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The Complexity of Information 
Set Decoding 

Abstract --Information set decoding is an algorithm for decoding any 
linear code. Expressions for the complexity of the procedure that are 
logarithmically exact for virtually all codes are presented. The expres- 
sions cover the cases of complete minimum distance decoding, bounded 
hard-decision decoding, and the important case of bounded soft-decision 
decoding. It is demonstrated that these results are vastly better than for 
the trivial algorithms of searching through all codewords or through all 
syndromes and are significantly better than those for any other general 
algorithm currently known. For codes over large symbol fields the 
procedure tends towards a complexity that is subexponential in the 
symbol size. 

I. INTRODUCTION 

HE COMPLETE DECODING PROBLEM for a T linear code is the problem of determining, for any 
received vector, the nearest codeword of the code. It has 
been shown by Berlekamp et al. [ l ]  that the complete 
decoding problem-or minimum distance decoding prob- 
lem (MDD), as it is commonly known-is NP-complete. 
This strongly suggests, but does not rigorously imply, that 
no general polynomial time algorithm for the problem 
exists. Many researchers have interpreted this result as 
suggesting that no general algorithm that is significantly 
less complex than the exhaustive searches through all 
codewords or all syndromes can exist. Indeed, Berlekamp 
et al. state that “the discovery of an algorithm which runs 
significantly faster than this would be an important 
achievement.” Bassalygo et al. [2] have suggested much 
the same idea. We show that a significant improvement is 
possible for virtually all linear codes over any symbol 
field. We give an expression for the complexity coefjicient 
F(q, R )  obtained by using generalized information set 
decoding for complete decoding of a linear code of rate R 
over GF(q) that is exact for virtually all such codes. The 
complexity coefficient is defined by 

1 
n-+ct. n 

F( q ,  R )  = lim -log, E(  q ,  R )  

where E ( q , R )  is the number of computations necessary 
(i.e., we have E ( q ,  R )  = qnF(q*R)+o(n)  1. Similar exact solu- 
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tions are given for information set decoding used to 
achieve bounded hard-decision decoding and for the im- 
portant case of bounded soft-decision decoding. Further- 
more, we show that the gain over exhaustive search proce- 
dures becomes more significant as the symbol size q rises; 
in fact, the complexity coefficient tends towards zero with 
increasing q.  We demonstrate that these results are sig- 
nificantly better than those obtained for the recently 
proposed zero neighbors algorithm [3], [41. 

11. INFORMATION SET DECODING 

Information set decoding was first suggested by Prange 
[51 for decoding cyclic codes and has been extensively 
examined and modified by many other researchers 
[6]-[22]. Information set decoding in all its forms works by 
exploiting the redundancy of the code. In an ( n ,  k )  code, 
if we have a set of k linearly independent bits from a 
received vector, we can construct the unique codeword of 
the code that agrees with the received vector in these bits. 
Thus these k bits determine the codeword uniquely, and 
hence the set is called an information set. If the received 
vector contains no errors in an information set, then we 
can recover the error pattern by the following procedure: 
reencode from the information set to find the unique 
codeword that agrees with the received vector in the 
information set bits, then subtract the codeword from the 
received vector. Because the information set now contains 
only zeros, the modified received vector now contains the 
error pattern added to the all-zero codeword, and so the 
errors have been trapped. Of course, any correctable 
error pattern lying outside the information set is cor- 
rected by this method, and this is where the procedure 
derives its efficiency. 

Many embellishments of this basic idea exist. In permu- 
tation decoding [6] sets of k positions are obtained by 
using the automorphism group of the code. If the code is 
in systematic form, the first k bits form an information 
set, and so do all valid permutations thereof. This deals 
with the problem of how the information sets are to be 
generated, but an exact analysis of complexity, even for 
correction of a very small number of errors, is very 
cumbersome [7], [81. Nevertheless, this method has been 
the focus of much attention [61-[81, [161. 

A modification of the basic idea is to drop the condi- 
tion that the information set is error-free. We then search 
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systematically through precomputed patterns of informa- 
tion set errors. These patterns are called covering polyno- 
mials by Kasami 191, who applies the method to cyclic 
codes, using n information sets and concentrating the 
computational effort in the use of covering polynomials. 
The obvious idea of using general information sets with 
covering polynomials has been suggested many times, for 
example by Dmitriev [lo] and Evseev [ 111. 

