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3) 

combined to form the sets of sequences. This proceeding 
reduces the numbers of generated sets of sequences ex- 
tremely. 
An efficient algorithm for checking sets of sequences to be 
a PCS builds the sum of all first PACF sidelobes and 
checks it to be zero. If this sum is zero the next PACF 
sidelobes arc calculated and checked. Otherwise the set of 
sequences is not a PCS and the algorithm stops. 

Example 6 -Counterexample for Possible PCS: A counterex- 
ample is given for illustrating the reduction of the number of 
generated sets of P = 4  sequences with N = 1 5  elements. A 
simple binary counter would generate 

(63) 2‘.N=2601 1.15.101X 

different sets of sequences that have to be checked. 
However, with the equations (261, (381, and (40) only for 

sequences with pl(a,) = 4, p l ( a , )  = 6, p f ( a , )  = 7 and pl(a,) = 7, 
or with pl(a,)  = 5 ,  p l ( a , )  = 5, p f ( a , )  = 6, and pf(a,) = 7 PCS 
may exist. For pl = 4 only 56 sequences, for pl  = 5 only 111 
sequences, for p l =  6 only 185 sequences and for p l =  7 only 232 
sequences with different PACF are obtained. So the number of 
all possible sets of sequence reduces to 

56.185.232.232 + 111.11 1.185.232 = 83.1.09. lo9. (64) 
This number of possible sets can be checked for a PSC. 

With these methods of computer search PCS with P = 3  
sequences could be found up to length N = 8 ,  with P = 4  
sequences up to length N = 19 and with P = 5 sequences up to 
length N = 12. One example of these PCS are depicted in Fig. 2. 

VII. CONCLUSION 
In this correspondence sets of periodic complementary binary 

sequences (PCS) are examined. Properties and existence condi- 
tions are derived for PCS. The properties and synthesizing 
methods of the well-known sets of the aperiodic complementary 
binary sequences (ACS) could be generalized. Whereas ACS 
exist only for even number of sequences, PCS may exist for 
every number of sequences. 

It is shown that PCS correspond to a subclass of difference 
families. Perfect binary arrays, whose two-dimensional periodic 
autocorrelation function is a delta function, yield a special 
subclass of PCS. A construction method based on perfect binary 
arrays is given. 

Applying specified theorems recursively to known PCS pro- 
duces PCS with increasing lengths and number of sequences. 
For PCS with length N = Ornod4 the existence conditions do 
not restrict any number of sequences. With the described meth- 
ods of computer search, PCS with four sequences for many 
lengths could be found. A construction method for PCS with 
four sequences and any number of elements is not known. A 
diagram provides a general view of all PCS up to length 50 and 
up to 12 sequences. Small PCS’s obtained by methods of com- 
puter search are depicted in a table. 
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A Note on Square Roots in Finite Fields 
ERIC BACH 

Abstract -A simple method is presented showing the quadratic char- 
acter in a finite field of odd order 9 can be computed in O(log* 9 )  steps. 
It is also shown how sequences generated deterministically from a 
random seed can be used reliably in a recent randomized algorithm of 
Peralta for computing square roots in finite fields. 

I. INTRODUCTION 
In [ 171, Peralta has published two interesting randomized 

algorithms for computing square roots modulo an odd prime p. 
In fact, his algorithms work in general finite fields, and in 
connection with this, two questions are of interest. 

1) What is the best way to decide whether an element in a 

2) How should one choose successive pseudo-random num- 
finite field is a square? 

bers for use in these algorithms? 

The first question arises because several randomized algo- 
rithms for computing square roots in a finite field of order q fail 
when a randomly constructed field element is a square. If failure 
can be predicted in less then O(log3 q )  steps-the time needed 
to run the algorithm-then another trial can be started with 
very little loss of time. One can test whether a nonzero element 
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t is a square by computing t ( , - ' ) / * ,  but this requires an O(log3 q )  
computation. Section I1 gives another test that requires O(log2 q )  
steps, which generalizes the Jacobi symbol algorithm to any 
finite field. The algorithm is implicit in the reciprocity law for 
polynomials over finite fields [12], but it does not seem to have 
been analyzed before. 

