
1072 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

On the BCJR Trellis for Linear Block Codes
Robert J. McEliece, Fellow, ZEEE

Abstruct- In this semi-tutorial paper, we will investigate the
computational complexity of an abstract version of the Viterbi
algorithm on a trellis, and show that if the trellis has e edges,
the complexity of the Viterbi algortithm is @ (e) . This result
suggests that the “best” trellis representation for a given linear
block code is the one with the fewest edges. We will then show
that, among all trellises that represent a given code, the original
trellis introduced by Bahl, Cocke, Jelinek, and Raviv in 1974,
and later rediscovered by Wolf, Massey, and Forney, uniquely
minimizes the edge count, as well as several other figures of merit.
Following Forney and Kschischang and Sorokine, we will also
discuss “trellis-oriented” or “minimal-span” generator matrices,
which facilitate the calculation of the size of the BCJR trellis, as
well as the actual construction of it.

Index Terms-Block code, trellis, Viterbi algorithm, decoding
complexity.

I. INTRODUCTION AND SUMMARY

N 1974, Bahl, Cocke, Jelinek, and Raviv [3] , in a study
of optimal bit error probability decoding algorithms, pre-

sented, for the first time, a method of representing the words
in an arbitrary linear block code by the path labels in a
trellis, thus uncovering an important connection between block
and convolutional codes. In 1978, Wolf 1431 introduced an
identical trellis for block codes and showed that it could
be used to implement the Viterbi algorithm for maximum-
likelihood decoding of an arbitrary block code. Later that same
year, Massey [29] made a further study of the problem of
representing a block code by a trellis, and gave an alternative
construction. For the next ten years, there was relatively little
work in this area, but in 1988 Forney 1111, in a now celebrated
appendix to a paper on coset codes, described what he called
“the trellis diagram of a code,” which resulted in an explosion
of interest in the subject. Of the post-Fomey papers, among
the most noteworthy are those of Muder [35] and Kschischang
and Sorokine [22]. Muder showed that among all trellises
representing a given block code, the Forney trellis minimized
the number of vertices at each depth. For this reason, Muder
called the Fomey trellis the “minimal” trellis for the code, and
the name has stuck. Kschischang and Sorokine, elaborating
on a remark by Forney, developed many of the properties of

Manuscript received October 28, 1994; revised December 11, 1995. This
work was supported in part by AFOSR under Grant F4960-94-1-005, by a
grant from Pacific Bell, and by NSF under Grant NCR-9505975. A portion
of the work was also done at the Jet Propulsion Laboratory, California
Institute of Technology, under Contract to the National Aeronautics and Space
Administration.The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Trondheim, Norway, June
1994.

The author is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91 103 USA.

Publisher Item Identifier S OOlS-9448(96)04017-5.

the important “trellis-oriented” generator matrices for the first
time. There have been many other significant contributions to
the subject, including 141, [51, [8], 1121, [131, 1161, [181-[211,
[23], [25]-[271, [40], [42], and [44]. Most recently, in an
unexpected turn of events, the theory of “minimal trellises”
has been applied successfully to reducing the Viterbi decoding
complexity of convolutional codes 1331, [381.

In this paper, which is fundamentally tutorial, but which
also contains a number of original results, we will take a
fresh look at the problem of representing a given linear block
code by a trellis. We will begin by studying the computational
complexity of a generalized version of the Viterbi algorithm
on a trellis, and conclude that this complexity is proportional
to the number of edges in the trellis. Motivated by this result,
we will then raise the question as to which trellis representing
a given binary linear block code C has the fewest edges. We
will show that this question has a surprising and satisfying
answer, namely, that among all trellises representing C, the
BCJR trellis uniquely minimizes the edge count. Along the
way, we will also show that the BCJR trellis is isomorphic to
the Fomey-Muder “minimal trellis,” a historically important
fact overlooked by Fomey and Muder, but announced by Kot
and Leung [21], and proved by Zyablov and Siderenko [44],
in 1993. (It has recently been shown by Kschischang and
Vardy [24] that the BCJR trellis also minimizes the number of
“bifurcations,” a number second only to the number of edges in
determining the complexity of the Viterbi algorithm.) Pursuing
an elliptic remark of Fomey’s, we will then introduce the
class of “trellis-oriented,’’ or as we shall call them, “minimal-
span” generator matrices for block codes, and show how these
matrices can be used to facilitate both the construction and
analysis of the BCJR trellis.

Our approach in Sections 111-VI1 is to begin with the
original BCJR definition, and pursue its logical consequences.
Along the way, we will derive a number of results, some new,
but many already known. We will carefully attribute these
results to the original discoverers, but the reader should bear
in mind that most of these “known” results were derived for
the “minimal” trellis, which was not known at the time to be
isomorphic to the BCJR trellis.

Here is a brief outline of the rest of the paper. In Section
11, we will define a trellis and present a generalized version of
the Viterbi algorithm, whose goal is to compute certain “flows”
in the trellis. We shall see that when this general algorithm is
specialized appropriately, it can be used for finding the shortest
paths through the trellis, or for computing the trellises’s path
weight enumerator, or for several other purposes. We will
present a simple analysis of the generalized Viterbi algorithm,
which shows that its computational complexity is @ (e) , where
e is the number of edges in the trellis. We will conclude with a

0018-9448/96$05.00 0 1996 IEEE

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1073

discussion of the relationship of Viterbi’s algorithm with other,
similar, algorithms in the computer science literature.

In Section 111, we will pose the problem of representing the
words in a binary linear block code C by the paths in a trellis,

Motivated by the results in Section 11, however, we will argue
that the “best” such trellis is the one or ones with the fewest
edges, and allege that the BCJR trellis uniquely minimizes

B and see that there are always many trellises that represent C. A

the edge count among all trellises representing C. We will
then review the BCJR construction, and give a formal proof,
apparently the first one, of its correctness.

In Section IV, we will give the basic algebraic and combina-
torial analysis of the BCJR trellis, culminating with Theorem
4.6, which gives a formula for the number of vertices and
edges at each depth, in terms of the dimensions of the impor-
tant past and future subcodes of C, which were introduced by
Forney. We also present an information-theoretic interpretation
(Theorem 4.8) of the vertex dimensions of the BCJR trellis.

In Section V, we will give a proof that the BCJR trellis is the
uniquely “minimal” trellis for C, in a number of convincing
ways, the most important being that it minimizes the number
of edges. As a corollary, we will show that the BCJR trellis
is isomorphic to the Forney trellis.

In Section VI, we will present the theory of “minimal-span’’
generator matrices (MSGM’s), which are also called “trellis-
oriented” generator matrices. We will show that MSGM’s
have many useful properties, among them that the important
parameters of the BCJR trellis (the number of vertices and
edges at each depth, the dimension of the past and future
subcodes) can be read directly from them. In many ways
MSGM’s seem to be the optimal matrix representations for
linear codes. As an application, we will show that the “Massey
trellis” [29] is isomorphic to the BCJR trellis.

In Section VII, we will describe a general method for using
a minimal-span generator matrix for a3 to construct the family
of “simple linear” trellises for C. We will show that when this
method is specialized appropriately, the result is an efficient
construction of the BCJR trellis. This method can also be used
to constructed the “sectionalized” trellises discussed in [27].

Finally, in Section VIII, we will conclude with some re-
marks about the “Viterbi decoding complexity” of linear block
codes, a subject we introduced in [32].

11. THE VITERBI ALGORITHM
FOR COMPUTING FLOWS ON A TRELLIS

In this section we will give a careful definition of what we
mean by the Viterbi algorithm on a trellis, and show that its
complexity is @ (e) , where e is the number of edges in the
trellis.’ We begin with a definition of a trellis, which is the

Fig. 1.
edge set is E = { a , b, c, d, e , f, g, h } .

Trellis of rank 3 . The vertex set is V = { A , 1 ,2 ,3 ,4 . B } and the

is assigned a “depth” in the range (0, l , . . . , n} , each edge
connecting a vertex at depth i - 1 to one at depth i , for some
i = 1, . . . , n. Multiple edges between vertices are allowed. The
set of vertices at depth i is denoted by vi, so that V = V,.
The set of edges connecting vertices at depth i - 1 to those at
depth i is denoted Ei-l,i, so that E = Ei-l,i. There is
only one vertex at depth 0, called A, or the source, and only
one at depth n, called B, or the sink. If e E E is a directed
edge connecting the vertices ‘U and U , which we denote by
e: U + U , we call U the initial vertex, and v thejinal vertex, of
e, and write init(e) = U , fin(e) = v. We denote the number
of edges leaving a vertex v by p+(v), and the number of edges
entering a vertex U by p-(v) , i.e.

p+(v) = I{e:init(e) =.}I (2.1)
p- (v) = I{e:fin (e) = .}I. (2.2)

If U and v are vertices, a path P of length L from IL to
v is a sequence of L edges: P = ele2”.eL, such that
init(e1) = U , fin(eL) = U , and fin(e;) = init(ei+l), for
1 = 1 , 2 , . . . , L - 1. If P is such a path, we sometimes write
P: U -+ U for short. We denote the set of paths from vertices
at depth i to vertices at depth j by Ei,j. We assume that for
every vertex U # A , B, there is at least one path from A to ‘U,

and at least one path from ‘U to B.
Example 2.1: In Fig. 1 we see a trellis of rank 3, with

six vertices and eight edges. The vertex set is V =
{ A , 1 , 2 , 3 , 4 , B } , with Vo = (A } , VI = {1,2}, V2 = {3,4},
and V3 = { B } . The edge set is E = { a , b , c , d , e , f , g , h } ,

There are two edges, c and d, connecting vertices 1 and 3,
i.e., init (c) = init (d) = 1 and fin (c) = fin (d) = 3. We have
p+(A) = 2, p-(A) = 0, p + (l) = 3, p-(l) = 1, etc. There are
four paths from A to B; indeed, E0,3 = {acg, adg, aeh, b f h } .

We also assume each edge in the trellis is labeled. The
labels come from an algebraic set S which is closed under the
operation of two binary operations called ‘‘.” and “+,” which
satisfy the following axioms:

with E0,l = { a , b } , El,2 {c, d , e , f } , and E2,3 = (9 , h}.

The operation ‘‘.” is associative, and there is an identity
element “1” such that s 1 = 1 . s = s for all s E S .
This makes (S , .) a monoid(see [9, sec. 4.11).

same as the one given by Massey [29] or Muder [35] , but
couched in the standard terminology for directed graphs given
by Stanley [39, sec. 4.71.

A trellis T = (V, E) of rank n is a finite-directed graph,

(2.3)

with vertex set V and edge set E , in which every vertex The operation ,,+” is associative and commutative, and
there is an identity element “0”such that

This makes (S, +) a commutative monoid.

(2.4) ’The notation f (7 ~) = O (g (7 t)) means that there exist positive constants
c1 and c2 such that c l g (n) 5 f (n) 5 c z g (n) , for all sufficiently large n [7, $- = + = for E ”
sec. 2.11.

1074 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO 4, JULY 1996

The distributive law

(z + y) . z = (. . z)+(y. z), (2.5)
for all triples (x, y , z)from S.

The triple (S,.,+) is called a semiring (see [l, sec. 5.61,
or [7, sec. 26.41). There are several important examples of
semirings for our applications (see Examples 2.4-2.7, below).

Let T = (V ,E) be a trellis of rank n, such that each
edge e E E is labeled with an element A(e) from a semiring
(S. ., +). To indicate that the trellis is labeled, we denote it by
T = (V, E , A). With the edges labels given, we now define
the label of a path, and the flow between two vertices.

Dejinition 2.2: The label of a path e1e2 . . e, is defined to
be the product (“.”) A(e1) . A(e2) . . . A(e,) of the labels of
the edges in the path, taken in order. (Order matters, since the
operation ‘‘.” may not be commutative.)

Dejinition 2.3: If U and ‘U are vertices in a labeled trellis,
we define the flow from U to U, denoted by p(u, U), to be the
sum (“+”) of the labels on all paths from U to ‘ u . ~

The object of the Viterbi algorithm, when applied to a
labeled trellis (V, E , A), is to compute the flow from the source
A to the sink B. This “flow” has different interpretations,
depending on the particular semiring from which the labels
come. The next four examples illustrate this.

Example 2.4: Let S = (0, l}, with “.” being the Boolean
AND operation, and “+” being OR. This is the simplest
example of a semiring. If we interpret an edge labeled 0 as
being “inactive,” and one labeled 1 as “active,” then in this
case the “flow” p(u, w) is 1 if there is a path from U to w, all
of whose edges are “active,” and otherwise it is 0.

Example 2.5: Let S be the set of nonnegative real numbers,
plus the special symbol “CO.” Define ‘‘.” to be ordinary addition
[sic], with the real number 0 playing the role of the identity
required in (2.3). Define “+” be the operation of taking the
minimum, with the special symbol 00 playing the role of
the identity element required in (2.4), i.e., min(s. m) = s
for all real numbers s. It is easy to see that this definition
produces a semiring, and if we interpret the label of an edge
as its “length,” the flow p(u, w) is the length of the shortest
path from U to w (see Example 2.13). This is the semiring
appropriate for “Viterbi decoding,” as we will see in Section
111.

