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Abstract—Coefficient quantization has peculiar qualitative ef-
fects on representations of vectors inIRN with respect to over-
complete sets of vectors. These effects are investigated in two
settings: frame expansions (representations obtained by forming
inner products with each element of the set) and matching pursuit
expansions (approximations obtained by greedily forming linear
combinations). In both cases, based on the concept ofconsistency,
it is shown that traditional linear reconstruction methods are
suboptimal, and better consistent reconstruction algorithms are
given. The proposed consistent reconstruction algorithms were in
each case implemented, and experimental results are included.
For frame expansions, results are proven to bound distortion
as a function of frame redundancyr and quantization step size
for linear, consistent, and optimal reconstruction methods. Taken
together, these suggest that optimal reconstruction methods will
yield O(1=r2) mean-squared error (MSE), and that consistency
is sufficient to insure this asymptotic behavior. A result on the
asymptotic tightness of random frames is also proven. Applica-
bility of quantized matching pursuit to lossy vector compression
is explored. Experiments demonstrate the likelihood that a linear
reconstruction is inconsistent, the MSE reduction obtained with
a nonlinear (consistent) reconstruction algorithm, and generally
competitive performance at low bit rates.

Index Terms— Consistent reconstruction, frames, matching
pursuit, MSE bounds, optimal reconstruction, overcomplete
representations, quantization, source coding.

I. INTRODUCTION

L INEAR transforms and expansions are the fundamental
mathematical tools of signal processing. Yet the prop-

erties of linear expansions in the presence of coefficient
quantization are not yet fully understood. These properties are
most intricate when signal representations are with respect
to redundant, or overcomplete, sets of vectors. This paper
considers the effects of quantization in overcomplete finite
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Fig. 1. Block diagram of reconstruction from quantized frame expansion.

linear expansions. Both fixed and adaptive basis methods are
studied. Although it represents an input vector as a linear
combination of elements from a representation set, the adaptive
basis method is in fact a nonlinear mapping. While many
other issues are explored, the unifying theme is that consistent
reconstruction methods [1] give considerable improvement
over linear reconstruction methods.

Consider the expansion–quantization–reconstruction sce-
nario depicted in Fig. 1. A vector C is left-multiplied
by a matrix C of rank to get C . The
transformed source vectoris scalar quantized, i.e., quantized
with a quantizer which acts separably on each component of,
to get . As shown in Section II-A.2, this type of representation
arises naturally in simple oversampled A/D conversion. In
general, this sort of representation may be desirable when
many coarse measurements can be made easily, but precise
measurements are difficult to make. How can one best estimate

from ? How does the quality of the estimatedepend on
the properties of , in particular its number of rows ? These
are the fundamental questions addressed in Section II.

To put this in a solid framework, we review the basic
properties of frames and prove a new result on the tight-
ness of random frames. We then show that the quality of
reconstruction can be improved by using deterministic prop-
erties of quantization (consistent reconstruction), as opposed
to considering quantization to be the addition of noise that
is independent in each dimension. The relationship between
the redundancy of the frame and the minimum possible recon-
struction error is explored.

Without sophisticated coding, a nonadaptive overcomplete
expansion can be a very inefficient representation. In the
context of Fig. 1, coding may be an inefficient way to
represent . But could we get a good representation if we
could choose a few components of a posteriori which
best describe ? This question is related to adaptive basis
techniques described in Section III.

In Section III, the use of a greedy successive approximation
algorithm for finding sparse linear representations with respect
to an overcomplete set is studied. This algorithm, called
matching pursuit (MP) [2], has recently been applied to image
coding [3], [4] and video coding [5], [6], which inherently
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require coarse coefficient quantization. However, to the best
of our knowledge, the present work is the first to describe
the qualitative effects of coefficient quantization in matching
pursuit. In particular, as in Section II, we will find that
reconstruction can be improved by consistent reconstruction
techniques.

Except where noted, we consider vectors in a finite dimen-
sional Hilbert space or C . For , we use
the inner product and the norm derived from
the inner product through . is used
to denote the Normal distribution with meanand covariance
matrix . The term squared error (SE) is used for the square
of the norm of the difference between a vector and an estimate
of the vector. The term mean-squared error (MSE) is reserved
for the ensemble average of SE or expected SE.

II. NONADAPTIVE EXPANSIONS

This section describes frames, which provide a general
framework for studying nonadaptive linear transforms. Frames
were introduced by Duffin and Schaeffer [7] in the context
of nonharmonic Fourier series. Recent interest in frames has
been spurred by their utility in analyzing discrete wavelet
transforms [8]–[10] and time–frequency decompositions [11].
We are motivated by a desire to understand quantization effects
and efficient representations.

Section II-A begins with definitions and examples of frames.
It concludes with a theorem on the tightness of random
frames and a discussion of that result. Section II-B begins
with a review of reconstruction from exactly known frame
coefficients. The remainder of the section gives new results
on reconstruction from quantized frame coefficients. Most
previous work on frame expansions is predicated either on
exact knowledge of coefficients or on coefficient degradation
by white additive noise. For example, Munch [11] considered
a particular type of frame and assumed the coefficients were
subject to a stationary noise. This paper, on the other hand, is
in the same spirit as [1], and [12]–[15] in that it utilizes the
deterministic qualities of quantization.

A. Frames

1) Definitions and Basics:This subsection is largely adapt-
ed from [10, ch. 3]. Some definitions and notations have been
simplified because we are limiting our attention to
or C .

Let , where is a countable index set.
is called aframe if there exist and such

that for all

(1)

and are called theframe bounds. The cardinality of
is denoted by . The lower bound in (1) is equivalent to
requiring that spans . Thus a frame will always have

. Also notice that one can choose
whenever . We will refer to as the
redundancyof the frame. A frame is called atight frame
if the frame bounds can be taken to be equal. It is easy to

verify that if is a tight frame with for all ,
then .

Given a frame in , the associatedframe
operator is the linear operator from to C defined by

(2)

Since is finite-dimensional, this operation is a matrix
multiplication where is a matrix with th row equal to .
Using the frame operator, (1) can be rewritten as

(3)

where is the identity matrix. (The matrix inequality
means that is a positive semidefinite

matrix.) In this notation, if and only if is a
tight frame. From (3) we can immediately conclude that the
eigenvalues of lie in the interval ; in the tight
frame case, all of the eigenvalues are equal. This gives a
computational procedure for finding frame bounds. Since it
is conventional to assume is chosen as large as possible
and is chosen as small as possible, we will sometimes take
the minimum and maximum eigenvalues of to be the
frame bounds. Note that it also follows from (3) that
is invertible because all of its eigenvalues are nonzero, and
furthermore

(4)

The dual frameof is defined as , where

(5)

is itself a frame with frame bounds and .
Since , any vector can be written as

(6)

for some set of coefficients . If , may
not be unique. We refer to (6) as aredundant representation
even though it is not necessary that more thanof the ’s
be nonzero.