The second question has already been studied in connection 
with some algorithms for computing square roots modp.  In [2] 
we showed that these algorithms are very reliable when run on 
sequences derived in a simple fashion from a randomly chosen 
seed. The results therein do not apply to Peralta's second 
algorithm, nor do  they apply to non-prime finite fields. It 
therefore seemed interesting to ask whether these results could 
be extended to Peralta's algorithms. Section I11 reviews the 
algorithms, and Section IV answers this question in the affirma- 
tive. 

11. A QUADRATIC CHARACTER ALGORITHM 
In the sequel p denotes an odd prime, and 4 = pn, a prime 

power. IF, or K denotes a finite field of q elements, K *  its group 
of nonzero elements, E its algebraic closure, and K [ X ]  the 
polynomial ring in one indeterminate. We assume that E, is 
implemented as IF,,(l), where 5 satisfies a monk polynomial 
equation of degree n over f fp.  Then in ff(,, addition and subtrac- 
tion take O(logq) steps, and multiplication and division take 
O(log2 q )  steps (assuming that classical algorithms are used for 
integer and polynomial arithmetic). ,y denotes the usual 
quadratic character on K ;  the following definition generalizes 
the Jacobi symbol to polynomials over finite fields. 

Definition 2.1: Let K be a finite field of odd characteristic, 
and let f and g be polynomials in K [ X ] ,  with g monic and of 
positive degree. If g is irreducible, then 

1, if gcd( f, g ) = 1 and f is a square mod g ; 
( f i g ) =  -1, i f g c d ( f , g ) = l  a n d f i s n o t a s q u a r e m o d g ;  i 0, otherwise. 

If g = g, . . . g, with each g, monic and irreducible, then 

This definition implies that if a E K ,  ( a l g )  = ,y(aIdegK, which 
can be proved as follows. It is enough to consider the case where 
g is irreducible, in which case L = K [ X ] / ( g )  is an extension 
field of K ,  of degree degg. If (Y is not a square in K ,  then it 
becomes a square in L if and only if L contains a quadratic 
extension of K ,  that is, if and only if deg g is even. 

The analog of quadratic reciprocity is the following result, for 
which an elegant proof is given by Ore [16, p. 2721. 

Theorem 2.2 [12j Let f , g  E K [ X ] ,  with f , g  monic and 

( f ig )=  rI=,(f lg , ) .  

deg f, deg g > 0. Then 

Algorithm 2.3: Input-f, g E K [ X ] ,  with g monic and 

f - f m o d g .  
a + leading coefficient of f .  
If deg f = 0 then return 

Return f , y ( a ) d ' g y ( g l f )  (taking ' - '  iff (IKI- 1) /2 ,  degf ,  and 
deg g are all odd). 

dcg g > 0; output-(flg). 

f +-f/a. 

Theorem 2.4: I f  f and g in K [ X ]  have degree at most d ,  
then Algorithm 2.3 computes (flg) using O ( d 2 )  field operations 
and O(d)  evaluations of the quadratic character in K .  Conse- 
quently, the quadratic character in IF, can be evaluated with 
O(log2 4 )  bit operations. 

Proof The correctness of the algorithm follows from the 
reciprocity law. T o  analyze its running time, note that it com- 
putes a polynomial remainder sequence 

u k - l  = q k - I u k  + f f , f - l  

where U(, = f, u 1  = g ,  U ,  is monic for i 2 1 ,  and deg U ,  > deg U,+ , 
for i = 1; . ., k - 1. Such remainder sequences have length O ( d )  
and can be computed with O ( d 2 )  field operations [15, p. 1331; 
this proves the first assertion. 

