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Capacity of the Gaussian Arbitrarily 
Varying Channel 

Imre Csiszhr and Prakash Narayan, Member, ZEEE 

Abstract -The Gaussian arbitrarily varying channel with input con- 
straint r and state constraint 2 admits input sequences x = ( x l ,  , x , ~ )  
of real numbers with Cxf 5 nT and state sequences s = ( 5  ,. , T , ~ )  of 
real numbers with L Y ~  5 H A ;  the output sequence x + s + V ,  where 
V = ( VI, , y , )  is a sequence of independent and identically distributed 
Gaussian random variables with mean 0 and variance c’. It is proved 
that the capacity of this arbitrarily varying channel for deterministic 
codes and the average probability of error criterion equals l o g ( l +  
r/(  2 t c2) )  if Z < r and is 0 otherwise. 

Index Terms -Arbitrarily varying channel, Gaussian, capacity. 

I. INTRODUCTION 
RBITRARILY varying channels (AVC’s) were intro- A duced by Blackwell et al. [5] to model communication 

channels with unknown parameters that may vary with time 
in an arbitrary and unknown manner during the transmission 
of a codeword. In this paper, attention is restricted to AVC’s 
without memory; further, it is assumed that the sequence of 
channel states is selected arbitrarily subject to a constraint 
specified later, and possibly depending on the codebook but 
independently of the codeword actually sent. 

AVC’s exhibit various mathematical complexities even in 
the case of discrete alphabets (cf. Csiszir-Korner [6, Section 
2.61). In particular, their capacity may depend on whether or 
not random codes are permitted, and whether the average or 
maximum probability of error criterion is used. The random 
coding capacity admits a simple characterization as a min-max 
of mutual information, a result dating back to Blackwell 
et al. [5].  In contrast, the problem of capacity for determinis- 
tic codes is much harder. In particular, for the maximum 
probability of error criterion, a single-letter capacity formula 
is known only under certain conditions on the structure of 
the AVC (cf. Ahlswede [2] and Csiszir-Korner [7]). 

Unless stated otherwise, the term capacity will hereafter 
always refer to capacity for deterministic codes and the ui‘er- 
age probability of error criterion. In the absence of state 
constraints, Ahlswede [l] proved that this capacity was either 
equal to the random coding capacity or otherwise to zero. 
The necessary and sufficient condition for positive capacity, 
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as well as capacity under a state constraint, have been 
determined by Csiszhr-Narayan [8]; it was further shown 
that Ahlswede’s alternatives do not necessarily obtain under 
a state constraint. 

Less attention has been bestowed in the literature on the 
capacity of AVC’s with continuous alphabets. Presumably 
motivated by random coding capacity, there have been 
game-theoretic considerations concentrating on the min-max 
of mutual information (cf. McEliece [l 11). Hughes-Narayan 
[lo] have used a geometric approach to determine the ran- 
dom coding capacity of the Gaussian AVC defined formally 
in the following paragraph. Blachman [4] has provided lower 
and upper bounds on capacity in a communication situation 
differing from ours in that the interference (i.e., state se- 
quence) could depend on the actual codeword transmitted. 
Our incomplete understanding of his paper seems to indicate 
that he, too, considered random coding capacity. To our 
knowledge, Ahlswede’s [3] is the only paper treating the 
capacity of a continuous alphabet AVC for deterministic 
codes. His AVC (a Gaussian channel with the noise variance 
arbitrarily varying but not exceeding a given bound) allowed 
a very simple approach, which may not be extendable to 
other cases of interest. 

In this paper, we determine the capacity of the Gaussian 
AVC formally defined as follows. Let the input and output 
alphabets, and the set of states, be the real line. For any 
input sequence x = ( x , ;  . ., x,i) and state sequence s = 

(si;.., s,?), let the output be x + s + V ,  where V =  
( V , ;  . ., V,,) is a sequence of independent and identically 
distributed (i.i.d.1 Gaussian random variables with mean 0 
and variance (T’. We adopt an input constraint r and state 
constraint A ,  namely the permissible input sequences of 
length n are those satisfying 

n 

1 1 x 1 1 ~ ~  C~,21nr, ( n o )  (1.1) 
r = l  

and the permissible state sequences are those satisfying 
n 

Ilsll’= z s , ? ~ n A ,  ( A > O ) .  (1.2) 
i = l  

A code of block-length n comprises a set of codewords 
xi;. ’,x,,,, each in R“, and a decoder cp: R” +{O;.. ,  N ) .  
The average probability of error of this code, used on the 
Gaussian AVC as above when the state sequence is s, equals 

1 .  