2) Example: The question of whether a set of vectors form
a frame is not very interesting in a finite-dimensional space;
any finite set of vectors which span the space form a frame.
Thus if vectors are chosen randomly with a circularly
symmetric distribution on , they almost surely form a frame.1

So in some sense, it is easier to find a frame than to give an
example of a set of vectors which do not form a frame. In
this section we give a single example of a structured family
of frames. We will prove certain properties of these frames in
Section II-B4.

Oversampling of a periodic, bandlimited signal can be
viewed as a frame operator applied to the signal, where the
frame operator is associated with a tight frame. If the samples
are quantized, this is exactly the situation of oversampled A/D

1An infinite set in a finite-dimensional space can form a frame only if the
norms of the elements decay appropriately, for otherwise a finite upper frame
bound will not exist.
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conversion [1]. Let , with odd.
Define a corresponding continuous-time signal by

(7)
where . Any real-valued, -periodic, band-
limited, continuous-time signal can be written in this form.
Let . Define a sampled version of by

and let

Then we have , where

with

(8)

Using the orthogonality properties of sine and cosine, it is
easy to verify that , so is an operator
associated with a tight frame. Pairing terms and using the
identity , we find that each row of
has norm . Dividing by normalizes the frame and
results in a frame bound equal to the redundancy ratio. Also
note that is the oversampling ratio with respect to the Nyquist
sampling frequency.

3) Tightness of Random Frames:Tight frames constitute
an important class of frames. As we will see in Section II-
B1, since a tight frame is self-dual, it has some desirable
reconstruction properties. These extend smoothly to nearly
tight frames, i.e., frames with close to one. Also, for
a tight frame (1) reduces to something similar to Parseval’s
equality. Thus a tight frame operator scales the energy of
an input by a constant factor. Furthermore, it is shown in
Section II-B4 that some properties of “typical” frame operators
depend only on the redundancy. This motivates our interest
in the following theorem.

Theorem 1. Tightness of Random Frames:Let
be a sequence of frames in such that is generated by
choosing vectors independently with a uniform distribution
on the unit sphere in . Let be the frame operator
associated with . Then, in the mean squared sense,

elementwise as

Proof: See Appendix I-A.
Theorem 1 shows that a sequence of random frames with

increasing redundancy will approach a tight frame. Note
that although the proof in Appendix I-A uses an unrelated
strategy, the constant is intuitive: If is a tight
frame with normalized elements, then we have

because the frame bound equals the redundancy of
the frame. Numerical experiments were performed to confirm
this behavior and observe the rate of convergence. Sequences
of frames were generated by successively adding random
vectors (chosen according to the appropriate distribution) to

Fig. 2. Normalized frame bounds for random frames inIR
4.

existing frames. Results shown in Fig. 2 are averaged results
for 1000 sequences of frames in . Fig. 2 shows that
and converge to and that converges to one.

B. Reconstruction from Frame Coefficients

One cannot rightly call a frame expansion a “signal repre-
sentation” without considering the viability of reconstructing
the original signal. This is the problem that we address
presently.

In Section II-B1, we review the basic properties of recon-
structing from (unquantized) frame coefficients. This material
is adapted from [10]. The subsequent sections consider the
problem of reconstructing an estimate of an original signal
from quantized frame coefficients. Classical methods are lim-
ited by the assumption that the quantization noise is white. Our
approach uses deterministic qualities of quantization to arrive
at the concept of consistent reconstruction [1]. Consistent
reconstruction methods yield smaller reconstruction errors than
classical methods.

1) Unquantized Case:Let be a frame and assume the
notation of Section II-A1. In this subsection, we consider the
problem of recovering from . Let
C be the frame operator associated with. It can be shown
[10, Proposition 3.2.3] that . Thus a possible
reconstruction formula is given by

This formula is reminiscent of reconstruction from a discrete
Fourier transform (DFT) representation, in which case

In the DFT and inverse DFT, one set of vectors plays the
roles of both and because it is a tight frame inC . Other
reconstruction formulas are possible; for details the reader is
referred to [10, Sec. 3.2].
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2) Classical Method:We now turn to the question of re-
constructing when the frame coefficients are
degraded in some way. Any mode of degradation is possible,
but the most practical situations are additive noise due to
measurement error or quantization. We are most interested in
the latter case because of its implications for efficient storage
and transmission of information.

Suppose we wish to approximategiven , where
C is a zero-mean noise, uncorrelated with. The key

to finding the best approximation is that is
an -dimensional subspace ofC . Hence the component of

perpendicular to should not hinder our approximation,
and the best approximation is the projection of onto

. By [10, Proposition 3.2.3], this approximation is
given by

(9)

Furthermore, because the component oforthogonal to
does not contribute, we expect

to be smaller than . The following proposition makes this
more precise.

Proposition 1. Noise Reduction in Linear Reconstruction:
Let be a frame of unit-norm vectors with associated
frame operator and let , where the

’s are independent random variables with mean zero and
variance . Then the MSE of the classical reconstruction (9)
satisfies

MSE

Proof: See Appendix I-B.
Corollary 1: If the frame in Proposition 1 is tight

MSE

Now consider the case where the degradation is due to
quantization. Let and , where is
a frame operator. Suppose , where
is a scalar quantization function, i.e.,

where , , is a scalar quantization
function. One approach to approximatinggiven is to treat
the quantization noise as random, independent in each
dimension, and uncorrelated with. These assumptions make
the problem tractable using statistical techniques. The problem
reduces to the previous problem, and is the best
approximation. Strictly speaking, however, the assumptions
on which this reconstruction is based are not valid because

is a deterministic quantity depending on, with interplay
between the components.

3) Consistent Reconstruction:
Definition 1. Consistency [1]:Let . Let

and . If then is called aconsistent
estimate of from . An algorithm that produces consistent
estimates is called aconsistent reconstructionalgorithm. An
estimate that is not consistent is said to beinconsistent.

Fig. 3. Illustration of consistent reconstruction.

