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Abstract

The use of information theory concepts for universal estimation of delay for classes of discrete channels

is discussed. The problem is presented as one of hypothesis testing. Although the channel statistics are

not known, for large enough signal duration, the exponent of the average error probability is equal to that

associated with the optimal maximum likelihood (ML) decision procedure which utilizes full knowledge

of the channel parameters. Two categories of problems are discussed: The single channel problem, where

the random transmitted signal is known to the receiver, and the two sensor problem, where the random

signal is unknown.

Index Terms: delay estimation, hypothesis testing, maximum likelihood, entropy, mutual information,

�nite-state source, Lempel-Ziv compression, large deviations theory, memoryless types, Markov types.
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I Introduction

The use of information theory to solve radar related problems is not new. In the early 1950's Woodward

and Davies [1, 2, 3, 4] examined the use of information theoretic principles to obtain the a posteriori radar

receiver. They discussed the case of a known signal in white Gaussian noise which results in a correlation

receiver. A summary of their results, with a tutorial on information theory, appeared in a book by Woodward

[5]. Besides dealing with the detection problem, they also considered estimation of delay. In [1] they de�ned

the quantity of information from a radar observation as the di�erence in entropies of the a priori and a

posteriori probability distributions for delay; and calculated it for the Gaussian channel using approximations

for high and low degrees of ambiguity (existence of several distinct peaks in the a posteriori delay probability

function). This quantity was compared to the Shannon formula for maximum information transmission over

the Gaussian channel [6] and shown to have some similar threshold properties and asymptotic values. In [2]

Woodward pointed out that, although some of his assumptions (e.g. echo of known strength) were arti�cial,

he hoped to \set the ball rolling" for application of information theory to radar problems.

Since Woodward's and Davies' work few researchers have considered the connection between information

theory and radar detection and estimation problems. Ziv and Zakai [7] compared their lower bound, known

as the Ziv-Zakai lower bound, for the example of average mean square delay error of a rectangular pulse

transmitted over the Gaussian channel, with the bound obtained from Shannon's rate-distortion theory [6,

Th. 21]. They also showed [8] that using a generalized rate-distortion theory instead of Shannon's rate-

distortion theory, tighter bounds on the average mean square delay error may be achieved. Zeoli [9] used

rate distortion theory to obtain a lower bound on the data rate for processing synthetic aperture radar

signals, and showed that conventional analog to digital methods give rates close to this lower bound for

a given distortion. Frost and Shanmugan [10] demonstrated the use of mutual information to measure

the information content of synthetic aperture radar signals; they used the mutual information measure to

illustrate the tradeo� between spatial and radiometric resolution. A recent paper by Bell [11] describes use

of maximizing the mutual information between a random extended target ensemble and the received radar

signal to design radar waveforms. These waveforms were reported to be optimal in a certain sense.

In this paper, we use information-theoretic techniques for estimation of delay for cases where the charac-
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teristics of the medium (referred to as channel) are unknown, which is typically the situation. Two problems

are addressed. The �rst problem is range estimation by a single radar or sonar unit. The transmitted

waveform is known to the receiver, which has to decide on its correct shift in order to estimate the delay.

This problem is solved for discrete memoryless channels (DMC's) and modular additive �nite-state channels

(MAFSC's). The second problem is estimation of the relative delay of a signal at two sensors, where the

transmitted or reected signal from the target is unknown. This is a common problem of bearing estimation

and is solved for DMC's.

Since discrete-time signals are considered, the delay problem here is treated as one of hypothesis testing,

and not as an estimation problem as customarily done. We consider only discrete �nite alphabet time

signals and refer to them as vectors. Thus the appropriate error criterion is the probability of error. If we

presume that the delay is uniformly distributed over a �nite number of signal shifts, the optimal decoder

is the maximum likelihood (ML) decoder. We further assume that the transmitted signal is random. This

assumption is legitimate for both problems. For the single channel problem, the optimal signal depends

on the channel parameters which are unknown. Even if the channel parameters are known, the optimal

choice of a signal is still an unsolved problem, although some kinds of signals have been proved to be better

than others. For the well studied Gaussian case, the optimal signal, measured in terms of the ambiguity

function, is still unknown [12]. Pseudo random sequences have been shown to have good properties for delay

estimation [13]. For the two sensor problem, the signal emitted or reected from the target is unknown and

thus these signals can be considered random. Therefore our error criterion is the average probability of error,

where the averaging is over all possible transmitted and received signals. For the above mentioned cases,

a universal decision rule, that has no knowledge of channel parameters, is proposed that accomplishes the

exponent of the average error probability associated with the optimal ML decision rule.

The problem formulated here can be interpreted as a channel coding problem, where the code words are

simply shifts of a single randomly chosen vector. It must be noted that our problem has less degrees of

freedom than the random coding problem, as only one code vector is chosen instead of a number as large as

the codebook size. Thus our problem can be viewed as a random coding pulse position modulation (PPM)

problem. The proposed universal decision rule for the DMC cases of delay estimation is based on minimum
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joint empirical entropy. The shift that obtains minimum joint empirical entropy of the channel input and

output determines the delay. Ignoring end-e�ects, the empirical entropy of a signal and its time shift are

equal. Thus, the decision rule can be seen as one of maximum empirical mutual information (MMI) as

was proposed by Goppa [14] for universal decoding for DMC's. This decoder, known as the MMI receiver,

selects an input signal that maximizes the empirical mutual information with a given output vector. Goppa

showed that, for large enough signal duration, the channel capacity is achieved. Csisz�ar and K�orner [15]

demonstrated that this universal decoder yields the random coding exponent given by the optimal ML

decoder. Ziv [16] extended Csisz�ar's and K�orner's result to �nite-state channels by using a decoder based on

the Lempel-Ziv (LZ) compression algorithm [17]. In the case of a DMC this decoder can be replaced by one

that minimizes joint empirical entropy. Our decision rule for the MAFSC's also utilizes the LZ algorithm.