Information sets have also been applied, in a different 
context, to the soft-decision decoding problem [20]-[22]. 

The approach we refer to as generalized information 
set decoding uses k-tuples that are not necessarily infor- 
mation sets. If the k-tuple has fewer than k independent 
bits, we augment the set by adding more bits till there are 
k independent bits in the set. All possible binary patterns 
in the augmented bits are then searched. This approach is 
equivalent to both decoding with multipZiers 1121 and com- 
bined information set and covering polynomial methods. 

Despite the great amount of interest in algorithms 
based on the information set idea, no precise estimates of 
the decoding complexity have been produced. Clark and 
Cain [13] discuss some reasons why the problem is diffi- 
cult. First, it is related to a long-standing unsolved prob- 
lem in combinatorics, the ( n ,  1, t )  covering problem [14]. 
Given a set of n objects, we seek the minimum number of 
subsets of cardinality I, such that any subset of cardinality 
t is contained in at least one of the subsets of cardinality 
1. We refer to the minimum number of subsets required as 
the ( n ,  I, t )  covering coefficient, denoted by b(n, I, t ) .  In 
our problem, the subsets of cardinality t are the error 
patterns, and the subsets of cardinality I are the sets of 
parity positions, so that I = n - k .  A t-tuple that is cov- 
ered by an ( n  - k)-tuple is said to be trapped by the 
corresponding k-tuple. Our problem is thus to find an 
approximation for the ( n ,  n - k ,  t )  covering coefficient. 
However, the problem is more difficult for two reasons: 
the k-tuples selected must represent an information set, 
and (for complete decoding) we must decode all patterns 
that are coset leaders, not just all patterns of a fixed 
weight or less. Despite these difficulties, we present a 
solution which is logarithmically accurate for virtually all 
linear codes. 

First we derive a logarithmically accurate expression for 
b(n, I ,  r ) ,  the ( n ,  I, t )  covering coefficient. 

Theorem 1: Let R and p be constants such that 0 < p 
< 1 - R < 1. Then 

1 
lim - log b( n ,  [ n (  1 - R ) ]  , [ n p  J) 

n-+m n 
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where 

H*( x) = - x log, x - (1 - x) log, (1 - x) 

Proofi A lower bound for b(n, I, t )  is easy to obtain. 
We must trap all t-tuples. Each selected k-tuple can trap 
7") t-tuples. Even in the most optimistic scenario 

where each t-tuple is trapped by exactly one k-tuple, we 
still need 

k-tuples. Using the relation [19] 

2nHz(h ) -o (n )  - < (hn,) I 2nH2(A) 

for 0 < A < 1, where o(n)  denotes a function satisfying 
limn+m o(n>/n = 0, we have 

and 

and thus 

> - 2n[HZ(I - R ) - ( l  -R)H2(p/(l -R)) l+o(n) .  

For the upper bound, we adopt the following argument. 
We select a large number f ( n ,  k ,  t )  of k-tuples indepen- 
dently and at random. The probability that a given t-tuple 
is not trapped is 

because for each choice of t-tuple, there are ( n ;  ') "good" 

k-tuples, out of a total of k-tuples. The expected 
number of t-tuples not trapped is 

1;) 

Now let 

for some function g ( n ,  k ,  t ) .  Then the expected number of 
t-tuples not trapped is 

Using the relation 
lim ( 1  - l / x ) '  = e - '  

x - m  

we see that this expression tends towards 

Setting 

is the binary entropy function. 
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now gives an expected number of t-tuples not trapped less 
than one. This is possible only if there is at least one set 

need 

all coset leaders. From Theorem 1, we have the upper 
bound 

of f (n ,k , t )  k-tuples which traps all t-tuples. Thus we 2n[ Hz(r/n) - ( I - R ) H z ( r / n (  1 - R ) ) ]  + 0 0 1 )  

