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A Hierarchical Dynamic Programming Approach
to Fixed-Rate, Entropy-Coded Quantization

A. K. Khandani, Member, IEEE

Abstract—In quantization of any source with a nonuniform probability
density function, the entropy coding of the quantizer output can result
in a substantial decrease in bit rate. A straightforward entropy coding
scheme faces us with the problem of variable data rate. A solution in a
space of dimensionality /V is to select an appropriate subset of elements
in the N-fold Cartesian product of a scalar quantizer and represent its
elements with codewords of the same length. The drawback is that the
search/addressing of this scheme can no longer be achieved independently
along the one-dimensional subspaces. A reasonable rule is to select the
N -fold symbols of the highest probability. For a memoryless source, this
is equivalent to selecting the N-fold symbols with the lowest additive
self-information. In this case, due to the additivity property of the self-
information, the selected subset has a high degree of structure which
can be used to substantially decrease the search/addressing complexity.
In this work, a dynamic programming approach is used to exploit this
structure. We build our recursive structure required for the dynamic
programming in a hierarchy of levels. This results in several benefits
over the conventional trellis-based approaches. Using this structure, we
develop efficient rules (based on aggregating the states) to substantially
reduce the search/addressing complexities while keeping the degradation
in performance negligible.

Index Terms—Scalar quantization, vector quantization, fixed-rate, en-
tropy coding, hierarchical dynamic programming, addressing, decoding.

1. INTRODUCTION

Consider the problem of quantizing a source with a nonuniform
probability density function. If the dimensionality of the quantizer
is not high enough, the entropy coding of the output can result in
a substantial decrease in bit rate. A straightforward entropy coding
method presents us with the problem of variable data rate. Also,
if the bit rate per quantizer symbol is restricted to be an integer,
we are potentially subject to wasting up to one bit of data rate per
quantizer output. A solution in a space of dimensionality N is to
code the N-fold Cartesian product of a scalar quantizer. To avoid
having a variable data rate, one can select an appropriate subset
of the /N-fold symbols and represent its elements with codewords
of the same length. In such a block-based source-coding scheme,
as some of the elements in the NN-fold Cartesian product space are
not allowed, the search for the quantizer partition (decoding) and
also the corresponding addressing, reconstruction processes (to be
defined later) can no longer be achieved independently along the one-
dimensional (1-D) subspaces. Obviously, this results in an increase
in the complexity of these operations.

One class of schemes are based on using a subset of points from
a lattice (quantization lattice) bounded within the Voronoi region
around the origin of another lattice (shaping lattice) [1]. In this case,
the selected subset forms a group under vector addition modulo

Manuscript received June 14, 1994; revised January 26, 1996. This work
was supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC). The material in this work was presented in part at the
1993 Conference on Information Sciences and Systems, The Johns Hopkins
University, Baltimore, MD, and in part at the 1993 Canadian Workshop on
Information Theory, Rockland, Ont, Canada..

The author is with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ont., N2L 3G1 Canada.

Publisher Item Identifier S 0018-9448(96)04014-X.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 4, JULY 1996

the shaping lattice. This group property is used to facilitate the
complexity of the underlying operations. '

Another class of schemes is based on selecting the NV -fold symbols
with the lowest additive self-information. This approach is tradition-
ally denoted as the geometrical source coding [2], [3]. In this case,
the selected subset has a high degree of structure which can be used
to substantially reduce the complexity. A method for exploiting this
structure based on using a dynamic programming approach with the
states corresponding to the length of the codewords is used by Laroia
and Farvardin in [4] and [5]. Subsequently, Balamesh and Neuhoff,
in [6], employ some complementary techniques to further reduce the
complexity. In the present work, we use a more advanced approach
to dynamic programming showing improvement with respect to the
schemes of [4]-]6].

The key point is to use the additivity property of the self-
information, in conjunction with the additivity property of the distor-
tion measure, to decompose the underlying operations into the lower
dimensional subspaces. This decomposition avoids the exponential
growth of the complexity. The core of the scheme, as in any
problem of dynamic programming, is a recursive relationship. We
build our recursive structure in a hierarchy of levels where each level
involves the Cartesian product of two lower dimensional subspaces.
This results in several benefits over the conventional trellis-based
approaches used in [4]-[6]. By effectively quantizing the state space,
we obtain suboptimum methods with low complexity and. negligible
performance degradation.

