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Extremal Properties of Rate-Distortion Functions
RUDOLF AHLSWEDE

Abstract — At a recent workshop (Hakone, Japan, July 1-2, 1988) 1.
Csiszar stated that in spite of strong efforts the following question had
been waiting for an answer for many years. Is it true that for fixed
distortion level A the rate-distortion function R(P, A) has in the distribu-
tion P no local maxima with values different from the global maximum? It
is shown that in general the answer is negative. However the answer is
positive for Hamming distortion measures. Moreover their R is Schur-
concave.

1. Basic CONCEPTS AND AUXILIARY RESULTS

Let (X,)72, be a discrete memoryless source (DMS), that is, a
sequence of independent and identically distributed random vari-
ables (RV’s) with values of a finite set &. We are also given a
finite reconstruction space 4 and a per-letter distortion measure

d: Xx% >R, (1.1)

For a function F defined on a product space Y", we use the
notation

1
rate ( F) = —log.||F||, |F| = the cardinality of the range of F.
n

(1.2)

For an encoding function f: X" - &", we consider the repro-
duction

x’“=(i\,l»”"i>n)=f;l(xn) (13)
and the average distortion dist(f,), defined by
1 " .
dist(f,) =E— ¥ d(x, X). (14)
=1

p is said to be an e-achievable rate for distortion level A, if for all
large n there are encoding functions f, with

rate(f,) <p, dist(f) <A+e

(15)

Now

R(A) =inf{ [ {p: p is e-achievable forA}

€>0

(16)

can be seen to be the smallest rate which for arbitrarily small e is
e-achievable for A. This quantity depends on the generic distribu-
tion Py of the source. Thus we get a function

R: P(T)XR . >R,
P(&') = set of probability distribution (PD's) on &, (1.7)

of two variables, which was introduced by Shannon [1] and is
called the rate-distortion function.

0,

R(Q.8) =" Sm[H(Qm)—h(A*)—A*log(m -1,
| H(Q) - h(A)-Alog(a-1),
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Using time-sharing one readily verifies with the foregoing
definitions that R(P,A) is convex in A for every P € P(%). A
remarkable characterization of R is due to Shannon [1].

A. Rate-Distortion Theorem

Let (.X* /\A’) denote a pair of RV’s with values in & X '3 and
I(X A X) their mutual information. Then

R(P,A) = min I(XAX),

(X. %) Py=PEdX. X)<A
VAeR, and Pe P(Z).

This formula has been used to derive several analytical properties
of R, mainly as function of A. Whereas those properties can be
found in many textbooks, the properties of R as function of P
are not as well understood.

An exception seems to be the following basic result of Erokhin
[6], which was independently found and derived from Shannon’s
formula by Gallager (Theorem 9.5.1 and its extension on
p. 467-469 in [2]). For its formulation we need some notation.

Let the elements in & be labelled such that for fixed distribu-
tion 0

0(0) > 0(1)

> ...

a—1
>0(a-1), 2_: 0(i)=1. (1)

For the fixed distortion level A let m be the smallest nonnegative
integer with

a-1 a~1
mQ(m)+ ¥ Q(K)<d<(m-1)Q(m-1)+ Y. Q(k)
k=m+1 k=m
(1.9)
The conventional understanding of (19)is for m=0
1-0(0) <A<1 (1.10)
and for m=a
0<d<(a-1)Q(a-1). (1.11)
We also use the abbreviations
m=1
Sm= Z Q(k)’ T;n=1_Sm (112)
k=0
and the quantities
200  Q(m-1) A-T,
Qm = __Sm RN “._Sm )’ A* = . (1.13)

T.heorem 0: For the Hamming distortion measure the rate-dis-
tortion function

R: .@(ﬁ[)x[o,l] -R,
1s of the form

for m=10(
otherwise
form=aq

By the result in case m = & one has

R(.0) = H(0) (1.14)

and one may therefore expect that R has similar convexity
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properties than H. Already the case & = {0.1} is instructive.
One readily verifies that

Ov

. (115
h(Q(1)) - h(4), (119

R(Q.4)=

Therefore R is nor concave in Q. However our main result says
that in the Hamming case even for general alphabets another
basic convexity property of entropy generalizes to R, namely the
property Schur-concavity.