In Section II, the two problems discussed for the class of DMC's. The single channel problem is also

solved for the class of MAFSC's in Section III. Finally, Section IV contains the discussion and conclusions.

II Discrete Memoryless Channel (DMC)

In this Section, the two delay estimation problems will be solved for the class of DMC's. We will �rst de�ne

the delay estimation problem for the single channel, where the transmitted signal is known to the receiver.

The optimal ML decision rule will be given, and a universal decision rule is proposed. This universal decision

rule will be proved to attain the exponent of the average error probability associated with the optimal ML

decision procedure. Subsequently, the double channel delay estimation problem, where the transmitted signal

is unknown to the two receivers, is presented. This problem, for the DMC case, is solved and shown to be

similar to the single channel problem.

Before continuing, some notation will be needed: Let x denote the channel input vector, x = (x1; x2; :::; xn)

where xi 2 X is the input to the channel at the ith time instant and X is a �nite alphabet of size jX j. The

vector x takes on values in Xn which is the set of all channel input vectors. Similarly, let y denote the

channel output vector, y = (y1; y2; :::; yn) where yi 2 Y is the output of the channel at the ith time instant

and Y is a �nite alphabet of size jYj. The vector y takes on values in Yn which is the set of all channel

output vectors. In the case of two channels, the second channel output z 2 Zn, is de�ned similarly over
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the �nite single-letter alphabet Z of cardinality jZj. We adopt the rule that boldface letters denote vectors

while the usual font is used for scalars. A vector with a subscript i will denote a shifted version of the vector

by i time units, i.e., xi = (x1+i; x2+i; :::; xn+i). For simplicity, we assume in the proof cyclic shifts. Thus the

index i is equal to i mod n. Consequently, x0 � x.

A Single DMC

Consider the class of �nite alphabet DMC's with the transition probability function of the form

Q(yjx) =

nY
i=1

Q(yijxi): (1)

Let the memoryless (zero order Markov) type of a sequence [15] x 2 Xn be the empirical probability mass

function (PMF) qx de�ned by the relative frequencies

qx(a) =
1

n
jfi 2 f1; :::; ng : xi = agj 8 a 2 X : (2)

The set of sequences having the same empirical PMF qx is called a typical set and is denoted Tx. Throughout,

capital italics (Q,P,M,K,R and J) will denote probability measures and q with a subscript, will denote the

empirical PMF of the respective vector. Let P (x) be the PMF governing the input vector x. This PMF

must have the property that vectors of the same memoryless type qx have equal probability. The PMF P (x)

could be, for example, an identically independent distribution (i.i.d.) or be uniformly distributed over a

memoryless type or group of memoryless types.

The optimum ML decision rule for the above problem is the shift of the vector x for which maximum

conditional probability is obtained:

�̂o = argmax
i
Q(yjxi): (3)

A universal decision rule is now proposed, i.e., it is a function of x and y only and is independent of the

unknown probability function Q(�j�). This rule is based on joint empirical entropy. Let qx;y denote the joint

memoryless empirical PMF of x and y,

qx;y(a; b) =
1

n
jfi 2 f1; :::; ng : (xi; yi) = (a; b)gj 8a 2 X ; b 2 Y : (4)
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The joint empirical entropy is de�ned as

Ĥ(x;y)
4
= �

X
a2X

X
b2Y

qx;y(a; b) log qx;y(a; b): (5)

Similarly Ĥ(xi;y) will denote the joint empirical entropy of xi (the ith shift of x) and y. The universal

decision rule selects the shift of the vector x for which minimum joint empirical entropy with the received

vector y is obtained, namely:

�̂u = argmin
i
Ĥ(xi;y): (6)

This decision rule can be interpreted as one of MMI. If we assume cyclic shifts then Ĥ(xi) = Ĥ(x), and

therefore from information equalities (mutual information between two variables is equal to the sum of the

marginal entropies minus their joint entropy), a rule of minimum joint empirical entropy is equal to one of

maximum empirical mutual information.

The intuitive reasoning for this decision rule is that if we have the wrong shift, the memoryless joint

probability of the input and output is of two independent variables, and thus the memoryless joint entropy is

equal to the sum of their marginal entropies. For the correct shift, the memoryless probability distributions

of the input and output vectors are dependent. A joint entropy of dependent variables is less than the sum

of the entropies for each variable. From the law of large numbers empirical entropies converge to the true

corresponding entropies.

Let 1e(x;y) denote the indicator function of an error for a decision rule given the input and output

vectors. The average probability of error P e averaged over all input vectors x and output vectors y is thus

P e =
X
x2Xn

X
y2Yn

P (x)Q(yjx)1e(x;y): (7)

Henceforth, P e;o and P e;u, will denote the average probability of error for the ML and for the universal

decision rule, respectively.