II. BASIC STRUCTURE

Consider a memoryless source and a scalar quantizer composed
of M points. In the N-fold Cartesian product of this quantizer, we
obtain 34", N-D points. The final vector quantizer is selected as a
subset of the 2V-D points composed of T' elements. Each N-D point
is represented by a codeword composed of [log, T'] bits. The N-
D reconstruction vectors are denoted as r;, ¢ = 0, ---, T — 1. For
a given source vector z, the quantization rule (decoding) is to find
the reconstruction vector r; which has the minimum square distance
to z, addressing is to produce the index ¢ when r; is selected, and
reconstruction is to reproduce r; from the index i.

Assume that the induced self-information and the expected value
of the symbols mapped to the jth 1-D point are equal to ¢; and
r;, respectively. The seif-information associated with a 1-D point
is considered as a cost associated with that point. The selection
rule in the N-D space is to keep the N-D points with the lowest
overall additive cost. The N-D reconstruction vectors are obtained
by concatenating the corresponding 1-D reconstruction levels, namely
r;’s. Assuming that the performance is measured in terms of the
mean-square distance, the search operation is formulated as

N—1
Minimize Z (@ —75,)°
=0
N—1
Subject to: Z ¢j; < Crax (D
i=0

where j; is the index of the point selected along the ith dimension
and Chax is the maximum value of the allowable cost in the N-D
space. The objective of the search operation is to find an allowable
N-D point (satisfying the cost constraint) resulting in the minimum
distortion. The immediate approach to solving (1) is to perform an
exhaustive search.
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For the addressing/reconstruction, we need a one-to-one mapping
between the elements of the selected subset of the N-D space
and the set of the integer numbers 0, ---, T — 1 such that the
mapping (addressing) and its inverse (reconstruction) can be easily
implemented. The immediate approach to obtain such a mapping is
to use a lookup table.

In a high-dimensional space, as the cardinality of the selected
subset of points is usually quite high, one cannot use the immediate
approaches based on the exhaustive search and/or the lookup table
and an algorithmic approach is needed. The basic strategy is to use the
high degree of structure of the problem in (1) to reduce the complexity
of the involved operations. This structure is due to the fact that both
the objective function and the constraint in (1) are composed of the
sum of some terms corresponding to the 1-D subspaces. This results
in a recursive structure for the resulting quantizer which is explained
in the following.

III. RECURSIVE MERGING OF SHELLS:
HIERARCHICAL DYNAMIC PROGRAMMING

Dynamic programming is a multistage optimization procedure
based on an inductive principle. It makes use of a recursive rela-
tionship to decompose a complicated problem into a sequence of
easier subproblems. In the following, we introduce our approach to
dynamic programming. As the schemes of [4]-[6] are also based
on dynamic programming, we have focused our explanation on a
comparison between the methods.

The core idea in the schemes of [4]-[6] is to use a state diagram
with the transitions corresponding to the 1-D symbols. This results in
a trellis composed of N stages where V is the space dimensionality.
The states s and s + ¢ in two successive stages are connected by a
link corresponding to the 1-D symbol(s) of cost ¢. Consequently, the
states in the nth stage, n = 0, .-+, N —1, represent the accumulative
cost over the set of the first n dimensions. The links connecting two
successive stages are labeled by the corresponding 1-D distortions.
Then, the Viterbi algorithm is used to find the path of the minimum
overall additive distortion through the trellis.

Unlike [4]-[6] which are based on a component-by-component
analysis, we build our recursive structure in a hierarchy of levels
where each level involves the Cartesian product of two lower dimen-
sional subspaces. To explain this structure, let Fx(C') denotes the set
of the V-D points of the overall (additive) cost C' (shell of cost C').
We have the following recursive relationship:

Fn(C) = U[FNn, (C1) ® Frny (C)] 2)
where @ denotes the Cartesian product, N = N + N3, and the union
is computed over all the pairs (C';, C5) satisfying C; +C> = C. We
are specially interested in the case that V; = Ny, = N/2. We refer
to each Cartesian product element in (2) as a cluster.