F ( s ) = -  P r { c p ( x , + s + V ) # i } .  (1.3) 
N , = I  
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The capacity C of the Gaussian AVC with input constraint 
r and state constraint A is the largest number with the 
property that for every 6 > 0 and sufficiently large n,  there 
exist codes with N 2 exp{n(C - a)} codewords, each satisfy- 
ing ( l . l ) ,  such that the supremum of F(s) subject to (1 .2)  
converges to 0 as n +m. 

Our main result is the following. 

Theorem 1: The capacity of the Gaussian AVC with in- 
put constraint r and state constraint A is 

if r i i l  
According to Hughes-Narayan [lo], the random coding 

capacity of the Gaussian AVC equals f log(l+ r / ( A  + u2)). 
Thus, in this case Ahlswede’s alternatives do obtain. Yet a 
proof of the theorem above by the elegant “elimination 
technique” of Ahlswede [1] is not apparent. Rather, we shall 
use the straightforward but more computational method of 
CsiszAr-Narayan [SI. Suitable approximation arguments 
would enable a derivation of our theorem directly from the 
results of [SI. Instead, we prefer to present a more transpar- 
ent and direct proof, which will also serve to keep this paper 
self-contained. 

We also determine the capacity of the noiseless additive 
AVC whose output is r + s  rather than r + s  + V .  The 
capacity of this AVC is defined similarly to that of the 
Gaussian AVC with the exception that (1.3) is now replaced 
by 

1 
N 

F(s) = - I ( i :  cp(x, + s) # i}I .  

Theorem 2: The capacity of the noiseless additive AVC 
with input constraint r and state constraint A is 

if T s A .  

Whereas this result is not a formal special case of Theo- 
rem 1, both theorems can be proved by the same method. 
We shall prove the simpler Theorem 2 first so that the 
reader may better understand the key ideas. Observe that 
Theorem 1 requires a separate proof only in the case A + u2 
2 r. In fact, since (1 .2)  implies for an arbitrary E > 0 that 
11s + VJ12 I n(A + u2  + E )  with probability arbitrarily close to 
1 if n is sufficiently large, in the case A + u2 < the 
assertion of Theorem 1 follows immediately from that of 
Theorem 2. 

Actually, we shall show that the capacity as claimed in 
Theorems 1 and 2 can be achieved using the minimum-dis- 
tance decoder, namely 

( 1  5 )  
if I I ~  - .rill2 < ~ l y  - xjl12, 
if no such 1 I i I N exists. 

for j + i d(Y) = { i ,  
0, 

It is worth pointing out that the result of Theorem 2 with this 
decoder provides a solution to a weakened version of the 
unsolved sphere-packing problem. This problem seeks the 
exponential rate of the maximum number of nonintersecting 
spheres of radius JT? in R” with centers in a sphere of radius n. In our case, the spheres may intersect but for any given 

s in R” of norm I & ,  only for a vanishingly small fraction 
of sphere centers xi can x i  + s be closer to another sphere 
center than to x i .  The number C in Theorem 2 then gives 
the exponential rate of the maximum number of spheres 
satisfying this condition. A similar weakened version of the 
sphere-packing problem in Hamming space was solved in [8]  
as a special case of the coding theorem for the binary adder 
AVC. 

11. PROOF OF THE MAIN RESULT 
The proof of the converse parts of Theorems 1 and 2 

being standard, is relegated to the Appendix. The essential 
contribution of this paper consists in the direct part of 
coding Theorems 1 and 2. 

Our goal is to show that, when r > A,  for all sufficiently 
large n there exist N = exp(nR) codewords xI; . ., x,,, in R“ 
satisfying Ilx,l12 I nT, i = 1; . ., N, with R arbitrarily close to 
the asserted capacity value, such that for a suitable decoder 
cp the average probability of error F(s) is arbitrarily small 
uniformly subject to llsl12 5 nA. 