Example 2.6: Let S be the set of polynomials in one
indeterminate z over the ring Z of ordinary integers, and let
‘‘.” and “+” be as ordinarily defined. Then if the length of
the edge e is denoted l (e) , and the edge e is labeled ~ ‘ (~ 1 ,
with this semiring the flow p(u, w) is the generating function
for the lengths of the paths from U to ‘U (see Example 2.13,
below). This is the semiring appropriate for computing the
weight enumerator for a code represented by a trellis, as we
shall see in Section 111. Similarly, if S is the set of rational
functions in z, again with ordinary ‘‘.” and “+,” and if the
trellis represents an interconnection of linear time-invariant
systems, where the label A(e) is the transfer function between

init (e) and fin (e), then p(u, w) represents the overall transfer
function, or gain, between U and w (see [36, sec. 9.7.2.1).

Example 2.7: Let S be a finite set of “letters,” let “.*’ denote
string concatenation, and let “+” represent the operation of
taking the union of a set of strings. When the Viterbi algorithm
is applied in this case, the result (the flow from A to B) is the
set of length-n strings over S corresponding to the labels on
each of the paths from A to B. We call this set of strings the
language produced by the labeled trellis (see Example 2.14,
below). When the set S is {0, l}, the language produced by
the trellis will be a binary code of length n. In Section 111,
we shall turn the tables and start with a binary code C of
length n and try to construct a labeled trellis that produces C
as efficiently as possible.

Here is a pseudocode description of the Viterbi algorithm
([lo], [31, sec. 6.61, [41]). To simplify the notation, from now
on, p(z) will be used to denote the flow from A to z. As will
be seen, the Viterbi algorithm successively computes p(x) for
all z E VI. V,, . . , V,, and finally returns the value of p (B) ,
which is the flow from A to B.
/*The Viterbi Algorithm on the

Trellis (V,E,X) */
I
I.

p(A) = 1;
for (i = 1 to n) {

* p(v) = p(init(e)) . A(e);
f o r (U E <)

e: f in(e)=v

1
output p (B) ;
1’

Example 2.8: If we apply the Viterbi algorithm to the
labeled trellis in Fig. 1, we find, successively, that

In this case, at least, the value computed by the Viterbi
algorithm for p (B) is the sum of the labels of the (four) paths
from A to B. The next theorem proves that this is always true.

Theorem 2.9: The Viterbi algorithm correctly computes the
flows p(u), for all w E V.

Proof The proof is by induction on depth (w). For
depth(w) = I, it follows from the definition of a trellis that
all paths from A to IJ must consist of just one edge e, with
init (e) = A and fin (e) = U. Thus the true value of p(v) is
the sum of the labels on all edges joining A to w. (Recall that

hand, when the algorithm computes p(w) on line *, the value

21n [I , sec. 5.61, the analogous quantity is called the “cost” of going from
U to U , and in [7, sec. 26.41, it is called the “summary” of all path labels from edges between vertices are On the Other

U to U.

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1075

it assigns to it is (because of the initialization p (A) = 1) is in V,. Thus from (2.9) and (2.10), we have

p(w) = p(init (e)) . x(e) multiplications = IEl (2.11)
e.fin (e)=. additions = (El ~ IV(+ 1 (2.12)

e : A w

e:A-u

which is, as required, the sum of the labels on all edges joining
A to ‘U. Thus the algorithm works correctly for all vertices ‘U

with depth(w) = 1.
Now we assume that the assertion is true for all vertices at

depth i or less, and consider a vertex 11 at depth i + 1. When
the algorithm computes p(w) on line *, the value it assigns
to it is

c /*.(init (e)) .
e:fin(e)=w

But depth (init (e)) = i and so by the induction hypothesis

p(init (e)) = X(P). (2.7)
P:A-init(e)

Combining (2.6) and (2.7), and using the commutativity of
“+” and the distributive law (2.5), we have

e:fin(e)=v P:A-+init(e)

e:fin(e)=v P:A+init(e)

But every path from A to w must be of the form P e , where P
is a path from A to a vertex U with depth (U) = i , init (e) = U ,

fin (e) = ‘U. Thus by (2.8), ~ (u) is correctly computed by the

The next theorem says that the computational complexity of
the Viterbi algorithm is proportional to the number of edges
in the trellis.

Theorem 2.10: The Viterbi algorithm requires 0 (1 E I) arith-
metic operations, i.e., “multiplications” and “additions.”

Proo$ The execution of line * in the algorithm requires
p- (v) “multiplications” and p- (v) - 1 “additions,” where
p- (v) is defined in (2.2). Thus the total number of “multi-
plications” required by the algorithm is

algorithm. 0

n

multiplications = p-(v) (2.9)
i=l U € V ,

and the total number of additions is
n

additions = (p - (v) - 1)
i=l U € V ,

n n

= p-(w) - 1. (2.10)
z = 1 u t v , i=l V € V ,

Now every edge in E is counted exactly once in the sum in
(2.9), since if e : U i T J , then fin(e) E V, for exactly one
value of i E {1 ,2 , .. . ,n}. Thus the sum in (2.9) is IEl. The
second sum in (2.10) is /VI - 1, since every vertex except A

so that the total number of “arithmetic operations” required by
the algorithm is 21EI - IVI + 1 5 21EI. We have /VI 2 1, and
IEl - IVI + 1 2 0 (since the trellis is connected), so that the
total number of operations required is bounded above by 2)EI

0
The quantity IEl - IVI + 1 appearing in (2.12) has a natural

combinatorial significance: it represents the total number of
“bifurcations” in the trellis. Here a “simple bifurcation” is
a vertex U with p+(w) = 2, and in general, a vertex ‘U

with p+(w) = p is counted as p - 1 bifurcations. With this
definition, the total number of bifurcations in the trellis is
given by the double sum in (2.10), which as we have seen
is equal to I E I - I V I + 1. For example, the trellis in Fig. 1 has
IEl - IVI + 1 = 8 - 6 + 1 = 3 , and indeed that trellis has three
bifurcations, one at vertex A and two at vertex 1.

In the next four examples, we will see how the Viterbi
algorithm operates on the trellis of Fig. 1 when the labels
come from the four types of semigroups described in Examples

Example 2.11: Let us apply the Viterbi algorithm to the
trellis of Fig. 1, using the semiring from Example 2.4, with
the following set of Boolean labels:

and bounded below by I E 1.

2.4-2.7.

e : a b c d e f g h
A(e): 1 0 1 I 1 1 0 1

Then if we follow the steps in Example 2.8, replacing “+” with
OR, and ‘‘.” with AND, we find successively that p(A) = 1
(initialization), p(1) = 1, ~ (2) = 0. 4 3) = 1, p(4) = 1,
and finally, p (B) = 1. Thus the Viterbi algorithm concludes
that p (B) = 1, which means (see Example 2.4) that there is
at least one “active” path from A to B. Indeed, P = aeh is
such a path.

Example 2.12: Let us apply the Viterbi algorithm to the
trellis of Fig. 1, using the semiring from Example 2.5, with
the labels, to be interpreted as “edge lengths,” as follows:

e: a b c d e f . 9 h
A(e): 1 0 0 I 0 2 2 1

If we follow the steps in Example 2.8, making the appropriate
changes, we find successively that p (A) = 0 (initialization),
p(1) = 1, 4 2) = 0, p(3) = 1, p(4) = 1, and finally,
p (B) = 2. The Viterbi algorithm concludes that p (B) , i.e.,
the length of the shortest path from A to B, is 2. It is easy to
verify by inspection that this path is aeh.

Example 2.13: This time let us use the semiring Z[r], i.e.,
the ring of polynomials in the indeterminate z with integer
coefficients, as in Example 2.6, and let the labels in Fig. 1 be
as follows:

e : a b c d e f g h
A(e): z 1 1 IC 1 x2 Z’ z

Note that the labels in this case are all of the form d, where 1
is the edge length from Example 2.12. Once again, following
the outline in Example 2.8, making the appropriate changes,

1076 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

we find successively that k (A) = 1 (initialization), p(1) = 5 .

4 2) = 1, 4 3) = :E + x2 , p(4) = ~ 1 : + x 2 , and finally,
p (B) = x2 + 2x3 + x4. In this case p (B) = x z + 2z3 + x4
represents the generating function for the paths from A to B,
enumerated by length. Thus there is one path of length 2, two
paths of length 3, and one path of length 4.

Example 2.14: Finally, let us use the semiring of Example
2.7, using (with slight abuse of notation), the set of “letters”
{a, b , e , d , e , f , g, h} as labels for the corresponding edges.
Then the computation in Example 2.8 shows that the set of
strings “generated” by the trellis, i.e., the language produced
by T , is {acg, adg , aeh, a f h}.

We conclude this section with some remarks concerning the
relationship between Viterbi’s algorithm, and other, similar,
algorithms that appear in the computer science literature. First,
it is often asserted that the Viterbi algorithm is a “dynamic
programming” solution to the problem of computing flows in
a trellis (dynamic programming is discussed in [7, ch. 161).
This is true, but it should be borne in mind that dynamic
programming is a methodology, not an algorithm, and there
is no evidence that Viterbi was aware of this methodology
in 1967 when he invented his algorithm [411. Still, it is fair
to say that a bright present-day computer science student,
familiar with dynamic programming, and asked to produce
an algorithm for finding flows in a trellis, would be likely to
re-invent the Viterbi algorithm.

The closest match to an existing algorithm is usually con-
sidered to be Dijkstra’s algorithm [l , sec. 5.101, [7, sec.
25.21, but there are some important differences. Dijkstra’s
algorithm finds the shortest paths from a given initial vertex
110 to all other vertices in an arbitrary finite directed graph.
However, Dijkstra’s algorithm, when applied to a trellis (with
the initial vertex being the source) is not as efficient as
Viterbi’s algorithm, since its running time is O(lVlz), not
O(IEI). (The problem is that Dijkstra’s algorithm has not been
“tailored” to the regular structure of the trellis.) Furthermore,
as pointed out in [l , sec. 5.101, Dijkstra’s algorithm does
not lend itself to the “semiring” generalization. The semiring
generalization is, however, available for an algorithm that
computes the flows between all pairs of vertices in an arbitrary
directed graph [I, sec. 5.61, [7, sec. 26.41, but the complexity
of this algorithm is O(lV13), and there does not appear to be
any way to significantly simplify this algorithm, if only the
flows from one particular vertex are required. Another close
match is an algorithm which finds the single-source shortest
paths in a directed acyclic graph (dag), as described in [7,
sec. 25.41. Its complexity is O (l V + IEI), which is better
than Dijkstra’s algorithm, but still not as good as Viterbi’s
algorithm, since a trellis is a very special kind of dag, which
obviates the “topological sort” which is necessary in the dag
algorithm. Also, the dag algorithm does not appear to lend
itself to the semiring generalization. The moral here is that
Viterbi’s algorithm is an algorithm on a trellis; nontrellis
algorithms, when specialized to trellises, are not as efficient
as Viterbi’s algorithm. Conversely, it is not fair to say that
Viterbi’s algorithm applies to structures more general than
trellises (such as dags or arbitrary digraphs), since highly
efficient algorithms are already available for such problems.

I\\ 1

\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ 1 - - -- - -
I 1 \
\ I \
\I \
\ \ L m - - -m-m - - -
\I
\I
\ I
\ m - - - m m - - - m - -
I I
\ I
\ I

::;\\ \ \ \ \

Z - - -Wpm - - --E - - - a
Fig. 2. A trellis representing the code in Example 3.1, the SO1 trellis [3 i] .
The edge count is lE1 = 56; also, IVI = 50, and IEl - IV/ + 1 = 7. (In
the notation of Section VII, this is the { [1,7], [1,7], [1,i]} trellis for C with
respect to the MSGM given in Example 7.1,

111. THE BCJR TRELLIS FOR A LINEAR
BLOCK CODE-DEFINITION

In Section 11, we discussed general labeled trellises and the
general Viterbi algorithm. In this section, we will apply those
results to the problem of finding “good” trellis representations
for binary linear block codes.

Thus let C be a fixed (n , k , d) binary linear block code,
and let T = (V. E , A) be a labeled trellis of rank n, with
labels from the set S = (0; l}, with the structure of the
“language semiring” of Example 2.7. We say T represents
C if the language produced by T is identical to the code C.
In other words, if we associate a length-n binary word with
every path from A to B in the trellis by concatenating the
edge labels on the path, and if the set of such “trellis path”
words is identical to the set of codewords in C, we say that
T represents C.