The Theorem for this case is now stated:

Theorem:
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For the above de�ned problem and for a �xed number of shifts,

a) The average error of the optimal ML decision rule P e;o vanishes exponentially with n.

b) The asymptotic error exponent of the universal rule is equal to that of the optimal ML rule, i.e.,

lim
n!1

1

n
logP e;u = lim

n!1

1

n
logP e;o: (8)

The �rst part of the Theorem asserts that, for the delay problem presented here, as for random channel

coding, it is possible to achieve an average error probability that decreases exponentially with signal duration,

provided the channel statistics are known and the optimal ML decision rule is used. Part b of the Theorem

claims that, for the above mentioned case and its corresponding universal decision rule, the exponent of the

average error probability is equal to that associated with the optimal ML decision rule, where the channel

statistics are fully known.

Before giving the proof of the above Theorem for this case, some preliminaries are needed. The proof

is based on the well known method of memoryless types [15] and the less common Markov type method

[18, 19, 20]. The essentials of the Markov type method needed for the proof are given.

Let the �rst order Markov type of a sequence x 2 Xn be the empirical PMF qx0;x1 de�ned by the relative

frequencies

qx0;x1(a0; a1) =
1

n
jfi 2 f1; :::; ng : (xi; xi+1) = (a0; a1)gj 8 (a0; a1) 2 X

2 (9)

where X 2 is the Cartesian product X �X . The empirical PMF qx0;x1(a0; a1) de�nes two marginal empirical

PMF's qx0(a) and qx1(a) which are equal for a cyclic shift of x (xn+1 = x1). The set of sequences of the

type qx0;x1 is called the �rst order Markov typical set denoted Tx0;x1 . This set is obviously a subset of the

typical set de�ned by its marginal empirical PMF qx0(a), i.e., Tx0;x1 � Tx. The exact expression for the size

of the typical set Tx0;x1 is given by Whittle's formula [21, 22],

jTx0;x1 j =
Y
a02X

(nqx0(a0))!Q
a12X

(nqx0;x1(a0; a1))!
F � (10)
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where the factor F � is bounded from below by (n + 1)�jXj and from above by 1. Using the exponential

bounds for the multinomial coe�cients [15, Lemma 1.2.3], we get

(n+ 1)�jXj
2�jXj � 2n(Ĥ(x0;x1)�Ĥ(x)) � jTx0;x1 j � 2n(Ĥ(x0;x1)�Ĥ(x)) (11)

where Ĥ(x0;x1) and Ĥ(x) are the empirical entropies de�ned as

Ĥ(x0;x1)
4
= �

X
a02X

X
a12X

qx0;x1(a0; a1) log qx0;x1(a0; a1) (12)

and

Ĥ(x)
4
= �

X
a2X

qx0(a) log qx0(a): (13)

Let the joint �rst order Markov type of a pair of sequences y 2 Yn;x 2 Xn be the empirical PMF qx0;x1;y

de�ned by the relative frequencies

qx0;x1;y(a0; a1; b) =
1

n
jfi 2 f1; :::; ng : (xi; xi+1; yi) = (a0; a1; b)gj 8 (a0; a1) 2 X

2; b 2 Y : (14)

The above empirical PMF de�nes marginal PMF's qx0;x1(a0; a1) (eq. 9) and qx;y(a0; b) (eq. 4) where qx0;y

� qx;y.

The set of sequences y having the type qx0;x1;y given x is called the �rst order conditional Markov type

denoted by Tyjx0;x1 ,

Tyjx0;x1 = fy 2 Yn : qx0;x1;y(a0; a1; b) = qx0;x1;yg: (15)

This set is obviously a subset of the typical set Tyjx de�ned by the set of y vectors having the empirical

PMF qx;y(a; b) = qx;y for a given x. The size of this type Tyjx0;x1 can be calculated by permuting yi with

yj having the same Markov condition (xi; xi+1) = (xj ; xj+1), giving

jTyjx0;x1 j =
Y

a0;a12X

(nqx0;x1(a0; a1))!Q
b2Y(nqx0;x1;y(a0; a1; b))!

: (16)

Using the exponential bounds for the multinomial coe�cients [15, Lemma 1.2.3] as before,

(n+ 1)�jXj
2jYj � 2n(Ĥ(x0;x1;y)�Ĥ(x0;x1)) � jTyjx0;x1 j � 2n(Ĥ(x0;x1;y)�Ĥ(x0;x1)) (17)
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where Ĥ(x0;x1;y) is de�ned

Ĥ(x0;x1;y)
4
= �

X
a02X

X
a12X

X
b2Y

qx0;x1;y(a0; a1; b) log qx0;x1;y(a0; a1; b): (18)

The number of types of this kind is bounded by (n+1)jX j
2jYj (A tighter bound may be obtained, but as we

are interested in exponential behaviour it is of no signi�cance as it is polynomial with n). The above type

is a special case of conditional �nite-state types derived by Satt [23].

Proof of the Theorem for the DMC:

The proof of the Theorem will �rst be given for simple hypotheses, where there are only two possible

relative shifts of the vectors. The proof will then be extended to the case of �nite multiple hypotheses.

For the given channel model, where the delay is not part of the channel characteristic, the correct delay is

obtained for i = 0. The error probability is calculated for the wrong decision i = 1. The direction of shift for

this problem is of no signi�cance as will become apparent. If the decision rule is inconclusive, the expressions

are equal, it will be considered an error.