Using the minimum distance decoder 4 of (1.5) for the 
noiseless AVC, (1.4) becomes 

and for the Gaussian case, (1.3) gives 
i N  

Xjl12 I 11s + VI12, 

for some j z i}. 

We can assume without any loss of generality that 

( 2 . 2 )  

= 1, 
0 < A < 1. Further, (2.1) and (2 .2)  remain unchanged if all 
vectors are multiplied by l/&. Hence it suffices to prove 
that for every sufficiently small 6 > 0 and sufficiently large n 
there exist N = exp(nR) unit vectors x I ; .  . , x N  in R“ with 
C -26 < R < C - 6 where C = f log(1 + l /A)  for the noise- 
less AVC and C = + log(1 + l / ( A  + u2) )  for the Gaussian 
AVC, such that F’(s) is arbitrarily small, uniformly subject to 
lls1I2 I A,  where 

in the noiseless case, and 

for some j # i} (2.4) 

in the Gaussian case where V =  (VI; . . ,V,,) is now a se- 
quence of i.i.d. Gaussian random variables with mean 0 and 
variance u 2 / n .  

We claim that the unit vectors xI; . ., x N  of the following 
Lemma 1 do possess the property above if 7 and E are 
sufficiently small. 

Lemma 1 (Codeword Properties): For every E > 0, 8 6  < 
q < 1 ,  K > 2~ and N = exp(nR) with 2~ I R I  K ,  for n 2 
n,,(E,q,K) there exist unit vectors x,; “ , x N  in R” such that 
for every unit vector U in R” and constants CY, p in [0,1], we 
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Here (.;) denotes inner product and 1.1 ’  denotes “the 
positive part of.” This lemma is an analog of the key Lemma 
3 of [SI, and can be proved similarly. The proof is in the 
Appendix. 

Commencing with the noiseless case, in order to bound 
(2.3) for lls112 I A ,  note that 

Ilx; + s - x,l12 = 11x,1I2 + 1lS1l2 + llXjl12 

Hence 

1 
N t?’(s)=-({i:  ( x , , s ) + ( x , , x , ) 2  I+(x , , s ) ,  

1 
- N  
< - 1 { i : ( x; , s ) I - 77) I 

for some j f i} 

To complete the proof of the direct part of Theorem 2, it 
suffices to check for every ( a ,  p )  = (1 -277,O) and (ak, 1 - 2 7  
- a k ) / f i ) ,  k = 1;. ., K ,  the condition a’ + p2 > 1 + 7 - 
exp(-2R) of 2) of Lemma 1.  (The condition a 2 7 is clearly 
satisfied provided 7 < min{+,(l- 6 ) / 2 } . )  Differentiation 
shows that a 2  + ( 1 - 2 7  - a ) ’ / A  is minimized by a = ( 1  - 
277)/1+ A,  and the minimum equals ( 1  - 2 ~ ) ~ /  1 + A.  Thus, 
the condition to be satisfied is 

1 
N 

Obviously, if C -26  < R < C - 6 for any fixed 6 > 0, where 
+ - ({i: (x,,s) + ( x i ,  x i )  > 1 - 7 ,  for some j z i) 1 .  1 1 

c = - l o g  1 + -  = - - l o g  1-- 
(2.6) 2 ( i) 2 ( 1 ; A j ’  

The first term of the sum in (2.6) can be bounded by Lemma 
I(i). In fact, letting U be the unit vector such that 

(x,. s) I - 77 implies by the assumption A < 1 that (x,, U) I 
- 7.  Thus if R > - log(1- v2), we get that 

s exp { n ( e  - z ) )  -+ 0, 

as n -+W.  (2.8) 

The second term of the sum in (2.6) can be bounded using 2) 
of Lemma 1 by suitably partitioning the set of possible values 
of the inner product (x,,x,). To this end, let a l  = 1 - 77 
- f i < a 2 <  . . .  < a , = 1 - 2 ~ ,  with a r + I - a k ~ q ,  k =  
1; . ., K - 1. Then (x,, s ) +  (x,, x,) > 1 - 77 implies that 
(x,, x,) 1 a I ,  and if a L  I ( x I ,  x,) I + I then necessarily 
(x,, s) > 1-27  - a h .  The latter, in turn, implies by (2.7) that 

the inequality (2.9) will be satisfied if 77 is sufficiently small. 
The proof for the Gaussian case (Theorem 1) is similar but 

bounding (2.4) is not as easy. We first present two simple 
technical lemmas. 