To  prove the second, note that if IF, = E,,(() where 5 has 
a monic defining polynomial g, then IF, = I F p [ X ] / g ( X ) ,  so 
,y(f([)) = (f Ig). In IF,,, ,y can be evaluated in O(log2 p )  steps by 
the Jacobi symbol algorithm [6], and arithmetic operations take 
O(log2 p )  steps. So if 4 = p" ,  the total number of bit operations 
used is at  most a constant times 

n 2 ( l o g p ) 2 + n ( l o g p ) 2 = O ( n 2 1 0 g 2 p )  = o ( l o g 2 q ) .  U 

Remarks: 

1) The subresultant algorithm can be used to compute a 
remainder sequence that differs from U(); . ., u k  only by 
constant factors [15], from which it is easy to recover the 
u,'s and the a,'s. Then 

from which the quadratic character on IFq can be quickly 
reduced in parallel to arithmetic in IF,, and one evaluation 
of ,y. This gives another proof of Fich and Tompa's result 
[SI that for fields of small characteristic, the quadratic 
character is in the complexity class NC. 

2)  The algorithm given in this section can be improved 
asymptotically, to compute the quadratic character in IF, 
using (logq)'+"(') steps. We indicate briefly how this can 
be done. 

Gauss [9, p. 5091 showed how to compute the quadratic 
character in E,, using Euclid's algorithm; his procedure may 
be summarized as follows. Assume that a is positive and 
relatively prime to p .  The Euclidean algorithm applied 
to a and p will compute quotients c, and remainders 
L',, where U ( ,  = a ,  c1  = p ,  and P,  = c,c,+, + c , + ~  for i = 
O ; . . , I - l .  (Then c (=1 ,  c , + ] = 0 ,  and c ( , , " . , c I - ,  are 
quotients of the ordinary continued fraction of a / p . )  For 
convenience, abbreviate 11) / 2 ]  as U ' ,  and let 

Then ( a l p ) =  * ( - l ) $ ,  taking the plus sign if a is odd or 
p = f 1 modulo 8, and the minus sign otherwise. (If p is 
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3 )  

4) 

5) 

composite and a is relatively prime to p ,  this computes the 
Jacobi symbol [3, p. 2901.) 

Using this, ( a l p )  can be computed in (log p) '+O( ' )  steps 
by using Schonhage's algorithm [ 191 to find the continued 
fracjion of a / p ,  then computing the remainders L', mod- 
ulo 8, and i,b modulo 2. 

If q is not prime, then the formula of the previous 
remark may be used provided that the values of deg U, and 
a ,  can be found in (log 4)' + O ( ' )  steps. This can be done via 
Moenck's algorithm [14], as follows. Moenck's algorithm 
finds the continued fraction quotients and greatest com- 
mon divisor of the input polynomials, which determine the 
leading coefficient and degree of each polynomial in the 
ordinary remainder sequence. There is a relation express- 
ing each such polynomial as a linear combination of the 
next two in the sequence; dividing this relation by the 
leading coefficient of that polynomial determines a,. Since 
Moenck's algorithm uses O(n log' n )  field operations on 
inputs of degree bounded by n ,  and each operation in E,, 
can be done in (logp)'+"(') steps [ l ,  p. 2771, the claimed 
bound follows. 
Itoh and Tsujii [ 1 1 ]  have given another algorithm for 
quadratic residuacity in Fq. If q = p",  their algorithm takes 
O h 3  log' p )  steps using classical methods, and by the 
previous results O(nw(Iog p)I + O ( ' ) )  steps asymptotically, 
where w is the exponent of matrix multiplication. (It is 
known that 2 I w < 2.376 [7].) In general, the algorithms of 
this section are faster, although the two results are compa- 
rable when n is fixed. 
Even for prime fields, it seems to be unknown whether one 
can recognize d th  powers in Fq in O(log2q) steps, when 
d f 2, and dlq - 1. 
The question of this section becomes moot if K has 
characteristic 2, for then every element is a square. 