We recall this concept. For two distributions P = (P(0), -,
P(a—1))and Q= (Q(0).- - -, Q(a—1)). We say that P majorizes
0 and write P> Q, if

k A
Y Pli)= ¥ ¢[i}, fork=0.1,--,a-1, (L16)
=0 i=0

where P[i] (resp. Q[i]) is the ith largest component of P (resp.
Q). A function ¢: #(4) - R is Schur-concave, if

P> Q implies ( P} < ¢(0), (1.17)
and it is strictly Schur-concave, if
P>Qand P+Q implyp(P)<9(0). (1.18)

II. THe KEY IDEAS AND A BaSIC INEQUALITY

At the Hakone workshop Csiszar also stated that the truth of
the main statement

® R has no local maxima in P with values different from the
global maximum

would follow from the truth of anyone of the following:

1) R is quasiconcave in P,
2) R is concave in P on (X ,A)={PeP(X): R(P,A)>
03.

Recall that quasiconcavity means that the level sets {P €
P(¥): R(P,A)>p) are convex for all p>0. Clearly 2) implies
1). In order to better understand the main statement, we studied
first 1). We explain now our ideas to disprove 1). Those lead
naturally to the counterexample to the main statement in Section
IV. To find distributions P, and P, with

1 1
R(P,AY>p, fori=1,2; R(5P1+5P3.A)SP'8 (2.1)

Wwe consider a new DMS with generic distribution

_ 1 1
P=sP+5P (2.2)
Clearly, its n-variate distribution is
P =]1P. (23)

1

_Inorder to get a link to sources involving P, and P, we view
P" as an average over the arbitrarily varying source (AVS)
defined by the set of distributions {P,, P} that was studied
Intensively in [4] [5].
€ set of n-variate distributions is
o, ={P(s"): s"€ {1.2}"},
where

P(x"is"y = n, P(x), fors"=(s, "5,)€ {1.2}"
s
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and

X ={x,,x,) €X". (24)
For the distribution ¢ on {1,2} with g(1} = ¢(2), we clearly have
for ¢" =Tljq

P(x) = L p(s")q"(s"). (29)

In the light of this formula one can view the operation of P" as
producing with “high probability” a string s" in which the
number (1|s") of 1’s and number (2|s") of 2’s is “approximately
equal” to n /2.

Therefore p(-|s") is typically of the form [17/°P, XIT}/*P,.
What is the rate-distortion function for such a nonstationary
source? More generally, if A is the fraction of P;’s in the product,
the answer 1s in obvious notation

inf A
R(P, P\ 8) = <A [AR(P.A+Y)

+(L=MNR(P,,A-7v)], (26)

which is smaller than AR(P,, )+ (1 — A R( P, A).
The exact difference

V(P P, A.A) =AR(P, A)+(1-\)R(P,,A)
—R(P,, P, \A) (27)

depends on the slopes of R(P,,A) and R(P,,A) as functions of
A. There is no reason why this difference cannot become arbi-
trary big by proper choices of P, P, and the distortion measure
d. But then this fact can be exploited for P via the AVS by a
simple trick. Let us consider only P, P, with disjoint supports.
Then the encoder can identify s” and he can inform the decoder
with n bits, that is, at a rate 1. Quasiconcavity is then disproved
if the difference mentioned can be made bigger than 1. Of course
our idea to estimate the rate-distortion function via AVS’s works
for general convex combinations

i

Z AIPI‘

i=1

P A=(A,-A). (2.8)

Viewing P as a A-average over the AVS with generic distribu-
tions #={P: 1<i<!} for any n>0, we can find by
Chebyshev's inequality a ¢(n)>0 and an n(7) such that for
n> n(n) with a probability greater than 1— ¢ """ the relative
frequencies A, + 7, for P, satisfy [n,| < n. Therefore, as n—0 and
n— oo we conclude

!
R(P,A) 2 min{ 3, A\ R(P,A+y): Zvi=0,|‘nlSA}-
i=1

(2.9)

Even more importantly, we have also an inequality upper
bounding R(P,A). For & ={0,1,--,a-1}) let F(i)=
{(0,), -+ ,(a=1,0)} (i=L,---,1) be I copies of &, which are
disjoint sets. Define a distortion measure d* on F*=U'_, (i)
by

d*((j. ). 1)) =d( ), ), (2.10)
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where 4 is our original distortion measure on &. Also define P*
on X* by

P*((j. 1) =AR())

and the AVS &/* = ( P*: 1<i <!}, where P*((}j,i)) = P(}) for
J=0,---,a—1. As earlier the encoder can now record s". Here
by the source coding theorem a rate H()) suffices for a recording
that is false with arbitrarily small probability.

