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.Abstract - We develop a theory of minimal  trellises 
for convolutional codes, and find that the “standard” 
trellis need not be the minimal  trellis. 

I. INTRODUCTION 
From a minimal generator matrix G ( D )  for an (n, IC, m) 

convolutional code, it is possible to  construct a “standard” 
trellis representation for C. This trellis is in principle infinite, 
but it has a very regular structure, consisting (after a short 
initial transient) of repeated copies of what we shall call the 
trellis module associated with G ( D ) .  The trellis module con- 
sists of 2m “initial states” and 2m “final states,” with each 
initial state being connected by a directed edge to  exactly 2k 
final states. Each directed edge is labelled with an n-bit bi- 
nary vector, namely, the output produced by the encoder in 
response to the given state transition. 

Since the trellis module has 2“+” edges, and each edge has 
“length” (measured in bits) n, then total edge length of the 
trellis module is n.2k+m. Since each trellis module represents 
the encoder’s response to  IC input bits, we are led to  define the 
“standard trellis complexity” of the code as 

edges per bit. (1) n . 2m+k 
IC 

The standard trellis complexity as defined in (1) is a mea- 
sure of the effort per decoded bit required by Viterbi’s algo- 
rithm. However, we will see in the next section that this com- 
plexity can sometimes be reduced, by the construction of a 
simplified trellis for the code. 

11. EXAMPLE 
Consider the (8,4,3), dfree = 8, “partial unit memory” con- 

volutional code with minimal generator matrix 

/ 11111111 \ /oooooooo\ 
(2) 

[ 11101000 ] + [ 11011000 ] 
G(D)  = 10110100 10101100 

\ 1001101oj \ lOOl0llOj 

(see [3]). According to  (l), the “standard” trellis complexity 
of this code is 256 edges per bit. However, it is quite easy to 
reduce this number, as follows. 

We view the code in (2) as an (infinite-length) block code, 
with “scalar” generator matrix 

1‘’ gi G I  1 
Go G I  

Go G I  
(3) 

1 J 
where G ( D )  = Go + D .  G l ( D ) .  From this representation, and 
using a modification of the now “standard” theory of trellises 
for block codes [4], one can see that the code has a minimal 
trellis, built from trellis modules, each of which has 480 edges. 
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Since each module represents four encoded bits, the trellis 
complexity, as measured in trellis edges per encoded bit, is 
thereby reduced to  120. 

In this example, the trellis complexity can be reduced still 
further, if we alllow column permutations of the original gen- 
erator matriix G(D)  in 2. Indeed, by computer search we have 
found that one “minimal complexity” column permutation for 
this particular code is the permutation (01243567), which re- 
sults in the generator matrix (cf. (2)) 

G ( D )  == :::;:E) 10101100 + [ (4 1 
10011010 

Then after putting the minimal generator matrix of (4) into 
“minimal span” form, it becomes 

/11111111\ /oooooooo\ 

\00:111111j \ l l l l l l l 0 j  

The trellis complexity of the generator matrix in (5) turns out 
to  be 104 edges per encoded bit. 

111. GENERAL RESULTS 
We have found a simple algorithm algorithm for finding 

a generator matrix G ( D )  for a convolutional code, for which 
the corresponding “scalar” generator matrix (cf. (3)) is in 
“minimal span” form [4]. This generator matrix can then be 
used to  produce the minimal trellis for the convolutional code. 
In principle, the theory of minimal trellises for convolutional 
codes can be deduced from the general “Forney-Trott” theory 
[a] ,  but we believe the observation that the Viterbi decoding 
complexity of convolutional codes can be thereby systemati- 
cally reduced is new, as are the details of the algorithms for 
producing the minimal trellises. 

One nice by-product of our theory is that when we apply 
our techniques to  a convolutional code obtained by puncturing 
[l], we always find a trellis for that code which is as least as 
simple as the “punctured” trellis. Thus in the new theory, 
punctured convolutional codes no longer appear as a special 
class, but simply as high-rate convolutional codes whose trellis 
complexity turns out to  be unexpectedly small. 

REFERENCES 
J. B. Cain, G .  C. Clark, and J. M. Geist, “P:unctured Con- 
volutional Codes of rate (n - l ) / n  and simplified maximum 
likelihood deooding,” IEEE Trans. Infrom. Theory, vol. IT-% 
(January 19791), pp. 97-100. 
G. D. Forney, Jr., and M. D. Trott, “The dynamics of group 
codes: state spaces, trellis diagrams, and canonical encoders.” 
IEEE Trans. Inform. Theory, vol. IT-39 (1993), pp.  1491-1513. 
G. S. Lauer, “Some optimal partial-unit-memory codes,” IEEE 
Trans. Inform Theory, vol. IT-25 (March 1979), pp. 540-547. 
R. J. McEliece, “On the BCJR Trellis,” submitted to IEEE 
Trans. Inform Theory. 

131 