The shells of different costs in a given subspace are considered
as the states of the system in that subspace. Using such states, we
can concatenate two subspaces of dimensionality (N1, N2) together
and obtain a space of dimension N. The key point is that in such
a concatenation, by using (2), the states in an N-D space can be
expressed as the union of the element in the Cartesian product
of the states in the lower dimensional subspaces. This property
enables us to continue with the concatenation of the subspaces in
a hierarchical manner. This approach is specially effective when the
space dimensionality is equal to N = 2", where u is an integer. In
this case, the hierarchy is composed of u levels where the ith level,
i =0, ---,u — 1, involves the pairwise Cartesian product of the
2D subspaces (there are 2% 7% such pairs in the ith level). All our
following discussions are based on this structure.
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The immediate benefit of this approach is the possibility of using a
parallel processing system. Another benefit is that this structure can
be easily combined with the state diagram of a lattice (used to decode
the lattice [10]). This provides a means to easily use the scheme in
conjunction with a quantization lattice. More importantly, as we will
see later, this approach provides the basis for an effective state-space
quantization rule. In the following, we explain how this structure of
states can be used to achieve the decoding and the addressing.

A. Recursive Decoding

For a given input vector x, by decoding of a shell we mean the
process of finding the element of the shell which has the minimum
distance to x. Using (2), we can decode a shell recursively. To do
this, the /V-D input vector x is split into two parts =, and z-, each of
length N/2. Assume that the nearest vectors of Fi/5(C1), Fi/2(Ca)
to 1, z2 are equal to &1, &2 with the distortions d1, dy, respectively.
The nearest vector of the cluster Fiy/2(C1) @ Fny2(C2) to x is equal
to (&1, &) with the distortion d1 + d-. The distortion of a shell is
equal to the smallest of the distortions of its clusters. Note that if
we know the distortion and the nearest vector for all the shells of
the N/2-D subspaces, we can decode all the N-D shells. This means
that by starting from the 1-D subspaces and progressing in a recursive
way, one is able to decode an N = 2* dimensional space in « steps.

B. Recursive Addressing

One can also use the recursive structure of the shells to develop
algorithmic addressing, reconstruction procedures. The basic idea is
that the addressing within each cluster can be achieved independently
along its lower dimensional shells. This results in the same decom-
position principle as proposed for the first time in [7] and elaborated
in [8], [9]. To complete the recursion, it remains to select a single
cluster within a shell. This is achieved by arranging the clusters within
a shell in a preselected order and assigning a larger label to the points
in a higher order cluster. Based on this ordering, a cluster is selected
according to the range of the index and the corresponding residue
with respect to the start of the range is used for the addressing within
the cluster.

The procedure of recursive addressing becomes specially simple
if all the cardinalities are restricted to an integral power of two.
The key point behind the simplicity is as follows: Consider two sets
of cardinalities 2°' and 2°?. The Cartesian product of these sets is
composed of 272 elements. To address an element of this Cartesian
product, the input bit stream composed of ¢; + ¢ bits is simply split
into two parts of lengths ¢; and 2. Each part is subsequently used to
select a point within one of the two sets. In other words, the address of
a composite symbol is easily obtained by concatenating the addresses
of its constituents lower dimensional components.

The reconstruction process is achieved by reversing the order of
the steps taken for the addressing.

IV. STATE-SPACE QUANTIZATION: AGGREGATION OF STATES

The straightforward approach is to assign an independent state to
each possible value of cost at a given level. Let ' denote the number
of the distinct values of cost along a dimension. In this case, the
number of distinct values of cost in N dimensions can be as large as

Nt
= . 3
P ; H n;! @
2 n;=N ¢

i=0

The general term in (3) represents the total number of NV -tuples where
the 1-D symbol with the ith value of cost has occurred for n; times.
If two different combinations in (3) result in the same value for the
additive cost, the corresponding states merge together. This is denoted
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as a natural merge. Even for a moderate value of K, the number of
distinct states in V-D can be impractically large. The solution is to
synthetically aggregate distinct states into a smaller number. This is
denoted as the state-space quantization and is the key point to the
effectiveness of any dynamic programming approach. In [4], [5], the
self-information associated with the 1-D symbols are rounded off to
rational numbers with a common denominator. In [6], to reduce the
complexity with respect to [4], [5], these are rounded off to integer
numbers.