Example 3.1: Consider the (7 ,3 ,3) block code defined by
the generator matrix

(3.1)

This code has eight codewords of length 7. It can be repre-
sented by many different trellises, and in Figs. 2-5 we see four
such trellises. (For convenience, in these figures, a solid edge
is to be considered labeled 0, and a dashed edge, labeled 1.) In
Section VII, we will reveal how we found these four trellises,
but for now the reader can verify directly that in each case,
the eight labeled paths from the source to the sink correspond
to the eight codewords in C.

If the code C is being used on a discrete memoryless channel
with transition probabilities p(y I x), where x E (0, l},
and y is an element of the channel output alphabet, then

1 1 0 1 0 0 1 1

0 1 1 1 0 0 0
G = 1 0 1 0 1 0 0 . i

MCELIECE: ON THE BCJR TRELLIS FOR ElNEAR BLOCK CODES 1077

fewest edges. Surprisingly, it turns out that there is always (up
to isomorphism) a unique edge-minimal trellis that represents
C. This trellis structure was first discovered by Bahl, Cocke,
Jelinek, and Raviv in 1974 [3], and Wolf in 1978 [43], but
later isomorphic versions of it were discovered and analyzed
by Massey [29], Forney [11], and Muder [35]. We now review

call the “BCJR ur-trellis.”
The BCJR ur-trellis is based on an T x n parity-check matrix

H for C, where r = n - k is the redundancy of the code. We
Will aSSUme that

- - -e - - -*

\ b-----m

\ \
\ \
\ \

\ this important construction. We will begin with what we shall

4,--

H = (h l ; . . , h ,)

Fig. 3. Another trellis for the code of Example 3.1. The edge count is
IEl = 28; also, IVI = 24, and IEl - JVI + 1 = 5. (This is the
{ [1,7], [I , 41, [5,7]} trellis for C with respect to the MSGM given in Example
7.1.)

\
\

L-m - - -
Fig. 4. Yet another one. The edge count is 1/31 = 28; also, IVI = 22, and
I € ? - IVI + 1 = 7 . (This is the {[I, 51, [l, 51. [5,7]} trellis for C with respect
to the MSGM given in Example 7.1.)

Fig. 5. Still another one. The edge count is IEl = 22; also, \VI = 18, and
IE(-IVI+l = 5.(Thisisthe{[l,5],[2,4],[5,7]} trellisforCwithrespect
to the MSGM given in Example 7.1.)

any trellis representing a3 can be used for Viterbi decoding,
using the semiring of Example 2.5. It works like this. If
R = (RI, R2, . . . , R,) is a received noisy version of one
of the codewords, and if each edge e E is re-labeled
with the “log-likelihood‘’ quantity -logp(R, I X(e)), then the
codeword corresponding to the “shortest path” from A to B
in the trellis will be the maximum-likelihood choice for the
transmitted codeword. See [43, sec. 1111, for a more detailed
description of this.

Similarly, we can use a trellis representing C to calculate
the weight enumerator for C, using the semiring of Example
2.6. For this application, each edge e in the trellis should be
re-labeled de). Then the total “flow” from A to B will be
the generating function for the weights of the codewords, i.e.,
the code’s weight enumerator, as explained in Example 2.13.

In either application (Viterbi decoding or weight enumerator
calculation), because of Theorem 2.10, we will wish to find,
among all trellises that represent C, the one or ones with the

where hl . . . , h, are the n columns of H . The code a3 then
consists of all vectors C = (Cl, . . . , C,) such that

HCT = Clhi + . . . + C,h, = 0. (3.2)

The vertex set for the BCJR ur-trellis consists of 2’ vertices
at depth i for i = 0,1, . . . , n. For convenience we will assume
that each of the vertices at depth i is identified with a binary
vector of length T , which is called the state of the vertex. Thus
there are 2’ x (n + 1) vertices, each identified uniquely by a
(state, depth) pair.

The edges of the BCJR ur-trellis are produced by the
codewords of C. If C = (C1, . . . , C,) is a codeword, there are
n corresponding labeled edges in the trellis, e l , . . . , e,, which
form a path of length n, defined as follows:

init (e,) = Clhl + . . . + C,-1h2-1

fin (e ,) = Clhl + . . . + Cz- lhz- l + C,h, (3.3)
X(e,) = c,

for i = 1 , 2 , . . . , n. In (3.3), when i = 1, init (e l) is defined
to be 0. Thus

init (e) = 0, for all e E Eo,l. (3.4)

Every code path el . . . e, ends at state 0, i.e., has fin (e,) = 0,
since from (3.3) and (3.2), with i = n we have

fin (e,) = Clhl + . . . + C,h, = 0.

Thus

f i n (e) = 0 , for all e E E,-l,,. (3.5)

It can happen that different codewords will produce common
edges, i.e., edges with the same values of init (e) , fin (e), and
A(e). Such “shared” edges are only counted once in the trellis.
It is this sharing of edges that makes the BCJR trellis an
efficient graphical representation of the code.

Example 3.2: To illustrate the BCJR ur-trellis construction,
consider again the (7 , 3 , 3) code with generator matrix given
by (3.1). One possible parity-check matrix for this code is

A 1 1 0 0 0 o \
1 0 0 0 1 1 0 ’ (3.6) J 0 1 0 1 0 0 0

1 0 0 0 1 0 1

H = [

1078 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

0

1

2

3

4

5

6

7

8

9

10

11

12

I
I =

.
‘

Fig. 7.
deleting the unused vertices. It is identical to the trellis in Fig. 5.

The BCJR trellis obtained from the BCJR ur-trellis of Fig. 6 by

the trellis paths from the source to the sink are in one-to-one
correspondence with the codewords of C.

Prooj? By the construction (3.3), every codeword in C
corresponds to a path of length n in the BCJR trellis. What . we have to proye is that, conversely, every such path produces
a valid codeword, and that no two paths produce the same

14 ’ codeword. To do this we first note that from (3.3), for every

(3.7)

Equation (3.7), together with (3.4), implies, via an easy
induction argument, that for every path el . . . ei E Eo,i

1 3 ’ m . . E .
1 5 edge e E Ei-1,i in the BCJR trellis

Fig. 6. The BCJR ur-trellis for the (7 , 3 , 3) code with generator matrix given fin (e) = init (e) + A(e) . hi.
by (3.1) and parity-check matrix given by (3.6).

In Fig. 6, we see the corresponding BCJR ur-trellis. (For
convenience, in Fig. 6 the vertices are labeled with the deci-
mal equivalents of their binary representation.) For example,
consider the codeword corresponding to the first row of G,
i.e., C = (1010011). According to (3.3), the first edge
in the corresponding trellis path is defined by init(e1) =
0, fin (e l) = C1 . hl = 1. (1011) = 11, and A(e1) = C1 = 1.
In Fig. 6, we indicate this by joining state 0 at depth 0 to
state 11 at depth 1 with a dashed edge. Similarly, the second
edge e2 for the codeword (1010011) has init (e 2) = C1 .hl =
1 . (1011) = 11, fin (ea) = C1 . hl + CZ . hz = (1011) = 11.
and X(e2) = Cz = 0. This is indicated in Fig. 6 by a solid
edge connecting state 11 at depth 1 to state 11 at depth 3.

If we continue in this way, calculating init (e), fin (e) , and
X(e), for all eight edges on all eight codewords, we arrive at
the trellis of Fig. 6. This trellis has only 22 distinct edges,
rather than the expected 8 x 8 = 64, because many of the
edges are shared between several codewords. For example, all
codewords with C1 = 1 share the edge connecting the state 0
at depth 0 to state 11 at depth 1.

The ur-trellis of Fig. 6 has many “unused’ vertices, i.e.,
vertices through which no edge passes, and so, according to
the definition given in Section 11, it is technically not a trellis
at all. However, if we delete the unused vertices, and reorder
the remaining ones appropriately, we arrive at the “true” BCJR
trellis shown in Fig. 7, which is identical to the trellis of Fig. 5.

We now define the BCJR trellis as the BCJR ur-trellis from
which the unused vertices have been deleted, and conclude this
section with a proof that the BCJR trellis represents the code
C. (Neither Bahl et al. nor Wolf gave a proof of this fact.)

Theorem 3.3: The BCJR trellis, as defined by (3.3), repre-
sents the code C defined by the parity-check matrix H , i.e.,

fin (e ;) = X(el)hl + . . . + X(ei)hi. (3 . 8)

Equation (3.8) shows that the label sequence A(el), . . . , A(e,)
uniquely determines the trellis path, so that no word is pro-
duced more than once by the trellis. It therefore remains only
to show that every source-sink path in the trellis produces a
codeword.

With i = n, (3.8) says that for every trellis path el . . . e,
of length n

A(e1) . hl + . . . + A(e,) . h, = fin(e,).

But by (3.5), fin(e,) = 0, so that

A(e1) . hl + . . . + A(e,) . h, = 0

which implies (see (3.2), that (A(e l) , . ‘ . , A(e,)) is a code-
word. Thus every path of length n. in the BCJR trellis
corresponds to a codeword. 0

IV. THE BCJR TRELLIS FOR A LINEAR
BLOCK CODE-ANALYSIS

In this section we will give the basic algebraic and combina-
torial analysis of the BCJR trellis, culminating with Theorem
4.6, which gives a formula for the number of vertices and
edges at each depth. Our starting point is the definition of
the BCJR trellis as given in Section 111, and for the sake
of self-containedness, we shall deliberately ignore the fact
that the BCJR trellis is now known to be isomorphic to the
Fomey-Muder “minimal” trellis. However, many of the results
we shall derive for the BCJR trellis are already known for
the minimal trellis, and we shall attempt to give credit where
credit is due.

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1079

The key to the algebraic analysis of the BCJR trellis is the
fact that for each index i , the sets V, and E;-l,i can be viewed
as vector spaces over GF(2), an observation first made by
Forney [111. This can be seen as follows. in the construction
of the BCJR trellis, every codeword C produces a path of
length n, with edges e l , e2 , . . . , e,, according to the formula
given in (3.3). Since e; is an edge in Ei-l,i, i.e., it connects
a vertex at depth i - 1 to one at depth i , the only vertex at
depth i that this sequence of edges passes through is

init (e;+l) = fin (e ;) = Clhl + . . . + Cih;.

Thus Vi, the set of vertices in the BCJR trellis at depth i , is
the image of the code C under the linear mapping oi: C -+ I<
given by

(4.1)
Similarly, according to (3.3), a codeword C produces a unique
edge ei in E;-l,i which can be described by the triple
(init (e i) , fin (e i) , X(e;)), which, according to (3.3), is

G(C) = (oZ-l(q, F i (C) , CZ) (4.2)
where 0; is the mapping defined in (4.1). Thus Ei-1,i is the
image of C, under the linear mapping r; defined in (4.2).

Dejinition 4.1: in what follows, we will denote the dimen-
sions of the vertex spaces V, and the edge spaces Ei-1,; by
si and b;, respectively

(4.3)
(4.4)

s i = dim Vi, for i = 0 , . . . , n
b; = dim E;-l,i, for i = 1, . . . , n.

Our first theorem about the BCJR trellis gives a useful
characterization of the vertex space Vi, in terms an arbitrary
pair (G, H) of generator and parity-check matrices for C. (The
“state-space theorem” of Forney and Trott [131 can be viewed
as a generalization of this theorem.)

Theorem 4.2: Suppose i E {0,1, . . . , n}, and denote by Gi
and H; the matrices consisting of the first i columns of G
and H , respectively, and by G,-; and H,-i the matrices
consisting of the last n - i columns of G and H, respectively.
Then

(4.5)

(4.6)

Proo$ As we have seen, V; is the image of C under the
mapping CT; defined in (4.1). it follows that Vi is the set of T-

dimensional vectors of the form {Clhl +
(C1 , . . . , C,) is a codeword. But since every codeword is of
the form uG, where U is a 1 x k binary vector, we have

V, = row spaceG;H,T = row spaceG,-;H:-i

and hence
- -

s; = rankGiHT = rankG,-iH:-_,.

C lh l+ . . .+C;h; = (Cl,...,Ci)HT
= u ~ i ~ , T

which implies the first part of (3.2) and (4.6). Similarly, by
(3.2) and (4.1), we have

%(C) = Ci+lhi+l +

= l L ~ , - i ~ , T _ i
= (c;+l,-‘,cn,R:TT-;

- -

which implies the second part of (4.5) and (4.6). 0

Corollary 4.3 (Wolf[43], Massey 1291): The vertex dimen-
sions s; satisfy the following bounds:

si 5 min(i, n - i, k , T) , for i = (I l l . . . ,71.

Prooj First note that the matrices G;, Hi, G,-,i, and
Hn-; have sizes k x i , r x i , k x ri - i , and r x n - i ,
respectively. The result stated now follows immediately from
(4.6), and the following two well-known rank inequalities:
if A is an m x 71 matrix, then rankA 5 min(m,n), and

0
It is a remarkable fact that the parameters si for the dual

code for C are the same as for those C itself (although the
hi's are not).