Lemma 2: Let the r.v. U be uniformly distributed on the 
unit n-sphere. Then for every vector U on this sphere and 
any 0 < a < 1, we have 

1 01 - 1)/2 ~ r { l ( ~ , u ) l >  a )  I 2(1-  a 2 )  , if a 2 - fi’ 
Proof: Denote the angle between the unit vectors U and 

U by O(U,u). Then by Shannon [12, (28)1, 

With a = cos$, it follows that 

1 
i f a 2 -  +zz 

The proof is completed by observing that Pr{(U, U )  I - a}  = 

Lemma 3: Let U and U be unit vectors with I ( u , u ) ~ ~  7. 
of x orthogo- 

Pr{(U, U) 2 a). U 

Then for any unit vector x, the component x 
nal to span {U, v )  has norm 

I I X ~ I I * I  1 - ( u , x ) 2 - ( U , x ) 2 + 4 7 .  (2.10) 



~ 

CSlSZAR AND NAKAYAN: CAPACITY OF THE GAUSSIAN ARBITRARILY VARYING CHANNEL 

- 

21 

Further, for any pair of constants a,p, 
Ilau + pull2 I ( a 2  + p2)(1 + 77). (2.11) 

Proof: Let u ' = ( u  - ( u , u ) u ) / I I u  -(u,u)ull be the unit 
vector orthogonal to U such that span(u,u'} = span(u,u). 
Then 

I ( u , x )  - ( u , u ) ( u , x )  1 
IIU - ( w ) u l l  

I(u,x) I - 71 
1+71 

2 I(o' ,x) l= 

2(1(~4-77)(1-77) 

2 I(u,x)I -277. 
Since J)x ) I 2  = 1 -(U, xI2 -(U', x)', this implies (2.10). Fi- 
nally 

((au + pull2 = a2 + p2 +2ap(  u , u )  

I ( a 2 +  P')( l+ 771, 
as 12ap/(a2 + p2)I I 1, thereby proving (2.11). 

Continuing with the proof of the direct part of Theorem 1, 
note that on account of (2.8) it suffices to consider only those 
terms in (2.4) for which I(x,, u)l I 77, where U is a unit vector 
satisfying s = ullsll. We shall bound these terms using 

IIx, + s + v- x,1I2 = 11x,112 + 11s + v1t2 + llx,112 
+ 2(x,, s) + 2( X I ,  

- 2( x,, x,) - 2( x,, s) - 2(x,, v). (2.12) 

Decomposing x, and V into components in M,,u  = s p a n b , ,  U} 
and in Mi*:, we have 

(x,, v) = (xy U )  U )  + [ xy=, V".'.') 

=(x,,v"'")+(xy",v). (2.13) 

Since V = (VI, .  . ., V,,) is a sequence of i.i.d. Gaussian random 
variables with mean 0 and variance a 2 / n ,  we have as n --fm 
that 

Pr {I( x , , ~ )  I > 77) -, 0, P r (  I I v "~~ I I  > 77) + o 
uniformly in i and U. This along with (2.12), (2.13), implies 
that 

Pr {llx, + s + v - x,l12 I 11s + v1l2, for some j z i )  

= Pr ((x,,x,) + (x,,s) + ( x y + c , ~ )  > 1 + ( x , , ~ )  

+ (x , ,  V )  - (x;"i U ,  v ) ,  for some j + i 1 
I pr (( xy'., V )  > 1 - 377 - (( x,, x,) I - l(x,, s) 1, 

for some j # i + E ,  (2.14) ) 
for all sufficiently large n, whenever Kx,, u)l I 17. 

uniformly subject to llsl12 I A ,  it suffices to prove that 

- ~r( (xy ' , i , ~ )>1-377- I (x , , x , )1  

Hence, in order to show that Z'(s) in (2.4) goes to 0 

1 

Kx,,u)I<q 

- l ( x , , u ) l f i ,  forsome j # i )  (2.15) 

converges to 0 uniformly for unit vectors U E R", as n * m. 