The essence of consistency is thatis a consistent estimate
if it is compatible with the observed value of, i.e., it is
possible that is exactly equal to . In the case of quantized
frame expansions , and one can give a geometric
interpretation. induces a partitioning of , which in
turn induces a partitioning of through the inverse map
of . A consistent estimate is simply one that falls in
the same partition region as the original signal vector. These
concepts are illustrated for and in Fig. 3.
The ambient space is . The cube represents the partition
region in containing and has codebook value
. The plane is and hence is the subspace within

which any unquantized value must lie. The intersection of the
plane with the cube gives the shaded triangle within which a
consistent estimate must lie. Projecting to , as in the
classical reconstruction method, removes the out-of-subspace
component of . As illustrated, this type of reconstruction
is not necessarily consistent. Further geometric interpretations
of quantized frame expansions are given in Appendix II.

With no assumptions on other than that the partition
regions be convex, a consistent estimate can be determined
using the projection onto convex sets (POCS) algorithm [16].
In this case, that implies generating a sequence of estimates
by alternately projecting on and .

When is a scalar quantizer and each component quantizer
is uniform, a linear program can be used to find consistent
estimates. For denote the quantization
stepsize in the th component by . For notational con-
venience, assume that the reproduction values lie halfway
between decision levels. Then for each, .
To obtain a consistent estimate, for eachwe must have

. Expanding the absolute value, we find
the constraints

and

where , and the inequalities are
elementwise. These inequalities can be combined into

(10)
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TABLE I
ALGORITHM FOR CONSISTENT RECONSTRUCTION

FROM A QUANTIZED FRAME EXPANSION

1. Form

F =
F

�F
and y =

1

2
�+ ŷ

1

2
�� ŷ

:

2. Pick an arbitrary cost functionc 2 IRN .
3. Use a linear programming method to findx̂ to minimizecT x̂ subject

to F x̂ � y.

The formulation (10) shows that can be determined through
linear programming [17]. The feasible set of the linear program
is exactly the set of consistent estimates, so an arbitrary cost
function can be used. This is summarized in Table I.

A linear program always returns a corner of the feasible
set [17, Sec. 8.1], so this type of reconstruction will not be
close to the centroid of the partition cell. Since the cells are
convex, one could use several cost functions to (presumably)
get different corners of the feasible set and average the results.
Another approach is to use a quadratic cost function equal to
the distance from the projection estimate given by (9). Both
of these methods will reduce the MSE by a constant factor.
They do not change the asymptotic behavior of the MSE as
the redundancy is increased.

4) Error Bounds for Consistent Reconstruction:In orthog-
onal representations, it is well understood that under very
general conditions, the MSE is for small . For frame
expansions, how does the MSE depend on, for large , and
how does it depend on the reconstruction method? The MSE
obtained with any reconstruction method depends in general
on the distribution of the source. The evidence suggests that
any consistent reconstruction algorithm is essentially optimal,
in a sense made clear by the following propositions, and gives

MSE.
Proposition 2. MSE Lower Bound:Let be a random vari-

able with probability density function with support on a
bounded subset of . Consider any set of quantized frame
expansions of for which

Unless is degenerate in a way which allows for exact
reconstruction, any reconstruction algorithm will yield an MSE
that can be lower-bounded by , where is a coefficient
independent of and a function of , , the diameter of

, and the maximum density value .
Proof: See Appendix I-C.

Proposition 3. Squared-Error Upper Bound—DFT Case:
Fix a quantization stepsize . For a sequence of
quantized frame expansions of a fixed followed
by consistent reconstruction, the squared error can be upper-
bounded by an expression under the following con-
ditions:

i) odd: The frame operators are as in (8) and

or
ii) even: The frame operators are as in (8) with the first

column removed and .

Proof: See Appendix A-D.
Conjecture 1. MSE Upper Bound:Under very general con-

ditions, for any set of quantized frame expansions, any algo-
rithm that gives consistent estimates will yield an MSE that
can be upper-bounded by an expression.

For this sort of general upper bound to hold, some sort of
nondegeneracy condition is required because we can easily
construct a sequence of frames with increasingfor which
the frame coefficients give no additional information asis
increased. For example, we can start with an orthonormal
basis and increase by adding copies of vectors already in
the frame. Putting aside such pathological cases, simulations
for quantization of a source uniformly distributed on
support this conjecture. Simulations were performed with three
types of frame sequences:

I. A sequence of frames corresponding to oversampled
A/D conversion, as given by (8). This is the case in
which we have proven an SE upper bound.

II. For , , and , Hardin, Sloane, and Smith
have numerically found arrangements of up to 130
points on -dimensional unit spheres that maximize
the minimum Euclidean norm separation [18].

III. Frames generated by randomly choosing points on the
unit sphere according to a uniform distribution.

Simulation results are given in Fig. 4. The dashed, dotted,
and solid curves correspond to frame types I, II, and III,
respectively. The data points marked with’s correspond
to using a linear program based on (10) to find consistent
estimates. The data points marked with’s correspond to
classical reconstruction. The important characteristics of the
graph are the slopes of the curves. Note that MSE
corresponds to a slope of3.01 dB/octave and MSE
corresponds to a slope of6.02 dB/octave. The consistent
reconstruction algorithm exhibits MSE for each of
the types of frames. The classical method exhibits
MSE behavior, as expected. It is particularly interesting to
note that the performance with random frames is as good as
with either of the other two types of frames.

Note that in light of Theorem 1, it may be useful to try to
prove Conjecture 1 only for tight frames.

5) Rate-Distortion Tradeoffs:We have asserted that opti-
mal reconstruction techniques give an MSE proportional to

, and the MSE for orthogonal representations
extends to the frame case as well. Thus there are two ways to
reduce the MSE by approximately a factor of four: double
or halve . Our discussion has focused on expected distortion
without concern for rate, and there is no reason to think that
these options each have the same effect on the rate.

As the simplest possible case, suppose a frame expansion is
stored (or transmitted) as -bit numbers, for a total rate of

bits per sample. Doubling gives -bit numbers,
for a total rate of bits per sample. On the other hand,
halving results in -bit numbers for a rate of
only bits per sample. This example suggests that
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Fig. 4. Experimental results for reconstruction from quantized frame expan-
sions. ShowsO(1=r2) MSE for consistent reconstruction andO(1=r) MSE
for classical reconstruction.

halving is always the better option, but a few comments
are in order. One caveat is that in some situations, doubling
and halving may have very different costs. For example, the
much higher cost of halving than of doubling is a major
motivating factor for oversampled A/D conversion. Also, if
is doubled, storing the result as -bit values is far from
the best thing to do. This is because many of theadditional
numbers give little or no information on. This is discussed
further in Appendix II.