Corollary 4.4 (Forney ill]): If C1 is the dual code for C,
and if the vertex dimensions of the dual code are denoted by
s;, then

rank AB 5 min (rank A, rank B) [17, sec. 0.4.51.

I S . = S’
%, for i = 0, 1, . . . , n.

Prooj? For the dual code CL, the roles of the generator
matrix and parity-check matrix are reversed, so that V,’ is the
row space of the matrix HiGT, and so by (4.5)

sf = rankH;GT

= rankG;HT

by the “row rank = column rank’ theorem of linear algebra
[15, Theorem 3.221, [17, sec. 0.4.11. Thus by (4.6), s;=s$. 0

Theorem 4.2 gives us a useful computational characteriza-
tion of the vertex dimension si, but it does not give much
algebraic insight. To make a deeper analysis of the BCJR
trellis, we need to define an important set of subcodes of C,
called the past and future subcodes, which were introduced
by Fomey [11, Appendix A]. For i = 0,1, . . . , n- 1, we define
the ith past subcode of C, denoted P;, as follows:

(4.7) Pi = {C E C: C;+1 = c;+z = ’ . . = e, = 0).

Similarly, for i = 1,. . . ,n, the ith future subcode of C,
denoted F;, is defined as follows:

I?; = {C E c: c1 = c, = . ‘ . = ci = O}. (4.8)

If we think of i as a “time” index, then Pi consists of all
codewords whose nonzero components are in the “past,” and
F; consists of all codewords whose nonzero components are
in the “future,” relative to the current time. The subcodes P;
and Fi are clearly linear, and for future reference, we denote
their dimensions by p i and f;, respectively

p; = dimpi, ,L = O,. . . ,n - 1 (4.9)
f ; = dimF;, i = 1 , > . . . n. (4.10)

By elaborating on the proof of Corollary 4.4, it is possible
to show that if pf and f> are the dimensions of the past and
future subcodes of the dual code, then

p i 1 = f ; + i - k

f k = p ; - i + (n - k) .

This result can also be found in [13] or [12].

loso IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

We now define another, similar, family of codes derived
from C. Let us denote by Pz (for i = l , . . . , n) and Fz (for
i = 0, . . . , n - 1) the ith past projection and future projection
of C, defined as follows:

Proofi Suppose that C = (Cl, . . . , C,) E P, @ F,. Then
we have

c = c1+ c2

P i = { (2 1 , . . . , Z ;) : z E C } (4.11) where C1 E Pi, and Cz E F;, i.e.

and by p’ and f z the corresponding dimensions, i.e.

p’ = dimp’, = 1 7 , . . . n. (4.13)
f , = dimF’, i = O , . . . , R - 1. (4.14)

Occasionally, we will refer to P,, Fo, Po , and F”, which
have not been defined. By convention we take

P, =C, p , = k
Fo = c , f o = k
P = (O), po = 0

F” = (O) , f, = 0.

0 (4.15)

The past and future projections were also introduced by
Forney and Trott [131; see also [121.

The past and future subcodes and projections are closely
related. Indeed, if 7ri denotes the ith past projection mapping,
i.e., if C = (Cl,. . . , C,) is a codeword, and if T : C + P z
is defined by

.;(C) = (Cl, ’ . . , Ci)

But it follows from (4.20) and (3.2), that HCF = 0, which
means (see (4.1)), that C E ker (0,). Thus P, @ F, C ker (0,).

To prove the opposite inequality, i.e., ker (o,) C P, @ F,,
we suppose C t ker (o,), i.e., a,(C) = 0. Then (4.20) holds.
Since, however, C E C, then (3.2) also holds. But if we add
these two equations, we find that C,+lh,+l +. . . + C,h, = 0,
i.e., (4.21) holds as well. Thus C E P, f3 F,. This shows that
ker (a,) C P, @ F,, and completes the proof of (4.18).

To prove (4.19), we note that from (4.2), we have

ker(7,) = (kerai-1) n (kera,) n (6: C; = O}.

But from (4.18), (4.19) now easily follows. U
We conclude this section with a theorem which counts, in

Theorem (Fomey [Sl], Muder [35]): The number of ver-
detail, the number of vertices and edges in the BCJR trellis.

tices at depth 7 in the BCJR trellis is

iv,l = 2 k - P z - f t (4.22)

for i = 0,1, . . , R. Similarly, the number of edges connecting
vertices at depth i - 1 to those at depth i is

then the kemel of T,, i.e., the set of codewords C such that
T,(C) is zero, is the future subcode F, (see (4.8)), and so by the p-l,,l = 2 k - - p , - - f * (4.23)

well-known “rank + nullity = dimension” theorem of linear
algebra ([2, Theorem 2.31, [15, Theorem 3.3]), it follows that for i = 1, . . . , R. Finally, all ‘U E V, have common out- and

in-degrees, denoted by p+ and p,:, where

IC = p z + f i , for i = 0, . . . , n. (4.16)

Similarly, if we define the ith future projection mapping
&: C + Fi by

then the kemel of 4; is Pi, so that

k = p i + f ‘ , f o r i = O;. - ,n . (4.17)

Our next result identifies the kernels of the vertex and edge
mappings 0, and defined in (4.1) and (4.2), in terms of the
past and future subcodes Pa and Fa.

Theorem 4.5 (Forney [ll]): The kernel of CT, is

ker (a;) = E‘; @ F;, for i = 0,1,. . . , n (4.18)

and the kemel of 7~ is

ker (T i) = Pi-l @ F; , for i = 1 , 2 , . . . , n. (4.19)

+ - 2f$-f*+l, for i = 0 ,1 , . , . , n, - 1. (4.24) P, -
P, = 2p,--p‘-1 , f o r i = 1,2 , . . . ,n . (4.25)

Pro08 According to (4.1), the vertex space V, is the
image, under the mapping ai, of the code C. Thus again
according to the “dimension = rank + nullity” theorem, we
have dimC = dimVi + dimkerai. But dimC = k , and by
(4.18), dimkerDi = p i + f i . This proves (4.22). Similarly, by
(4.2), the edge space Ei-1,; is the image, under the mapping
r;, of C. Thus dimC = dimEi- l , i+dimkerq. But by (4.19),
dimkerr; = pi-1 + f i , which proves (4.23).

It remains to prove (4.24) and (4.25). If 7) E V,, let us
denote the set of edges e E Ei,;+l for which init (e) = ‘U by
E:,i+l. Then p+(v) = lE&+ll. If we regard the set E[,+l
as a subspace of E;,;+l, it follows that each set Eti+, is a
coset of this subspace, and so each of the sets has the
same size. But since there are IE++l/ edges originating from
the lV,l vertices at depth i, it thus follows that the common
out-degree of each ‘U t V, is lEi,i+1l/lVl, which, by (4.22),
and (4.23), is 2f*-ft+l. This proves (4.24). The proof of (4.25)
is similar and is omitted.

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1081

Example 4.7: In Section VI, we will find efficient ways to
compute the p2’s and f a ’ s directly from a “minimal span”
generator matrix for C. In this example, we will indicate how
the past and future subcodes can be found by “inspecting”
the BCJR trellis. Thus consider the BCJR trellis for the

Having now found the P,’s and the Fa’s, we apply Theorems
4.6, 4.1, as well as (4.16) and (4.17), and obtain the following
table:

i Pa f z pz f z sz ba
(7,3,3) code of Examples 3.1 and 3.2, as shown in Figs. 6
and 7. By definition ((4.7)), the subcode Pa consists of all
codewords which become, and remain, zero from coordinate
i + 1 onwards. What this means geometrically is that the
corresponding trellis path, which must begin in state 0, must
have returned to state 0 at depth i , and then continue in state
zero thereafter. Since we can see by inspecting the trellis that
no nonzero code path returns to state 0 until i = 4, it follows
that

Po = PI = P2 = P3 = (0000000)
Po = p1 = p z = p3 = 0.

For i = 4, we see that, besides the all-zero path, there is
one other path which has returned to state 0 at depth 4, viz.,
the path 0 --f 0 + 12 + 4 + 0 + 0 4 0 4 0, which
corresponds to the codeword 0111000. Thus

P4 = (0000000, Ol1100Oj
p4 = 1.

Continuing in this way, we find that

Ps = Ps = {0000000,0111000,1101100,1010100>

P7 = C
p7 = 3.

P5 = p6 = 2

The future subcode F, is the set of codewords whose trellis
paths diverge from state 0 at depth i or later. Thus by default
(or else by (4.15)), we have

Fo = C
f o = 3.

By inspecting the trellis we see that there are four codepaths
which diverge from state 0 at depth 1 or later, viz.,

0 + 0 - - 0 + 0 + 0 4 0 - - f 0 4 0

0 - + 0 - + 0 - + 0 - + 0 + 3 - - f 1 ~ 0
0 4 0 + 1 2 - + 4 - + 0 - + 0 ~ 0 - + 0

0 -+ 0 -+ 1 2 4 4 4 0-+ 3 -+ 1 -+ 0.

Thus F1 is the set of codewords corresponding to these code
paths, viz.

Fi = (0000000,0000111,0111000,0111111)
f i = 2.

Similarly, we obtain

Fz = F3 = F4 = (0000000,0000111~

fz = f3 = f4 = 1
F6 = F7 = (0000000)

f 6 = f7 = 0.

0 0 3 0 3 0 -
1 0 2 1 3 1 1
2 0 1 2 3 2 2
3 0 1 2 3 2 2
4 1 1 2 2 1 2
5 2 0 3 1 1 2
6 2 0 3 1 1 1
7 3 0 3 0 0 1

We will do this same calculation another way in Example
6.20, below.

We conclude this section with an information-theoretic
interpretation of the vertex dimension s i defined in (4.3). We
assume that the reader is familiar with the notions of the
entropy H (X) of a random variable or vector, and the mutual
information I (X ; Y) between a pair of random variables or
vectors (see, e.g., [30, ch. 11).

Theorem 4.8: For a given code C, make C into a uniform
probability space, by assigning each codeword a probability
of 2 - k . Let (X I , . . . , X n) be a random codeword from this
space. Then, for each i = 0,1, . . . , n, we have

I (X 1 , . . . , x,; x2+1, ’ . . , X n) = s; .

Pro05 For convenience, we denote (XI, . . . , X ,) by X L ,
m d (X t + i , . . . X n) by XR. Then, by the I (X ; Y) = H (X) +
H (Y) - H (X , Y) formula [30, eq. (I.lO)], we have

q x L ; X R) = H (X L) + H (X R) - H (X L , XR).

But H (X L) = pi, by the definitions (4.11) and (4.13).
Similarly, by (4.12) and (4.14), we have H (X R) = f i . Thus
since

we have

I (X L ; X R) = p i + fi - k
= (k - f i) + (k - p i) - k by (4.16) and (4.17)
= k p p . - f . - 2 , - - a by (4.3) and (4.22).

0

v. THE OPTIMALITY OF THE BCJR TRELLIS

In Section 111, we described the BCJR trellis in detail, and
in Section IV, we counted the number of vertices and edges at
each depth in the BCJR trellis. In this section, we will show
that among all trellises that represent a given linear block
code, the BCJR trellis has both the fewest vertices, and the
fewest edges, and that up to isomorphism, it is unique in these
attributes. The following theorem gives the precise statement.

1082 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

Theorem 5.1: Let T = (V, E , A) be any trellis that repre-

I V , ~ > 2 ” p % - f , , f o r i = O , . . . , n (5.1)

(5.2)

where p ; and f i are the dimensions of C’s past and future
subcodes, as defined in (4.9) and (4.10). Furthermore, if either
(5.1) or (5.2) holds with equality for all indices i , then T is
isomorphic to the BCJR trellis.

Remark: In his important 1988 paper, Muder [35] , building
on the work of Forney [1 11 in the same year, proved inequality
(S.l), and furthermore showed that any trellis for which (5.1)
holds for all i must be the “minimal” trellis for the code. Thus
since the BCJR trellis is the minimal trellis, half of Theorem
5.1 is already known. However, again for the sake of self-
containedness, and because the proof of the full theorem is
almost as short as the half dealing with the edges, we include
a proof of both halves here.

Proof: We begin by proving the inequalities (5.1) and
(5.2). Then we will show that the BCJR trellis is the only
trellis that meets all of these bounds simultaneously.

Suppose that T = (V, E , A) is a labeled trellis representing
C. For each vertex v E V, define C(T,u) to be the set of
codewords in C such that the corresponding T-trellis path
passes through v . Since every trellis path must pass through
exactly one vertex at depth i, we have

sents the linear block code C. Then

l l 3 - 1 , i l > akPp%-lpft , for i = 1,. . . , n

c = U C(T, 711, for i = O , I , , n. (5.3)

The following lemma gives useful information about the sets
C(T, U).