Thus we have derived

(2.11)

!
R(P*.A) Smin{ Y AR(P,A+¢):

i=1

Le=0¢|<A}+H(A). (212)

Identification of all points (j, i) (i=1,--+,1) with j trans-
forms d* into d and P* into P. Therefore a code for the
P*-source gets transformed into a code for the P-source with at

least the same distortion level guaranteed. We summarize our
findings.

A. Basic Inequality
For any distortion measure d and anyA R, for P = TP

1) R(P,A)>min{E'_ A R(P,A+¢): Le=0,]e|<A)
2) R(P, ) <min{Z]_ A\, R(P,A +¢): Le =0, le| <A} +
HM).

III. SCHUR-CONCAVITY IN THE HAMMING CASE
We consider the case ¥ = &, 4 = dy;, where

ifx=%
fx#g" (31)
For fixed A €[0,1], Pe P(&) is a local maximum of R if for
some neighborhood #(P)
R(P,A) > R(Q,4),

VOeU(P).  (32)

The local maximum is called strict, if

R(P.8)>R(Q,4), VQeU(P)-{P). (33)

Theorem 1. In the Hamming case for each A € [0,1] R has no
strict local maximum other than the global maximum at

1/a,- - 1/a).

Proof: We do not use Theorem 0 here or even Shannon’s
result from Section 1. As in [5, Sect. 5] we exploit symmetry. Let
[T be the symmetric group (the group of permutations) acting on
Z={01,--,a-1).Forrelland P= (P©),---,P(a-1)) e
P(X) we denote (P(7(0)), - wP(m(a~1)) by nP. Obviously
since d;(x. %) =d,,(n(x), 7(%))

R(P.A)=R(=P,8), forAe0,1].

(3.4)

Now for any P’ € conv(aP: 7€ 11} we have

P'= Y X)-aP, A(n) 20,

nell

X A(n)=1. (3.5)

rell

Consider the AVS with « = {7P: m €11} and the discrete
memoryless source with generic distribution P

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. |. JANUARY 1990

From the basic inequality 1) in Theorem 2

R(P'.A) zmin{ Y A(w)k(wp.uy(w):

nrell

Y y(7) =0, |v(w)|sd}. (39)

However by (3.4) the quantity on the right side in (3.6) equals
R(P,A).

Since for P # (1/a.---.1/a) P’ can be chosen arbitrarily close
to but different from P, there cannot be a strict local maxi-
mum other than at (1/a,---.1/a). Clearly, since for every P
(1/a,---,1/a) € conv{#P: w &]l), the global maximum is as-
sumed at (1/a,---,1/a). A stronger conclusion can be drawn
from our main result.

Theorem 2: In the Hamming case

1) R is Schur-concave on #(4),  for every A €0,1).

2) R(P,Ay=0, forall PeP(Z) and A€(a-1)/a.l):
for A€ [0,(a—1)/a] R has no local maximum in P other
than the giobal maximum at (1/a,- - -,1/a).

3) Statement (A) is true.

Proof: 3) obviously follows from 2). The first part of 2)
follows from Theorem 0. While we prove 1) we also shall prove
the second statement in 2).

Since R(7P,A)= R(P,A) it suffices to consider P,Q e 2(Q)
with 0> P and P(0)> Pz - > Pla-1).0(0) 2 Q1) >

* 2 Q(a—1). It is well-known (see [6]) that there are finitely
many transfers U : Q - Q, , where

0..=(0(0,0(1),,0(i)-€,Q(i+1)+¢,---) (3.7)
Qi) -e>Q(i+1) +e¢, (3.8)

in which the successive applications finally transform Q into P.

We have to show that such a transfer increases R on P(4,4).
that is,

fore> 0.

