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Abstract—Coefficient quantization has peculiar qualitative ef-
fects on representations of vectors iHR™ with respect to over-

complete sets of vectors. These effects are investigated in two

settings: frame expansions (representations obtained by forming
inner products with each element of the set) and matching pursuit
expansions (approximations obtained by greedily forming linear
combinations). In both cases, based on the concept cbnsistency
it is shown that traditional linear reconstruction methods are

suboptimal, and better consistent reconstruction algorithms are
given. The proposed consistent reconstruction algorithms were in
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Fig. 1. Block diagram of reconstruction from quantized frame expansion.

linear expansions. Both fixed and adaptive basis methods are
studied. Although it represents an input vector as a linear
combination of elements from a representation set, the adaptive

each case implemented, and experimental results are included. basis method is in fact a nonlinear mapping. While many

For frame expansions, results are proven to bound distortion
as a function of frame redundancy+ and quantization step size
for linear, consistent, and optimal reconstruction methods. Taken
together, these suggest that optimal reconstruction methods will
yield O(1/r?) mean-squared error (MSE), and that consistency
is sufficient to insure this asymptotic behavior. A result on the
asymptotic tightness of random frames is also proven. Applica-
bility of quantized matching pursuit to lossy vector compression
is explored. Experiments demonstrate the likelihood that a linear
reconstruction is inconsistent, the MSE reduction obtained with
a nonlinear (consistent) reconstruction algorithm, and generally
competitive performance at low bit rates.

Index Terms— Consistent reconstruction, frames, matching
pursuit, MSE bounds, optimal reconstruction, overcomplete
representations, quantization, source coding.

I. INTRODUCTION

INEAR transforms and expansions are the fundamental

mathematical tools of signal processing. Yet the pro
erties of linear expansions in the presence of coefficient
quantization are not yet fully understood. These properties
most intricate when signal representations are with respec
to redundant, or overcomplete, sets of vectors. This pa
considers the effects of quantization in overcomplete fin
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other issues are explored, the unifying theme is that consistent
reconstruction methods [1] give considerable improvement
over linear reconstruction methods.

Consider the expansion—quantization—reconstruction sce-
nario depicted in Fig. 1. A vectat € C" is left-multiplied
by a matrix ' ¢ C**Y of rank N to gety € C¥. The
transformed source vectgris scalar quantized, i.e., quantized
with a quantizer which acts separably on each componemnt of
to gety. As shown in Section 11-A.2, this type of representation
arises naturally in simple oversampled A/D conversion. In
general, this sort of representation may be desirable when
many coarse measurements can be made easily, but precise
measurements are difficult to make. How can one best estimate
z from 3? How does the quality of the estimatedepend on
the properties of’, in particular its number of rows/? These
are the fundamental questions addressed in Section II.
To put this in a solid framework, we review the basic
roperties of frames and prove a new result on the tight-
ness of random frames. We then show that the quality of

are

refonstruction can be improved by using deterministic prop-
i

erties of quantization (consistent reconstruction), as opposed

ﬁgrconsidering guantization to be the addition of noise that

IS independent in each dimension. The relationship between
tlpe redundancy of the frame and the minimum possible recon-
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require coarse coefficient quantization. However, to the bearify that if & is a tight frame with||¢|| = 1 for all & € K,
of our knowledge, the present work is the first to descritben A = r.

the qualitative effects of coefficient quantization in matching Given a frame® = {¢;}rcx in H, the associateffame
pursuit. In particular, as in Section Il, we will find thatoperator I is the linear operator frontl to C* defined by
reconstruction can be improved by consistent reconstruction

techniques. (Fa)r = (@, ¢r). 2

Except where noted, we consider vectors in a finite dimen- o . . L .
sional Hilbert space? = R” or CV. Forz, y € H, we use Since H is finite-dimensional, this operation is a matrix
= ) , ,

the inner produciz, y) = 277 and the norm derived from mqltiplication whereF' is a matrix withkth row equal top;.
the inner product throughz|| = (x, #)/2. A’(i, A) is used Using the frame operator, (1) can be rewritten as
to denote the Normal distribution with mearand covariance *

. . Aly < F*F < Bly 3
matrix A. The term squared error (SE) is used for the square N = =N @)

of the norm of the difference between a vector and an estimafRerely is the N x IV identity matrix. (The matrix inequality
of the vector. The term mean-squared error (MSE) is reservgd , < p* " means thaf™* F'— Al is a positive semidefinite

for the ensemble average of SE or expected SE. matrix.) In this notation,[™*F = Aly if and only if & is a
tight frame. From (3) we can immediately conclude that the
[I. NONADAPTIVE EXPANSIONS eigenvalues ofF*F lie in the interval [A, B]; in the tight

This section describes frames, which provide a geneffme case, all of the eigenvalues are equal. This gives a
framework for studying nonadaptive linear transforms. Framgg@Mputational procedure for finding frame bounds. Since it
were introduced by Duffin and Schaeffer [7] in the conteff conventional to assumd is chosen as large as possible
of nonharmonic Fourier series. Recent interest in frames HHi B is chosen as small as possible, we will sometimes take
been spurred by their utility in analyzing discrete waveldf€ minimum and maximum eigenvalues bf I” to be the
transforms [8]-[10] and time—frequency decompositions [11f@me bounds. Note that it also follows from (3) that I”

We are motivated by a desire to understand quantization effelxdnvertible because all of its eigenvalues are nonzero, and
and efficient representations. furthermore

Section II-A begins with definitions and examples of frames.

It concludes with a theorem on the tightness of random

frgmes anq a discussion of_that result. Section II-B begiR$e dual frameof @ is defined asp — {1 v, where
with a review of reconstruction from exactly known frame

coefficients. The remainder of the section gives new results or = (F*F) Lop, Vke K. (5)
on reconstruction from quantized frame coefficients. Most

previous work on frame expansions is predicated either @nis itself a frame with frame bound8—! and A~*.

exact knowledge of coefficients or on coefficient degradation SinceSpan (®) = H, any vectorz € H can be written as
by white additive noise. For example, Munch [11] considered

a particular type of frame and assumed the coefficients were T = Z QP (6)
subject to a stationary noise. This paper, on the other hand, is keK

in the same spirit as [1], and [12]-[15] in that it utilizes th
deterministic qualities of quantization.