1) Proof of part a for simple hypotheses:

Assume that the channel is not altogether noisy, that is,

H(Y jX) = H(Y )� � (19)

for some � > 0 where H(Y jX) and H(Y ) are per-letter entropies of the channel output given the channel

input and of the channel output respectively. For the memoryless channel and x a memoryless random vector,

there is no memoryless dependency between the received vector y and the shifted vector x1. Therefore,

H(Y jX1) = H(Y ): (20)

The average error probability associated with the universal decision rule can be bounded as follows:

P e;u = PrfĤ(x1;y) � Ĥ(x;y)g

a
= PrfĤ(yjx1) � Ĥ(yjx)g

b

� PrfĤ(yjx1) � �g+ PrfĤ(yjx) � �g
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c
= PrfĤ(yjx1) � H(Y jX1)�

�

2
g+ PrfĤ(yjx) � H(Y jX) +

�

2
g (21)

where the equality (a) is obtained by subtracting Ĥ(x) = Ĥ(x1) from both sides, inequality (b) is given by

determining an arbitrary �, and (c) is obtained by de�ning �
4
= H(Y jX) + �

2 and use of (19) and (20). The

two probabilities in (21c) are probabilities of rare events and therefore exponentially small, as is well known

from large deviations theory (see e.g. [24, Th. 12.4.1 and Lemma 12.6.1]). Thus P e;u � 2�n� for some � > 0.

Seeing that the optimal ML decision rule cannot be worse than the universal rule, part a of the Theorem is

proved for the case of two hypotheses.

2) Proof of part b for simple hypotheses:

The average probability of error P e for both the ML and the universal decision rules (3) and (6) can be

expressed by type counting. As the vectors are i.i.d. (random coding and memoryless channel), vectors

belonging to the same typical set have equal probability. From (15), vectors from the same conditional

Markov type Tyjx0;x1 have equal empirical probabilities qx0;x1;y(a0; a1; b) and therefore identical marginal

probabilities qx0;y(a0; b) and qx1;y(a1; b). Therefore, for these decision rules, vectors belonging to the same

type set Tx0;x1;y, give the same decision. Thus, the average error probability is expressed as sums of

types of this kind. First, we count the number of y vectors, for a given x vector, that give a decision error

jfy 2 Tyjx : errorgj. As all y vectors belonging to the same type Tyjx have equal probability Prfy 2 Tyjxjxg,

P e =
X
x2Xn

X
y2Yn

P (x)Q(yjx)1e(x;y) =
X
x2Xn

P (x)
X
Tyjx

Prfy 2 Tyjxjxg jfy 2 Tyjx : errorgj

=
X
x2Xn

P (x)
X
Tyjx

Prfy 2 Tyjxjxg
X

Tyjx0;x1
:

Tyjx0;x1
�Tyjx; error

jTyjx0;x1 j: (22)

The last equality is obtained by counting the conditional Markov types Tyjx0;x1 for which all the vectors y

belonging to this type give an error. Note that Prfy 2 Tyjxjxg is dependent on x only via its zero order

Markov type Tx. Now, by counting the x vectors by their �rst order Markov types Tx0;x1 and noting that

the probability of a x vector in this type Prfx 2 Tx0;x1g is equal to the probability of it being in its marginal
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type Tx, namely Prfx 2 Txg, the following arises:

P e =
X

Tx0;x1

Prfx 2 Tx0;x1gjTx0;x1 j
X
Tyjx

Prfy 2 Tyjxjx 2 Txg
X

Tyjx0;x1
:

Tyjx0;x1
�Tyjx; error

jTyjx0;x1 j

=
X
Tx

Prfx 2 Txg
X

Tx0;x1 :

Tx0;x1�Tx

jTx0;x1 j
X
Tyjx

Prfy 2 Tyjxjx 2 Txg
X

Tyjx0;x1
:

Tyjx0;x1
�Tyjx; error

jTyjx0;x1 j: (23)

Rearranging the above expression,

P e =
X
Tx

X
Tyjx

Prfx 2 TxgPrfy 2 Tyjxjx 2 Txg
X

jTx0;x1 jjTyjx0;x1 j (24)

where the right summation is over all types Tx0;x1 and Tyjx0;x1 such that Tx0;x1 � Tx; Tyjx0;x1 � Tyjx

and give a decision error. As typical sets are de�ned by their empirical PMF, the summation over typical

sets is exchanged with summation over the appropriate empirical PMF's. De�ning Vo(qx;y) and Vu(qx;y) as

the number of vectors with the joint PMF qx;y that give an error (i.e. the right summation in the above

expression) for the ML and universal decision rules respectively,

P e;u =
X
qx;y

Y
a 2 X

Y
b 2 Y

(P (a)Q(bja))nqx;y(a; b)Vu(qx;y)

=
X
qx;y

Y
a 2 X

Y
b 2 Y

(P (a)Q(bja))nqx;y(a; b)Vo(qx;y)
Vu(qx;y)

Vo(qx;y)

�
X
qx;y

Y
a 2 X

Y
b 2 Y

(P (a)Q(bja))nqx;y(a; b)Vo(qx;y)max
qx;y

�
Vu(qx;y)

Vo(qx;y)

�

= P e;omax
qx;y

�
Vu(qx;y)

Vo(qx;y)

�
: (25)

Lemma 1

max
qx;y

�
Vu(qx;y)

Vo(qx;y)

�
� 2n�n : (26)

where limn!1 �n = 0.
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The proof of the Lemma will be given in Appendix A.