To this end, we partition the set of all possible values of 
the inner products (x,, x,) and (x,, U). Let a1 = 0 < "2 < ' . . 
< a K = l  and p I = 0 < p 2 <  . . .  < p , = l . w i t h  a A + l - a h 4  
17, k = l ; . . , K - l ,  and / 3 / + l - p / ~ ~ ,  I = l ; . . , L - l .  Fur- 
ther let 

F , ~ /  = { j :  j +  i ,  a,, 5 ((x,,x,)I I a k + l ,  

P l I  1(x,J4 15 & + I )  

and 
G = {( k , l ) :  1 I k I K ,  1 I 1 I L ,  a k  2 17, 

a f + p : > l + ~ ~ - e x p ( - 2 R ) } .  

Then the expression (2.15) is 
1 

I c $ i : W 4 I l  
( k , l ) E G  

As the first term above goes to zero uniformly in U as n +CO 

by 2) of Lemma 1, it remains to consider only the second 
term. Recalling again that V = (V, ,  . . ., V,) is an i.i.d. se- 
quence of N ( 0 , u 2 / n )  random variables, we note that 
Pr(llVl12 > u2 + v} -+ 0 as n + W .  Therefore, it suffices to 
prove that 

- Pr{ U ( I I V I I ~ ~ ~ ~ + ~ ,  
1 

i : K x , , ~ ) l s ~  ( k , l ) E G  iEF,A/ 

where w = ( a k x j  + p p ) /  I Iakxi  + ppll. By Lemma 3 (for 

Kxi,u)l I q), I l a k x j  + ppll I J(a i  + p:)(  1 + 77) , so that 

by Lemma 1( i) 

for all n sufficiently large, where we can assume that 
a: +p :  < 1 + q  (2.18) 

(as otherwise F,kl = 4). 
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Further, by Lemma 3, if x i  = x , ’ ( i ,u )  represents the unit 
vector in the direction of x y  ‘ 1 ,  for j E F,h/ we have I Ixy , z I I  I 

J1-(x,,x,)’-(x,,u)’+477 IJ l -a : -p f+477 if 
IKx,, u)l I 7 .  Hence 

Pr(llVII’ 5 u2 + 7 7 ,  ( x y ’ , , , ~ )  > 1-57  - ah - p,fi> 

(2.19) 

where U is a r.v. distributed uniformly on the unit n-sphere 
and U ‘  is any fixed unit vector in R”. Together with (2.17), 
this implies that (2.16) is overbounded by C,,,,,,,A‘,;‘, where 

Hence it suffices to show that A$;)+ 0 as n + C O  for every 
( k , l )  E G. 

Since ( k ,  I )  E G, there are two cases to consider: 

a) a; + P: > 1 + 17 - exp ( - 2 ~ ) ,  
and 

b)  

ax. I 7 ,  

a: + p,? I 1 + 77 -exp( - 2 ~ ) .  
We first observe that in both cases 

1 -  a h  -p / f i - jV  > 0 (2.21) 
provided that 7 is chosen sufficiently small. Indeed, in case 
a), the expression in (2.21) is 2 1 - fi -677. In case b), the 
assumption R < C - 6 = + log(1 + 1/(A + u2) ) -  6 implies 
that 

1 
a: + p : 5  1 + 7 7 -  1 exp(26) 

l + y  
A + u  

11 
< 1 + 77 - - exp(26) .  

1 + A  

Since 

a h  + P / f i  5 d(  a; + p f ) (  1 + 1 1 )  

(as can be directly verified by squaring both sides), this yields 

1 - a ,  -p/ f i -577 > 1 - 5 7  

- 41 - A(exp(26)  - 1) + v (  1 + A )  > 0 

if 77 is sufficiently small. 
Now, in case a)  we obtain, using Lemma 2, that 

if E and 77 are chosen small enough. 

using Lemma 2 we obtain from (2.20) that 
In case b), we have R + + log(1- ai  - P: + 7 7 )  > 0. Then, 

a;  - p ;  + q)+ e )  

11 i ( l - a , < - P / f i - 5 7 7 ) *  
( v2  + q ) ( l -  ai  - P,? +47) 

1 

J I  / 

Evaluating the maximum of 

(1 - a - p a  - 5 q ) *  
2 - p 2  +477 - y ( a , P ) = l - a  > 

U 2 f V  

we obtain by differentiation that the maximum is attained at 

and the value of the maximum is 

(1  -w2 
l+477- 

1 +  A + u 2 + v  
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Thus, in case b), Ai;)  + 0 if 

- E .  (2.22) 
( 1 - 5 ~ ) ~  

l + A + a 2 + v  

Obviously, if C - 2 6  < R < C - 6 for any fixed 6 > 0, where 

the inequality (2.22) will be satisfied if 7 and E are suffi- 
ciently small. 