Lemma 5.2: If w E V,, then C (T , v) is a subset of one of
the cosets of Pi @ Fi in C. Thus since each such coset contains
2**+f3 elements, we have the upper bound

V€V,

IC(T. .)I 5 z p z + f t . (5.4)

Proof: With the index i fixed, for C = (Cl , . . . Cn),
define GL (the left part of C), and CR (the right part of C)
as follows:

cL = (C l ; . “ , C i)
c = (Ci+,,“~,C,). R

Similarly, define C L (T , w) and C R (T , w) as the left and right
parts of the codewords in C(T,v)

@(T, w) = {CL: c € C(T, w) }

C y r , w) = {CR: c E C(T; w)}.
Then if “*” denotes vector concatenation, we have, since every
path in the trellis represents a codeword,

C(T, w) = C L (T , U) * C R (T , U).

Now suppose all and hl are fixed elements of CL(T,v)
and CR(T;u), respectively. Then if a E C L (T , w) and b E
C R (T , 71) are arbitrary, we have

(0, * b) = (a1 * b l) + (U - a1 * 0) + (0 * b - b l) . (5.5)

But (a - a1 * 0) = (a * b l) - (a1 * b l) is a difference of
codewords which is zero in positions i + 1, . . . , n, and so it is
an element of P,. Similarly, (0 * b - b l) = (a1 * b) - (a1 a b l)
is a difference of codewords which is zero in positions 1, . . . , i ,
and so it is an element of F,. Thus from (S S) , we see that every
codeword in C (T , U) is an element of the coset of Pi @ Fi with
“coset leader” (al * bl). 0

The bound (5.4), together with (5.3), immediately implies
(5.11, since jCI = 2k.

To prove (5.2), we proceed similarly. For each edge e E E ,
define C (T : e) to be the set of codewords in C such that the
corresponding T-trellis path contains e. Since every trellis path
must contain exactly one edge in Ei-l,i, we have

C = U C (T , e) , f o r i = 1 , . . . , n . (5.6)
eEE,-1.,

The following lemma gives useful information about the sets
C(T: e), analogous to that in Lemma 5.2 about the sets
C(T. v) .

Lemma 5.3: If e E EiPl,i, then C(T, e) is a subset of one
of the cosets of Pi-1 @ Fi in C. Thus since each such coset
contains 2 P a - l + f , elements, we have the upper bound

(5.7)

Proof: With e E Ei-l,i, denote by C ” (T , e) the set
of “left parts” (C l , . . . , Ci-1) of the codewords in C(T, e) ,
and C R (T , e), the set of “right parts” (C,+,, . . . , Cn) of the
codewords in C(T, e). Then if IC denotes the label of the edge
e , it follows, again because every trellis path must correspond
to a codeword, that

C (T , e) = c ~ (T , e) * IC * c ~ (T , e) .

Now suppose a1 and bl are fixed elements of C L (T , e)
and CR(T,e), respectively. Then if a E C L (T , e) and b E
CR(T. e) are arbitrary, we have

IC(T,e)I 5 2p’-l+ft.

(U * 5 * b)=(a1 * 5 * b l) + (U - a1 * 0 * 0)+(0 * 0 * b - b l) .

(5.8)

But (a - a1 * 0 * 0) = (a * z * b l) - (a1 * z * b l) is a
difference of codewords which is zero in positions i , . . . , n,
and so it is an element of Pi-1. Similarly, (0 * 0 * b - b l) =
(al * IC * b) - (a - 1 * z * b l) is a difference of codewords
which is zero in positions 1, . . . , i , and so it is an element of
F,. Thus from (5.8), we see that every codeword in C (T , e)
is an element of the coset of Pi_l @ F; with “coset leader”

The bound (5.7), together with (5.6), immediately implies

Combining the lower bounds in (5.1) and (5.2), with the
results of Theorem 4.6, we see that the BCJR trellis simultane-
ously minimizes both the number of vertices, and the number
of edges, at each depth, among all trellises representing C.
In the remainder of this section we will show that the BCJR
trellis is unique in this regard.

Before proceeding, we need to introduce some more nota-
tion. We will henceforth denote the ubiquitous subcode Pi @ Fi
by W,. We note that since Pi-1 P; and Fi C Fi-1, it

(a1 * z * b l) .

(5.1).

MCELIECE ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1083

follows that W,-1 n W, = P,-l@ F,. We will denote the coset
of W, to which a given codeword C belongs by Cmod W,.

We first suppose that (5.1) holds for all indices z =
0 , 1 , . . . , n . Then by Lemma 5.2, each set C(T,w) is a coset
of W, in C. It follows that every 'U E V, corresponds in
a natural way to a unique coset of W,; namely, the set of
codewords for which the corresponding trellis path contains
w . We will henceforth assume that the elements of V, have
been relabeled, in this natural way, with the cosets of W,.
Since every edge of the trellis corresponds to a coordinate of at
least one codeword, it follows that the trellis, with the vertices
relabeled with the cosets of W,, can be described as follows.
(Compare this definition to that in (3.3).) If C = (Cl, . . . , C,)
is a codeword, there is a path of length n, consisting of the n
labeled edges e l , . . . , e,, defined as follows:

init (e ,) = C mod W,-l
fin (e ,) = C mod W,

A(e,) = C,. (5.9)

This definition of the trellis is independent of the original
vertex labels, and thus all trellises for which (5.1) holds for
all indices are isomorphic to each other. But as we have seen,
the BCJR trellis has this property, and so all vertex-minimal
trellises must be isomorphic to the BCJR trellis. (Indeed, the
definition (5.9) is equivalent to the definition Forney offered
in 1988 for the "trellis diagram" of a code [11].)

Finally, we suppose that (5.2) holds for all indices z =
1,. . . , n. We will show that this implies that the trellis must
be isomorphic to the BCJR trellis.

According to Lemma 5.3, if (5.2) holds for the index i,
then every edge e E E,-l,, corresponds, in a natural way, to
a coset of WzPl n W, in C; namely, the set of codewords
whose trellis paths include e. By Lemma 5.2, every vertex in
K-1 must correspond to a subset of a coset of W,-I. Now
every coset of W,-l is a union of exactly IW,-ll/lW,-l nw,l
cosets of W,-1 n W,, so that the out-degree p+(w), for each
vertex w E &-I, must satisfy

(5.10)

Proof: We use induction on i. The value of tl is p+(A),
which is by (5.11) also the value of p:, and so (5.12) is true
for i = 1. (The condition for equality holds automatically in
this case, since Vo contains only one vertex.)

Assuming now that (5.12) is true for the index i , we move
on and consider the value of Every path from A to some
vertex at depth i + 1 passes through a unique vertex at depth
i; so if we denote by t (v) the total number of paths from A
to v, we have

V€V,

Thus we have

/i-1 \

(5.13)

(5.14)

2

j=0

The inequality in (5.13) holds because of the definition (5.1 l),
and since (by our definition of a trellis) no t (v) in the sum
is zero, equality holds in (5.13) if and only if p+(w) = p,'
for all w E V,. The inequality in (5.14) holds because of the
induction assumption, and equality holds in (5.14), because of
the induction assumption, if and only if p+(v) = p:, for all
w E V,, for j = 0, . . . , i - 1. This completes the proof of the
Lemma. 0

Now we can complete the proof of the last part of Theorem
5.1. If we combine (5.10) with Lemma 5.4, we obtain an
upper bound on the total number of paths of length n through
the trellis. But since the trellis represents C, which is an
(n,F)-linear code, it follows that this number is 22' (some
codewords might be represented by more than one trellis path).
Thus

IP, @ F,I
n-1

IWzl -
n-1 with equality if and only if C (T , U) is a complete coset of

Wz--1.
Before continuing with the proof, we will need a simple

lemma about counting paths in trellises. We suppose that
T = (V ,E) is a trellis of depth n as defined in Section I,
and denote by p,' the maximum out-degree at depth i , i.e.

n pa @ F,+lI 2k 5 n Iw, n wz+ll -
a=0 a=O

n-I

(5.15)

(The last equality by (4.15)). Thus by Lemma 5.4, equality

I F z I - JFol = 9, =n ,=o I F z + l I IFnI

= maxp+(v). (5.1 1)
V€V%

Also denote by t , the total number of trellis paths from the
source A to some vertex at depth i .

Lemma 5.4: We have, for i = 1, . . . , n

2 - 1

t , I J-J p: (5.12)

with equality if and only if p+(v) = p: for all v E V,, for
j = O , l , . . ' , i - 1.

3 =O

holds in (5.10), for all 'U E V,. This means that each vertex
in V, corresponds to an entire coset of W,, and this in turn
implies that equality holds in (5.1) for all z = 1, . . . , n. But we
have already seen that this implies that the trellis is isomorphic

0
Theorem 5.1 says that the BCJR trellis is locally, as well as

globally, minimal, since it minimizes not only IE(and]VI, but
also IV,l and IE,-1,,1, for each index i. It is important to note,
however, that some non-BCJR trellises have the same values
of IV,l and/or IE,-l,LI as the BCJR trellis for some values of
the index i. For example, the trellis of Fig. 3 has the same

to the BCJR trellis. This completes the proof.

1084 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

values of 1x1 as the BCJR trellis (Fig. 7) for i = 0: 2 ,3 .4 .7 ,
and the same values of 123-1,iI for i = 2 , 3 , 4 , 5. But only the
BCJR trellis simultaneously minimizes all these quantities.

Along these same lines, we note that the quantity s =
max, I V; 1, often called the state complexity, has been taken by
several authors 1181, [Is], [34], [35], [40], [42] as a measure
of trellis complexity. The BCJR trellis certainly minimizes the
state complexity, but it is not unique in this respect, as the
trellis in Fig. 3 illustrates. Still, we should point out that in
[34], it is argued cogently that s is the “right” measure of the
complexity for the design of a VLSI circuit for decoding using
a trellis. In any case, we can say, in view of Theorem 5.1,
that the BCJR trellis uniquely minimizes the closely related
quantity

n

s = IV;l.
i=l

VI. MINIMAL-SPAN GENERATOR MATRICES

In [1 I , Appendix A], Fomey, in an elliptical remark, as-
serted the existence of a useful class of generator matrices
for linear codes which he called “trellis oriented.” Although
this remark has since been nicely elaborated on in [22], the
results in this section are an attempt to do the same thing, in
a somewhat different way. (Also, in [13], Forney and Trott
consider trellis structures for the general class of group codes,
and introduce the notion of “granules.” When specialized to
binary block codes, a granule turns out to be a codeword which
can appear as a row of a minimal-span generator matrix.)

We begin with some definitions. If x = (x1 ,z2 , . . . , z,) is
a nonzero binary n-vector, its left index, denoted L(x) , is the
smallest index i such that z; # 0. Similarly, the right index
of x, denoted R(x) is the largest index i such that xi # 0.
The span of IC, denoted Span(z), is the discrete “interval”
[s , t] = (L (x) , L (x) + l,...,R(z)) . The spanlength of IC,

denoted spanlength (x), is the number of elements in Span (z),
i.e., spanlength (E) = ISpan (.)I.

A nonzero vector x = (xl,. . ’ , zn) is said to be active at
coordinate i if i E Span(x), i.e., L(5) 5 i and R(z) 2 i .
Similarly, z is said to be active at depthi (i = 0: 1, . . . , n) ,
if both i and i + 1 are in Span(x), i.e., if L (x) 5 i and
R(z) 2 i + 1. (We will need these definitions in Corollary
6.16, below.)

If G is a k x n binary matrix, with rows 51: . . , xk
(which from now on we will indicate with the notation G =
(TI, . . . , zk)), its span set is the set of row spans, i.e.

{[L(El), R(Xl)l, ’ ’ . [L (Z k) , R(Zk)lJ

and its spanlength, denoted spanlength (G) , is the sum of the
spanlengths of the rows.

Example 6. I : Consider the following generator matrix for
a (7 , 3 , 3) linear code, which is the same as the code from
Example 3.1

(6.1)
1 0 1 0 0 1 1

0 1 1 1 0 0 0

If we denote the rows of G by 21, x2, and 5 3 , then L (q) = 1,
R (z l) = 7, and spanlength (21) = 7; L(x2) = 1, R(xz) = 5 ,
and spanlength(x2) = 5; and L(z3) = 2, R(Q) = 4, and
spanlength(x3) = 3. The active elements in each row are
shown in boldface. The vector 2 3 is active at coordinates 2,
3, and 4, and is active at depths 2 and 3. The span set of G1
is therefore {[1,7], [1,5], [2,4]}, and spanlength(G1) = 15 .0

Definition 6.2: Let C be an (n, I C) binary linear code.
Among all generator matrices for C, those for which the
spanlength is as small as possible are called minimal span
generator matrices, abbreviated MSGM’s.

In this section we will see that MSGM’s have many useful
and interesting properties, among them the property of being
trellis-oriented. The key to these properties are two other
properties, the left-right property and the predictable span
property, which we now introduce.

Dejinition 6.3: We say that a set of binary vectors
(51 , . . . , xk} has the lef-right properly (LR Property), if
L (s i) # L(x j) , and R(zi) # R(xj), whenever 1: # j .