With Lemma 1 and (25) the second part of the Theorem (8) is proved for the single DMC case, when

considering simple hypotheses.

3) Extension of the proof to �nite multiple hypotheses:

Previously the proof of the Theorem was given for only one relative shift of the two vectors. For the case

of a �nite number of possible shifts, the proof can easily be updated as follows: Suppose we would like to

calculate the probability of error for two shifts (only two hypotheses are considered: no shift and two shifts).

By rearranging the two vectors x and y, taking the odd indices �rst and then the even vector indices, we

obtain the one shift problem except for an extra end e�ect in the middle of the new vectors. >From [15,

Lemma 1.2.7] explained at the end of Appendix A, this does not a�ect the error exponent for large enough

n. Similarly, for any �nite shift the asymptotic error exponent is equal to that for one shift. Upper bounding

P e;u by using the union bound, and lower bounding the ML average error by considering only one possible

shift, the probability exponents are still asymptotically equal for any �nite number of shifts.

B Double DMC

Consider the problem of passive tracking. It is of interest to estimate the relative delay between a signal

received at two sensors. Assume that the signal x, radiated from the target, is i.i.d. Let the two channels

be memoryless but not necessarily identical or independant, i.e.,

R(y; zjx) =

nY
i=1

R(yi; zijxi): (27)

Taking a Bayesian approach to the decision rule, calculating the expectation of R(y; zjx) with respect to x

and substituting (27), we get

ER(y; zjx) =
X
x2Xn

P (x)R(y; zjx) =
X
x2Xn

nY
i=1

P (xi)R(yi; zijxi)

=

nY
i=1

 X
x2X

P (x)R(yi; zijx)

!
: (28)
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The last line is obtained by changing the order of summation and multiplication and we get an i.i.d. proba-

bility function of y and z. The ML decision rule is therefore,

�̂o = argmax
i
J(yjzi) (29)

where J(�j�) is the conditional probability of y given z.

The universal decision rule is similar to the single DMC case, but now the vector x is replaced by a

noisy version, namely z, the output of the second channel. This test is based on the joint empirical entropy

between y and z where the joint empirical entropy of y and z is de�ned similar to (4) and (5) by substituting

x with z,

�̂u = argmin
i
Ĥ(y; zi): (30)

Note the similarity between the decision rules for this case (29) (30) and the �rst case (3) (6). In this case,

after averaging over x, one can think of the two channels as a single channel from z to y. Thus the intuition

behind this rule is the same as for the single DMC problem. For this problem the average probability of

error P e is similar to (7) by changing x with z. For this problem the above Theorem is valid.

The proof of the Theorem for the double DMC delay estimation problem is the same as that of the case

of a single DMC, where the vector x is exchanged with a noisy vector z of the second channel. Changing x

with z will give the proof of both parts of the Theorem.

III Modular Additive Finite-State Channel (MAFSC)

In this Section the single channel delay estimation problem will be solved for the class of MAFSC's. Consider

the class of �nite-state noise vectors characterized by a probability function of the form

M(w) =

nY
i=1

K(wijsi) (31)

where w = (w1; w2; :::; wn), wi is the channel noise at the ith time instant, wi 2 W ; w 2 Wn; jWj <1; si

is the state of the noise source at the ith instant, si 2 S; jSj <1; si+1 = f (wi; si) where f is the next-state

function, that maps S �W into S, and s1 2 S is the initial state. The class of �nite alphabet MAFSC's is
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described by

y = x�w (32)

where w; y and x have the same alphabet size jWj. Representing the alphabet letters by integers 0 to jWj�1

the modulo addition operation y = x � w is de�ned as y = (x + w) mod jWj. Similarly, the modulo

subtraction operation w = y 	 x is equal to w = (y � x) mod jWj. An interesting example of this class

of channels is the binary symmetric channel, where the noise is a �nite-state process. Another possible

application for this case is to approximate, for large signal-to-noise ratio, an additive �nite-state channel.

The transition probability is therefore equal to the probability of the noise vector, i.e.,

Q(yjx) =M(w): (33)

In this case it is assumed that the input vector x is governed by uniform distribution.

The ML decision rule for the above problem is the shift of the vector x for which maximum probability

is obtained. Let wi denote the vector obtained by the modulo subtraction of the shifted vector xi from y,

wi = y 	 xi = w� x0 	 xi: (34)

The ML decision rule is therefore

�̂o = argmax
i
M(wi): (35)

The proposed universal decision rule is based on the LZ compression algorithm [17]. A brief description

of the algorithm is given. The sequence w is divided into phrases. As we move along the vector w we parse

it into the shortest subsequences that di�er from all previous phrases. Each phrase (except maybe the last

one) di�ers from all the others and is a concatenation of a previous phrase with one extra symbol. The

encoding of each phrase consists of sending the index of this past phrase and coding the extra character.