This completes the proof. 0 

111. DlscusslON 
We have established the capacity of the Gaussian AVC 

with input constraint r, state constraint A ,  and noise power 
a2,  for deterministic codes and the average probability of 
error criterion. It is 0 if A 2 r, and equals the capacity of an 
ordinary memoryless channel with additive Gaussian noise of 
power A + u2, for the same input constraint r, if A < r. The 
limiting value of this capacity as u2 --f 0 is, as expected, the 
capacity of the noiseless AVC with input constraint r and 
state constraint A.  The previous result solves a weakened 
version of the problem of determining the exponential rate 
of the tightest sphere-packing in R” as n +m. 

A co,nparison of the Gaussian AVC with the discrete case 
treated in [8], [9] indicates that the former is simpler in that 
it does not call for a complex decoding rule. Indeed, simple 
minimum-distance decoding suffices to achieve capacity. On 
the other hand, since the powerful and intuitive method of 
types is unavailable, the computations are less lucid and 
appear to rely, to a degree, on analytical artifices. 

One generalization of Theorem 1 is immediate. Namely, if 
in the representation x + s + V of the channel output, the 
variances of the independent, zero-mean Gaussian compo- 
nents of V are allowed to vary arbitrarily subject to a, s a ,  
j = 1,. . . , N, the capacity remains unaltered. Indeed the only 
change necessitated in the error-bounding is the-replacement 
of IlVll’ I a’ + q in (2.15) and (2.18) by llVl12 s a 2  + 77, 
where V =  ( V , a / a , ;  . ., V,,u/a,,) has i.i.d.-components, fol- 
lowed by the observation that (x;, V )  = (i;, V I ,  where lli,’Il< 1 
since i; is obtained by multiplying the components of the 
unit vector x; by U, / U  I 1, i = 1; . ., n. 

A further generalization with arbitrarily varying noise vari- 
ances subject only to (l/n)C:’=Iu,2 I U’, when we believe 
the capacity to yet remain unchanged, does not yield to such 
a simple artifice. On the contrary, it apparently requires 
more complex calculations, including a generalization of 
Lemma 1. Indeed for more general AVC models with contin- 
uous alphabets, the direct approach may well become un- 
manageable, thus necessitating recourse to the method of 
approximations by discrete AVC’s. 

APPENDIX 
We shall first prove the converse parts of Theorems 1 and 

2, followed by the proof of Lemma 1 (cf. Section 11). 
The fact that r I A implies C = 0 follows by a well-known 

argument of Blackwell rr al .  [5]. NamPly, let x I ; . . , x N ,  
N 2 2, be arbitrary codewords in R“ satisfying ( l . l ) ,  

- 

23 

and-assuming r I A-consider the state sequences sI = 

xI;. ‘ , s N  = x N .  Then for any decoder cp, 

whenever i # j. Hence 

1 N ( N - 1 )  1 
2- - ‘  N2 2 ’4’ 

and consequently 2 ( s j )  2 f for at least one j E {l; . ., N). 
Next, to prove that C I 4 log(1 + r/(a2 + A)), consider an 

i.i.d. sequence S = (SI; . * ,  S,) of Gaussian random variables 
(also independent of V )  with mean 0 and variance A‘<  A.  
Given any code with codewords xI; . ., x N ,  and decoder cp, 
the expectation of Z(S) (cf. (1.3)) equals 

while 

E2( S) I max 2( s)  + Pr (IIS112 > n A } .  
s: llsll2 5 n A  

Since varSi = A ’ <  A,  it holds that Pr{llSI12 > n A }  + 0 and, 
therefore, if maxIls, ,~ Z(s) < E ,  we have 

r N  

for n 2 no(€, A’). 
Here the left side is the average probability of error of the 

given code on the “ordinary” memoryless channel with addi- 
tive Gaussian noise of variance A ‘ +  u2. Hence, by the con- 
verse to the coding theorem for such channels, it follows that 

1 r 
C r C ’ = - l o g  l+- 

2 ( A ’ + u 2 ) ’  
Since A’ < A was arbitrary, this completes the proof of the 
converse part of Theorem 1 (and, with the obvious changes, 
also that of Theorem 2). 