R(Q ..4) 2 R(0.4), (39

Since R(Q,4)=0 for Q& #(%,4) and always R(P,A) >0,
only Schur-concavity on #(&,A) remains 10 be shown. That is

the m defined in (1.9) may have values between 2 and a. By the
assumed minimality of m we have

a—1 a-1
mQ(m)+k Y 1Q(1<)SA<(m—1)Q(m—1)+Zj 0(k)

(3.10)
for these values of m.
Now notice that transfers for i=01-- - m-3,m+1, --,a-
1 have no effect on either side in (3.10). They also leave S,,. 7
and Q,, invariant. By Theorem 0 also R does not change. For
i=m—2(resp. i = m) the right (resp. left) side in (3.10) increases
(resp. decreases), but as before S, 7. and finally R do not
change.

Only the case i=m —1 needs serious consideration, We show
that for transfers (], 1. with

a-1
S<(m-D(Q(m-1)-B)+(Q(m)+p)+ ¥ 0(k)
t=m+1

(3.11)
R, 1.49.8) > R(Q,A).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36. NO. 1. JANUARY 1990

For this we calculate first the change in rate.

0 -1)-
R(U, LﬁQ‘A)—R(Q..\)=(S,,,-ﬂ)[ll( SQ(_)B‘_._‘Q('; H;} B)
A-(T,+B)| A—(T,+B)
Q  Qm-D) (A-T| A-T,
_s, H(S__S__)—h( 5 )— 5 log(m—l)}

= +(Sn| _B)log(sﬂl - B) - Sm logS'ﬂ

+Q(M*l)lOgQ(m—1)-(5,,,—3)’1(

It suffices now to show that

d
w(B) =d—ﬁ[R<u,, 1 40.4) - R(Q.4)] >0

for B satisfying (3.11).
We use that for f(B)=(x - B)log(x—B)

f(B)=-log(x-B)-1 (3.12)
and that
1-y
H(r) =log—=. (3.13)
Now .
w(B) = ~log(S,, ~ B) +log(Q(m~1) - B) +log(m 1)
+h( 1-A) 1-A] S -B
s,..—B)‘s,,,—ﬁ ) '1}
o (M1 =1)- B)
“log
5, - B
_ 1~—Al 1-A 1-A | 1-4A
5,8 °gs,,,~ﬁ_(l”sm—/3) °g(1”s,,,-ﬁ)
C1-4 s, -B-(1-4)
S, -8 % 1-a
g mN@m=D-p) s,
S, —B 8, —B-(1-4)
o D) -)
S, -B-(1-4)

Since A < (m —1)(Q(m—1)~ B)+ T, + B, we have (m — LY Q(m
“D-B)>A-T —g=5,—B-(1—A)and thus w(B) > 0.
Notice that there cannot be a local maximum at ( unless m =«
and thys A < (a—1)Q(a~1). In this case the transfer is not
defined,

However, since Q> P implies P(a—1) 2 Q(a—1), we have
also A < (a- 1)P(a—1) and by Theorem 0 not only

R(Q.A) = H(Q)—-h(4)-Alog(a—1)
but also
R(P,A)=H(P)~h(A)~-Alog(a-1)

holds, The fact that the entropy function H is strictly Schur-con-
€ave completes the proof. ;

Refna’k-' The proof shows that R stays constant for transfers
1(i % m —1), Therefore (C) is not true even in the Hamming

—(Q(m—-1)-B)log(Q(m-1)-B)

1-4 ] S h ) 1 1
+ — |+ -1).
SM_B/} | 5|+ lom(m-1)

case. We have not decided upon (B). It is worth knowing that
symmetry and quasiconcavity imply Schur-concavity, but not
conversely (see [6], p. 69).

1V. THe COUNTEREXAMPLE

Let us consider a simple distortion measure r, which does not
equal the Hamming distortion measure. & is partitioned into two
sets @ and & and ¥ =Y U where ¥=%, =%

10. ifx=x%
T(X,i’)”—‘\ ifxiiandx,iEW

(a.1)

1,
a, fx#xand x,5€&
b, otherwise

Basic in our analysis are the uniform distributions @, and Q, on
¥ resp. &, that s,

Q.(x)= er'
Q:(X)=|33'1"' (4-2)

The reduction to these distnbutions proceeds as follows. Any
distribution P € P(X) can be written as AP, +(1 - A) P,, where

forxed

forxeZ.

P,(x)=P(x)(ZP(x))l, forxe®  (43)

X€¥
P, (x) =P(x)( .Zyp(x))_ , forxez (4.9
A=Y P(x) (4.5)

xed
and therefore P € P(¥), P, € #(Z).
Lemma 1: For the distortion measure r, any A and any
P=AP+(1-MPeP(X). PLEP(F) P P(Z), the in-
equality

R(AQ,+(1-1)Q,,4) > R(P,4) (4.6)

holds.