Example 6.4: The rows of the matrix G I = (q , x ~ , z 3) in
(3.1) do not have the LR property, since L (q) = L(z2) = 1.
However, the rows of the row-equivalent matrix G2 = (z ~ +
E3:23:51 + xz), i.e.

(6.2)
1 1 0 1 1 0 0

G z = O l l l O O O (0 0 0 0 1 1 1

do have the LR property, since its span set is { [1, 51, [a, 41,
[5,7]}. Here spanlength(G2) = 11.

Note that for any two n-vectors z and y, Span (z + y) C
Span (5) U Span (y), with equality if and only if L(x) # L(y)
and R(x) # R(y). The next definition and Lemma generalize
this observation.

Dejinition 6.5: A set of binary n-vectors {q, 2 2 , . . . , xk}
is said to have the predictable span property, if

Span = U Span (xj) (6.3)
(j 6 J) j € J

for all subsets J C: {1,2,...,k} .
Lemma 6.6: A set of binary n-vectors {XI , 2 2 , . . . xk} has

the predictable span property if and only if it has the LR
property.

Proof: It is clear that

The inclusion will be strict only if there is “cancellation”
at either the left or right ends of the Span(xc,)’s. But such
cancellation is possible if and only if some of the left or right
endpoints of the Span (xJ)’s are equal, i.e., if the LR property
fails to hold. 0

Our first result of significance is the following.
Lemma 6.7: If G is an MSGM for the code C, then the

rows of G have the LR property, and so also, by Lemma 6.6,
the predictable span property.

MCELIECE: ON THE BCJR TRELLlS FOR LINEAR BLOCK CODES 1085

Proof: Suppose that G = (XI,. . . , zk), and that the LR
property fails to hold. Then for some pair (i, j) we have either
L (q) = L (z j) or R(z;) = R(zj) . Thus without essential loss
of generality we can assume that L (q) = L(Q) and R (q) 2
R(z2). But then spanlength (21 + 22) < spanlength (XI), so
that if we define x: = z1 + x2, it follows that the generator
matrix G’ = (zi, 2 2 , . . . , xk) has spanlength strictly less than
the spanlength of G. In other words, if the LR property fails
to hold for the rows of G, then G cannot be an MSGM. 0

Our first main result is that minimal span generator matrices
are minimal in a very strong sense. In what follows, a generator
matrix for C whose rows have the LR property will be called
an LR-generator matrix.

Theorem 6.8: If G = (XI, x2, . . . , zk) is an LR-generator
matrix for the code C, and if G’ = (z{,zh, . . . ,zi) is any
other generator matrix for C, then it is possible to rearrange
the rows of G so that

Span (zj) c Span (xi), for j = 1 ,2 , . . . , k .

Pro08 Each xi is a linear combination of a subset of
the xi ’s , say

2; = cza. (6.4)
&I,

But by Lemma 6.6, (%I,... ,xk) has the predictable span
property, so that by (6.4), we have

Span (xi) c Span (xi), if i E I,. (6.5)

Furthermore, if 1 5 s 5 k , any collection of s distinct
Ij’s must contain at least s distinct IG;’s, since otherwise we
would have a collection of fewer than s zj’s spanning an s-
dimensional space, which is impossible. Thus by Philip Hall’s
“marriage theorem” (see [14, Theorem 5.1.11, [28, Theorem
8.71, or [31, sec. 4.3)] the 1,’s contain a system of distinct
representatives, say (after renumbering) x1,52, . . . , q. Then
by (6.5), we have

Span (x . i) 2 Span (xi), for j = 1 , 2 , . . . , k

as asserted.
Example 6.9: We saw above that the generator matrix G2 in

(6.2) has the LR property, whereas the row-equivalent matrix
G1 in (6.1) does not. To verify that Theorem 6.8 holds in this
case, we compare the span sets of G1 and G2, and find that,
indeed, [5,7] C [l, 71, [l, 51 C [l, 51, and [2,4] C [2,4].
Corollary 6.10 (Kschischang and Sorokine (221): Any two
LR-generator matrices have the same span set.

Proo) Let G = (xl,...,xk) and G’ = (zi,...,xi) be
two LR-generator matrices for 43. Then by Theorem 6.8, by
reordering the rows of G, if necessary, we have

Span (sj) C Span (xi), for j = 1 , 2 , . . . , k . (6.6)

Similarly, for a suitable permutation T of { 1 , 2 , . . . , k } , we
have

The main theoretical result about MSGM’s follows. It is an
almost immediate corollary to Theorem 6.8.

Theorem 6.11 (Kschischang and Sorokine [22J): A matrix
G is an MSGM if and only if it has the LR property. Any
two MSGM’s have the same span sets.

P r o o ~ By Lemma 6.7, any MSGM has the LR property.
Now suppose that G is an LR-generator matrix, and Go is an
MSGM. Then by Corollary 6.10, G and Go have the same
span set, and so also the same spanlength. Thus since Go has

U
Example 6.12: Let C be the (7,3,3) code defined by the

generator matrix G1 = (zI,z~,x~) given in (6.1), and define
G2 = (22+~3,x3,21+22) (see (6.2)) and G3 = (x2,x3,q+
x2), i.e.

minimal spanlength, so does G.

)
1

(
(0 0 0 0 1 1 1

1 1 0 1 1 0 0
G z = 0 1 1 1 0 0 0

0 0 0 0 1 1 1

1 0 1 0 1 0 0
G a r 0 1 1 1 0 0 0 .

Then both G2 and G3 are generator matrices for 43 with the LR
property, so by Theorem 6.11, both are MSGM’s for C. Their
common span set is {[1, 51, [2,4], [5,7]}, and their common
spanlength, which is the minimum possible spanlength among
all generator matrices for C, is 11. This shows that a given
code can have several essentially different MSGM’ s. However,
in this case it is easy to see that there are no other MSGM’s
for C, apart from those that can be obtained by permuting the
rows of Gz or G3.

The question now arises as to how to produce an MSGM for
a given code. One approach, which we might call a “greedy”
approach, is to select the rows of G sequentially, with each
new row being of smallest possible spanlength subject to the
constraint of being linearly independent of the rows already
chosen. The algorithm is described formally by the following
pseudocode fragment:

/ * Greedy Algorithm I for finding a
minimal span generator matrix * /

{
20 = 0;
for (i == 1 to k)
2, = a codeword independent of (20,. s , z%-I}
of smallest possible spanlength;

Surprisingly, “Greedy Algorithm I” does always produce
an MSGM.

Theorem 6.13: A generator matrix produced by “Greedy
Algorithm I” will be an MSGM.

Proo8 We first note that the operation of the algorithm
guarantees that

spanlength (q) 5 spanlength (x2) 5 . . . 5 spanlength (xk).

Span (25) C Span (z ~ (~)) , for j = 1,2 , . . . , k . (6.7)
To prove the theorem, we will show, by induction on j , that

It follows from (6.6) and (6.7), that Span (xj) = Span (xi),
for j = 1 ,2 , . . . , k. 0

the set (5 1 , . . . , zj} has the LR property, for j = 1 ,2 , . . . , k .
It will then follow from Theorem 6.11 that G is an MSGM.

1086 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

For j = 1, there is nothing to prove. Assume that from the matrix. To simplify the notation, we suppose that
G = (z1 , 5 2 , . . . , z k) is a fixed MSGM for the linear code C,
and write L; = L(z;) and R; = R(z;), for i = 1 , 2 , . . . , k .

(21, . . . , zj} has the LR property, but that (z1, . . . , z3 zj+l}

does not. Then it must be the case that either L(zj+l) =
L(zc,) , or R(zj+l) = R(z;), for some i E {l,.-.;j}. In
either case, since as noted above

Theorem 6.15: For i = O , l , . . . , n , we have

pi = i { j : Rj 5 i}l
f; = l { j : Lj 2 i + l}l.

(6.8)
(6.9) spanlength (~ j + ~) 2 spanlength (z;)

it follows that

spanlength (zj+l + z;) < spanlength (zj+l).

Now by the definition of the algorithm, 2 1 , . . . , zj, zj+1 are
linearly independent, and so also are zl, . . . , z3, zj+l + z;.
But we have seen that

spanlength (z j + ~ + z;) < spanlength (~ j + ~)

which contradicts the selection of zj+l as having the
smallest possible spanlength among vectors independent from

Greedy Algorithm I, while straighforward and correct, is
not of much practical value, since there is no obvious way
to find the minimal spanlength codewords required, apart
from exhaustive search. However, there is another “greedy”
algorithm that is practical, and which also produces an MSGM,
using a sequence of elementary row operations. It is based on
Theorem 6.11, and is described by the following pseudocode
fragment:
/ * Greedy Algorithm I1 for finding a
minimal span generator matrix * /

/ * Due to Kschischang and Sorokine [22] * /
while (LR property fails to hold)

(21 ,. ‘ . ,q}. 0

1
find a pair (i , j) such that (L (z ,) = L(z,)

and R(z,) 5 R (z 3))
or (R(z ,) = R(z3) and L(z,) 2 L(z,)) ;

x3 = 27 + 2,;
1

This algorithm is based on the fact that if the LR property
fails to hold, say if L(z1) = L(z2) and R(z1) 2 R(z2), then
by replacing z1 with 21 + 5 2 , the spanlength of G will be
reduced, whereas if the LR property does hold, the matrix is
automatically in minimal-span form, by Theorem 6.1 1.

Example 6.14: Consider the matrix GI in (6.1). Since it
does not have the LR property, it is not an MSGM. Let us

In words, pi is the number of rows of G for which the
rightmost nonzero entry lies in column i or earlier, and f ;
is the number of rows of G for which the leftmost nonzero
entry lies in column i + 1 or later.

Prooj5 We will prove (6.8). The proof of (6.9) is essen-
tially the same. Clearly, every zj such that Rj 5 i belongs
to the subcode Pi. Thus pi 3 l { j : Rj 5 i}/. On the other
hand, any codeword z E Pi, i.e., with R(x) 5 i , must, by
the “predictable span” property (see Lemma 6.7), be a linear
combination of the codewords in the set { j : Rj 5 i } . Hence

0
The following Corollary shows that the important vertex

and edge dimensions s i and b; (see (4.3) and (4.4)) for the
BCJR trellis can also be read directly from an MSGM. In the
statement, we recall that a vector 2 is said to be active at
coordinate i if i E Span (z), and we say z is active at depth
i if i and i + 1 are both in Span (z).

Corollary 6.16: If G is an MSGM for the code C, then the
number of rows of G which are active at depth i is s;, and the
number of rows which are active at coordinate i is b;.

Proof: We use Theorem 6.15. If a row 2: is not active at
depth i, then either L (z) 2 i + 1 or R(z) 5 i , but not both,
since L (z) 5 R(z) . The number of rows with L (z) 2 i + 1
is f i , by (6.9). Similarly, the number of rows with R(z) 5 i
is p ; , by (6.8). Since G has k rows altogether, it follows that
the number of rows active at depth i is k - p ; - f ; = s;.

Similarly, if a row is not active at coordinate i , then either
L (z) 2 i + 1 or R(z) 5 i - 1, but not both. By (6.9), the
number of rows with L (z) 2 i + 1 is f ; ; by (6.8), the number
of rows with R(z) 5 i - 1 is Thus the number of rows

0
There is a result dual to Theorem 6.15, which we now

present, in which the past and future subcodes P; and F; are
replaced with the past and future projections introduced in
(4.11) and (4.12).

Theorem 6.17: For i = 0 , 1 , . . . ,n, we have

pi 5 i{j: R, 5 i} l as well.

active at coordinate i is k - pi-1 - f ; = b;.

I

therefore apply “Greedy Algorithm 11.” Since L(z1) = L(zz) ,
and R(z1) > R(z2), we replace z1 with z1 + XZ; the result
is a matrix row-equivalent to G1 with smaller spanlength

p z = i { j : L, 5 ill (6.10)
(6.1 1) f Z = 1{j:R3 2 i + l}i.

) i 0 1 1 1 0 0 0

0 0 0 0 1 1 1
G / , = l O l O l O O .

The span set of G/, is seen to be { [5,7], [l, 51, [a, 4]}, so that Gi
has the LR property, and so by Theorem 6.11, it is also MSGM
for the code. Indeed, it is, apart from a row permutation, the

0
We are now prepared to show that MSGM’s are “trellis-

oriented” in the sense that the dimensions p i and f ; of the
past and future subcodes (see (4.7)-(4.8)) can be read directly

same as the MSGM G3 in Example 6.12.

In words, p z is the number of rows of G for which the leftmost
nonzero entry lies in column i or earlier, and f z is the number
of rows of G for which the rightmost nonzero entry lies in
column i + 1 or later.

ProoR The proof is similar to the proof of Theorem 6.15
and is omitted. 0

There is a corollary to Theorem 6.17 which shows that
there is a strong similarity between MSGM’s, and row-reduced
echelon (RRE) generator matrices. It is well known that every
linear code has a unique RRE generator matrix (see, for
example, [30, Theorem 7.11). For our purposes, we shall call

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1087

such a generator matrix a “left” RRE generator matrix, because
its definition requires that every column containing the leftmost
1 in some row have all its other entries 0. If we replace the
word leftmost with rightmost, we obtain what might be called
the “right” RRE generator matrix.