- 2n[Hz(H,J1(1 - R ) ) - ( I  -R)Hz(H,Y’( l  - R ) / ( I  - R ) ) ] + o ( n )  - 

For the lower bound, we note that we must trap q”-k  
coset leaders, and that virtually all coset leaders have 
weight greater than nHi’(1-  R)- o(n). Each k-tuple 
can trap no more than 

f ( n , k , t )  = ~ 

for some constant c .  Using the identity 

we have 

Thus the upper bound is such that 

b ( n , n  - 

- - 2 n[ H z ( p )  - ( I - R ) H z ( p  /( I -R) ) ]  + ~ ( n )  

which has the same form as the lower bound. 0 

To analyze the complete decoding problem for linear 
codes, it is necessary to have some knowledge of the 
covering radius of these codes. The covering radius r is 
the weight of the highest weight coset leader of the code. 
The Goblick bound [24] states that 

r 2 n H i ’ ( 1 -  R)  + o ( n )  

for all codes, but no general upper bound has been known 
until recently, when Blinovskii [251 and Levitin [261 showed 
independently that the Goblick bound is tight for virtually 
all linear codes, i.e., that 

r = n H i ’ ( 1 -  R )  + o ( n )  

for all but a fraction of codes that tends to zero as n +CO. 

Thus the coset leaders form an almost perfect sphere 
around the zero codeword with very sharp spikes extend- 
ing inwards to half the Goblick bound-an “inverted 
hedgehog,” to use Levitin’s term. 

We seek the number of k-tuples to be selected such 
that any coset leader of the code is disjoint from some 
k-tuple. This number is given by the following theorem. 

Theorem 2: For virtually all linear ( n , k )  codes over 
GF(q), the minimum number M ( d )  of k-tuples required 
to ensure that each coset leader is disjoint from at least 
one k-tuple satisfies 

1 
- l o g , M ( d )  =H2(Hy’(1- R ) )  
n 

- ( 1 - R ) H , (  Hi‘(1- R ) ) + 0 ( 1 ) .  
1- R 

Proofi An upper bound is obtained by considering 
the number of k-tuples necessary to trap all patterns of 
up to r errors, whether the patterns are coset leaders or 
not. By the definition of covering radius, this set includes 

such coset leaders. Now 

q n - k = (  nP ) ( q - l ) n ” . q o ( n )  

where 
p + - I  q ( 1 - R )  

so the lower bound has the form 

( :PI / (  n(:;R)) 

- - 2n[H2(H;’(l - R ) ) - ( I  -R)Hz(H;’( l  - R ) / ( l  - R ) ) ] + o ( n )  

and the theorem follows. U 

The only remaining problem is how we deal with the 
case when a selected k-tuple does not contain k linearly 
independent bits. If a k-tuple has only k - 1 independent 
bits, we say that the k-tuple is I-defective. We can remedy 
this condition by finding 1 bits from the remaining n - k 
in such a way that the ( k  + I)-tuple has k linearly inde- 
pendent bits, and then exhaustively searching through all 
possible error patterns in that I-tuple-these are just the 
covering polynomials mentioned earlier. This will cause 
an increase in complexity of 2‘ for that k-tuple. We need 
to show that this increase in complexity is subexponential. 
Given fixed R and a, with 0 < R, a < 1, we say that an 
[nR]-tuple is seriously a-defective if the LnRJ-tuple con- 
tains less than [nR(l- a)] independent bits. We will show 
that for any fixed a > 0 and sufficiently large n,  there are 
virtually no linear (n ,k)  codes that contain any k-tuple 
that is seriously a-defective. To do this, we employ the 
useful analytical tool of Kolmogorov complexity as ap- 
plied to codes; a detailed discussion of this approach can 
be found in [27]. For our present purposes, a brief synop- 
sis of the main points will suffice. We use a universal 
model of computation, the universal Turing machine 
(UTM) [28]. Informally, this consists of a finite state 
machine, a read-write head, and a two-way infinite tape 
ruled into cells. At each time instant, the UTM can 
change state and/or simultaneously perform one of the 
following actions: overprint the current symbol on the 
tape with a new one or a blank, move one cell right, or 
move one cell left. Church’s Thesis [28] states that any 
function which is computable by a mechanical procedure 
can be computed by a UTM. The Kolmogorov complexity 
of a string s is the length of the shortest string 
(“program”) which, if placed on the tape to the immedi- 
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' 015 

= /  0 1  

ate right of the read-write head, would cause the UTM to 
run and halt eventually leaving s to the right of the 
read-write head. A string is said to be random if its 
Kolmogorov complexity is at least equal to its length. We 
need the following key result 1281. 