Let Cl(w) denote the number of phrases of length l in the incremental parsing of the vector w. The LZ

complexity is now de�ned as

ULZ(w)
4
=

1

n

lmaxX
l=1

Cl(w) log(Cl(w)) (36)

where lmax is the length of the longest phrase. The universal decision rule is the vector wi with the smallest

13



LZ complexity,

�̂u = argmin
i
ULZ(wi): (37)

As will be shown in Appendix B, the LZ complexity ULZ(w) can be seen as the number of bits per

symbol needed to compress the sequence w. For the wrong shift, as will be shown presently, the vector wi

obtained from (34) is of uniform distribution and thus on average incompressible. For the correct shift, we

obtain a vector w characterized by the additive noise distribution and thus compressible to the entropy of

the noise source. The compressibility of a sequence, using the e�cient LZ compression algorithm, can be

used to distinguish between a uniformly distributed sequence (incompressible) and a random sequence from

a �nite state source which is compressible.

For this problem, and P e given by (7), the Theorem holds.

Proof of the Theorem for the MAFSC:

As before the proof of the Theorem will �rst be given for simple hypotheses. Extension of the proof to

multiple hypotheses is similar to the previous case and will thus be omitted. The proof of this case is similar

to the proof by Ziv for universal decoding [16]. The probability of error will be calculated for a given noise

vector w, and then averaged over all the input vectors x. >From (34), we have w1 = w � x0 	 x1. As x

is chosen randomly with uniform probability, ignoring end e�ects, the vector x0 	 x1 is also of uniform

distribution. Thus, for a given noise vector w added modulo to a uniformly distributed vector, gives a vector

w1 of uniform distribution (with probability M(w1) = 2�n log jWj for all w1).

For both parts of the proof the following Lemma, which is proved in Appendix B, is needed. This Lemma

is similar to [16, Lemma 2] which was given for joint parsing of a pair of sequences.

Lemma 2

The number of sequences w1 2 W
n such that ULZ(w1) � D is no more than 2n[D+O( log logn

logn
)].

1) Proof of part a for simple hypotheses:

Suppose that the �nite-state noise vector does not have maximum entropy, i.e.,

H(W ) = log jWj � � (38)

14



where H(W ) is the normalized entropy of the �nite-state noise source and � > 0. The average error

probability associated with the universal decision rule can then be bounded for some arbitrary constant �,

P e;u = PrfULZ(w1) � ULZ(w)g

� PrfULZ(w1) � �g+ PrfULZ(w) � �g

= PrfULZ(w1) � log jWj �
�

2
g+ PrfULZ(w) � H(W ) +

�

2
g: (39)

The last equality is given by choosing � = H(W ) + �
2 and (38). For the �rst expression, remembering that

all vectors w1 have probability 2�n log jWj and using Lemma 2, it is bounded by 2�n[
�
2
�O( log logn

logn
)] which

decreases exponentially with n. >From [25, Th. 2] and [26, Th. 1] ULZ(w) � � 1
n
logM(w) + O( 1

log n ).

Thus the second expression, for large enough n, is bounded by Prf 1
n
logM(w)�H(W ) � �0g where �0 > 0.

>From the large deviations theory this is the probability of a non-typical set and thus exponentially small.

As before, the optimal ML decision rule gives an average probability of error not greater than P e;u, thus

part a is proved.

2) Proof of part b for simple hypotheses:

For a given noise vector w, Vo(w) and Vu(w) are de�ned as the number of input vectors that give an error

for ML and universal decision rules respectively,

Vo(w) = jfw1 2 W
n : M(w1) �M(w)gj

Vu(w) = jfw1 2 W
n : ULZ(w1) � ULZ(w)gj: (40)

Similarly to (21),

P e;u =
X
x2Xn

P (x)
X
y2Yn

Q(yjx)1e(x;y) = 2�n log jWj
X

w2Wn

M(w)Vu(w)

� 2�n log jWj
X

w2Wn

M(w)Vo(w)max
w

�
Vu(w)

Vo(w)

�
= P e;omax

w

�
Vu(w)

Vo(w)

�
: (41)

Proving,

max
w

�
Vu(w)

Vo(w)

�
� 2n�n (42)
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where limn!1 �n = 0 will complete the proof of the second half of the Theorem.

Lemma 3

logVo(w) � n[ULZ(w) �O( 1
logn ) log jSj

2]: (43)

Lemma 3 is proved in Appendix B and is similar to [16, Lemma 1].

Inserting Lemma 2 into Vu(w) de�ned in (40) and choosing D = ULZ(w) we obtain

Vu(w) � 2n[ULZ(w)+O( log logn
logn

)]: (44)

Combining this and Lemma 3, (42) is obtained, where �n = O( log log n
logn ) and thus part b of the Theorem

proved for simple hypothesis.

Extension of the proof to multiple hypothesis, as mentioned before, is similar to the DMC case.

IV Discussion and Conclusions

The issue of universal delay estimation for the discrete single channel problem, where the random reference

signal is known to the receiver, was addressed and proved in the previous sections for all i.i.d. �nite alphabet

channels and all modulo additive �nite-state channels. The modulo additive i.i.d. channel is covered by both

of these cases, and it can also be proved, in a similar way to the MAFSC case, for a universal decision rule

taking the minimum empirical entropy of the noise vector, i.e., �̂u = miniH(wi).