111. Two SQUARE ROOT ALGORITHMS 
Below we review Peralta's results generalized to finite fields 

that have odd characteristic but are not necessarily prime. In the 
algorithm descriptions, T is an indeterminate, so that K [ T ]  is a 
polynomial ring. 

A/gorithm 3.1: Input-a, a nonzero square in K ;  output-a 
square root of a .  

Choose x E K at random. 

Otherwise, let A = K [ T ] / ( T 2  - a ) .  
Find u , c ~ K  suchtha t in  A , ( T + X ) ' ~ - ' ) ' ~ = U T + ~ .  

Theorem 3.2 117) Algorithm 3.1 returns a square root of a 
unless x ( x 2  - a ) =  1. It takes O(log3 q )  steps, and fails with 
probability 1/2 - 3 / ( 2 q ) .  

If x 2  = a ,  output x .  

If c = 0, output U-'. 

Algorithm 3.3: Input-a, a nonzero square in K ;  output-a 
square root of a .  

Let q - 1 = 2'd, where d is odd. 
Choose x E K at random. 
If x = o or x 2  = - a ,  fail. 
Otherwise, let A = K[T]/(T2 + a ) .  
Find U ,  L' E K such that in A ,  ( T  + x)" = U T  + e.  
If ur  = 0, fail. 
Otherwise, find the least i such that ( U T  + c)"= w T  for 

some w E K .  

Define r ,  s E K by ( U T  + r $ ) " -  ' = rT + s. 
Return s / r .  

Theorem 3.4 [17) Let b denote a square root of - U ,  and let 
m = 2 ' - l .  , assume q = 1 (mod4). Algorithm 3.3 returns a square 
root of a unless x = f b or for some nonzero y ,  ( x  + b ) /  
( x  - b )  = y"'. It takes O(log3 q) steps, and fails with probability 
at most l / m  + l / q .  

Ordinarily one simply repeatedly tries a randomized algo- 
rithm until it works. However, the results of Section I1 suggest 
the following improvement to Algorithm 3.1: Test random val- 
ues of x until one is found with x ( x 2  - a ) +  1, rather than 
repeat the whole algorithm. (This strategy was suggested by 
Berlekamp [4].) 

If m is large, Algorithm 3.3 is much more reliable than 
Algorithm 3.1. Unfortunately, there seems to be no better way 
to tell whether a choice of x will work than to try it. However, 
any x for which x ( x 2  + a )  = - 1 will succeed in Algorithm 3.3, 
for then (x  + b ) / ( x  - b )  is not a square, and surely not an mth 
power. One might also use Algorithm 2.3 here to quickly find 
such an x. 

Remarks: 

1) Peralta's first method is a simplified version of the 
Berlekamp-Rabin algorithm for factoring T 2  - a .  For, if 
( T  + x)(~-') ' '  = u T m o d ( T 2  - U ) ,  then Rabin's algorithm 
[18] would compute gcd((T + x ) ( " - ' ) ' ~  - 1 ,T2  - a )  = T - 
U-'. Since K [ T ] =  K [ T  + XI, replacing T + x by T shows 
that gcd(T(q-')I2 - 1 ,  ( T  - x)2 - a )  = T - (x  + U-'), from 
which Berlekamp's algorithm [4] would return U-' as a 
square root of a .  

2) The failure criterion for Algorithm 3.1 is nearly identical to 
that of the Cipolla-Lehmer algorithm [13], which com- 
putes 6 in O(log3 q )  steps when a random x E K satisfies 
x ( x 2  - 4 a ) f  1. Also, given x E K for which x ( x )  = - 1, 
the Tonelli-Shanks algorithm [21] will compute a square 
root in K in O(log4 4 )  steps. Both of these methods could 
profit from Algorithm 2.3. 

3) If q E 3 (mod4), Algorithm 3.3 can be used, provided that 
q - 1 is replaced by q + 1 in the first line. If m = 2"- ' ,  the 
computation fails iff T + x is an rnth power in A (a finite 
field of order q 2 ) ,  which occurs with probability at most 
l / m .  