The fraction of all q-ary strings of length n with 
Kolmogorov complexity less than n - c is less than 
q-' for any c. 

This follows because each such "low complexity" string 
requires a unique program of length less than n - c to 
represent it. The number of such q-ary strings is CY=(;-'q' 
= (,,-' - l ) / ( q  -11, and this is a fraction of less than 
q-' of all strings of length n. Thus almost all strings of 
length n are almost totally random. 

We are now ready for the following result. 

Theorem 3: For any fixed R and a satisfying O<a, 
R < 1,  and for all sufficiently large values of n,  virtually all 
linear ( n , [ n R ] )  codes over any symbol field contain no 
[nRI-tuple with fewer than InR(1- all independent bits. 

Proofi Let G be the k x n generator matrix of a 
linear code B. With this generator matrix we associate 
the string s(G) of length nk obtained by writing G out 
row by row. Each generator matrix corresponds to exactly 
one such string and vice versa (note that we do not insist 
that each code be represented by exactly one string; nor 
do we insist that dim d = k ) .  From the key lemma on 
Kolmogorov complexity, the fraction of these strings with 
Kolmogorov complexity less than nk - c is less than q-'. 
Suppose a code contains a k-tuple that is seriously a-defi- 
cient. We can specify the generator matrix (and hence the 

Full Decoding 

... --.._ -.__ 
__._..-------.....__~~ __..-. __-. __.. 

full 

a 

a 

a 

a 

' 0.15- 

0 1 -  

code string) as  follow^: 
specify the deficient k-tuple (taking log, (:) symbols); 
write out the other n - k columns in full (taking 
k ( n  - k )  symbols); 
write out the k(1-  a )  independent columns in the 
defective k-tuple (taking k2(1 - a )  symbols); 
specify each of the remaining columns in the defec- 
tive k-tuple by specifying the linear combination of 
the independent columns that yields it (taking k a k  
(1 - a )  symbols). ' 

Full Decoding 

-._ --.._ -.__ 
__._........._...~__~~ __..-. __-. __.. 

The total length of this program is 

C+log,(  l) + k ( n  - k )  + k 2 ( 1  - a )  + k a k ( 1 -  a )  

= n2R - n2R2a2 + o( n 2 ) .  

The fraction of such strings is thus less than q-n'R'a'+ o(n') , 
as required. 0 

Putting together the results of Theorems 1, 2, and 3, we 
have the following result. 

Theorem 4: For virtually all linear ( n , k )  codes 8 over 
GF(q), the complexity M ( d )  of complete minimum dis- 
tance decoding using the generalized information set de- 

coding algorithm satisfies 
1 

log, M (  8) = H2( H(;'( 1 - R ) )  
n 

l f c y ' (  1 - R )  
1 -  R - (  1 - R ) H 2 (  ) + ~ ( l ) .  

By the convexity of the entropy function, we have 
H,(xy )  > x H , ( y )  for 0 < x ,  y < 1, and so the function is 
always greater than zero, as we would expect. 

The behavior of this function versus R for the case 
q = 2 can be seen in Fig. 1. Clearly, it represents a huge 
improvement over exhaustive search procedures for any 
fixed rate. For R = 1/2,  generalized information set de- 
coding requires less than the fourth root of the number of 
computations required by a search through all codewords. 

For bounded distance hard-decision decoding, we need 
to decode all error patterns of weight up to t ,  where 
t = [ ( d  - 1)/2] .  It is well known that virtually all linear 
codes satisfy the Gilbert-Varshamov bound, d 2 nH;' 
( 1  - R ) +  o(n). In the binary case ( q  = 21, it is also known 
[29] that virtually no codes exceed the bound by any 
significant amount. We assume that for any q,  the bounded 
distance decoding problem involves only decoding all er- 
ror patterns up to half the Gilbert-Varshamov bound, 
i.e., up to n H i ' ( 1 -  R ) / 2 +  o (n )  errors. 

Decodlng Complexity 
05 1 

O 4 I  0 4  1 Exponenual Search 

Bounded Hard Dccoding 

" ' " ' ' .  
0 0.1 0.2 0.3 0 4  0.5 0.6 0.7 0.8 0.9 1 

Rate 

Fig. 1. Complexity of various decoding rules for binary codes. 