Proof: We follow the idea in the proof of Theorem 1. The
only difference is that now we have the groups of permutations =
on ¥ and L on & and we define

(m,0)P=AaP, +(1—A)oP,. (4.7)
Notice that
X (o) P[TTIZI =20+ (1-0)Q,

(mo)ellx)

and, as explained in earlier sections, (4.6) holds.
In order to show that there are two local maxima with different
values, we define three sets of distributions with the property that
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every continuous path from the first set to the third has to meet
the second.
For ¢ €(0,1/2) the sets are

2= (A0, +(1-M)Qy: A21-¢),
B = (AP, +(1-N)P,: PLeP(¥), P, eP(Z). c<h<l-c}
2y = (A0 +(1-M)Q: A<e).

We also use
2= {Pe R of the form AQ, +(1-A)Q, ).

By Lemma 1 global maxima in 2; and 25 are local maxima in
P(Z) with the desired properties, if we can show that

max R(P,4) < max R(P,4) < max R(P,A). (4.8)
Pe Pe 2 Pedy
We consider the ranges
B-14 y-1
V=1Z|>B=1%|,a<1<b,A< B S (4.9)
. a

By Theorem 0 we have
R(Q,,4) =logf - h(8)~Alog(B-1)

A A
R(0:.8) = logy ~| )—;mg(y—l).

a
In order to simplify calculations, we give up some freedom in the
choice of parameters by requiring

A
A+—=1. (4.10)
a

Under this constraint we choose the other parameters so that
R(Q,,A) and R(Q,,A) are approximately equal, that is,

A
log B - Alog(B~1) ~logy——log(y~1)

or
BB~1) ~y(y-1) " . (4.11)
Choose now
_g' A . 1+e
v=£.4=17 ca=3—. (412)
Thus
B(B-1)" ~y/t (413)
v(y=1) ¢ Vg (4.14)
Application of our basic inequality 2) to P=1Q, +(1-M)Q,

yields

R(P,A) < min (AR(Q1 4+ 8)+(1-N)R(Q,,A - 8)) +log2

IR
and for
1 1 1
A=_.A='“ Frog—
2 4 3
&l P 1 : 1 i 1
(3]s “5("(@1~a+")*’*(92*5‘"))~

where 1 is introduced to insure (1/3-n)a"'<y~-1/y. Since
y—1/v goes to 1 quickly, 7 is ignorably small.

IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 36, NO. 1, JANUARY 1990

Tust notice that

1y 3
(logf) 'B|Q.7) =7, wh-u
1y 3
(log B) IR(Q:-Z‘)—’ZV asf—- e
B

+1 as -

2

1 1/5 ‘
SRR PR
5 3
=‘1“5- +4n<z.
For ¢ sufficiently close to 1/2

. 1
(1og8) 'R( 0.

=9, asf-owx

[SE S

(log B) 'R(Qz.

and thus

(log8) &

as f— ot

1
max R(P,—
rer 4

[f by chance we should have

/ 3

max R P,—’
Pe

1
= max R( P,-
regs \ 4
by continuity of R in all parameters, a slight change in them
would make the maxima different.

V. A CoNSEQUENCE FOR ERROR EXPONENTS

Our results seem to be relevant to the theory of universal
source coding. We present now an immediate consequence in
another direction. Marton [3] has investigated and found the
error exponent e( P, p, A) for the following refined source coding
problem.

For encoding functions f,: " - #" with lim,_,  rate(f,)=
p > R(P,A) what is the value of

1
e(P,p,A) =~ lim =~ min logProb(d(x", f,(x")) >4)?

neoe N
(5.1)
Her answer is Theorem 3.
Theorem 3:
e(P,p,4)
= { 0: R(anigpp boypy, it R(Q,A) > p for some 0

0, otherwise.

Since D(Q||P) is continuous in P and R(Q,A) is continuous i
A, e(P,p,A)is continuous in P and in A.

Csiszar mentioned his interest in the question of whether the

exponent is also continuous in p and mentioned the following
observation.