III. A DAPTIVE EXPANSIONS

Transform coding theory, as introduced in [19] and analyzed
in detail in [20], is predicated on fine quantization approx-
imations and assuming that signals are Gaussian. For most
practical coding applications, these assumptions do not hold,
so the wisdom of maximizing coding gain—which leads to
the optimality of the Karhunen–Loève transform—has been
questioned. More fundamentally, we can leave the usual
framework of static orthogonal transform coding and consider
the application of adaptive and nonlinear transforms.

The matching pursuit algorithm [2], described in Section
III-A, has both adaptive and nonlinear aspects. Given a source
vector and a frame , it produces an approximate
signal representation . It is adaptive in the
sense that the ’s depend on , yet it can be considered
nonadaptive because it is time-invariant for transforming a
sequence of source vectors. On the other hand, it has a linear
nature because it produces a linear representation, but it is
nonlinear because it does not satisfy additivity.2

The matching pursuit algorithm is a greedy algorithm for
choosing a subset of the frame and finding a linear combination

2The usage of additivity is not obvious. Clearly ifx1 �
n�1

i=0
�i'k and

x2 �
n�1

i=0
�i'k , then

x1 + x2 �

n�1

i=0

(�i + �i)'k :

But in general the expansions ofx1, x2, andx1+x2 would not use the same
ki ’s; for this reason the transform is nonlinear.

of that subset that approximates a given signal vector. The
use of a greedy algorithm is justified by the computational
intractability of finding the optimal subset of the original frame
[21, ch. 2]. In our finite-dimensional setting, this is very similar
to the problem of finding sparse approximate solutions to linear
systems. In that context, this greedy heuristic is well-known
and performance bounds have been proven [22].

Quantization of coefficients in matching pursuit leads to
many interesting issues; some of these are discussed in Section
III-B. Along with exploring general properties of matching
pursuit, we are interested in its application to compressing
data vectors in . A vector compression method based on
matching pursuit is described in Section III-C.

A. Matching Pursuit

1) Algorithm: Let be a frame such
that for all . is called thedictionary. Matching
pursuit (MP) is an algorithm to represent by a linear
combination of elements of . In the first step of the algorithm,

is selected such that is maximized. Then can
be written as its projection onto and a residue

The algorithm is iterated by treating as the vector to be
best approximated by a multiple of . At step , is
chosen to maximize and

Identifying , we can write

(11)

Hereafter, we will denote by . Note that the out-
put of a matching pursuit expansion is not only the coefficients

, but also the indices , For storage
and transmission purposes, we will have to account for the
indices.

Matching pursuit was introduced to the signal processing
community in the context of time–frequency analysis by Mal-
lat and Zhang [2]. Mallat and his coworkers have uncovered
many of its properties [21], [23], [24].

2) Discussion: Since is determined by projection,
. Thus we have the “energy conservation”

equation

(12)

This fact, the selection criterion for , and the fact that
spans , can be combined for a simple convergence proof
for finite-dimensional spaces. In particular, the energy in the
residue is strictly decreasing until is exactly represented.

Even in a finite-dimensional space, matching pursuit is not
guaranteed to converge in a finite number of iterations. This
is a serious drawback when exact (or very precise) signal
expansions are desired, especially since an algorithm which
picks dictionary elements jointly would choose a basis from
the dictionary and get an exact expansion insteps. One way
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to speed convergence is to use an orthogonalized version of
MP which at each step modifies the dictionary and chooses
a dictionary element perpendicular to all previously chosen
dictionary elements. Since orthogonalized matching pursuit
does not converge significantly faster than the nonorthogo-
nalized version for a small number of iterations [6], [21],
[25], nonorthogonalized matching pursuit is not considered
hereafter.

Matching pursuit has been found to be useful in source
coding for two (related) reasons: The first reason—which was
emphasized in the original Mallat and Zhang paper [2]—has
been termedflexibility; the second is that the nonlinear approx-
imation framework allows greater energy compaction than a
linear transform.

MP is often said to have flexibility to differing signal
structures. The archetypal illustration is that a Fourier basis
provides a poor representation of functions well localized
in time, while wavelet bases are not well suited to rep-
resenting functions whose Fourier transforms have narrow,
high-frequency support [2]. The implication is that MP, with
a dictionary including a Fourier basis and a wavelet basis,
would avoid these difficulties.

Looking at the energy compaction properties of MP gives
a more extensive view of the potential of MP. Energy com-
paction refers to the fact that after an appropriately chosen
transform, most of the energy of a signal can be captured
by a small number of coefficients. In orthogonal transform
coding, getting high-energy compaction is dependent on de-
signing the transform based on knowledge of source statistics;
for fine quantization of a stationary Gaussian source the
Karhunen–Lòeve Transform is optimal [26]. Although both
produce an approximation for a source vector which is a linear
combination of basis elements, orthogonal transform coding
contrasts sharply with MP in that the basis elements are chosen
a priori and hence at best one can make the optimum basis
choiceon average. In MP, a subset of the dictionary is chosen
in a per vectormanner, so much more energy compaction is
possible.

To illustrate the energy compaction property of MP, con-
sider the following situation. A source is to be
transform coded. Because the components of the source are
uncorrelated, no orthogonal transform will give energy com-
paction; so in the linear coding case, coefficients will
capture of the signal energy. A-step MP expansion will
capture much more of the energy. Fig. 5 shows the results
of a simulation with . The plot shows the fraction
of the signal energy in the residual when one- to four-term
expansions are used. The dictionaries are generated randomly
according to a uniform distribution on the unit sphere. For
a corresponding number of terms, the energy compaction is
much better with MP than with a linear transform. Notice
in particular that this is true even if the dictionary is not
overcomplete , in which case MP has no more
“flexibility” than an orthogonal basis representation.

B. Quantized Matching Pursuit

Definequantized matching pursuit(QMP) to be a modified
version of matching pursuit which incorporates coefficient

Fig. 5. Comparison of energy compaction properties for coding of a
N (0; I8) source. With ak-term orthogonal expansion, the residual has
(8 � k)=8 of the energy (�’s). The residual energy is much less with MP
(solid curves).

quantization. In particular, the inner product
is quantized to prior to the computation of the
residual . The quantized value is used in the residual
calculation: . The use of the quantized
value in the residual calculation reduces the propagation of the
quantization error to subsequent iterations.