Theorem 5: Bounded distance decoding using general- 
ized information set decoding has, for virtually all linear 
codes, a complexity M(8) satisfying 

1 
- l o g 2 M ( 8 ) = H 2 ( H , T ' ( 1 -  R ) / 2 )  
n 

H i ' ( 1 -  R )  
- ( 1 -  RI..( 2 ( 1 - R )  ) + o w .  

Proofi The proof follows from Theorems 1-3 with 
0 

This function is plotted versus rate for the binary case 
( q  = 2)  in Fig. 1. The number of computations is far less 
than for exhaustive search, and is also much less than for 
complete minimum distance decoding, requiring slightly 
less than the square root of the number of computations 

p = H i  '(1 - R ) / 2  + ~ ( l ) .  
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required for complete decoding at rate one-half. This 
represents a complexity of slightly more than the ninth 
root of the number of codewords. 

The problem of soft decision decoding for binary linear 
codes has been extensively examined. It is well known [30] 
that an error pattern can have at most d - 1 hard errors if 
it is to be within the guaranteed soft error correcting 
power of the code. Conversely, given any set of d - 1 
locations, we can construct an error pattern within the 
guaranteed soft-error-correcting power of the code with 
hard errors in all those d -1 positions. Thus to derive 
a priori an algorithm that achieves soft-decision decoding 
up to the guaranteed soft-error-correcting power of the 
code, it is necessary and sufficient that we should be able 
to correct all patterns of up to d - 1 hard errors. For most 
codes, we have 

d - 1 = nHi'(1- R )  + o(n) = p 

so the computational requirement is as given in Theo- 
rem 4. 

Theorem 6: Bounded soft-decision decoding using gen- 
eralized information set decoding has, for virtually all 
binary linear codes, a complexity M ( B )  satisfying 

1 
- log, M (  6 )  = H2( f l y ' (  1 - R ) )  

H - ' ( l - R  
- ( 1 - R )  H ,  ( ) + .( 1) 1 - R  

HC'(1- R )  
= ( 1  - R ) [ l -  H 2 (  1- ) ]  + 4 1 ) .  

Again, the complexity is plotted as a function of R in 
Fig. 1, where the exhaustive search procedures involve 
searching through all codewords (for R I 1/2) or decod- 
ing with a trellis [31] (for R > 1/21. In practical applica- 
tions, bounded soft-decision decoding asymptotically (in 
SNR) doubles the error-correcting power. Fig. 1 shows 
that for virtually all codes, it also doubles the exponent in 
the number of computations, assuming generalized infor- 
mation set decoding is used. In some applications, we may 
not wish to decode out to double the guaranteed hard 
distance, but rather to three halves the hard distance, or 
some other multiple 7. In general, this requires a com- 
plexity coefficient of 

+ 0 ( 1 ) .  
?&I( 1 - R )  

2(1- R )  

Another parameter of interest is the behavior of the 
algorithm when q becomes very large. We have the fol- 
lowing result. 

Theorem 7: For large q,  we have F ( q ,  R)+ H,(1 - 
R)/log, q.  Thus lim, ~ o c  F ( q ,  R )  = 0. 

B t 

0.02 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Rate 

Fig. 2. Complexity for various symbol fields. 

Proofi This follows from the behavior of the function 
H i  '(XI as q becomes large. We have 

H,(x) = xlog,(q -1) + xlog,x + ( l -  x) log , ( l -  x) 

= x  l+log, 1-- + H 2 ( x ) / l o g z q  ( ( :)I 
+ ( H2( x 1 )/log, 4 

+ x  as q + m .  
Then by continuity of H,(x) ,  we must have 

lim H i ' (  x )  = x. 
9-00 

From Theorem 4, we have 
1 

lim - log, M (  8) = H,( H;'( 1 - R ) )  
n + m  n 

= H2( 1 - R - €) 

= H2( 1 - R )  + E ' -  (1 - R)€"  
+ H2( 1 - R )  . 

Thus the computational effort M ( 8 )  has the form 
2 n H 2 ( 1 - R ) - t o ( n )  for large n ,  independent of q. This is 
equivalent to q(""2(' -R)fo(n))/'og2y, so the complexity coef- 

0 ficient is H,(1- R)/log, q as claimed. 