B Iy < (F*F)7L < A7 (4)

Sor some set of coefficientgy, } C R. If M > N, {a} may
not be unique. We refer to (6) asradundant representation
even though it is not necessary that more thamf the «’s
be nonzero.

1) Definitions and Basicsthis subsection is largely adapt- 2) Example: The question of whether a set of vectors form
ed from [10, ch. 3]. Some definitions and notations have bearframe is not very interesting in a finite-dimensional space;
simplified because we are limiting our attentionfio= R" any finite set of vectors which span the space form a frame.
or CV. Thus if M > N vectors are chosen randomly with a circularly

Let ® = {1 }xex C H, whereK is a countable index set. symmetric distribution od, they almost surely form a frante.
® is called aframeif there existA > 0 and B < oc such So in some sense, it is easier to find a frame than to give an

A. Frames

that for allz € H example of a set of vectors which do not form a frame. In
) ) ) this section we give a single example of a structured family
All” = Z [{z, o) " < Bll]l”. (1) of frames. We will prove certain properties of these frames in

keK Section 11-B4.

A and B are called thérame boundsThe cardinality ofx’ ~ Oversampling of a periodic, bandlimited signal can be
is denoted byM. The lower bound in (1) is equivalent toviewed as a frame operator applied to the signal, where the
requiring that® spansH. Thus a frame will always have frame operator is associated with a tight frame. If the samples
M > N. Also notice that one can chooge= 3", llen||? are guantized, this is exactly the situation of oversampled A/D
wheneverM < oo. We will refer tor = M/N as the | o . .

An infinite set in a finite-dimensional space can form a frame only if the

_redundancyOf the frame. A frame® is called atight Trame norms of the elements decay appropriately, for otherwise a finite upper frame
if the frame bounds can be taken to be equal. It is easy Heund will not exist.
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conversion [1]. Letr = [z; 2 -+ 2x]% € RY, with NV odd. 06 , , , ( ,
Define a corresponding continuous-time signal by
W 05 e
2rkt 2rkt
z.(t) =z1 + Z [m\/ﬁ cos 7rT + Zop+1V2 sin WT ¥ .
k=1 3 .
- ‘o om )
whereW = (N — 1)/2. Any real-valued,T-periodic, band- & ‘.,
limited, continuous-time signal can be written in this form. Sos 1
Let M > N. Define a sampled version af.(t) by z4[m| = E "'--.......::::“
./L'C(mT/M) and Iet ;.5102 ... ...Cuo'n.
y = [xa[0] za[1] -+ wa[M - 1]]". < Lot am
Then we havey = Fz, where L
f— ... T i 1 i n i n
F=[p1 ¢ oum ] % 2 4 6 8 10 12
with log2(M/N)
2rk 2rk
Yk = [1 \/5 CcOos % \/5 sin % Fig. 2. Normalized frame bounds for random framedRr.
2rWk 2rWk }T
i . (8 L I
V2 cos V2 sin ® existing frames. Results shown in Fig. 2 are averaged results

Using the orthogonality properties of sine and cosine, it f§" 1000 sequences of frames Id*. Fig. 2 shows thatd/M
easy to verify thatF*F = MIy, so I is an operator ahdB/M converge tol/N and thatB/A converges to one.
associated with a tight frame. Pairing terms and using the

identity cos? § + sin® @ = 1, we find that each row of* B. Reconstruction from Frame Coefficients

has normy'N. Dividing I” by v normalizes the frame and One cannot rightly call a frame expansion a “signal repre-

results in a frame bound equal to the redundancy ratitlso entation” without considering the viability of reconstructing

note that- is the oversampling ratio with respect to the Nyqui%]e original signal. This is the problem that we address
sampling frequency. presently

3) Tightness of Random Frame3ight frames constitute In Section 1I-B1, we review the basic properties of recon-

gri |mipr>]ortant t;:lifsfrofn:‘ra:nes. I;‘A\g Wle th'r|1 see |rr1nSeé:t|oirr1 g?'tructing from (unquantized) frame coefficients. This material
» sihce a g ame Is_sel-dual, as some desiraby adapted from [10]. The subsequent sections consider the
reconstruction properties. These extend smoothly to ne

tiaht f . f /A o ¢ Also. a‘;[)Ploblem of reconstructing an estimate of an original signal
'ght Trames, 1.€., frames wi JA C ose 1o oné. Also, for rom quantized frame coefficients. Classical methods are lim-
a tight frame (1) reduces to something similar to Parseva

. . ted by the assumption that the quantization noise is white. Our
equality. Thus a tight frame operator scales the energy

. g Y & proach uses deterministic qualities of quantization to arrive
an input by a constant factot. Furthermore, it is shown in at the concept of consistent reconstruction [1]. Consistent

Section [1-B4 that some properties of _typlcal_ frame Ope_ratorr%construction methods yield smaller reconstruction errors than
depend only on the redundancy. This motivates our |nter%§

in the following theorem Assical methods.
. ’ 1) Unguantized CaselLet ¢ be a frame and assume the
Theorem 1. Tightness of Random Framést {®, }57_x ) quantiz u

b f R h thatd v 1 tod b notation of Section II-Al. In this subsection, we consider the
ﬁas_equenceto rgrges q Slfdc 'tﬁ M '_s]: geng_rat_eb t_erroblem of recovering: from {(z, i)}rcr. Lt F: H —
choosingM vectors independently with a uniform distributio C™ be the frame operator associated withlt can be shown

. LN ~
on the tur:jlt Sfflgere%'hm '_Li:] P be the fra31e operator [10, Proposition 3.2.3] thatt*F = Iy. Thus a possible
associated with®y;. Then, in the mean squared sense, 1o onciriction formula is given by

1 1 .
— Fy Fyy — I Iy elementwise ag3/ — oo.

M sz*Fﬂ?:Z(% k) Pr-
Proof: See Appendix I-A. O kex
Theorem 1 shows that a sequence of random frames with ] o ] ]

increasing redundancy will approach a tight frame. NotEhis .formula is reminiscent of recongtrugtmn from a discrete
that although the proof in Appendix I-A uses an unrelatdgourier transform (DFT) representation, in which case
strategy, the constant/N is intuitive: If ®,, is a tight ) )
frame with normalized elements, then we hakg 'y = or = @1 = 1/VN[L N
(M/N)Iy because the frame bound equals the redundancy of
the frame. Numerical experiments were performed to confirin the DFT and inverse DFT, one set of vectors plays the
this behavior and observe the rate of convergence. Sequencdss of both® and® because it is a tight frame i@" . Other
of frames were generated by successively adding randoetonstruction formulas are possible; for details the reader is
vectors (chosen according to the appropriate distribution) teferred to [10, Sec. 3.2].

