-2z) < —a:z,
1-3
we get
EIN—tbd _ (N—t+d)in(i=g) _ —t Lot
(I_N) 2 —¢ 2 N < e ‘e2N~t,
Thus,
N Nt
( ¢ ) > TA,

where

A=exp( —12t -1 _t2—t) |

| 122N+ 1)(N—t) 2N-t)°

We would like to lowerbound A by a constant depending on t. Therefore, we first derive,
with the help of inequality (9), a rough lower estimate on 2™ (which would be less than the
final one).

Rewriting (9), we get

t ) t
_ m4 n\ _ omt m ny Z41+4mt
(t 1)22. [?:0:(:') 2™+ 2 '.§=0:<z') (t—1)2 > 0.
We shall find the value of m starting from which the following weaker inequality holds :

(t— 1)2?“[;( ’: ) - 2™+ 2’“th ( ’: ) >0,

=0
or

mt
———]+2% >0.
t n
i=0(z') )

2"‘1!

Z::O( 7: )

27 > 2t - 1)[(t—1)!—1]> (t = DIt - 1).

2(t — 1)1 -

That yields

27 > 2(t — 1)] - 1],

and as ¥, ( 7; ) < (—f_mT‘)!, we have

Using #! > (ﬁ)t, we finally get

t—1\%
2”‘>2( ) )
¢ e

Assuming this, we get
A>e 7,

11



— t?_t 12¢41
where B 282(1:_1)2:4 + 120%2(:-1 )2t+1)(82(%)2t_t).

e

We have )

t=1 -1°
(_:_)2t 1

B <

Indeed .
’ t? —t 12t + 1

9¢2 (%)m —t 19 (62 (t—:—l)m _ t)2

<

It is easy to check that

so that

: t t—1
Since ¢ < 5~ for t > 4, we get :

t—1 e

=7 =™

B <

Thus,

€
A> exp (—m) .

Asexp(—z)>1—-zfor0 <z <1,

e
A>1-— ————(,__l)z(t_l),

and inequality (10) is proved. O
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