The major question is how we can aggregate the shells into macro-
shells while keeping the degradation in performance negligible.
Obviously, after aggregation, the points of the macro-shells will no
more be of exactly the same cost. Based on our hierarchy in an
N = 2"-D space, we consider the following rules for the aggregation
of states.

Recursive Aggregation Rule: The macro-shells in 2°-D subspaces
are composed of the union of the elements in the Cartesian product
of the 2~ !-D macro-shells. In this case, the macro-shells act as the
states of the system and the same recursive addressing and decoding
methods explained earlier are applicable.

In devising a specific merging rule, we should keep the following
three implicit objectives in mind:

1) As truncation is achieved by discarding some of the macro-
shells, while the objective is to discard a given number of
points of the highest cost, we should try to minimize the overlap
between the range of the costs of different macro-shells.

The number of the macro-shells should be as small as possible.
This suggests that we should try to put an equal number of
points in different macro-shells. As we will see later, in the
case that the macro-shells have an equal number of points, the
addressing is also much simpler than the general case.
Aggregation rule should be compatible with our recursive
structure mentioned earlier.

2)

3)

Concerning the first objective of this list, the best approach is to
partition the dynamic range of the cost into nonoverlapping segments.
Then, each macro-shell is considered as the set of elements with
the cost in one of these subranges. By appropriately selecting the
subranges, one can even put an equal number of points in each
macro-shell and satisfy the second objective. This sounds excellent,
however, unfortunately, no recursive structure is known for this type
of aggregation. As we will see later, by partitioning the space into
macro-shells of increasing average cost, it is possible to remain
compatible with our recursive structure.

In the following, we propose two rules for the state-space guan-
tization which partially fulfill the aforementioned objectives. In the
first method, the aggregation is limited to the 1-D subspaces. This is
based on a similar principle as used in the context of constellation
shaping in [11]. In the second method this is achieved sequentially in
different levels of our hierarchy. This is based on a similar principles
as used in the context of the constellation shaping in [8], [12], and
[13]. As we will see later, the second method is specially effective
and results in a simple addressing procedure.

A. Aggregation On a 1-D Basis, Macro-Shells
of Identical Sum of the Indices

The effect of natural merging of shells is specially pronounced
when the costs of the 1-D shells are affine functions of their indices
(cost of the ith shell is equal to cg + ¢A). This results in a set of
1 + N(K — 1) distinct shells in an N-D space where K is the
number of 1-D shells. Based on this observation, in our first method,
the 1-D symbols are aggregated into K information macro-shells
with a fixed spacing (increment in the self-information) A. In this
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case, the probabilities of the points in the ith 1-D macro-shell satisfy
0 < —log,p < cofori=0andco+(—1)A < —~log, p < co+iA,
fori =1, ---, K —1. Obviously, some of the 1-D macro-shells may
remain empty. The higher dimensional macro-shells are considered
as the set of the symbols with a fixed sum of the indices. This results
in a recursive structure. The final subset is selected as the union of
the N-D macro-shells with the sum of the indices less than a given
value Lmax. This results in min [2°K, Lmax] states in the ith level
of the hierarchy. This approximation method can be considered as a
more general formulation for the schemes of [4]-[6] which are based
on approximating the costs on a 1-D basis.

From the three objectives listed earlier, this method just fulfills
the last one, namely, the recursive structure. In the following, we
introduce another method which is more compatible with these three
objectives.

B. Aggregation on a Sequential Basis, Macro-Shells of
Increasing Average Costs and Identical Cardinalities

In our second method, the quantization of the state space is based
on a sequential aggregation of the macro-shells in the 2D subspaces,
i =0, --,u— 1. In other words, the state-space quantization is
achieved gradually at different levels of the hierarchy. The subspaces
involved at each level are partitioned into a number of macro-shells of
increasing average costs and identical cardinalities. The key point is
to approximate the costs of all the points within a given macro-shell
by their average value.

Consider an N = 2"-dimensional space and assume that there
are K; = 2% macro-shells of equal cardinality in the N; = 2°-D
subspaces, ¢ = 0, ---, u — 1. In the Cartesian product of two of

the V:-D subspaces, we obtain 22%¢ clusters of equal cardinality.
The clusters are arranged in the order of increasing average costs. A
number equal to 2%ki—kit1 of subsequent clusters are aggregated into
a higher level (2N; = N;11-D) macro-shell. Then, the whole process
is repeated recursively. The final subset is obtained by keeping some
of the N-D clusters of the lowest average cost. Note that this whole
operation is done just once and the result is stored for subsequent
uses. In this case, the total number of states (macro-shells) in the ith
Jevel of the hierarchy is equal to (N/2°) x 2%+ = 2%T%~¢ where
N'/2¢ is the number of 2°-dimensional subspaces involved in the ith
level.