(I2mR(N=1)/NT



GOYAL et al. QUANTIZED OVERCOMPLETE EXPANSIONS INIR™ 19

2) Classical Method:We now turn to the question of re-
constructing when the frame coefficienféz, @) trer are
degraded in some way. Any mode of degradation is possible,
but the most practical situations are additive noise due to
measurement error or quantization. We are most interested in
the latter case because of its implications for efficient storage
and transmission of information.

Suppose we wish to approximategiven F'x + 3, where
B8 e € is a zero-mean noise, uncorrelated withThe key
to finding the best approximation is thatd = Ran (£") is
an N-dimensional subspace @". Hence the component of
(3 perpendicular ta#"H should not hinder our approximation,
and the best approximation is the projectionfaf + 3 onto
Ran (F). By [10, Proposition 3.2.3], this approximation is
given by

out-of-sub-
space error

in-subspace error

&=F"(Fz+p). (9)
Fig. 3. lllustration of consistent reconstruction.
Furthermore, because the component forthogonal to

Ran (F) does not contribute, we expefit — &|| = |E*8]|  The essence of consistency is thds a consistent estimate
to be smaller thar|3]|. The following proposition makes thisif it is compatible with the observed value of i.e., it is
more precise. possible thatt is exactly equal tac. In the case of quantized

Proposition 1. Noise Reduction in Linear Reconstructiofigme expansiong = Q o F, and one can give a geometric
Let {¢1}1L; be a frame of unit-norm vectors with associateghterpretation. induces a partitioning ofR*, which in
frame operator” and let3 = [81 B> --- Bu]", where the turn induces a partitioning oRY through the inverse map
B;'s are independent random variables with mean zero agfl() o F. A consistent estimate is simply one that falls in
variances?. Then the MSE of the classical reconstruction (%he same partition region as the original signal vector. These

satisfies concepts are illustrated faV = 2 and M = 3 in Fig. 3.
Mo? o2 The ambient space . The cube represents the partition
52 SMSE< Vo region in IR containingy = Fz and has codebook value
_ §. The plane isF(IR") and hence is the subspace within
Proof: See Appendix I-B. L which any unquantized value must lie. The intersection of the
Corollary 1: If the frame in Proposition 1 is tight plane with the cube gives the shaded triangle within which a
N2o2  No2 consistent estimate must lie. Projectingf¢IR"Y), as in the
MSE = = classical reconstruction method, removes the out-of-subspace

" component ofy — 4. As illustrated, this type of reconstruction

Now consider the case where the degradation is dueisonot necessarily consistent. Further geometric interpretations
quantization. Let: € R" andy = Fiz, whereF € RM*™ is  of quantized frame expansions are given in Appendix II.
a frame operator. Suppoge= Q(y), where@: R* — R With no assumptions o) other than that the partition

is a scalar quantization function, i.e., regions be convex, a consistent estimate can be determined
T using the projection onto convex sets (POCS) algorithm [16].
Q) = [n(n) a2(y2) -+ qm(ym)] In this case, that implies generating a sequence of estimates

by alternately projecting o"(IR™) and Q~1(3).

function. One approach to approximatinggiven § is to treat WhenQ is a scalar quantizer and each component quantizer
I%s uniform, a linear program can be used to find consistent

the quantization nois§ — y as random, independent in eac timat Fori — 1 2 1. denote th tizati
dimension, and uncorrelated with These assumptions make -1 mates. For =1, 2, ---, i, denote ine guantization

the problem tractable using statistical techniques. The probléﬁ?p.s'ze in theith component byA;. Eor notatlona}I con-
reduces to the previous problem, afd= £*j is the best venience, assume that the reproducporg values lie halfway
approximation. Strictly speaking, however, the assumptio gtween decision levels. Then for ea&;Hy? —uil < Aif2.
on which this reconstruction is based are not valid becau E)btamA a consistent esUr_nate, for eactwe must hav_e
§—y is a deterministic quantity depending gnwith interplay |(£%): — 8| < Aq/2. Expanding the absolute value, we find
between the components. the constraints

3) Consistent Reconstruction: Fi<iA+gandFz> 1A+

Definition 1. Consistency [1]:.Let f: X — Y. Letz € X
andy = f(z). If f(z) =y theni ¢ X is called aconsistent
estimate ofr from 4. An algorithm that produces consisten L N
estimates is called aonsistent reconstructioalgorithm. An { F}x < F A +y} (10)
estimate that is not consistent is said toibeonsistent —Fl ka9

whereg;: R — R, 1 < ¢ £ M, is a scalar quantization

where A = [A; Ay -+ Ay]*, and the inequalities are
Flementwise. These inequalities can be combined into
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TABLE | or
ALG&Z‘L‘*Z" g%i&?;‘:;ii%?g}:‘f@gﬁ'ON i) N even The frame operators are as in (8) with the first
column removed andlz|| > (N + 2)A/4.
L. Form Proof: See Appendix A-D. O
7 [ F} and = FA47 . __Conjecture 1. MSE Upper_ BounddJnder very general con-
—-F TA—§ ditions, for any set of quantized frame expansions, any algo-

2. Pick an arbitrary cost function € RN rithm that gives consistent estimates will yield an MSE that
3. Use a linear prglgramming method to fiacto minimize X & subject  €@N be gpper-bounded by &X(1/r?) expression.

to Fi < 7. For this sort of general upper bound to hold, some sort of
nondegeneracy condition is required because we can easily
construct a sequence of frames with increasinfpr which
the frame coefficients give no additional informationsags
The formulation (10) shows th&t can be determined throughincreased. For example, we can start with an orthonormal
linear programming [17]. The feasible set of the linear progragasis and increase by adding copies of vectors already in
is exactly the set of consistent estimates, so an arbitrary c@fé frame. Putting aside such pathological cases, simulations
function can be used. This is summarized in Table I. for quantization of a source uniformly distributed pal, 1]

A linear program always returns a corner of the feasiblgpport this conjecture. Simulations were performed with three
set [17, Sec. 8.1], so this type of reconstruction will not bgpes of frame sequences:

close to the centroid of the partition cell. Since the cells are
convex, one could use several cost functions to (presumably)’
get different corners of the feasible set and average the results.
Another approach is to use a quadratic cost function equal t
the distance from the projection estimate given by (9). Both
of these methods will reduce the MSE by a constant factor.
They do not change the asymptotic behavior of the MSE as
the redundancy is increased.