Fig. 2 shows the complexity coefficient for complete 
minimum distance decoding for many values of q. The 
fact that the complexity coefficient tends to zero with 
increasing q is intuitively quite surprising and, we feel, 
quite significant. 

111. COMPARISONS 

The question of the complexity of general decoding 
algorithms has attracted a great deal of attention, and 
many algorithms have been proposed. Recently, Levitin 
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and Hartmann have proposed new algorithms based on 
the novel and intuitively appealing concept of “zero 
neighbors” [3] and the related concept of “zero guards” 
[41 and have given upper bounds on the complexity of 
these algorithms that are valid for virtually all linear 
codes, and which are much lower than the 2n[min(R,(1-R))1 
obtained from the exhaustive search algorithms. Because 
of this, the algorithms have attracted much attention [ 151, 
[33]. However, Fig. 3 shows that the complexity of the 
zero neighbors algorithm (ZNA), 

(FZNA( 2, R )  H,(2H, ’ ( 1 - R ) )  - ( 1 - R )  

for R > 0.1887 and for q = 2) ,  

is much higher than that for generalized information set 
decoding-for example, in the case R = 1/2, generalized 
information set decoding requires less than the square 
root of the complexity required by the zero neighbors 
algorithm. This is even greater than the gain made by the 
ZNA over exhaustive search (the ZNA requires marginally 
more than the square root of the number of codewords at 
R = 1/21. In addition to this favorable comparison, gener- 
alized information set decoding has two further major 
advantages. First, as we have seen, it can be modified 
easily to perform bounded soft-decision decoding, without 
any significant rise in complexity. For the ZNA, on the 
other hand, soft-decision decoding requires a prohibitive 
rise in complexity. Second, the complexity characteristic 
for large q is much less favorable for the ZNA, approach- 
ing the complexity required by exhaustive search, rather 
than zero. We have FzNA(q,R)= Hq(2H;’(l- R))--(l- 
R )  for R such that H;’(l- R )  I 1/2, and FzNA(q, R )  = R 
otherwise. It can easily be demonstrated that this yields 
F z N , ( q , R ) ~ m i n ( R , ( l - R ) )  as q+m. 

Decoding Complexity 
0 . 3 1 ,  I ,  I 

~~~~~ U- 

0 0.1 0.2 0.3 0.4 OS 0.6 0.7 0.8 0.9 I 

Rate 

Fig. 3. Comparison of complexity for complete minimum distance de- 
coding-various algorithms. 

Previous analysis of algorithms based on the error trap- 
ping idea have usually given the lower bound for bounded 
distance hard-decision decoding [9], [ 131. Evseev 1111 dis- 
cusses an algorithm- Q-decoding-which is basically the 
same as information set decoding. He shows that with 
soft-decision decoding, the probability of error for the 
algorithm is no more than double that for maximum 

likelihood decoding, with complexity coefficient F( R )  5 
R(1- R).  We plot this bound in Fig. 3. Clearly, it lies far 
above our (exact) solution. 

IV. CONCLUSION 

Exact solutions for the complexity coefficient for gener- 
alized information set decoding for the cases of complete 
minimum distance decoding, bounded hard-decision de- 
coding, and bounded soft-decision decoding have been 
obtained. These are significantly less than the best avail- 
able bounds from other algorithms, and vastly less than 
the requirements from the trivial exhaustive search algo- 
rithms. Indeed, for large symbol fields, the gain over the 
full search algorithms is essentially unlimited. 

Comparison of the complexity requirements for the 
various decoding strategies yields an insight into the 
tradeoffs of performance versus complexity that are avail- 
able. In particular, bounded soft-decision decoding gives 
a performance asymptotically twice as good as that for 
bounded hard-decision decoding for the AWGN channel. 
Using generalized information set decoding, it requires a 
complexity coefficient twice as high. 

Although we do not claim that the generalized informa- 
tion set algorithm is the best general decoding scheme for 
linear codes, it seems clear that an important principle is 
being exploited in the algorithm, and that any optimal 
decoding scheme should possess the same advantages. 
Elsewhere, we have proposed a unified structure [341 for 
decoding algorithms that incorporates both information 
set decoding and the zero neighbors algorithm, among 
others, which we believe may yield general algorithms of 
even lower complexity. We intend to report on this work 
at a later date. 
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