Using macro-shells of integral, equal bit rate results in a spe-
cially simple addressing scheme. This is discussed in the following:
Consider the case that the macro-shells in a given level of our
hierarchy, say at dimensionality N ! are composed of 2! elements.
Also, assume that a higher level macro-shell (dimensionality 2/V') is
obtained by aggregating 2°2 clusters in the two-fold Cartesian product
of the N'-D macro-shells. The addressing of the 2 N'-D macro-shells
requires 2¢; + ¢z bits. The address of an 2N'-D element is computed
by concatenating the addresses of its constituent components in the
N’-D macro-shells and concatenating the result with an additional
co bits which are selected as the label of the cluster within its
corresponding 2N'-D macro-shell.

1) Computation of Complexity: The number of additions—com-
parisons' required to decode each pair of the subspaces involved in
the ith level is equal to 2%% for i = 0, --- , u — 2 and 2*Fw—17"s
for ¢ u — 1, where 7; denotes the redundancy associated
with the selection of the final N-fold symbols as a subset of the
Cartesian product space. Note that ry is equal to the logarithm of
the ratio of the employed number of points per dimension to the

!By addition—comparison we mean the combination of one addition and
one comparison. Note that in dynamic programming, these two operations
always occur together.
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minimum necessary number of points per dimension. Multiplying
by the number of pairs in each level, namely, 2“~*~' for levels
i=0,--+,u~—1, we obtain the following expression for the total
number of additions—comparisons:
k uz_:z k
Arotal = 22 w1 + 22 i+u_i_1-

i=0

@

In the case of using parallel processing, all the pairs in a given
level are computed simultancously and the factor 2*7*~! will not
be present in the general term of the summation in (4).

For addressing in an N = 2*-dimensional space, all we need
is a set of « blocks of ROM (read-only memory) to store the
components of each macro-shell in the Cartesian product of the
macro-shells in its lower dimensional subspaces. The ith addressing

level, i = 0, ---, w — 2, requires a lookup table with 2k; X 22ks
bits. The last level requires 2k, —1 x 22F«=177"s bits, The total size
is equal to
u—2
Mrowm = (ku—1 X 92ku—y—ratly 4 z ke x 2K (5)
2=0

We also need a block of RAM (random-access memory) to store the
result of the computations. These results are: i) cost of the survivor
corresponding to each state at levels ¢ = 0, -+, v — 1, and ii) 1-D
components corresponding to each such survivor. We need ko bits to
represent each 1-D macro-shell. Recall that there are Quthki—i states
(macro-shells) in the ith level of the hierarchy. We need to store 2°
1-D components for the survivor corresponding to each state at level
: =20, ---, u— 1. This results in a block of RAM of size

M; = ko x 20Tk

©®)

bits at level ¢ = 0, .-+, u — 1.

Next, we compute the size of the memory required to store the
survivors values. We assume that each 1-D cost is represented by Ro
bits. Noting that the survivor values at a given level are obtained by
adding two survivor values from a lower level, we conclude that one
needs Ro + i bits to represent each of the survivor values at levels
i=1,---,u— 1. Multiplying by the number of states, we conclude
that the total memory size required to store the survivor values at
level ¢ is equal to

M} =2""Fi T (Ro +1). @)

2.5 . 3,
Bit per dimension

3.

Quantization SNR for an i.i.d. Gaussian source. N = 16 (dimensionality), M = 8 (number of points per dimension).

In practice, to decode the level u — 1, it is enough to have full
storage for one of the two subspaces in level u — 1 (denoted as the
right subspace) and for the two subspaces in level u — 2 building the
other subspace in level u — 1 (denoted as the left subspace). This
is based on immediately moving to the final level of the decoding
after the computations over a given macro-shell in the left subspace
at level v — 1 is completed (assuming that the macro-shells in the
left subspace at level © — 1 are decoded one by one).