A sequence of frames corresponding to oversampled
A/D conversion, as given by (8). This is the case in
which we have proven a®(1/r%) SE upper bound.

For N = 3, 4, and 5, Hardin, Sloane, and Smith
have numerically found arrangements of up to 130
points on N-dimensional unit spheres that maximize
the minimum Euclidean norm separation [18].

4) Error Bounds for Consistent Reconstructiom orthog- lll. Frames generated by randomly choosing points on the

onal representations, it is well understood that under ve u.n|t sphere accord.lng tg a u.nlform distribution.
general conditions, the MSE @&(A2) for small A. For frame |muIat|.on results are given in Fig. 4. The dashed, dotted,
expansions, how does the MSE dependrofor larger, and and SO!Id curves correqund to frame types [, I, and I,
how does it depend on the reconstruction method? The M&gSPectively. The data points marked withs correspond
obtained with any reconstruction method depends in genef@IUsing & linear program based on (10) to find consistent
on the distribution of the source. The evidence suggests tfgfimates. The data points marked widfs correspond to
any consistent reconstruction algorithm is essentially optim&i?ss'ca| reconstruction. The important characteristics of the
in a sense made clear by the following propositions, and giv@&€Ph are the slopes of the curves. Note ¥l /r) MSE
O(1/r?) MSE. corresponds to a slope 6f3.01 dB/octave and(1/r%?) MSE
Proposition 2. MSE Lower BoundLet z be a random vari- corresponds to a slope 6f6.02 dB/octave. The consistent
able with probability density functiom with support on a reconstruction algorithm exhibit®(1/r*) MSE for each of
bounded subsés of R™. Consider any set of quantized framdhe types of frames. The classical method exhilttd /)

expansions ofe for which MSE behavior, as expected: It is particularly interesting to
note that the performance with random frames is as good as
sup max (leil)/Ai = do < 0. with either of the other two types of frames.
M 1>

Note that in light of Theorem 1, it may be useful to try to
Unless p is degenerate in a way which allows for exacProve Conjecture 1 only for tight frames.
reconstruction, any reconstruction algorithm will yield an MSE 5) Rate-Distortion TradeoffsWe have asserted that opti-
that can be lower-bounded kyr2, whereb is a coefficient mal reconstruction techniques give an MSE proportional to
independent of and a function ofN, p, the diameterD of 1/r%, and the O(A?) MSE for orthogonal representations
B, and the maximum density valug. extends to the frame case as well. Thus there are two ways to
Proof: See Appendix I-C. ] reduce the MSE by approximately a factor of four: double
Proposition 3. Squared-Error Upper Bound—DFT Case@r halveA. Our discussion has focused on expected distortion
Fix a quantization stepsizé € IRT. For a sequence of Without concern for rate, and there is no reason to think that
quantized frame expansions of a fixede R” followed these options each have the same effect on the rate.
by consistent reconstruction, the squared error can be upperAs the simplest possible case, suppose a frame expansion is
bounded by arO(1/r?) expression under the following con-stored (or transmitted) a&/ b-bit numbers, for a total rate of
ditions: Mb/N bits per sample. Doubling gives2M b-bit numbers,
i) N odd The frame operators are as in (8) and for a total rate o2A/b/N bits per sample. On the other hand,
halving A results inM (b 4 1)-bit numbers for a rate of
2 23 - on]¥] > (N +1)A/4 only M(b+1)/N bits per sample. This example suggests that
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54 . . . , of that subset that approximates a given signal vector. The
use of a greedy algorithm is justified by the computational
intractability of finding the optimal subset of the original frame
[21, ch. 2]. In our finite-dimensional setting, this is very similar
to the problem of finding sparse approximate solutions to linear
systems. In that context, this greedy heuristic is well-known
"o and performance bounds have been proven [22].

Quantization of coefficients in matching pursuit leads to
many interesting issues; some of these are discussed in Section
llI-B. Along with exploring general properties of matching

I > ] pursuit, we are interested in its application to compressing
Ti‘;e " N data vectors ifR™. A vector compression method based on
T | Typem ) matching pursuit is described in Section IlI-C.
72 a5 4 a5 5 55 . .
log2(r) A. Matching Pursuit

Fig. 4. Experimen?tal results for reconstruction from quantized frame expan- 1) Algorithm: Let D = {@k}i\il C H be a frame such

fg?”jéfsﬁggﬂgg;;&u“gfoa_for consistent reconstruction a6d(1/r) MSE 4t ||‘Fk|| = 1.for all k. D is called thedictionary. Matqhing
pursuit (MP) is an algorithm to representc H by a linear
combination of elements @?. In the first step of the algorithm,

halving A is always the better option, but a few commentg, is selected such thafpr, , «)| is maximized. Then: can

are in order. One caveat is that in some situations, doublinghe written as its projection ontg;, and a residuer; =

and halvingA may have very different costs. For example, the

much higher cost of halving\ than of doublingr is a major T = {Pho» T) Pk, + R

motivating factor for oversampled A/D conversion. Alsorif

is doubled, storing the result &/ b-bit values is far from

the best thing to do. This is because many of Aieadditional

numbers give little or no information on. This is discussed

further in Appendix II. Rpt12 = Rpz — (1, Rpx)er, .