Lernma 2: e(P,p,A)is continuous in p, for all P, A exactly if
(A) holds for R,

Proof: 1f (A) does not hold, then for some A there are tWO
local maxima at P, and Py, say with

R(P.A) > R(P,. A).
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For P= P, and p= R(P.,d)— ¢ we have
min D(Q|IP.) = D(P,||P,) =0.
QRO B>y

However, if ¢ = 0. then there is no Q in the neighborhood of P,
with R(Q.3) > p. but there is one far away in the neighborhood
of P,. The exponent is discontinuous at p. Conversely, if (4)
holds, no such jump can occur. This result, Theorem 2 and the
example give valuable information about e( P, p.4).

Corollary: Marton’s exponent e( P, p, ) is continuous in p for
Hamming distortion measures. For general distortion measures it
can jump.
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A New Time Domain, Multistage
Permutation Algorithm
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Abstract —1¢ is shown that a frame of N time slots can be arbitrarily
Permuted with 2log, N — 1 controlled exchange switches with associated
delay elements. This is an improvement over previously known intercon-
Nection networks that require O(N) exchange elements. The proof utilizes
the recursive algorithm of Benes and the time interchange properties of a
Particular configuration of a single exchange element.

I. INTRODUCTION

For more than 30 years, considerable effort has been devoted
(o delineating the properties of rearrangeable, multistage inter-
fonnection networks (1]-[17]. The impetus for this effort came
first from telephone switching systems, and somewhat later from
Parallel and distributed processing systems. As an example of
Previous results, Wu and Feng [14] showed that an arbitrary
‘Patial permutation can be achieved with at most 3log, N —1
Sh‘}fﬂc exchange stages, each stage requiring N/2 exchange
SVitches. More recently, in the design of an optical guided wave
*¥stem, Thompson [18] has shown how to realize an arbitrary
tme-slot permutation with 3N switched directional couplers as
€Xchange elements, In this system the optical switches are very
EXpensive and the design attempts to minimize their use.
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The genesis of the present work was the design of digital
optical logic systems [19] with similarly precious optical exchange
elements. The result presented here, applicable to both conven-
tional electronic and optical switching systems, is that a serial
array of basic exchange blocks, each constructed from a particu-
lar configuration of a single exchange switch, can arbitrarily
permute N time-slots with 2log, N —1 switches. The proof, given
next, proceeds through the recursive Benes algorithm [2].

Before embarking on the proof, we establish some definitions
and the time-interchange properties of the basic building block
that will be used. This basic block, labeled K (N/2), is shown in
Fig. 1 and is able to exchange time-slot pairs in the first and
second half sequences within a frame of size N. The control at
terminal C causes the inputs either to be exchanged, when
labeled as “x”, or not exchanged, “=" One of the outputs is
connected to its corresponding input with a delay § of N/2
time-slots. An exhaustive study [20] was made of the time-inter-
change properties of single and multiple exchange switches in
various serial arrays, and the single switch configuration of Fig. 1
was found to be logically the most powerful. As is casily verified,
corresponding pairs from the first and second half frames can be
exchanged, leaving all other pairs in place, by setting the control
“x” everywhere except at the second member of the pair. For
example, for a frame with eight time-slots, Fig. 2 shows for N =8
an incoming time-slot and control sequence, along with the
output sequence, which appears after a frame delay of four
time-slots. In this example, the third members of each half
sequence are exchanged.

@

P

C
Fig. 1. Switch and delay for exchange of time-slot pairs separated by N /2,

frame

delay
input ¢ 1 2 3 4 5 § 7
time-slot
control X X X X X X = X
0‘"P“‘-~-~01634527
time-slot

fo 1 2 1 otoas tg 17 14 ty typ ty time

Fig. 2. Interchange of time-slot pairs separated by N/2.

II. Ky REsuLT

The key result of this correspondence is the following theorem.

Theorem: An arbitrary permutation of N time-slots may be
achieved with 2log, N -1 exchange switches configured as in
Fig. 1.

Proof: Assume that in the serial array structure shown in
Fig. 3, the first basic block 4 is an exchange switch with a
feedback loop of delay N/2. This is followed by a serial universal
time-slot interchanger 7. T operates on frames of size N/2,
which is half the original frame size. The inductive assumption is
that T can arbitrarily permute the first half sequence of N/2
time-slots first, and then can arbitrarily permute the second half
sequence of N/2 time-slots. Part of the assumption is that the
frame delay is fixed, independent of the permutation, so that the
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