We now prove Lemma 1. We shall show that N = exp(nR) 
randomly selected unit vectors will possess, with probability 
arbitrarily close to 1, all the properties states in Lemma 1. Its 
proof entails Chernoff bounding applied to dependent ran- 
dom variables, which is provided by the following 

Lemma A I :  Let Z, ; .  ., Z, be arbitrary r.v.’s and 
f , (Z , ;  . ., Z,) be arbitrary with 0 5 f ,  I 1, i = 1; . ., N. Then the 
condition 

implies that 



24 IEEE TKANSACTIONS ON INFORMATION THEORY. VOL. 37. NO. I .  JANUARY 1091 

Proof: This lemma is the same as Lemma A1 of [8], with 
the exponentials and logarithms to the base 2 in the latter 
replaced by natural exponentials and logarithms. 

Proof of Lemma I :  Throughout this proof “for large n” 
will mean “for all n larger than some threshold n,, depend- 
ing only on E ,  77, and K.” 

Let 2,; . ., 2, be independent r.v.’s each uniformly dis- 
tributed on the unit n-sphere. First, fix a unit vector U in R” 
and a ,  P in [O, 13. The main step of the proof consists in 
asserting the doubly exponential probability bounds that for 
large n 

and if 

77 377 
a’ + p 2  > 1 +  - -exp( - 2 R ) ,  4 a 2 y ,  (A2) 

{i: I (z , ,z , ) I>~ , I (z , , I ( ) (~~ ,  f o r s o m e j # i } /  

} > exp( - n e )  

To establish (AI), (A3), we shall apply Lemma A1 to 
2,; . ., 2, for two different choices of the functions f,. 

Observe that (All  holds trivially if 4 log(1- a 2 ) +  ~ / 2  > 0, 
i.e., if a < d l  -exp( - E )  . Hence, restricting attention to 
a 2 4- > 0, let 

The hypothesis of Lemma A1 is then satisfied by Lemma 2 
with a = 2(1 - a2)c’ fp’ ) /2  for large n.  Thus with t = 

( 1 / N ) e x p ( n ( l R + ~ l o g ( l - a 2 ) I + + e / 2 ) }  in Lemma A l ,  we 
get 

1 

1 
I exp ( -  [ N (  exp ( n (  lR + log( 1 - a 2 )  I + +  :)) 

The inequality (Al l  would then follow if we showed that the 
term within the square brackets, denoted h ( n ,  R ,  E ,  a) ,  was 
bounded below by i e x p ( n ~ / 2 )  for large n.  There are two 
cases to consider. 

a)  If 
1 

R >  - - l o g ( l - a 2 ) ,  2 (A41 

observe that 

>exp(  2).10g2-2expR ne (by (A4)) 

1 ne 
2 - exp ( i) 2 

for large n. 
b) If 

1 
2 

R I - - log (1 - a 2 )  

then 

2 exp ( I) ne .log2 - 2exp R (by A5) 

with the bounding completed as in case a). 
Turning to (A3) next, define 

A ;  = { j :  j < i ,  1(Zj ,u)12 P }  
and 

A ,  = 

\4 ,  otherwise. 

First note that (2, f A,  for some i) c(lA,I > exp(n(lR 
+ 4 log(1- P2)1+ + ~/2)}}, which by (Al)  has probability less 
than exp( - e x p ( n ~ / 2 ) )  for large n. Next, let 

I ,  i f I (Z , ,Z , ) I>a fo r some  j E 2 ,  i 0, otherwise. 
f , ( Z , , . ’ . , Z , )  = 

Then for large n 

Pr - {i: 1 ( ~ , , ~ , ) 1 2 a , 1 ( ~ , , u ) l 2 p , f o r s o m e  j < i ) l  ( A I  
> exp( - n e )  