4) All algorithms discussed in this section for computing 
square roots in K take at least O(log3q) steps. It is 
unknown whether this can be reduced to O(log2q), al- 
though when K has characteristic 2, one can compute 
square roots by inverting the matrix for the Frobenius map 
x -j x 2  [5]. This method takes O(log2 4 )  steps once the 
inverse matrix is computed. 

I v .  DtTERMINISTIC S E Q U t N C E s  FOR S Q U A R E  
CROOT COMPUTATION 

Thc algorithms of the last section will in general require a 
sequence of random inputs from K ;  this section discusses simple 
methods to generatc them from a random seed x E K .  The 
results show that if fixed constants cl; . ' , c k  are properly cho- 
sen, then trials using x + cl; . ., x + cL will simulate indepen- 
dence. 

Definition 4.1: A line in E', is a set of the form ( y  + 61: t E E,,), 
where y,6 E IF, and 6 # 0. 

In the results next, we assume that c I ; ~ ~ , c k  are distinct 
elements of K ,  chosen from a set containing no lines (this is the 
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interpretation of "properly chosen"). Such sets are easy to find. 
For example (viewing f f q  as a vector space over E,,), { ( x , ;  . . , xn): 
all x, # 0 )  contains no lines. Also, any set of size less than p 
cannot contain a line. 

Lemma.4.2: Let mlq -1, with m > 1, and let 0 < e ,  < m for 
z = 1 ; .  .,f. Then 

/ 
f( X )  = n (( x + c, + b ) ( X +  c, - b) ,"- l )e '  

r = l  

is not an mth power in K [ X ] .  

Proof: The zeros of f are C Y ,  = b - c, and p, = - b - c,. 
Certainly the a,'s are distinct, as are the p,'s. Hence no three of 
them can be equal. By unique factorization, if f is an mth 
power, then { C Y , , .  . . , C Y , )  = {PI; . ., /3/), that is, 

{ e ,  - b ; . . , c ,  - b} = {c, + b;  . . , c /  + b} .  

Thus C = (c,; . . , c , }  is invariant under translation by 2 b ,  so C 
must be a disjoint union of sets of the form { y  +2bt:  t E Fp}. 
This contradicts the hypothesis that C contains no lines. 0 

Lemma 4.3: Let mlq - 1 ,  with m > 1, and let b # 0 .  If N 
denotes the number of ( x , y , ; .  ., y , )  in K k + '  satisfying 

> k ,  i = l ,  . . .  (x + c, + b ) ( x  + c ,  - b ) m - l  = y,", 

then N I  q + 2 k m k f i .  

Proof: Let x denote a character of order m on K * .  Weil 
showed that if f E K [ X ] ,  with d distinct roots in K, but not an 
mth power, then 

I x € K  c x ( f ( x ) ) l < ( d - l ) f i  

[19, p. 431. The number of solutions (x, y ) ~  K 2  to y m  = f ( x )  is 
1 + ,y(f(x))+ . . . + , y m - l ( f ( x ) ) ,  so each x E K corresponds to 

k 

JJ x(( x + c, + b) (  x + c, - b ) m - y '  
1 - 1  O s e , < m  

solutions ( x ,  y , ;  . ., y , )  of the equations in the lemma. There- 
fore 

k 
N =  n ~ ( ( x + c , + h ) ( x + c , - b ) ~ - ' ) ~ '  

x e K I = l  O s e , < m  

= , y ( ( x + c , + b ) ( x + c l - b ) m - l ) e '  
0 5 e , ,  .ek < rn x t K 

' '  ' x ( ( x  + c, + b) (  x + ck - b)rn - ' ) e ' .  