Obviously, we do not need to assign a separate block of RAM for
each level and the same block can be used several times as we go
higher in the hierarchy. Our computation shows that for the values
of k;’s and u of interest to us, if one has enough RAM for the right
subspace at level u — 1, and for the two subspaces at level u — 2
building the left subspace at level u — 1, then that memory is enough
to carry out all the computations. This results in a total size of

Mgram = 3 (My—1 + 1 e+ Ma_o + M, ). (8)
2) Comparison with Other Methods: First, we talk about the se-
lection of the parameters, namely, M and k;’s,i =0, ---, u—1.In

general, to keep the complexity and/or the performance at reasonable
levels, there are not too many choices available for these parameters
and one can simply select them using the trial and error method. The
value of M should be selected to support the required bit rate per
dimension, plus the selected value for the redundancy per dimension.
A larger value for M results in a better performance but at the same
time increases the complexity. We always select the value of M to
obtain 0.5 bit of redundancy per dimension. Our experience shows
that this selection results in a reasonable compromise between the
complexity and the performance.

In the selection of k;’s, our experience shows that the following
rules of thumb result in a good tradeoff between performance and
complexity: i) The value of ko is selected such that there are
two points in each 1-D macro-shell.? ii) The values of k., @
1, .-, u — 2 are selected to be close to each other. iii) The value
of ky_; is selected larger compared to the rest of k;’s. Note that
discarding of clusters is achieved at level u — 1, and consequently,
having a larger value for k.—1 results in a noticeable improvement

2Due to symmetry, the 1-D partitions of the original scalar quantizer have
in pair (positive and negative points) the same value for the cost. Such two
points are aggregated in one macro-shell. Note that this aggregation does not
result in any approximation in the first level.
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TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD BASED ON THE SEQUENTIAL AGGREGATION
OF SHELLS (DENOTED BY SMS) wITH THE SCHEME OF [4], {5] (DENOTED BY L-F)
(The quantities NV, M, and R are the space dimensionality, the number of points per dimension, and the rate (in bits)
per dimension, respectively. The memory size is in byte (8 bits) per N dimensions and the computational complexity
is the number of additions/comparisons per dimension. The value of Ro in (7) is selected as Rp = 8 bits. The values
inside parentheses are the computational complexities of our method in the case of using a parallel processing system.)

Method N M (ki,i=0,u—1) R Musn Mrom Mram+ Mgom Computation SNR (dB)
SMS 16 4 (1,2,4,8) 15 06 08 14k 50 (30) 7.43
LF 16 4 15 — — 8k 6 x 102 7.47
SMS 16 8 (2,4,5,8) 25 1.0 20 3.0k 220 (100) 12.91
L-F 16 8 25 — — 21 k 2 x 108 13.00
SMS 32 16 (3,5,6,6,10) 35 8 13 21 k 1100 (300) 18.7
LF 32 16 356 — — 300 k 1 x 10* 18.8t

in performance while the corresponding increase in complexity is
moderate (due to the subtraction of r, from the exponent of the
corresponding’ terms in (4) and (5)).

In the following, we present some numerical results concerning the
performance and the complexity of the proposed method. In all cases,
a sequence of 20000 source vectors is used to design the quantizer
and a separate sequence of the same length is used to measure the
resulting performance.

Figs. 1 and 2 show the SNR (signal-to-noise ratio) obtained
by using our sequential aggregation rule in conjunction with an
independent and identically distributed (i.i.d.) Gaussian source. The
quantization distortion is measured in terms of the mean-square
distance. Table I presents a comparison between our method and the
scheme of Laroia and Farvardin [4], [5] in terms of performance and
complexity. The complexity of the method of Laroia and Farvardin
is computed using the approximate formulas given in [4], [5]. It is
difficult to have a fair comparison with the scheme of [6] because
in their case the space dimensionality is usually quite high which
results in a longer delay.

V. SUMMARY

We have presented an efficient method for the fixed-rate entropy
coding of a memoryless source using dynamic programming. We

build our recursive structure required for the dynamic programming
in a hierarchy of levels. This results in several benefits over the
conventional trellis-based approaches. Using this structure, we have
developed efficient rules (based on aggregating the states) to sub-
stantially reduce the search/addressing complexities while keeping
the degradation in performance negligible.
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Vanishing Distortion and Shrinking Cells

Andrew B. Nobel, Member, IEEE

Abstract— We establish an asymptotic connection between vanishing
rth-power distortion and shrinking cell diameters for vector quantizers
with convex cells.