The algorithm is iterated by treating,z as the vector to be
best approximated by a multiple ¢f, . At stepp + 1, k, is
chosen to maximize(yy,, ,x)| and

lIl. ADAPTIVE EXPANSIONS Identifying Rox = x, we can write

n—1

Transform coding theory, as introduced in [19] and analyzed
in detail in [20], is predicated on fine quantization approx- = Z {on:s Riw)opr, + Hn.
imations and assuming that signals are Gaussian. For most =0
practical coding applications, these assumptions do not hottkreafter, we will denotéy;,, R;x) by «;. Note that the out-
so the wisdom of maximizing coding gain—which leads tput of a matching pursuit expansion is not only the coefficients
the optimality of the Karhunen—l&we transform—has been(wg, «;, -+ -), but also the indicegk, k1, - --). For storage
guestioned. More fundamentally, we can leave the uswuaid transmission purposes, we will have to account for the
framework of static orthogonal transform coding and considaxdices.
the application of adaptive and nonlinear transforms. Matching pursuit was introduced to the signal processing

The matching pursuit algorithm [2], described in Sectiooommunity in the context of time—frequency analysis by Mal-
[lI-A, has both adaptive and nonlinear aspects. Given a soutaé and Zhang [2]. Mallat and his coworkers have uncovered
vector z and a frame{p; }4L, it produces an approximatemany of its properties [21], [23], [24].
signal representation = Z?z_ol a; ¢k, It is adaptive in the  2) Discussion: Since «; is determined by projection,
sense that the:;’s depend onz, yet it can be considered c;¢x, L R;r12z. Thus we have the “energy conservation”
nonadaptive because it is time-invariant for transforming eguation
sequence of source vectors. On the other hand, it has a linear
nature because it produces a linear representation, but it is 1Ria® = | Riree]|* + o (12)

nonlinear because it does not satisfy additivity. This fact, the selection criterion fd;, and the fact tha®

The matching pursuit algorithm is a greedy algorithm fogpansH, can be combined for a simple convergence proof
choosing a subset of the frame and finding a linear combinatigf finjte-dimensional spaces. In particular, the energy in the

2The usage of additivity is not obvious. Clearlyif ~ """ a4, and residue is strictly decreasing untilis exactly represented.

(11)

s R Y0 Bipr,, then Even in a finite-dimensional space, matching pursuit is not
- guaranteed to converge in a finite number of iterations. This

vt m S (0 + B, is a serious drawba_ck when e_xact (or very prec!se) S|gnal

i=o expansions are desired, especially since an algorithm which

But in general the expansions of , x2, andz; + x2 would not use the same pICkS. d!Ctlonary elements jomtly WOUlq choose a basis from
k;’s; for this reason the transform is nonlinear. the dictionary and get an exact expansiomvirsteps. One way
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to speed convergence is to use an orthogonalized version of 1 . . . : . . . .
MP which at each step modifies the dictionary and chooses ool
a dictionary element perpendicular to all previously chosen o 1 torm
dictionary elements. Since orthogonalized matching pursuit os; 2
does not converge significantly faster than the nonorthogo- © 2terms
nalized version for a small number of iterations [6], [21],
[25], nonorthogonalized matching pursuit is not considered §°¢
hereafter. 508
Matching pursuit has been found to be useful in sourcez
coding for two (related) reasons: The first reason—which was® *“[
emphasized in the original Mallat and Zhang paper [2]—has oa}
been termedexibility; the second is that the nonlinear approx-
imation framework allows greater energy compaction than a

0.7F

Jterms

O 4terms

linear transform. ot
MP is often said to have flexibility to differing signal ) . ‘ | Aterms ) , ‘
structures. The archetypal illustration is that a Fourier basis -* -0 0 0.5 1 15 2 25 3

. _ K N log2{M/N}
provides a poor representation of functions well localized

in time, while wavelet bases are not well suited to repid: 5 Comparison of energy compaction properties for coding of a
. . . N(0, Is) source. With ak-term orthogonal expansion, the residual has
resenting functions whose Fourier transforms have narroy,_ ' /8 of the energy ¢'s). The residual energy is much less with MP
high-frequency support [2]. The implication is that MP, withsolid curves).
a dictionary including a Fourier basis and a wavelet basis,
would avoid these difficulties. quantization. In particular, the inner produet = (¢, R;x)
Looking at the energy compaction properties of MP giveg quantized tod; = ¢(«;) prior to the computation of the
a more extensive view of the potential of MP. Energy contesidual R; ;2. The quantized value is used in the residual
paction refers to the fact that after an appropriately chosesiculation: R,z = Rz — &;¢r,. The use of the quantized
transform, most of the energy of a signal can be capturggiue in the residual calculation reduces the propagation of the
by a small number of coefficients. In orthogonal transforjuantization error to subsequent iterations.
coding, getting high-energy compaction is dependent on de-Although QMP has been applied to low bit rate compression
signing the transform based on knowledge of source statistigspblems [5], [6], [25], which inherently require coarse coef-
for fine quantization of a stationary Gaussian source thigient quantization, little work has been done to understand
Karhunen—Le@ve Transform is optimal [26]. Although boththe qualitative effects of coefficient quantization in matching
produce an approximation for a source vector which is a linegdirsuit. In this section we explore some of these effects. The
combination of basis elements, orthogonal transform codifglationship between quantized matching pursuit and other
contrasts sharply with MP in that the basis elements are chose@tor quantization (VQ) methods is discussed in Section IlI-
a priori and hence at best one can make the optimum bagig. The issue of consistency in these expansions is explored
choiceon averageln MP, a subset of the dictionary is chosefn Section 11l-B.2. The potential lack of consistency shows
in a per vectormanner, so much more energy compaction at even though matching pursuit is designed to produce a
possible. linear combination to estimate a given source vector, optimal
To illustrate the energy compaction property of MP, correconstruction in the presence of coefficient quantization re-
sider the following situation. AN(0, Iy) source is to be quires a nonlinear algorithm. (Such an algorithm is presented
transform coded. Because the components of the source jareSection 111-C.2.) In Section 11I-B.3, a detailed example
uncorrelated, no orthogonal transform will give energy conon the application of QMP to quantization of &*-valued
paction; so in the linear coding casg, coefficients will source is presented. This serves to illustrate the concepts from
capturek/N of the signal energy. A-step MP expansion will Section 1II-B.2 and demonstrate the potential for improved
capture much more of the energy. Fig. 5 shows the resuligonstruction using consistency.
of a simulation withN. = 8. The plot shows the fraction 1) Relationship to Other Vector Quantization Methods:
of the signal energy in the residual when one- to four-tergingle iteration of matching pursuit is very similar to shape-
expansions are used. The dictionaries are generated randogaly VQ, which was introduced in [27]. In shape-gain VQ,
according to a uniform distribution on the unit sphere. Far vectorz € IR" is separated into gain, ¢ = ||z| and a
a corresponding number of terms, the energy compactionsisape s = = /g. A shapes is chosen from a shape codebook
much better with MP than with a linear transform. Noticg, to maximize(z, ). Then a gainj is chosen from a gain
in particular that this is true even if the dictionary is notodebookC, to minimize (§ — (=, §))2. The similarity is
overcomplete(M = N), in which case MP has no moreclear withC, corresponding t@ andC, corresponding to the
“flexibility” than an orthogonal basis representation. quantizer forag, the only differences being that in MP one
maximizes theabsolute valueof the correlation and thus the
gain factor can be negative. Obtaining a good approximation
Define quantized matching pursufQMP) to be a modified in shape-gain VQ requires tha, forms a dense subset of
version of matching pursuit which incorporates coefficierihe unit sphere ifR". The area of the unit sphere increases