Group the terms in the first sum according to how many e,'s are 
nonzero and use Weil's estimate and Lemma 4.2 to show that N 
is at most 

k 
q +  ( 2 i - - l ) ( m -  

i =  1 

= q  +(  m k - ' [ 2 k ( m  -1)- m ] + l ) f i <  q + 2 k m k f i .  0 
Theorem 4.4: Choose x E K at random. The probability that 

Algorithm 3.1 fails on x +c, ,  i =  I;.., k ,  is at most 1/2' 
+ 2 k / f i .  If k = [(log2q)/2], this is O( logq/ f i ) .  

Proof: If all trials fail, there are nonzero y , ;  . ., y ,  E K for 
which (x + c,)' - a  = y;?, i = 1;. ., k .  That is, ( x  + e, + b ) ( x  + 

c, - b) = y: ,  i = 1;. . k ,  where b2 = a .  These k equations have 
at most q + k 2 h + ' &  solutions by Lemma 4.3, and each x for 
which all trials fail is associated with exactly 2' such solutions 
because the signs of the y l 's  may be chosen arbitrarily. There- 
fore the number of unsuccessful values of x is at most q / 2 '  + 
2 k f i .  Dividing by q gives the first result; the second follows by 
substitution. 0 

Theorem 4.5: Choose x E K at random. The probability that 
Algorithm 3.3 fails on x + c,, i = 1 ; .  ., k ,  is at most l / m k  + 2 k /  
f i + 2 k / q .  If k = [(log,,q)/2], this is O(logq/(fi logrn)).  

Proof: Choose b with b 2 =  - a .  If all trials fail either x = 

- c,  f b for some i or there are nonzero y , ;  . . , y k  E K such 
that (x + e,  + b ) ( x  + c, - b)"'-' = y?, i = 1;. ., k .  The rest of 

0 the proof is similar to that of Theorem 4.4. 

Remarks: 

I) Theorems 4.4 and 4.5 can be sharpened, with a more 
technical proof. However, the improvement is slight-a 
factor of two at best-so the argument is only sketched. 
We assume that the reader is familiar with algebraic curves; 
the terminology follows Hartshorne [ 10, Chapter IV]. 

First, let N' denote the number of solutions in K to the 

These equations define an algebraic curve C. Any solution 
to these equations is nonsingular; C has other points (also 
nonsingular) that can be found by letting x = l / t ,  clearing 
fractions, and setting t to zero. By Weil's theorem [lo, p. 
3681, N ' I  q + 2 g f i ,  where g is the genus of the nonsingu- 
lar curve C' associated with C. 

To estimate g,  consider C' as a covering of the projec- 
tive plane. This has degree mk and is ramified only when 
some x + c, b is zero. The ramification index can be 
computed by considering the case where i = 1 and x + c ,  
+ b occurs only in the numerator of the first equation, as 
the other cases can be reduced to this one via birational 
transformations. Then y;" - ( x  + c ,  + b),  and there are 

distinct values for the y,'s when x = - c ,  - b. Taking 
all possible x into account, there are at most 2 k m k - '  
ramification points, each of index m. By Hunvitz's formula 
[ l o ,  p. 3011, 2 g - 2 < r n k ( - 2 ) + 2 k r n k - ' ( m - l ) ,  so g I  
k m k ( m  - 1 ) .  

Using this, one gets an estimate for N' that can be used 
in place of Lemma 4.3. If this is done, then the bound of 
Theorem 4.4 becomes 1 / 2 k  + k / & ,  and that of Theorem 
4.5 becomes l / m k  + 2 k ( m  - l ) / ( r n f i ) + 2 k / q .  

2 )  If rn 2 fi, then Theorem 3.4 is sharper than Theorem 4.5. 
3 )  Theorem 4.4 evidently applies to the Cipolla-Lehmer algo- 

rithm, and to the modification of Algorithm 3.3 suggested 
in Section IV. If one merely wants to find an element in K 
that is not an mth power (i.e., for use in the Tonelli-Shanks 
algorithm), then a bound similar to Theorem 4.5 holds, 
under the weaker assumption that e , ;  . ., ck  are distinct 

equations (x + cl  + b)/(x + c, - b) = y y ,  i = 1;. . > k .  

m k - l  

[221. 
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Correction to “On Normal and 
Subnormal q -ary Codes” 

A N T O I N E  C. LOBSTEIN A N D  GERHARD J.  M. V A N  WEE 

division bar / is used. The most important place where this 
might cause confusion is in the proof of Lemma 1. A rewritten 
version of part of that proof will follow. 