Corollary 6.18: If G i R E is the “left” RRE generator ma-
trix, GgRE is the “right” RRE generator matrix, and G M ~ is
an MSGM, for the code C, then the left indices of Gfi,, are
the same as the left indices of GMS, and the right indices of
GERE are the same as the right indices of G M ~ .

GkRE to compute the dimensions p z of the ith past projection
of C. Plainly, pi is the rank of the matrix formed by taking
the first i columns of Gf;,,. But this matrix will have
exactly l { j : L(yj) 5 i } l nonzero rows, and these rows must,
by the defining property of a left RRE matrix, be linearly
independent. Thus p z = l { j : L(yj) 5 i>l. Comparing this
result to (&IO), we see that the sets { L (q) , . . . , L (z k) } and
{L(y,), . . . , L(y,)} must be identical. The assertion about the
right indices is proved similarly.

Example 6.19: For the (7,3,3) code specified by the gen-
erator matrix in (6.1), a short calculation shows that

indices of an RRE generator matrix for C, Massey defines the
“state” of a codeword C at depth i as the vector of parity bits
in positions i + 1, . . . , n, as determined by the information
bits in (C1, . . . , Ci). It is then relatively easy to verify, using
Corollary 6.18, that the “vertex kernels” of the Massey trellis
are in fact the “minimal kernels” Pi 69 F;, and so by Theorem
5.1, the Massey trellis is isomorphic to the BCJR trellis, a
result announced by Kot and Leung in 1993 [21].

VII. CONSTRUCTING THE BCJR TRELLIS
FROM A MINIMAL-SPAN GENERATOR MATRIX Pro& Assume GiRE = (yl,,...,yk), and let us use

In this section we will describe a general method for using
an MSGM for 03 to construct a family of trellises for C, which
we call the simple linear trellises. We will see that the BCJR
trellis is a simple linear trellis, and so the results of this section
give an efficient algorithm for constructing the BCJR trellis.
(Also, the important segmented trellises of [27] are simple
linear trellises.)

Thus let G = (21,. . . , q) be a minimal-span generator
matrix for C, and let S = (5’1, . . . , S k) be a set of row covers
for G. By this we mean that each Sj is a discrete interval
[L j , Rj] containing the span of xj. For a given set of row
covers S , we define, for i = 1, . . . , n, the sets Ai as follows:

(7.1) A; = { j : i E S j } .

1 0 1 0 0 1 1
0 1 1 1 0 0 0
0 0 0 0 1 1 1

1 (0 1 1 1 0 0 0

1 0 1 0 0 1 1
GgRE= 1 0 1 0 1 0 0 .

By inspection, we see that the left indices of Gk,, are (1,2,5)
and the right indices of G&, are (7,5,4) which indeed are
the left and right indices of G M ~ , as we saw in Example 6.12.

Example 6.20: Let us return to the MSGM Gz from (6.2).
Using Theorems 6.15 and 6.17, we find the following table:

i P, f a P2 f a 3% b,

0 0 3 0 3 0 -
1 0 2 1 3 1 1
2 0 1 2 3 2 2
3 0 1 2 3 2 2
4 1 1 2 2 1 2
5 2 0 3 1 1 2
6 2 0 3 1 1 1
7 3 0 3 0 0 1

We computed this same table in Example 4.7. However, there
we needed the trellis, whereas here, we only needed the
minimal-span generator matrix for C, which is much easier
to obtain. In the next section, we will see how an MSGM can
be used to efficiently construct the BCJR trellis.

We conclude this section with a brief discussion of the
“Massey trellis.” Shortly after the appearance of Wolf‘s paper
[43], Massey [29] introduced an alternative trellis construction
for block codes. It turns out that Massey’s trellis is also
isomorphic to the BCJR trellis. Here let us sketch a proof.
If the n coordinate positions of an (n, k) linear block code C
are partitioned into k information positions and n - k parity-
check positions, where the information positions are the left

In words, A; represents the (indices of the) rows of G which
are “S-active” at coordinate i. Similarly, we define, for i =
O,.. . ,n, the sets B; as follows:

Bo = B, = 0
B; = A; n A;+1, for i = 1 , . . . , n - 1. (7.2)

The set B, represents the (indices of the) rows of G that are
“S-active” at depth i . We denote the cardinalities of A, and
B, by a, and p,, respectively.

Example 7.1: We use the code and MSGM from Example
6.4, with row covers S = {[I, 51, [I, 51, [5,7]}. Then we can
display the generator matrix G, and the row covers S as
follows:

1 2 3 4 5 6 7
1 1 1 0 1 1 0 0

G = 2 O l l l O O O 1 3 0 0 0 0 1 1 1 (
with the entries in each row corresponding to the elements
of the row covers indicated in boldface. The following table
gives the A,’s, B,’s, Q,’s, and &’s:

i A, Ba a, Pz

1088 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

The (G, S)-trellis for 63 is now defined as follows. For each
i = 0 ,1 , . . . , n,, the vertex set V, is the set 2Ba of subsets
of B;, each represented by a binary &-tuple. Each codeword
G = (C, , . . . , Cn), which is necessarily of the form C = UG
for a unique k-tuple U, corresponds to a path of length n

ei = ei(u) E Ei-l,i is defined by

Example 7.3: Let us construct the (G, S)-trellis, where G
and S are as given in Example 7.1. We begin with the edge
set Eo,,, using the recipe given in (7.8). We have

{@I vo = 2BO = 20 =

v, = 2B1 = 2{1,2) = {00,01,10,11} in the trellis, consisting of the edges el (U) , . . . , e,(u), where

Ai 2A’ = 2{ll2} = {00,01, 10,11}

init (e i) = 7~ n
fin (e,) = U n Bi

X(e2) = c;.

and
G1 n A, = [lo]

(7.3) so that the edges in EO,^ are given by the following table:

In (7.3), if U = (U , , . . . , U A) is a binary k-vector, and if
B = { j l ,,is} is a subset of { 1 . 2 , k } , the notation
“U n B” represents the binary s-vector obtained by extracting
the components of U corresponding to the elements of B, i.e.,
u n B = (uJ1, . . . , u3,). As usual, edges with the same values
of init (e) , fin (e), and X(e) are considered to be identical.

The following Theorem gives the basic combinatorial in-
formation about the (G, s)-trellis (compare this to Theorem
4.6).

Theorem 7.2: The number of vertices at depth z in the
(G, S)-trellis is

1x1 = 2 P Z (7.4)

for i = 0,1, . . . , ‘n. Similarly, the number of edges connecting
vertices at depth i - 1 to those at depth i is

lE,-,,;l = 2a* (7.5)

for i = 1, . . . ,n,. Finally, all vertices 71 E V, have common
out- and in-degrees, denoted by p+ and p i , where

p; = 2nt+1-P, , for i = 0,1,-.. > n - 1 (7.6)

2 for i = 1 ,2 , . . ~ n. (7.7) p- = 2 ” - A

Proo? From the definition (7.3), it follows that if U n
A; = 0, then the edge e = e;(u) has init (e) = fin (e) =
X(e) = 0. Thus if u1 and u2 agree on Ai, then e i (u 1) =
e i (u 2) , so that the edge set Ei-1,; can be defined as the set
2As of subsets of Ai, each represented by a binary a;-tuple U ,

with init (U), fin (U) , and X(u) defined as follows:

init (U) = U n
fin (U) = U n Bi

X(u) = U ’ (7.8)

where ,;; = gi n A;, g; being the ith column of G.
It follows from (7.8) that the (G, S)-trellis has IV,l = 20%

for i = O,.. . ,n, and lEi-l,il = 2“., f o r i = l , . . . , n . This
proves (7.4) and (7.5).

To prove (7.61, let IJ E V,, and let e E with
init (e) = w. Then according to (7.8), e corresponds to a subset
U C A;+l such that %I, n B; = U. Thus the edges in Ei,i+l
with init(e) = U are in one-to-one correspondence with the
subsets of Ai+, - B;, and there are 2“*+1-p2 such subsets.
Thus p+(v) = 2az+1-p2 for all li E E;,i+l. This proves (7.6).

0 The proof of (7.5) is similar.

U init(u) fin(u) X(U)
12 - 12 [lo]
00 B 00 0
01 0 01 0
10 0 10 1
11 0 11 1

In the table, the entry “12” in the ‘‘U” column indicates that
A1 = { 1.2). The entry “-” in the “init (U)” column indicates
that Bo = 0, i.e., no components are to be extracted from U to
obtain init (U) ; the entry “12” in the “fin (U)” column indicates
that B1 = { 1. a } , and so that components 1 and 2 are to be
extracted from U to obtain fin (U) . Finally, the entry “[10]”
in the “X(u)” column is the value of g,, i.e., the S-active
components of the first column of G. Thus the entries in the
“X(u)” column are the values of the inner product U . [lo].

Similarly, to construct the edge set E I , ~ , we have

v, = 2B1 = 2{1,2) = {00.01,10,11}
v, = 2B2 = = {00,01,10,11}

A2 = ZA2 = 2{1J} = {00,01,10,11}
and

j 2 n A, = [ill

so that we have the following table describing E],,:

E1,2

U init(u) fin(u) X(u)

00 00 00 0
01 01 01 1
10 10 10 1
11 11 11 0

12 1 2 12 [Ill

For E2,3 we have the following table:

E2,3

U init(u) fin(u) X(u)

00 00 00 0
01 01 01 1
10 10 10 0
11 11 11 1

12 12 12 [O l]

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1089

(From the second row of the table we see that A3 =
{1,2}, 232 = {1,2}, B3 = {1,2}, and g3 = [01].)

Continuing this way, we obtain the following tables for
E3,4, E4,5, E5,13, and &,7:

E3,4

71, init (U) fin (U) X(u)

00 00 00 0
01 01 01 1
10 10 10 1
11 11 11 0

12 12 12 [11]

U init(u)
123 12
000 00
001 00
010 01
011 01
100 10
101 10
110 11
111 11

fin (U) X(u)

0 0
1 1
0 0
1 1
0 1
1 0
0 1
1 0

3 [lo11

U init (U) fin(u) X(u)

0 0 0 0
1 1 1 1

3 3 3 [I1

'U init(u) fin(u) X(U)
3 3 - [11
0 0 0 0
1 1 0 1

If we piece these tables together into a graphical represen-
tation of the trellis, we arrive at Fig. 8, which is seen to be
identical to that in Fig. 4. Indeed, each of the trellises that
we pulled out of the hat in Section Ill is in fact an (G, S)-
trellis for the MSGM given in Example 7.1 an appropriately
chosen row cover S . For Fig. 2, S = {[1,7], [1,7], [1,7]};
for Fig. 3, S = {[1,5], [2,4], [1,7]}; and for Fig. 5 , S =
{[l, 51, [a, 41, [5,7]}. Note that the row covers for Fig. 5 are
in fact the row spans for G. The following theorem shows
that, in general, the (G, S)-trellis always represents C, and
that the (G, S)-trellis is isomorphic to the BCJR trellis if and
only if S is the set of row spans.

Theorem 7.4: If S is a row cover for the minimal-span
generator matrix G, then the source-sink trellis paths in
the (G, S) trellis are in one-to-one correspondence with the
codewords of C. The (G, S) trellis is isomorphic to the BCJR
trellis if and only if S is the set of row spans for G.

1 2 1 2 12 12 3 3

\ 01 01

\ kc--------
10 1 0

\

L-m - - -
11 11 11 11

Fig. 8.
This trellis is identical to the one in Fig. 4.

The (G, S) trellis for the (7 , 3 , 3) code described in Example 7.1.

Proof: It follows from the definition (7.3), that every
codeword is produced by at least one source-sink path. On the
other hand, by combining Lemma 5.4 and Theorem 7.2, we
see that the total number of source-sink paths in the (G; S)
trellis is

i=O i=o

But
n-1 n-1

~ (W + I - Pi) = - Ai+l n Ail

(7.9)

i = O i=O

Each index ,j = 1, . . . , k is an element of exactly one of the
sets Ai+l - A;+1 n A;, viz., the one corresponding to the
smallest index i for which the the j th row is active, so that
the sum in the exponent of (7.9) is k , and so the (G, S) trellis
contains exactly 2'" source-sink paths. But we have already
observed that there is at least one path that produces each
of the 2'" codewords, so that the 2'" source-sink paths are in
one-to-one correspondence with the codewords of C.