B. Quantized Matching Pursuit
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exponentially withV, making it difficult to use shape-gain VQ

in high-dimensional spaces. A multiple iteration application of
matching pursuit can be seen as a cascade form of shape-gaj
VQ.

2) Consistency:We have thus far discussed only signal
analysis (or encoding) using QMP and not synthesis (recon-
struction) from a QMP representation. To the best of our
knowledge, all previous work with QMP has used

|
—

)
=) Qipx, (13)

s
Il
<

() (b)

which results from simply using quantized coefficients ifig. 6. (a) lllustration of consistency consgraint (15)IR?. (b) lllustration
(11) and setting the final residual to zero. Computing thfd consistency constraints (15) and (16)Mr.

reconstruction has very low complexity, but its shortcoming

is that it disregards the effects of quantization; hence it céime quantization oy, implies that the source vector lies in

produce inconsistent estimates. the volume shown.
Supposep iterations of QMP are performed with the dic- At the (i —1)st step, the selection @&f gives the constraints
tionary D and denote the output by il il
QMP(2) = (ko, o, k1, G, -+« iyt Gper). (14) ‘<<Pk” T ZZZO Oéé<Pm> 2 <<P7 T é_z_:o Oéé‘Pkc> ;
) o Ve eD. a7)
Denote the output of QMP (with the same dictionary and
quantizers) applied tg¢ by This definesM — 1 pairs of linear half-space constraints with
boundaries passing througEZ:(LJ dopr,. As before, these
(o, G, Kys G, ooy Ky, @, ). define two infinite pyramids situated symmetrically with their

apexes ab '_t drpr,. Thenad; gives

By the definition of consistency (Section [I-B3}; is a i1

: - : P 4 = & . LA A
]E:c())rn?s_te(r)]t 1estlma]tje 01f1|f and only if k; =k, and&; = &, Ok T — Z aé‘Pk4> c {az -5 i + 5} (18)

— Uy, Ly rry - 4 o ) =0

We now develop a description of the set of consistent . » . .

estimates of: through simultaneous linear inequalities. Fof NS @gain specifies a pair of planes, now perpendicular to
notational convenience, we assume uniform scalar quantization: Petween whichz must lie.

of the coefficients with stepsiza and midpoint reconstruc- BY P€ing explicit about the constraints as above, we see
tion3 The selection oft, implies that, except in the case thate [&; — A/2, & + A/2] for

somes, the partition cell defined by (14) is convéxhus by
Yo e D. (15) using an appropriate projection operator, one can find a strictly
consistent estimate from any initial estimate. The partition cells

For each element o \ {¢, }, (15) specifies a pair of half- &€ in_tersections of cells of the form shown in Fig. _6(b).
space constraints with boundary planes passing through th&lotice now that contrary to what would be surmised from
origin. An example of such a constraint IR? is shown in (13). ki gives some information on the signal evenif= 0.
Fig. 6(a). If ey, is the vector with the solid arrowhead (choserd N €xperiments in Section [1-C3 show that whép = 0,
from all of the marked vectors), the source vector must ik tends to be inefficient in a rate-distortion sense to store or
in the hatched area. FaV > 2, the intersection of these transmitk;. If we know that&; = 0 but do not know the value
constraints is two infinite convex polyhedral cones situatéd i, then (17) and (18) reduce to
symmetrically with their apexes at the origin. The valugigf i—1

<<P7 €r = Z &Z¢k4>

=0

gives the constraint
. A A .
(Prys ) € |G — 5 Go + ook (16) Experiments were performed to demonstrate that (13) often
gives inconsistent estimates and to assess how the probability

This specifies a pair of planes, perpendiculagfg, between of an inconsistent estimate depends on the dictionary size

which z must lie. Constraints (15) and (16) are illustrated iﬁnd the quantization. We present here results forlih

Fig. 6(b) for IR>. The vector with the solid arrowhead was/alued source with thev'(0, I) distribution. The consistency

chosen among all the marked dictionary vectorsgs Then Of. recpn_struc_tlon was checked for two |tera_t|on expansions
with dictionaries generated randomly according to a uniform

[{eror )] 2 [y )],

A
<5 VeeD. (19

3 Ambiguities on partition cell boundaries due to arbitrary tie-breaking—in 4The “hourglass” cell that results frothe [¢; —A /2, &;4+A /2] does not
both dictionary element selection and nearest neighbor scalar quantizeake consistent reconstruction more difficult, but is intuitively undesirable in
tion—are ignored. a rate-distortion sense.
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TABLE 1l
PROJECTION ALGORITHM FOR CONSISTENT
RECONSTRUCTION FROM AQMP REPRESENTATION

)
2 1. Sete = 0. This is a counter of the number of steps of QMP that
F o8y is consistent with.
€ 2. Let
206 c—1
E 0.44 TEE- Z @D
5 i=0
%o.z where it is understood that the summation is emptydfet 0
& 3. Findy € D that maximizeg(y, T)|. If » = k., go to Step 5; else
T ol go to Step 4.
-2 4. (¥ is not consistent withk..) Let
-1 8 Pk, = SAN({Ph,» T))Pk,
o y 6 and
> =sgn({w, T))p.
log10(Delta) 1 2 , L @ =sgn({¢, T))¢
e

Fig. 7. Probability that (13) gives an inconsistent reconstruction for two

. . B 4 T=T— (P — @, TP, — @
iteration expansions of aR*-valued source. (Pre =& M)k = 2)

the orthogonal projection af onto the set described by (17). Terminate
o . . o . 5. (z is consistent withk..) If
distribution on the unit sphere. Dictionary sizes bf =

4,8, ---,20 were used. The quantization was uniform with

reconstruction pointgmA},,cz. The results are shown in go to Step 7; else go to Step 6.