Although QMP has been applied to low bit rate compression
problems [5], [6], [25], which inherently require coarse coef-
ficient quantization, little work has been done to understand
the qualitative effects of coefficient quantization in matching
pursuit. In this section we explore some of these effects. The
relationship between quantized matching pursuit and other
vector quantization (VQ) methods is discussed in Section III-
B.1. The issue of consistency in these expansions is explored
in Section III-B.2. The potential lack of consistency shows
that even though matching pursuit is designed to produce a
linear combination to estimate a given source vector, optimal
reconstruction in the presence of coefficient quantization re-
quires a nonlinear algorithm. (Such an algorithm is presented
in Section III-C.2.) In Section III-B.3, a detailed example
on the application of QMP to quantization of an -valued
source is presented. This serves to illustrate the concepts from
Section III-B.2 and demonstrate the potential for improved
reconstruction using consistency.

1) Relationship to Other Vector Quantization Methods:A
single iteration of matching pursuit is very similar to shape-
gain VQ, which was introduced in [27]. In shape-gain VQ,
a vector is separated into again, and a
shape, . A shape is chosen from a shape codebook

to maximize . Then a gain is chosen from a gain
codebook to minimize . The similarity is
clear with corresponding to and corresponding to the
quantizer for , the only differences being that in MP one
maximizes theabsolute valueof the correlation and thus the
gain factor can be negative. Obtaining a good approximation
in shape-gain VQ requires that forms a dense subset of
the unit sphere in . The area of the unit sphere increases
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exponentially with , making it difficult to use shape-gain VQ
in high-dimensional spaces. A multiple iteration application of
matching pursuit can be seen as a cascade form of shape-gain
VQ.

2) Consistency:We have thus far discussed only signal
analysis (or encoding) using QMP and not synthesis (recon-
struction) from a QMP representation. To the best of our
knowledge, all previous work with QMP has used

(13)

which results from simply using quantized coefficients in
(11) and setting the final residual to zero. Computing this
reconstruction has very low complexity, but its shortcoming
is that it disregards the effects of quantization; hence it can
produce inconsistent estimates.

Suppose iterations of QMP are performed with the dic-
tionary and denote the output by

QMP (14)

Denote the output of QMP (with the same dictionary and
quantizers) applied to by

By the definition of consistency (Section II-B3), is a
consistent estimate of if and only if and
for .

We now develop a description of the set of consistent
estimates of through simultaneous linear inequalities. For
notational convenience, we assume uniform scalar quantization
of the coefficients with stepsize and midpoint reconstruc-
tion.3 The selection of implies

(15)

For each element of , (15) specifies a pair of half-
space constraints with boundary planes passing through the
origin. An example of such a constraint in is shown in
Fig. 6(a). If is the vector with the solid arrowhead (chosen
from all of the marked vectors), the source vector must lie
in the hatched area. For , the intersection of these
constraints is two infinite convex polyhedral cones situated
symmetrically with their apexes at the origin. The value of
gives the constraint

(16)

This specifies a pair of planes, perpendicular to, between
which must lie. Constraints (15) and (16) are illustrated in
Fig. 6(b) for . The vector with the solid arrowhead was
chosen among all the marked dictionary vectors as. Then

3Ambiguities on partition cell boundaries due to arbitrary tie-breaking—in
both dictionary element selection and nearest neighbor scalar quantiza-
tion—are ignored.

(a) (b)

Fig. 6. (a) Illustration of consistency constraint (15) inIR2. (b) Illustration
of consistency constraints (15) and (16) inIR3.

the quantization of implies that the source vector lies in
the volume shown.

At the st step, the selection of gives the constraints

(17)

This defines pairs of linear half-space constraints with
boundaries passing through . As before, these
define two infinite pyramids situated symmetrically with their
apexes at . Then gives

(18)

This again specifies a pair of planes, now perpendicular to
, between which must lie.

By being explicit about the constraints as above, we see
that, except in the case that for
some , the partition cell defined by (14) is convex.4 Thus by
using an appropriate projection operator, one can find a strictly
consistent estimate from any initial estimate. The partition cells
are intersections of cells of the form shown in Fig. 6(b).

Notice now that contrary to what would be surmised from
(13), gives some information on the signal even if .
The experiments in Section III-C3 show that when ,
it tends to be inefficient in a rate-distortion sense to store or
transmit . If we know that but do not know the value
of , then (17) and (18) reduce to

(19)

Experiments were performed to demonstrate that (13) often
gives inconsistent estimates and to assess how the probability
of an inconsistent estimate depends on the dictionary size
and the quantization. We present here results for an-
valued source with the distribution. The consistency
of reconstruction was checked for two iteration expansions
with dictionaries generated randomly according to a uniform

4The “hourglass” cell that results from0 2 [�̂i��=2; �̂i+�=2] does not
make consistent reconstruction more difficult, but is intuitively undesirable in
a rate-distortion sense.
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Fig. 7. Probability that (13) gives an inconsistent reconstruction for two
iteration expansions of anIR4-valued source.

distribution on the unit sphere. Dictionary sizes of
were used. The quantization was uniform with

reconstruction points . The results are shown in
Fig. 7. The probability of inconsistency goes to zero for very
coarse quantization and goes to one for fine quantization.
The dependence on dictionary size and lack of monotonicity
indicate complicated geometric factors. Similar experiments
with different sources and dictionaries were reported in [28].

As noted earlier, the cells of the partition generated by QMP
are convex or the union of two convex cells that share one
point. This fact allows the computation of consistent estimates
through the method of alternating projections [16]. One would
normally start with an initial estimate given by (13). Given an
estimate , the algorithm given in Table II performs the one
“most needed” projection; namely, the first projection needed
in enforcing (15)–(18). Among the possible projections in
enforcing (17), the one corresponding to the largest deviation
from consistency is performed. For notational convenience and
concreteness, we assume again uniform quantization with

Steps 5 and 6 could easily be adjusted for a general quantizer.
In a broadly applicable special case, the inequalities (15)–

(18) can be manipulated into a set of elementwise inequalities
suitable for reconstruction using linear or quadratic

programming, where and are and ,
respectively, and and depend only on the QMP output.
This formulation is possible when each QMP iteration either
a) uses a quantizer with zero as a decision point; or b) uses
a quantizer which maps a symmetric interval to zero, and the
value of is discarded when .