Several extensions of this problem to a larger class of channels is of more practical interest. It must

be noted that the delay problem may not always be properly de�ned. Consider the example of a Markov

channel, where the transition probability is a function of the current input and a �nite number of previous

inputs and outputs. Taking into account delays of less than the channel memory can be ambiguous, as delay

may be an intrinsic part of the probability function. If one only considers delays that are longer than l, where

l grows slowly with vector length (e.g. l = O(log logn)), we can apply the Theorem and get a similar result

when looking at the joint empirical entropy of blocks of length l. This can be seen intuitively, because as l

grows the blocks become less dependent. For the class of autoregressive channels, where the current output

is a function of the present input and a �nite number of previous outputs, the question is well de�ned. The

proposition, in this instance, was not found to be a trivial modi�cation.
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The universal delay estimation for the two channel problem was proved in the previous section for all

discrete i.i.d. channels (not necessary identical). Extensions to larger classes of ergodic channels with �nite

memory is well de�ned for any number of shifts, as long as the two channels are identical. This is due to the

fact that the relative delay between the two channels is of interest, so any intrinsic delay in the probability

function is canceled out. We were not able to prove any of these extensions. We were always impeded by the

inability to assess the size of a Markov conditional type (e.g. Tx0;x1jy), where permutations are counted of a

vector with a Markov condition while a joint Markov empirical probability is maintained. For two Markov

channels not essentially alike and delays longer than l (where l grows with n as before and for large enough

l), the problem converges to the i.i.d. case and joint empirical entropy of l-blocks is considered.

In this paper the stubborn problem of universal delay estimation was tackled from an information-

theoretic point of view. For the i.i.d. cases the universal decision rule was found to be the minimum joint

empirical entropy. As the vectors and their shifts have essentially the same empirical entropy, this rule can

be seen as a maximum empirical mutual information rule. For the MAFSC case, where the channel has

memory, the universal rule made use of the LZ data compression algorithm.

Appendix A

Proof of Lemma 1

Inserting the bounds on typical sets (11) and (17) in Vo(qx;y),

Vo(qx;y) �
X

qo
x0;x1;y

2n[Ĥ(x0;x1;y)�Ĥ(x)�O( logn
n

)] (A.1)

where qo
x0;x1;y

ful�lls three conditions: the empirical PMF qo
x0;x1;y

has the marginal PMF qx0;y (
P

a1
qo
x0;x1;y

(a0; a1; b) =

qx0;y(a0; b) 8a0 2 X ; b 2 Y), its two marginal PMF's qo
x0

and qo
x1

must be equal (qo
x0
(a) = qo

x1
(a) 8a 2 X )

and the ML decision rule must give an error (Q(yjx) � Q(yjx1)). Consider the case of q
o
x0;x1;y

to be equal

q�
x0;x1;y

where

q�
x0;x1;y

(a0; a1; b)
4
=
qx0;y(a1; b)qx0;y(a0; b)

qy(b)
(A.2)
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for all qy(b) > 0. For b such that qy(b) = 0, q�
x0;x1;y

(a0; a1; b)
4
= 0 for all a0 and a1. Clearly, this probability

measure satis�es each of the above conditions, where the third condition is achieved with equality. Therefore

considering only this possibility, a lower bound on Vo(qx;y) is obtained.

We shall now upper bound Vu(qx;y) and show that this bound is asymptotically equal to the lower bound

of Vo(qx;y) obtained by (A.2). By substituting the upper bounds of typical sets (11) and (17) in Vu(qx;y),

we obtain

Vu(qx;y) �
X

qu
x0;x1;y

2n[Ĥ(x0;x1;y)�Ĥ(x)]; (A.3)

where qu
x0;x1;y

ful�lls three conditions: the empirical PMF qu
x0;x1;y

has the marginal PMF qx0;y (
P

a1
qu
x0;x1;y

(a0; a1; b) =

qx0;y(a0; b) 8a0 2 X ; b 2 Y), its two marginal PMF's qu
x0

and qu
x1

must be equal (qu
x0
(a) = qu

x1
(a) 8a 2 X ) and

the universal decision rule must give an error (Ĥ(x1;y) � Ĥ(x;y)). The number of typical sets is bounded

by (n+ 1)jX j
2jYj, thus

Vu(qx;y) � max
qu
x0;x1;y

2n[Ĥ(x0;x1;y)�Ĥ(x)+O( log n
n

)]: (A.4)

This maximization need only be done on Ĥ(x0;x1;y) as Ĥ(x) is determined by the �rst condition. From

entropy inequalities we obtain

max
qu
x0;x1;y

Ĥ(x0;x1;y) � max
qu
x0;x1;y

Ĥ(x0jx1;y) + max
qu
x0;x1;y

Ĥ(x1;y): (A.5)

Consider the right most term of the above inequality. This expression maxqu
x0;x1;y

Ĥ(x1;y) can be upper

bounded by Ĥ(x;y) from the third condition. Equality is obtained when qu
x0;x1;y

has marginal PMF's

qu
x0;y

(a; b) = qu
x1;y

(a; b) 8a 2 X ; b 2 Y . The probability function q�
x0;x1;y

of (A.2) has such marginal

probabilities. Thus qu
x0;x1;y

= q�
x0;x1;y

achieves this maximum (while ful�lling the �rst two conditions as

before).