Fig. 7. The probability of inconsistency goes to zero for very 8 is not consistent with...) Let

coarse quantization and goes to one for fine quantization.

The dependence on dictionary size and lack of monotonicity A A

indicate complicated geometric factors. Similar experiments - min { (Pkes f)—(ac+§)‘. (@, f)—(dc—g) }

with different Squrces and dictionaries_ \_Nere reported in [28]. Leti = &— 3y, the orthogonal projection @f onto the set described
As noted earlier, the cells of the partition generated by QMP  py (18). Terminate.

are convex or the union of two convex cells that share one7. (& is consistent witha..) Incremente. If ¢ = p, terminate § is

point. This fact allows the computation of consistent estimates ~ consistent); else go to Step 2.

through the method of alternating projections [16]. One would

normally start with an initial estimate given by (13). Given afurthermore define the following(A — 1) x N matrices:

estimatez, the algorithm given in Table Il performs the one T

“most needed” projection; namely, the first projection needed Fi=lor, o o ¢r]

in enfgrcing (15)—(18). Among thg possible projection:'s !n Fi=[pr,  @rici Pripn 0 Phu ]T

enforcing (17), the one corresponding to the largest deviation

from consistency is performed. For notational convenience ahtist, write (17) as

concreteness, we assume again uniform quantization with

1 1
(Pr., T) € [Gc — 5A~, ae + EA)

B =sgn (P, T)—de)

ek (z =0l 2 l¢" (=),  VeeD
g(a;) = mA <= o; € [(m — %)A, (m + %)A). wherec is shorthand forEZ;é &epx,. Combining thed — 1
nontrivial inequalities gives
Steps 5 and 6 could easily be adjusted for a general quantizer. o:Fy(z —¢) > |Fi(z —¢).

In a broadly applicable special case, the inequalities (15)—
(18) can be manipulated into a set of elementwise inequalitiEgpanding the absolute value one can obtain
Axz < b suitable for reconstruction using linear or quadratic
programming, whered and b are 2Mp x N and 2Mp x 1, { by —oiF; }x < { (£ —oil)c } (20)
respectively, and4 and b depend only on the QMP output. —Fi—oiF; (=Fi —oiFy)c
This formulation_is pos_sible when each_Q_MP itgration eith%riting (18) first as
a) uses a quantizer with zero as a decision point; or b) uses
a quantizer which maps a symmetric interval to zero, and the T . A
value of k; is discarded wherd; = 0. ok, (2 =€) =il < 9
Consider first the case whekg has zero as a decision
point. For notational convenience, we will assume the decisidh
points and reconstruction values are given yA,; }.cz A,
and {(m + 3)A;}mez, respectively, but all that is actually { o }x <2
necessary is that the quantized coeffici@ntreveals the sign —<p;€_ - A
of the unquantized coefficient;. Denotesgn («;) by o;, and o

e easily obtains

(21)
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On the other hand, if; maps an interva[—(A;/2), A;/2]
to zero andk; is not coded, then (19) leads similarly to the
2M inequalities

F Fc—i-%
{_F}xﬁ AL (22)
—Fc—i—?Z

A formulation of the formAz < b is obtained by stacking
inequalities (20)—(22) appropriately.

3) An Example ifR?*: Consider quantization of afiR>-
valued source. Assume that two iterations will be performed
with the four-element dictionary

Do {{COS (2k=Dr  (2k= 1)7rr}i :

8 8

Even if the distribution of the source is known, it is difficult to
find analytical expressions for optimal quantizers. (The issue B
of optimal quantizer design is considered for the case of a
source with a uniform distribution ofi-1, 1] in [28, Sec. Fig. 8. Partitioning of first quadrant ofR* by matching pursuit with
2.3.2]) Since we wish 10 use fed. unained quarizers, i Aenert dekora (eay nes) Lnear eorsnctor poas e
will use uniform quantizers fory, and «;. It will generally
be true thaty;, L ¢,, SO it makes sense for the quantization
step sizes fokyy, and a; to be equal. For simplicity, rate and distortion are measured by sample
The partitions generated by matching pursuit are very int@ntropy and MSE per component, respectively. The sources
cate. In Fig. 8, the heavy lines show the partitioning of the firgsed are multidimensional Gaussian with zero mean and
quadrant when zero is a quantizer reconstruction value, i@dependent components. The inner product quantization is
the quantizer reconstruction points g/ A },,cz and decision uniform with midpoint reconstruction values §inA},,cz.
points are{(m+ 3)A}.ez for some quantization stepsize® Furthermore, the quantization stepsizeis constant across
The dotted lines show boundaries that are created by chofi@ations. This is consistent with equal weighting of error in
of ko (k1) but, depending on the reconstruction method, migegch direction.
not be important becausi = 0 (&; = 0). In this partition, 1) Basic Experimental Resultdn the first experiment,
most of the cells are squares, but there are also some smafer= 4 and the dictionary was composed 8f = 11
cells. The fraction of cells that are not square goes to zefaximally spaced points on the unit sphere [18]. Rate was
as A — 0. measured by summing the (scalar) sample entropies,pof
This quantization of[R?> gives concrete examples of thek1, « -+, kp—1 andéo, a1, -+, &;—1, Wherep is the number
inconsistency resulting from using (13). The linear reco®f iterations. The results are shown in Fig. 9. The three
struction points are indicated in Fig. 8 bys. The light dotted curves correspond to varyingfrom 1 to 3, while
line segments connect these to the corresponding oftimé#constructing according to (13). The points along each dotted
reconstruction points. Such a line segment crossing a ceWirve are obtained by varyingh. Notice that the number

boundary indicates a case of (13) giving an inconsistedt iterations that minimizes the distortion depends on the
estimate. available rate. The solid curve is the convex hull of these R—D

operating points (converted to a decibel scale). In subsequent
graphs, only this convex hull performance is shown.
] . . ] 2) Improved Reconstruction Using Consistend@ontinu-