Consider first the case where has zero as a decision
point. For notational convenience, we will assume the decision
points and reconstruction values are given by
and , respectively, but all that is actually
necessary is that the quantized coefficientreveals the sign
of the unquantized coefficient . Denote by , and

TABLE II
PROJECTION ALGORITHM FOR CONSISTENT

RECONSTRUCTION FROM AQMP REPRESENTATION

1. Setc = 0. This is a counter of the number of steps of QMP thatx̂

is consistent with.
2. Let

x = x̂�

c�1

i=0

�̂iDk

where it is understood that the summation is empty forc = 0

3. Find' 2 D that maximizesjh'; xij. If ' = 'k , go to Step 5; else
go to Step 4.

4. (x̂ is not consistent withkc.) Let

~'k = sgn(h'k ; xi)'k

and

~' = sgn(h'; xi)':

Let

x̂ = x̂� h~'k � ~'; xi( ~'k � ~')

the orthogonal projection of̂x onto the set described by (17). Terminate
5. (x̂ is consistent withkc.) If

h'k ; xi 2 [�̂c �
1

2
�; �̂c +

1

2
�)

go to Step 7; else go to Step 6.
6. (x̂ is not consistent witĥ�c.) Let

� =sgn (h'k ; xi��̂c)

�min h'k ; xi� �̂c+
�

2
; h'k ; xi� �̂c�

�

2
:

Let x̂ = x̂��'k , the orthogonal projection of̂x onto the set described
by (18). Terminate.

7. (x̂ is consistent with�̂c.) Incrementc. If c = p, terminate (̂x is
consistent); else go to Step 2.

furthermore define the following matrices:

First, write (17) as

where is shorthand for . Combining the
nontrivial inequalities gives

Expanding the absolute value one can obtain

(20)

Writing (18) first as

one easily obtains

(21)
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On the other hand, if maps an interval
to zero and is not coded, then (19) leads similarly to the

inequalities

(22)

A formulation of the form is obtained by stacking
inequalities (20)–(22) appropriately.

3) An Example in : Consider quantization of an -
valued source. Assume that two iterations will be performed
with the four-element dictionary

Even if the distribution of the source is known, it is difficult to
find analytical expressions for optimal quantizers. (The issue
of optimal quantizer design is considered for the case of a
source with a uniform distribution on in [28, Sec.
3.3.2].) Since we wish to use fixed, untrained quantizers, we
will use uniform quantizers for and . It will generally
be true that , so it makes sense for the quantization
step sizes for and to be equal.

The partitions generated by matching pursuit are very intri-
cate. In Fig. 8, the heavy lines show the partitioning of the first
quadrant when zero is a quantizer reconstruction value, i.e.,
the quantizer reconstruction points are and decision
points are for some quantization stepsize.5

The dotted lines show boundaries that are created by choice
of but, depending on the reconstruction method, might
not be important because . In this partition,
most of the cells are squares, but there are also some smaller
cells. The fraction of cells that are not square goes to zero
as .

This quantization of gives concrete examples of the
inconsistency resulting from using (13). The linear recon-
struction points are indicated in Fig. 8 by’s. The light
line segments connect these to the corresponding optimal6

reconstruction points. Such a line segment crossing a cell
boundary indicates a case of (13) giving an inconsistent
estimate.

C. Lossy Vector Coding with Quantized Matching Pursuit

This section explores the efficacy of using QMP as an
algorithm for lossy compression of vectors in . In order
to reveal qualitative properties most clearly, very simple
dictionaries and synthetic sources are used in the experiments.
Experiments with other dictionaries and sources appear in
[28]. We do not explore the design of a dictionary or scalar
quantizers for a particular application. Dictionary structure has
a great impact on the computational complexity of QMP as
demonstrated, for example, in [29].

5The partition is somewhat different when the quantizer has different
decision points, e.g.,f(m + 1

2
)�g

m2 [28, Sec. 3.3.2]. The ensuing
conclusions are qualitatively unchanged.

6Optimality is with respect to a uniform source distribution.

Fig. 8. Partitioning of first quadrant ofIR2 by matching pursuit with
four-element dictionary (heavy lines). Linear reconstruction points (�’s) are
connected to optimal reconstruction points (�’s) by light line segments.

For simplicity, rate and distortion are measured by sample
entropy and MSE per component, respectively. The sources
used are multidimensional Gaussian with zero mean and
independent components. The inner product quantization is
uniform with midpoint reconstruction values at .
Furthermore, the quantization stepsize is constant across
iterations. This is consistent with equal weighting of error in
each direction.

1) Basic Experimental Results:In the first experiment,
and the dictionary was composed of

maximally spaced points on the unit sphere [18]. Rate was
measured by summing the (scalar) sample entropies of,

and , where is the number
of iterations. The results are shown in Fig. 9. The three
dotted curves correspond to varying from to , while
reconstructing according to (13). The points along each dotted
curve are obtained by varying . Notice that the number
of iterations that minimizes the distortion depends on the
available rate. The solid curve is the convex hull of these R–D
operating points (converted to a decibel scale). In subsequent
graphs, only this convex hull performance is shown.

2) Improved Reconstruction Using Consistency:Continu-
ing the experiment above, the degree of improvement obtained
by using a consistent reconstruction algorithm was ascertained.
Using consistent reconstruction gives the performance shown
by the dashed curve in Fig. 9. Notice that there is no im-
provement at low bit rates because consistency is not an issue
for a single-iteration expansion. The improvement increases
monotonically with the bit rate.

3) An Effective Stopping Criterion:Regardless of the re-
construction method, the coding results shown in Fig. 9 are
far from satisfactory, especially at low bit rates. For a-step
expansion, the “baseline” coding method is to apply entropy
codes (separately) to , . This
coding places a rather large penalty of roughly bits
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Fig. 9. Performance comparison between reconstruction based on (13) and
consistent reconstruction.N = 4 and the dictionary is composed ofM = 11

maximally spaced points on the unit sphere [18].

Fig. 10. Performance comparison between a fixed number of iterations and a
simple stopping criterion.N = 4 and the dictionary is composed ofM = 11

maximally spaced points on the unit sphere [18].

on each iteration, i.e., this many bits must be spent in addition
to the coding of the coefficient. In particular, the minimum
achievable bit rate is about .

Assume that the same scalar quantization function is used at
each iteration and that the quantizer maps a symmetric interval
to zero. Based on a few simple observations, we can devise
a simple alternative coding method which greatly reduces the
rate. The first observation is that if , then for
all because the residual remains unchanged. Secondly,
if , then carries relatively little information. Thus we
propose that a) be used as a stopping criterion which
causes a block to be terminated even if the maximum number
of iterations has not been reached and b)be considered
conceptually to come after , so is not coded if .