The last two sentences of the Introduction should read: We 
include a table of lower and upper bounds on K,(n,R), the 
minimal number of codewords in any ternary code of length n 
and covering radius R,  for n i  13, R s 3 ,  known to us. We 
improved some of the known lower bounds by linear program- 
ming. 

Section 11, line 13: ..., and such a coordinate i is called 
acceptable. 

Proof of Theorem 1, line 5 :  . . . + d ( ( u ,  c ) ,  BA’))- A, , , , ) .  
Theorem 2 should read: If C is a (q ,n ,  M ) R  subnormal code 

with an acceptable partition without the empty set, then for 
every natural number p there is a ( q ,  n + pq,  M ) R  + ( q  - l ) p  
code. 

In the proof of Lcmma 1, the first few lines should read: 

Proof: The repetition code is Crep = U a t  F</J:), with J: 
the all-a vector of length n. Let w be any vector in F,“, 
containing p ,  times the symbol a .  Let p = max{p,la E FJ. 
Then p > [ n / q ]  and d ( w , C , , , ) = n - p ~ n - [ n / q ]  and so 
C,, has covering radius R s n - [ n / q ] .  Taking w with p 
= f n / q ]  showsthat R = n - [ n / q ] .  Now, . . . .  

Three lines before Theorern 3 should read: . . . are nonempty 
for all a E F,. 

The second sentence of the proof of Theorem 3 should read: 
For t E F, let A ,  = 0 if t = 0, and A ,  = 1 otherwise. 

Two lines before Lemma 3, the name should read: J. H. 
van Lint, Jr. 

On page 1293, first column, line 4: . . . + C, Ft, , {c , ld(x,  b“). 
The middle of line 2 of Theorem 5 should read: then d I 

The first sentence in the proof of Theorem 5 should end with: 
d ( c , 0 ) = n > d .  

The second to last sentence of Section III  should read: 
Theorem 5 and any choice of the parameters of the Hamming 
codes just mentioned can be used to disprove the q-ary general- 
ization of this conjecture, even when we replace “normal” by 
“subnormal.” 

On page 1293, second column, line 2 should read: IC1 2 
3”/(1+2n).  

Proof of Theorem 6, line 3: . . .such that d ( c ,  c ‘ )  I 2. 
Page 1294, sccond column, line 8 the C should be uppercase. 
In Section V, Open Problem 1) should read: 
1) Find ternary, optimal or nonoptimal, normal or subnormal 

codes improving, by the amalgamated direct sum construction, 
on the upper bounds on K J n ,  R )  (cf. Section IV-A). 

The following piece of text is missing at the end of the paper. 

( q / ( q  - l)) .R + 1. 

In the above correspondence,’ the following corrections are Notes Added in proof 
necessary. 

When sets are defined, a vertical bar I is intended where a 
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1) The result, mentioned in the Introduction, that binary 
linear codes with minimum distance d m i ,  I 5 are normal, 
has not (yet) been established. X. Hou (Univ. of Chicago) 
has shown that the proof in [12] is incorrect. 

2 )  For open problem No. 2, see: G. J. M. van Wee, “Bounds 
on packings and coverings by spheres in q-ary and mixed 
Hamming spaces,” J. Combin. Theory ( A ) ,  to appear. 

In [SI, there are two authors, H. 0. Hamalainen and S. 
Rankinen. Reference [8] appeared in ZEEE Trans. Inform. 
Theory, vol. IT-34, pp. 1343-1344, Sept. 1988. 
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