Now let us analyze the �rst expression on the right-hand side of (A.5). Maximum is also obtained for

qu
x0;x1;y

= q�
x0;x1;y

and can be seen as follows: because conditioning decreases entropy

max
qu
x0;x1;y

Ĥ(x0jx1;y) � Ĥ(x0jy) (A.6)
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where Ĥ(x0jy) is given by the �rst condition. Inserting qu
x0;x1;y

= q�
x0;x1;y

, the inequality (A.6) is achieved

with equality. Therefore, qu
x0;x1;y

= q�
x0;x1;y

attains equality in (A.5) and consequently an upper bound for

Vu(qx;y) (A.4). As q
�
x0;x1;y

of (A.2) gives a minimum for Vo(qx;y) and a maximum for Vu(qx;y), thus inserting

q�
x0;x1;y

in (26), Lemma 1 is proved where �n = (jX j+ jX j2 + jX j2jYj) log(n+1)
n

= O( log n
n

).

Remark: In the proof of Lemma 1 two points were ignored. The �rst is the end e�ects of the two marginal

PMF's derived from the Markov PMF qx0;x1 . We arti�cially assumed a cyclic shift, and thus obtained equal

marginal PMF's. The second is that the probability function q�
x0;x1;y

may not be attainable for vectors of

length n. This was ignored as the author H.H.Munro (pseudonym 'Saki') once explained \A little inaccuracy

sometimes saves tons of explanations" (from `The Comments of Moung Ka') [27]. The e�ects of these points

are negligible and do not a�ect the result. At worst we are only able to obtain a probability distribution

~qx0;x1;y that accomplishes

X
a02X

X
a12X

X
b2Y

jq�
x0;x1;y

(a0; a1; b)� ~qx0;x1;y(a0; a1; b)j �
C

n
(A.7)

for some constant C, depending on alphabet size only. From [15, Lemma 1.2.7] the exponent discrepancy is

at most

jH(q�
x0;x1;y

)�H(~qx0;x1;y)j � jX j2jYj
C

n
log

n

C
= O( log n

n
)
n!1
�! 0: (A.8)

The order of convergence of the exponent is the same O( log n
n

) and was thus neglected.

Appendix B

Proof of Lemma 2

Let us calculate the number of bits LLZ(w) needed to encode a vector w using the LZ algorithm. For each

distinct phrase of length l+1, log+ l (log+ l
4
= log l+log log l+ : : : for all positive elements) bits are needed

to encode the length of the pre�x. Then dlogCl(w)e bits are needed to encode the serial number of the

pre�x of length l. Once the pre�x has been encoded, dlog jWje bits are needed to encoded the extra symbol
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of the phrase. The total length of the codeword is upper bounded by

LLZ(w) �

lmaxX
l=1

Cl(w)[logCl(w) + 2 log l + 4 + log jWj]: (B.1)

Let C(w) =
Plmax

l=1 Cl(w) denote the total number phrases of the parsing of w. Now, from the convexity of

the logarithmic function

lmaxX
l=1

Cl(w) log l = C(w)

lmaxX
l=1

Cl(w)

C(w)
log l � C(w) log

n

C(w)
: (B.2)

>From [25, Th. 2]

C(w) � O( n
logn ): (B.3)

Thus

1

n

lmaxX
l=1

Cl(w) log l � O( log logn
logn ): (B.4)

Therefore for the LZ coding scheme we have by (B.1), (B.4) and (36)

LLZ(w) � n[ULZ(w) +O( log logn
logn )]: (B.5)

For ULZ(w) � D the number of possible coded vectors is thus bounded by

2n[D+O( log logn
logn

)]: (B.6)

Proof of Lemma 3

The probability M(w) can be calculated by a �nite-state machine de�ned by a quintuple (S;W ;D; f; g),

where S is the �nite set of states, W is the input alphabet and and D is the output set. The function f is

the next-state function that maps S �W into S. The output function g maps S �W into D. The machine

is fed with a sequence w and emits the sequence d = (d1; d2; :::; dn) where di 2 D while going through a

sequence of states s = (s1; s2; :::; sn); si 2 S, where si+1 = f(si; wi) and di = � logK(wijsi). Therefore

� logM(w) = � log

nY
i=1

K(wijsi) =

nX
i=1

di: (B.7)
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>From the incremental parsing of w, according to the LZ compression algorithm, a set of phrases is obtained

characterized by (s; s0; l). Each phrase of length l has an initial state s and �nal state s0. Denote Cl(wjs; s
0)

as the number of phrases with the same (s; s0; l). By permutations of phrases, having the same initial and

�nal states, di�erent vectors of equal probability are obtained. Now by bounding Vo(w) (40) by vectors that

give equality

Vo(w) �

lmaxY
l=1

Y
s;s0

Cl(wjs; s
0): (B.8)

>From the Stirling formula

logVo(w) �

lmaxX
l=1

X
s;s0

Cl(wjs; s
0)[logCl(wjs; s

0)� log e]

= �

lmaxX
l=1

Cl(w)
X
s;s0

Cl(wjs; s
0)

Cl(w)
log

Cl(w)

Cl(wjs; s0)
+

lmaxX
l=1

Cl(w)(logCl(w)� log e): (B.9)

>From the convexity of the logarithmic function and (36)

logVo(w) �

lmaxX
l=1

Cl(w) logCl(w)�

lmaxX
l=1

Cl(w) log jSj2e

= nULZ(w)� C(w) log jSj2e: (B.10)

Also from (B.3)

logVo(w) � n[ULZ(w)�O( 1
logn ) log jSj

2] (B.11)

which completes the proof of Lemma 3.
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