Simulations were performed with the same source, dictio-
nary, and quantizers as before to demonstrate the improvement
due to the use of a stopping criterion. The results, shown in
Fig. 10, indicate a sizable improvement at low bit rates.

4) Further Explorations: Having established the merits of
consistent reconstruction and the stopping criterion of Section

Fig. 11. Performance of QMP as the dictionary size is varied (solid curves,
labeled byM ) compared to the performance of independent uniform quanti-
zation of each sample (dotted curve).

III-C3, we now explore the effects of varying the size of the
dictionary. Again the source is independent and identically
distributed (i.i.d.) Gaussian in blocks of samples,
and dictionaries generated randomly according to a uniform
distribution on the unit sphere were used. Fig. 11 shows the
performance of QMP with (solid curves);
and of independent uniform scalar quantization followed by
entropy coding (dotted curve). The performance of QMP
improves as is increased and exceeds that of independent
uniform scalar quantization at low bit rates. This result high-
lights the advantage of a nonlinear transform, since no linear
transform would give any coding gain for this source.7

In the final experimental investigation, we consider the
lowest complexity instance of QMP. This occurs when the
dictionary is an orthonormal set. In this case, QMP reduces to
nothing more than a linear transform followed by sorting by
absolute value and quantization. Here we code an i.i.d. Gauss-
ian source with block sizes .8 The results
shown in Fig. 12 indicate that even in this computationally
simple case without a redundant dictionary, QMP performs
well at low bit rates. An interesting phenomenon is revealed:

is best at high bit rates and is best at low bit
rates; no larger value of is best at any bit rate.

5) A Few Possible Variations:The experiments of the pre-
vious subsections are the tip of the iceberg in terms of possible
design choices. To conclude our discussion of source coding,
a few possible variations are presented along with plausibility
arguments for their application.

An obvious area to study is the design of dictionaries. For
static, untrained dictionaries, issues of interest include not only
R–D performance, but also storage requirements, complexity
of inner product computation, and complexity of largest inner
product search.

There is noa priori reason to use the same dictionary
at every iteration. Given a iteration estimate, the entropy

7We are not advocating the use of random dictionaries. Slightly better
performance is expected with an appropriately chosen fixed dictionary.

8Of course,N = 1 gives independent uniform scalar quantization of each
sample.
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Fig. 12. Performance of QMP with an orthogonal basis dictionary as the
block sizeN is varied.

of becomes a limiting factor in adding the results of an
additional iteration. To reduce this entropy, it might be useful
to use coarser dictionaries as the iterations proceed. Another
possibility is to adapt the dictionary by augmenting it with
samples from the source. (Dictionary elements might also be
deleted or adjusted.) The decoder would have to be aware of
changes in the dictionary, but depending on the nature of the
adaptation, this may come without a rate penalty.

The experimental results that have been presented are based
on entropy coding each independently of the indices, which
are in turn coded separately; there are other possibilities. Joint
entropy coding of indices was explored in [28] and [30]. Also,
conditional entropy coding could exploit the likelihood of
consecutively chosen dictionary vectors being orthogonal or
nearly orthogonal.

Finally, for a broad class of source distributions, the distri-
butions of the ’s will have some common properties because
they are similar to order statistics. For example, the probability
density of will be small near zero. This could be exploited
in quantizer design.

IV. CONCLUSIONS

This paper has considered the effects of coefficient quantiza-
tion in overcomplete expansions. Two classes of overcomplete
expansions were considered: fixed (frame) expansions and
expansions that are adapted to each particular source sample,
as given by matching pursuit. In each case, the possible
inconsistency of linear reconstruction was exhibited, compu-
tational methods for finding consistent estimates were given,
and the distortion reduction due to consistent reconstruction
was experimentally assessed.

For a quantized frame expansion with redundancy, it was
proven that any reconstruction method will give MSE that
can be lower-bounded by an expression. Backed by
experimental evidence and a proof of a restricted case, it was
conjectured that any reconstruction method that gives consis-
tent estimates will have an MSE that can be upper-bounded
by an expression. Taken together, these suggest that

optimal reconstruction methods will yield MSE, and
that consistency is sufficient to insure this asymptotic behavior.

Experiments on the application of quantized matching pur-
suit as a vector compression method demonstrated good low
bit rate performance when an effective stopping criterion was
used. Since it is a successive approximation method, matching
pursuit may be useful in a multiresolution framework, and the
inherent hierarchical nature of the representation is amenable
to unequal error protection methods for transmission over
noisy channels. Because of the dependencies between outputs
of successive iterations, MP might also work well coupled
with adaptive and/or universal lossless coding.

APPENDIX I
PROOFS

A. Theorem 1

Let . The corresponding frame operator is
given by . Thus the th element
of is given by

where is the th component of .
First consider the diagonal elements . Since for a

fixed the random variables , are i.i.d., and
have zero mean, we find that

(23)

where and [31, Sec. 8-1]. For
the off-diagonal elements

(24)

(25)

Noting that and are independent of , (23) shows that
as , so in

the mean-squared sense [31, Sec. 8-4]. Similarly, (24) and (25)
show that for , in the mean-squared
sense. This completes the proof, provided .

We now derive explicit formulas (depending on) for ,
, and . For notational convenience, we omit

the subscript and use subscripts to identify the components
of the vector. To compute expectations, we need an expression
for the joint probability density of . Denote
the -dimensional unit sphere (centered at the origin) by.
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Since is uniformly distributed on , the probability density
function (p.d.f.) of is given by

(26)

where is the surface area of . Using spherical coordi-
nates, is given by

(27)

Using (26), we can make the following calculation:

where is a differential area element

(28)

(29)

In this calculation, (28) results from using spherical coordi-
nates and (29) follows from substituting (27) and canceling
like terms. The final simplification is due to a standard
integration formula [32, eq. (323)]. Similar calculations give

and, for ,

B. Proposition 1

Subtracting

from

gives

Then we can calculate

MSE

(30)

(31)

where (30) results from evaluating expectations using the
conditions on , and (31) uses (5). From (4) we can derive

which simplifies to

(32)

because of the normalization of the frame. Combining (31)
and (32) completes the proof.