To complete the proof, we note from Theorem 7.2 that the
number of vertices at depth i is 2pa. But Pi is the number of
rows which are active at depth i with respect to the row cover
S. According to Corollary 6.16, the vertex dimension si of
the BCJR trellis is the number of rows which are active with
respect to the row spans of G. Thus since each row span is
a subset of the corresponding row cover, we have s; 5
with equality if and only if the set S is the set of row spans.
It therefore follows from Theorem 5.1, that the (G, S) trellis
is isomorphic to the BCJR trellis if and only if S is the set of

Example 7.5: Let us conclude this section by constructing
the BCJR trellis for the code that is dual to the (7; 3,3) code
discussed elsewhere in this paper (Examples 3.1, 3.2, 4.7, 6.1,
etc.). Any parity-check matrix for the original code will serve
a generator matrix for the dual code, and so from Example
3.2, we take as a generator matrix

row spans for G. 0

/ 1 1 1 0 0 0 0 \ I (7.10)
0 1 0 1 0 0 0
1 0 0 0 1 1 0 ' G = [

\ l o 0 0 1 0 1 /

1090 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, IULY 1996

This matrix is not in minimal-span form, but if we apply
“Greedy Algorithm 11” from Section 111, we obtain the fol-
lowing MSGM for the code:

1 2 3 4 5 6 7

If we take as row covers the row spans, viz., {[l . 31, [2.4].
[3,6], [6 ,7]} , the the A,’s, B,’s, cy,’s, and Pz’s are as given
in the following table:

i A, B, a, P z

0 - 0 - 0
1 {It (1) 1 1
2 (1 ,2} { l , 2 } 2 2
3 { l , 2 , 3 } (2.3) 3 2
4 {2,31 (3) 2 1
5 (31 (3) 1 1

7 (4) 0 1 0
6 {3,4} (4) 2 1

Using the technique developed in Example 7.5, we then obtain
the following sequence of tables, which describe the edge sets
Et+l,c, for z = 1,. . . ,7:

E 0 , l

U init (U) fin(u) X (U)
1 - 1 PI
0 0 0 0
1 0 1 1

E1,2

U init(u) fin(u) X(U)

00 0 00 0
01 0 01 1
10 1 10 1
11 1 11 0

12 1 12 [11]

E2,3

’U init(u) fin(u) X (U)
123 12 23 [101]
000 00 00 0
001 00 01 1
010 01 10 0
011 01 11 1
100 10 00 1
101 10 01 0
110 11 10 1
111 11 11 0

\
\

/ \

-,/k
1 1

/
/

Fig. 9.
(This trellis has IEl = 26. IV = 18, and /El - IV + 1 = 9.)

The BCJR trellis for the (7 ,4 ,2) code discussed in Example 7.5.

E3,4

U init(u) fin(u) X (U)
23 23 3 [ll]
00 00 0 0
01 01 1 1
10 10 0 1
11 11 1 0

U init(u) fin(u) X (U)

0 0 0 0
1 1 1 1

3 3 3 [I1

U init(u) fin(u) X(u)

00 0 0 0
01 0 1 1
10 1 0 1
11 1 1 0

34 3 4 [111

U init(u) fin(u) X(u)

4 4 - [I1
0 0 0 0
1 1 0 1

If we piece these seven tables together into a graphical
representation of the trellis, we obtain Fig. 9. Notice that the
vertex structure of the trellis in Fig. 9 is identical to that
in Figs. 5 and 7, as guaranteed by Corollary 4.4. The edge
structures, however, are quite different. (There is, however,
as close connection between the edge structures of the BCJR
trellises for codes which are dual to each other, as explained
in [20].)

MCELIECE: ON THE BCJR TRELLIS FOR LINEAR BLOCK CODES 1091

VIII. CONCLUSION:
THE “VITERBI DECODING COMPLEXITY” OF LINEAR CODES

Based on our thesis that the edge count is the right measure
of the quality of a trellis representing a given (n, k) block
code C, we propose that the “Viterbi Decoding Complexity’’
(VDC) for C be defined as lEl/k, where IE/ is the number
of edges in the BCJR trellis for C. The (dimensionless)
units of the VDC are computations per decoded bit. The
VDC for block and convolutional codes can then be directly
compared. For example, by a computation in [l 11, the VDC
of the (24,12) Golay code is 3580/12 = 298.33, whereas the
VDC for the (2,1,6) NASA standard convolutional code is
256. Of course, it may be possible to decrease the decoding
complexity by making small or large modifications to the
Viterbi algorithm, and a lot of research has been devoted
to doing just this 151, I l l] , [27], [40]. But we feel that it is
important to differentiate between the problem of minimizing
the combinatorial complexity of the trellis representation of the
code, and the problem of minimizing the decoding complexity.
Minimizing the combinatorial complexity, i.e., finding the
edge-minimal trellis representation of the code, is a well-
defined problem, which we feel should be thought of as the
necessary first step in minimizing the decoding complexity,
which is much less well-defined.

Many authors have studied the problem of minimizing the
“trellis complexity” of a given linear block code, allowing
column permutations, beginning with Forney (as cited in [3]) ,
Massey [29], and more recently in [SI, [IS], [191, [231, [401,
and [42]. In this paper we have not allowed column permuta-
tions, and so we have nothing direct to contribute. We observe,
however, that there is no guarantee that there is a column
permutation that simultaneously minimizes the vertex, edge,
state, and bifurcation complexities, so that in searching for the
“optimum” column permutation, it is important to specify the
figure of merit one is trying to optimize. Unfortunately, there
appears to no general agreement as to what this figure of merit
should be. Some authors take state complexity [35], [42], some
take vertex complexity [18], [19], and some use the number
of “addition-equivalent operations” [111, [40]. We believe that
the results in this paper show that the most appropriate figure
of merit is the edge count of the trellis, and we encourage
future researchers in this area to take the edge count as the
measure of trellis complexity. We envision a large table, in the
spirit of Brouwer and Verhoeff [6], listing a number of good
codes and the best known edge count for a trellis representing
the code. Such a table would be an invaluable resource for
researchers interested in finding good decoding algorithms
for block codes. A start in this direction appears in [8] and
[261.

REFERENCES

[I] A. V. Aho, J. E. Hopcroft, and I. D. Ullman, The Design and Analysis
of Computer Algorithms.

[2] T. M. Apostol, Calculus, vol. 11.
[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of

linear codes for minimizing symbol error rate,” IEEE Trans. Inform.
Theory, vol. IT-20, pp. 284-287, 1974.

[4] Y. Berger and Y. Be’ery, “Bounds on the trellis size of linear block
codes,” IEEE Trans. Inform. Theory, vol. 39, pp. 764773, 1993.

Reading, MA: Addison-Wesley, 1974.
New York: Wiley, 1969.

[SI __, “Soft trellis-based decoder for linear block codes,” IEEE Trans.
Inform. Theory, vol. 40, pp. 203-209, 1994.

[6] A. E. Brouwer and T. Verhoeff, “An updated table of minimum-distance
bounds for binary linear codes,” IEEE Trans. Inform. Theory, vol. 39,
pp. 662-677, Mar. 1993.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Zntroduction to
Algorithms.

[8] S . Dolinar, L. Ekroot, A. Kiely, R. McEliece, and W. Lin, “The
permutation trellis complexity of linear block codes,” in Proc. 32nd
Allerton Con$ on Communication, Control, and Computing, Oct. 1994,

[9] Dornhoff and Hohn, Applied Mudern Algebra. New York: Macmillan,
1978.

[lo] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp.
268-276, Mar. 1973.

[1 11 -, “Coset codes-Part 11: Binary lattices and related codes,” IEEE
Trans. Inform. Theory, vol. 34, pp. 1152-1187, Sept. 1988.

[12] ~, “On dimension/length profiles and trellis complexity of linear
block codes,” IEEE Trans. Infiirm. Theory, vol. 40, pp. 1741-1752, Nov.
1994.

[13] G. D. Forney, Jr., and M. D. Trott, “The dynamics of group codes: State
spaces, trellis diagrams, and canonical encoders,” IEEE Trans. Inform.
Theory, vol. 39, pp. 1491-1513, Sept. 1993.

[14] M. Hall, Jr., Combinatorial Theory. Waltham, MA: Blaisdell, 1967.
1151 K. Hoffman and R. Kunze, Linear Algebra. Englewood Cliffs, N.J.:

Prentice-Hall, 1961.
1161 B. Honary, G. Markarian, and P. Farrell, “Generalized m a y codes and

their trellis structure,” Electron. Lett., vol. 29, pp. 541-542, 1993.
[I71 R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK:

Cambridge Univ. Press, 1985.
[18] T. Kasami, T. Takata, T. Fuijwara, and S . Lin, “On the optimum

bit orders with respect to the stale complexity of trellis diagrams for
binary linear codes,” IEEE Trans. Inform. Theory, vol. 39, pp. 242-245,
1993.

[I91 -, “On the complexity of trellis structure of linear block codes,”
IEEE Trans. Inform. Theory, vol. 39, pp. 1057-1064, 1993.

[20] A. Kiely, S. Dolinar, R. McEliece, L. Ekroot, and W. Lin, “Trellis
decoding complexity of linear block codes,” to be published in IEEE
Trans. Inform. Theory, vol. 42, 1996.

1211 A. D. Kot and C. Leung, “On the construction and dimensionality of
linear block code trellises,” in Proc. 1993 ISIT, p. 291.

1221 F. R. Kschischang and V. Sorokine, “On the trellis structure of block
codes,” IEEE Trans. Inform. Theory, vol. 41, pp. 1924-1937, Nov.
199.5.

[23] F. R. Kschischang and G. B. Horn, “A heuristic for ordering a linear
block code to minimize trellis state complexity,” in Proc. 32nd Allerton
Con$ on Communication, Control, and Computing, Oct. 1994, pp.

1241 F. Kschischang and A. Vardy, “Proof of a conjecture of McEliece
regarding the optimality of the minimal trellis,” IEEE Trans. Inform.
Theory, submitted for publication.

1251 A. Lafourcade and A. Vardy, “Asymptotically good codes have infinite
trellis complexity,” to be published in IEEE Trans. Inform. Theory, vol.
IT-42, 1996.

1261 -, “Lower bounds on trellis complexity of block codes,” to be
published in IEEE Trans. Inform. Theory, vol. 42, 1996.

[27] __ , “Optimal sectionalization of a trellis,” IEEE Trans. Inform.
Theory, vol. 42, pp. 689-703, May 1996.

1281 J . H. van Lint and R. M. Wilson, A Course in Combinatorics. Cam-
bridge, UK: Cambridge Univ. Press, 1992.

[29] J. L. Massey, “Foundations and methods of channel coding” NTG-
Fachberichte (Proc. Int. Conf. on Information Theory and Systems),
vol. 65, pp. 148-157, 1978.

[30] R. J. McEliece, The Theory of Information and Coding. Reading, MA:
Addison-Wesley, 1977.

1311 R. J. McEliece, R. B. Ash, and C. Ash, Introduction lo Discrete
Mathematics. New York: Random House, 1989.

[32] R. J. McEliece, “The Viterbi decoding complexity of linear block codes,”
in Proc. Int. Symp. on Information Theory (Trondheim, Norway, June
1994), p. 341.

[33] R. J. McEliece and W. Lin, “The trellis complexity of convolutional
codes,” to be published in Proc. 3rd h t . Symp. on Communication
Theory and Applications (Ambleside, UK, July 1995).

[34] H. T. Moorthy and S. Lin, “Good nonminimal trellises for linear block
codes,” submitted to IEEE Trans. Commun.

1351 D. J. Muder, “Minimal trellises for block codes,” IEEE Trans. Inform.
Theory, vol. 34, pp. 1049-1053, Sept. 1988.

[36] A. V. Oppenheim, A. S . Willsky, and I. T. Young, Signals and Systems.
Englewood Cliffs, N.J.: Prentice-Hall, 1983.

Cambridge, MA: MIT Press/McGraw-Hill, 1990.

pp. 60-74.

75-84.

1092 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

[37] G. Solomon, L. H. Oswald, and M. Indurain, “An inefficient trellis
representing the words in a block code,” Math. Rejectu, in press.

[381 V. V. Zyablov and V. R. Siderenko, “Decoding of convolutional codes
using a syndrome trellis,” IEEE Trans. Inform. Theory, vol. 40, pp.
1663-1 666, Sept. 1994.

[39] R. P. Stanley, Enumerative Combinatorics, vol. 1. Monterey, CA:
Wadsworth and BrooksKole, 1986.

[40] A. Vardy and Y. Be’ery, “Maximum-likelihood soft decision decoding
of BCH codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 546554,
Mar. 1994.

[411 A. J. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,” ZEEE Trans. Inform. Theory, vol.
IT-13, pp. 260-269, Apr. 1967.

[42] Y.-Y. Wang and C.-C. Lu, “The trellis Complexity of equivalent binary
[17. 91 quadratic residue code is five,” in Proc. 1993 h t . Symp. on
Information Theory, p. 200.

[43] J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes.” IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80, Jan. 1978.

[44] V. V. Zyablov and V. R. Siderenko, “Bounds on complexity of trellis
decoding,” Probl. Pered. Inform., vol. 29, no. 3, pp. 1-6, July-Sept.
1993.