. (A6) 
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The second term on the right side of (A6) will be bounded 
using Lemma Al .  To this end, we introduce the event 
(I(Z;,u)l 2 q/4} and note from Lemma 2 that its probability 
is less than 2(1- q2/16)(”-”/2 for large n. Also, writing 
Z; = (Z;, u)u + Z,’, we see that (Zj, Z;) = (Z;, uXZj, U )  + 
(Zj, Z: ). Hence 

E [ f;( z, , . . . 7 Z;) IZ 1 , .  * * , z; - I ]  

(A71 

Now,(zj,Zil)=(zil ,Z,) ,where 11~j1112=1-(zj,u)2c1-p2. 
Then if I;r is any fixed unit vector in R”, we obtain for large n 
that 

by Lemma 2 if a - q / 4  < d q ;  otherwise the probability 
is trivially zero. Since lA,l I exp(n(IR + i log(1-  p2)I+ + 
~/2 )} ,  we obtain from (A7) and (A8) that the hypothesis of 
Lemma A1 is satisfied with 

if a - q / 4  < d q ,  and otherwise with 

( I1  - 1)/2 

a = 2(  1 -  ;) 
Thus, with t = exp(- n e )  in Lemma Al ,  we get 

Pr (- f j ( Z , ; * . , z , )  > exp( - n e >  
I N  

N ; = ,  

s e x p {  -N[exp(-ne) log2-a]} .  ( A l l )  

We claim that for large n 
1 
2 

a < - exp ( - n e ) .  (‘41.2) 

Observe that for large tz (using the hypothesis > 8 6 )  

establishing (A12) when a - q / 4  2 4- (cf. (A10)). If 
a - 77/4 < 4 3 ,  the second term in (A9) is, for large n ,  

r 

3e [ ( ~ ~ ~ ~ ) ] ] .  (A14) 
4 2  

+ - + - l o g  1- 

We distinguish between two cases. 
a) If R > - i log(1- p2),  then the bound in (A14) is 

=2exp ( n - 1 )  R + - + - l o g  1-p  - a - -  ( [ : ; ( ( X)]) 
1 - a 2 - P 2 + -  

< 2 e x p (  ( n  - I ) [  + - 31 4 ’  using log x 5 x - 1 

, by the hypothesis q > 8& 

1 
4 

for large n. 

I - exp( - n e )  

b) If R 1 - i log(1-  p2) ,  the bound in (A141 is 

12exp ( n - 1 )  -+- log  1-- , by(A2) { [ ’4’ : ( ;;)I} 
1 
4 

I - exp( - ne) 

for large n ,  using the condition of the lemma that 7 > 8 6 .  
Thus, in both cases, the term in (A141 is less than 
exp( - ne). This, together with (A13), establishes (A12). 
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Then from (A61 and (Al l ) ,  we obtain that for large n for all U E . / ’ I  and a E A ,  and 

> exp( - ne)  

-P( - y P ( y ) )  1 ne 

+ exp { - N [ exp ( - R E )  log2 

for all U E , / ” I  and ( Y E  A ,  p E B satisfying (A21, then 
xI;. . , x N  will satisfy (A15) with e /2  replaced by E for every 
unit vector U E R”  and every a E [O, 11, and satisfy (A161 for 
every unit vector U E R” and every a E [O,l] ,  /3 E [O, 11 satisfy- 
ing a 2 7, a* + p2 > 1 + 7 -exp(-2R). Indeed, it suffices 
to choose .P” as a v-dense subset of the unit sphere in R”, 
and A and B as v-dense subsets of [O, 11, with v > U suffi- 
ciently small. 

1 
2 

- - exp( - n e )  

where we use N = exp(nR) > e x p ( 2 n ~ ) .  
By symmetry, the same bound holds if “for some j < i” is 

replaced by “for some j > i,” thereby validating the claim in 
(A31. 

The doubly exponential bounds in (Al),  (A31 imply that 
for any finite set 4 of unit vectors in R” with l c < l  
increasing exponentially in n,  and any finite subsets A and 
B of [0,1], the probability of the joint occurrence of the 
events 

for all U E 9’’ and a E A ,  and 

5 exp( - n e )  

for all U E .< and a E A ,  p E B satisfying (A2) will be 
arbitrarily close to 1. We complete the proof of the lemma by 
observing that for an appropriate choice of .-<, A and B as 
above, if xI; . ., x N  are unit vectors satisfying 
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