C. Proposition 2

Let us consider a given reconstruction algorithm. It maps
every possible discrete vectorof into a vector
of . The reconstruction algorithm thus approximates any
input vector by where

. The reconstruction MSE is thus
. The mapping is a vector

quantizer of . For each discrete vector , it
maps all vectors of the subset of into the
single vector of . According to the terminology
in vector quantization [26], is a cell of the
partition defined by the vector quantizer in , and

is the corresponding code vector.
Let be the number of cells that can be found in the region

. It was proved by Zador [33], [34] (see also [35]) that there
exists a coefficient which only depends on and ,
such that, for large enough

(33)

To obtain a lower bound in terms of, let us calculate an
upper bound on in terms of . From (2) and the definition
of , we have , where

. For each , is
a mapping from to . Because

we have

(34)

Consider a fixed . Because is a uniform
scalar quantizer of step size

Thus is the subset of delimited by the two
hyperplanes of equations and
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, respectively. These two parallel hyperplanes are
perpendicular to the vector ; the distance between them is

. Because has its values on a discrete set
of equidistant points separated by , the set of all possible
subsets forms a partition of whose cell boundaries
are formed by parallel and equidistant hyperplanes. This type
of partition was studied in [14] and is called a “hyperplane
wave partition.” The number represents the density of
hyperplanes, or the number of hyperplanes per unit length in
their orthogonal direction. The vector
is called the density vector of the hyperplane wave partition.

Thanks to (34), we see that the partition induced by
is obtained by intersecting hyperplane wave partitions. It
was shown in [14, Theorem A.7] that the number of cells
induced by such a partition in a region of diametercan be
upper-bounded as

(35)

where . In our case, .
Therefore,

Writing , we have

(36)

By combining (33), (35), and (36), we obtain

where

D. Proposition 3

The proof is based on establishing the hypotheses of the
following lemma:

Lemma 1: Assume defined in (7) has at least
quantization threshold crossings (QTC’s) and consider

sampling at a rate of samples per period. Then there exist
constants and depending only on such that
for all , whenever and have the
same quantized sampled versions

Proof: This is a version of [1, Theorem 4.1] for real-
valued signals.

The following lemma gives a rough estimate which allows
us to relate signal amplitude to signal power.9

Lemma 2: Among zero-mean, periodic signals with power
, the minimum possible peak-to-peak amplitude is .
9We use the standard notion of power; fory(t) with periodT :

1=T
T

jy(t)j2 dt:

Fig. 13. One period of the signal used in the proof of Lemma 2.

Proof: We will construct a signal with power of
minimum peak-to-peak amplitude. For convenience, let .
Without loss of generality, we can assume that, ,
such that for and for . Then,
to have minimum amplitude for given power, must be
piecewise-constant as in Fig. 13, with and .
The mean and power constraints can be combined to give

. Under this constraint, the amplitude is uniquely
minimized by .

This final lemma relates the peak-to-peak amplitude of a
continuous signal to its quantization threshold crossings:

Lemma 3: A continuous, periodic signal with peak-to-peak
amplitude which is subject to uniform quantization
with stepsize has at least quantization threshold
crossings per period.

Proof: Consider first a signal with peak-to-peak
amplitude . The “worst case” is for with , and
for and to lie at quantization thresholds.
In this case, the most we can guarantee is “increasing”
QTC’s and “decreasing” QTC’s per period. If the peak-
to-peak amplitude exceeds, this worst case cannot happen,
and we get at least QTC’s.

Proof of the Proposition:

i) odd: Quantized frame expansion ofwith frame
vectors is precisely equivalent to quantized sampling of

with samples per period (see Section II-A2).
Denote the quantized frame expansion ofand the
corresponding continuous-time signal by and ,
respectively. It is easy to verify that the average time-
domain SE

is the same as the vector SE . Let
. Then is a zero-mean -periodic signal

with power , which by hypothesis
is greater than . Applying Lemma 2 we
conclude that has peak-to-peak amplitude greater
than . Since has precisely the same
peak-to-peak amplitude as , we can apply Lemma
3 to to conclude that has at least

QTC’s. Applying Lemma 1 with completes the
proof.



30 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

ii) even: We need only make slight adjustments from
the previous case. Let

and define and correspondingly. Again the
average time-domain SE

is the same as the vector SE . The power of
equals . Applying Lemmas

2 and 3 implies that has at least

QTC’s. We apply Lemma 1, this time with
to match the form of (7), to complete the proof.

Note that the bounds in the hypotheses of the proposition
are not tight. This is evidenced in particular by the fact
that the bound in Lemma 2 is not attainable by bandlimited
signals. For example, for the minimum peak-to-peak
amplitude is and for the minimum is

, compared to the bound of . Because
of Gibbs’ phenomenon, the bound is not even asymptotically
tight, but a more complicated lemma would serve no purpose
here.

APPENDIX II
FRAME EXPANSIONS AND HYPERPLANE WAVE PARTITIONS

This appendix gives an interpretation of frame coefficients
as measurements along different directions. Given a frame

, the th component of is .
Thus is a measurement ofalong . We can thus interpret

as a vector of “measurements” of in directions specified
by . Notice that in the original basis representation of,
we have measurements of with respect to the directions
specified by the standard basis. Each of themeasurements
is needed to fix a point in . On the other hand, the
measurements given in have only degrees of freedom.

Now let us suppose is scalar-quantized to give by
rounding each component to the nearest multiple of. Since

specifies the measurement of a component parallel to,
specifies an -dimensional hyperplane

perpendicular to . Thus quantization of gives a set of
parallel hyperplanes spaced by, called ahyperplane single
wave. The hyperplane single waves give a partition with
a particular structure called ahyperplane wave partition[14].
Examples of hyperplane wave partitions are shown in Fig. 14.
In each diagram, a set of vectors comprising a frame inis
shown superimposed on the hyperplane wave partition induced
by quantized frame expansion with that frame.

We can now interpret increasing the redundancyof a frame
as increasing the number of directions in whichis measured.
It is well known that MSE is proportional to . Section II-
B4 presents a conjecture that MSE is proportional to .
This conjecture can be recast as saying that, asymptotically,

(a) (b)

Fig. 14. Examples of hyperplane wave partitions inIR2. (a) M = 3. (b)
M = 5.

increasing directional resolution is as good as increasing
coefficient resolution.

In Section II-B5 it was mentioned that coding each com-
ponent of separately is inefficient when . This can
be explained by reference to Fig. 14. Specifying and
defines a parallelogram within which lies. Then there are
a limited number of possibilities for . (In Fig. 14(a), there
are exactly two possibilities. In Fig. 14(b), there are three or
four possibilities.) Then with , , and specified, there are
yet fewer possibilities for . If this is exploited fully in the
coding, the bit rate should only slightly exceed the logarithm
of the number of partition cells.
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