Index Terms— Asymptotic quantization theory, high-rate quantization
theory, vector quantization, shrinking cell diameters, convex sets.

1. INTRODUCTION

The study of high-rate vector quantization is concerned with the
performance of quantizers having large codebooks. One seeks bounds
(or precise estimates) for the asymptotic distortion of a sequence
vector quantizers in terms of codebook size, vector dimension, and
the nature of the selected distortion measure. Gersho [4], Yamada
et al. [14], and others have given heuristic derivations of formulas
governing the distortion of vector quantizers with large codebooks.
They assume that the underlying distribution has a smooth density,
and that the cell diameters of the nth quantizer tend to zero as n
tends to infinity. The latter condition, stipulating shrinking cells, is
the subject of this correspondence.

Recently, several authors [5], [6], [10]-[13], have proposed using
vector quantizers as the basis for multivariate histogram classification
and regression schemes in higher dimensions. Verification of shrink-
ing cell conditions is typically the key to establishing the consistency
of such schemes (cf. [6], [10]). Although they do not figure explicitly
in the rigorous derivation [2], [3], [15], [16] of bounds concerning
the distortion of optimal nearest neighbor quantizers, shrinking cell
conditions do appear in more general settings. Na and Neuhoff [7]
require shrinking cells in their derivation of Bennett’s integral for
vector quantizers having convergent point densities and convergent
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inertial profiles. The same condition appears in recent work [8] on
the asymptotic distribution of errors for high-rate vector quantizers.

The rth-power distortion of a quantizer is an average quantity,
while its cell diameters measure its worst case local behavior. In
many cases, the connection between quantizer design (which is
typically distortion-based) and cell size is not readily apparent. For
example, verifying a shrinking cell condition can be problematic
when the quantizers under study are designed from finite data sets
using iterative or recursive methods that seek to reduce empirical
distortion, or when they are defined in terms of secondary quantities
such as point densities and inertial profiles.

In Theorem 1 below we establish an asymptotic connection be-
tween vanishing rth-power distortion and shrinking cell diameters
for quantizers with convex cells. As a consequence, a number of
shrinking cell conditions may be easily verified by showing that the
quantizers in question have distortion tending to zero. Theorem 1 also
plays an important role in the asymptotic analysis [9] of a common
greedy growing scheme for tree-structured vector quantizers.

II. RESULTS

A vector quantizer is a mapping Q: IRY — C, where IR? denotes
d-dimensional Euclidean space, and C = {c1,---,cm} C R% is a
finite set of representative vectors known as the codebook of Q. Let
P be a fixed probability distribution on IR?. For each r > 0, the
rth-power distortion of () with respect to a random vector X ~ P
is given by

DA(Q) = EllQ(X) - X[ =./||Q(m)—wllrdP(w) M

where ||-]] is the ordinary Euclidean norm on IR?. A sequence of quan-
tizers 1, @2, - - - has vanishing rth-power distortion if D,-(Q.) — 0
as n — oo.

Every quantizer @ is associated with a finite partition {A4;,---,
A} of R, where A; = {@: Q(z) = ¢;} is the cell contains those
vectors assigned to the ith codeword. For each vector z the cell of
() containing = is defined by

Qlz] = {u: Q(u) = Q(=)}.

The diameter of a set U C IR? is the greatest distance between any
two points of the set, namely

diam (U) = sup |ju — ol
u,wEU

A sequence of quantizers ()1, Q2, - -+ will be said to have shrinking
cells if for every € > 0

P{a: diam (Q,[z]) > €} — 0. 2)

Equivalently, diam (»[X]) — 0 in probability when X ~ P. Note
that diam (Qn»[z]) accounts for all the points in the cell, not just
those that lie in the support set of P.

Let @1, @2, - be vector quantizers such that i) each cell A; of
Q). contains its corresponding codeword ¢;, and ii) ¢; is no worse a
representative than the zero vector in the sense that

/Hx—ciuf«ws/ )" dP.
A; A

When r = 2 both conditions are satisfied if ¢, has convex cells
and the representative of each cell is its centroid with respect to
P. Under these conditions, it is readily verified that shrinking cells
imply vanishing distortion.
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