This section explores the efficacy of using QMP as gfg the experiment above, the degree of improvement obtained
algorithm for lossy compression of vectors it . In order py ysing a consistent reconstruction algorithm was ascertained.
to reveal qualitative properties most clearly, very simplgging consistent reconstruction gives the performance shown
dictionaries and synthetic sources are used in the experimeggﬁ.the dashed curve in Fig. 9. Notice that there is no im-
Experiments with other dictionaries and sources appear jiyvement at low bit rates because consistency is not an issue
[28]. We do not explore the design of a dictionary or scalgp, g single-iteration expansion. The improvement increases
quantizers for a particular application. Dictionary structure h"fﬁonotonically with the bit rate.

a great impact on the computational complexity of QMP as 3y an Effective Stopping CriterionRegardless of the re-
demonstrated, for example, in [29]. construction method, the coding results shown in Fig. 9 are

L _ _ . far from satisfactory, especially at low bit rates. Fop-atep
5The partition is somewhat different when the quantizer has different . the “b line” di thod is t | ¢
decision points, e.g.{(m + %)A}mez [28, Sec. 3.3.2]. The ensuing €xpansion, the "baseline” coding method Is to apply entropy

conclusions are qualitatively unchanged. codes (separately) t&q, Go, k1, &1, -+, kp—1, Gp_1. This
6Optimality is with respect to a uniform source distribution. coding places a rather large penalty of roughdy, M bits

C. Lossy Vector Coding with Quantized Matching Pursuit
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—— Linear reconstruction re 12
— — Consistent reconstruction -

----- no transform
— QMP

SNR (dB)

1 15
Rate (bits/sample) Rate (bits/sample)

Fig. 9. Performance comparison between reconstruction based on (13) Bitd 11. Performance of QMP as the dictionary size is varied (solid curves,
consistent reconstructioiN' = 4 and the dictionary is composed #f = 11 labeled byM) compared to the performance of independent uniform quanti-
maximally spaced points on the unit sphere [18]. zation of each sample (dotted curve).

I1I-C3, we now explore the effects of varying the size of the
dictionary. Again the source is independent and identically
distributed (i.i.d.) Gaussian in blocks a¥ = 4 samples,

\- - Fixed number of iterations
18} E— Stopping criterion

r and dictionaries generated randomly according to a uniform
1af distribution on the unit sphere were used. Fig. 11 shows the
ol performance of QMP witl\/ = 4, &, ---, 20 (solid curves);

and of independent uniform scalar quantization followed by
entropy coding (dotted curve). The performance of QMP
improves asM is increased and exceeds that of independent
e} uniform scalar quantization at low bit rates. This result high-
J lights the advantage of a nonlinear transform, since no linear
transform would give any coding gain for this soufce.
In the final experimental investigation, we consider the
o 1 2 3 4 s s lowest complexity instance of QMP. This occurs when the
Fate (bls/samplo) dictionary is an orthonormal set. In this case, QMP reduces to
Fig. 10. Performance comparison between a fixed number of iterations and@thing more than a linear transform followed by sorting by
simple stopping criterionlv' = 4 and the dictionary is composed 8f =11 gpgo|yte value and quantization. Here we code an i.i.d. Gauss-
maximally spaced points on the unit sphere [18]. ian source with block size&v = 1,2, ---, 8.8 The results
shown in Fig. 12 indicate that even in this computationally
on each iteration, i.e., this many bits must be spent in additigiinple case without a redundant dictionary, QMP performs
to the coding of the coefficient. In particular, the minimunvell at low bit rates. An interesting phenomenon is revealed:
achievable bit rate is abotog, M)/N. N = 1is best at high bit rates and¥ = 2 is best at low bit
Assume that the same scalar quantization function is usegates; no larger value oV is best at any bit rate.
each iteration and that the quantizer maps a symmetric intervak) A Few Possible VariationsThe experiments of the pre-
to zero. Based on a few simple observations, we can deviggus subsections are the tip of the iceberg in terms of possible
a simple alternative coding method which greatly reduces thesign choices. To conclude our discussion of source coding,
rate. The first observation is thatdf; = 0, then&; = 0 for 3 few possible variations are presented along with plausibility
all j > i because the residual remains unchanged. Secondlguments for their application.
if & =0, thenk; carries relatively little information. Thus we  An obvious area to study is the design of dictionaries. For
propose that aj; = 0 be used as a stopping criterion whichstatic, untrained dictionaries, issues of interest include not only
causes a block to be terminated even if the maximum numbmrp performance, but also storage requirements, complexity

of iterations has not been reached andkb)be considered of inner product computation, and complexity of largest inner
conceptually to come aftet;, sok; is not coded ifé; = 0. product search.

Simulations were performed with the same source, dictio- There is noa priori reason to use the same dictionary
nary, and quantizers as before to demonstrate the improvemgnevery iteration. Given a iteration estimate, the entropy
due to the use of a stopping criterion. The results, shown in7W d - ¢ random dictionaries. Sliahtly b

. . . . . f e are not advocating the use of random dictionaries. ightly better
Fig. 10, indicate a S|Z.ab|e. |mprovement .at low bit rateg. performance is expected with an appropriately chosen fixed dictionary.

4) Further Explorations: Having established the merits of sof coyrse, v = 1 gives independent uniform scalar quantization of each

consistent reconstruction and the stopping criterion of Sectiegmple.
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optimal reconstruction methods will yietd(1/r?) MSE, and

12} that consistency is sufficient to insure this asymptotic behavior.
Experiments on the application of quantized matching pur-

10k Curves labelled by values of N | suit as a vector compression method demonstrated good low
N=1.2,..8) 2 bit rate performance when an effective stopping criterion was

used. Since it is a successive approximation method, matching
pursuit may be useful in a multiresolution framework, and the
inherent hierarchical nature of the representation is amenable
to unequal error protection methods for transmission over
noisy channels. Because of the dependencies between outputs
4r of successive iterations, MP might also work well coupled
with adaptive and/or universal lossless coding.

SNR (dB)

APPENDIX |

0 05 1 15 2 25 PROOFS
Rate (bits/sample)

Fig. 12. Performance of QMP with an orthogonal basis dictionary as t#%. Theorem 1
block size N is varied. M . .
Let @ = {¢r},L,. The corresponding frame operator is

iven by F = T, Thus the(s, j)th element
of k&, becomes a limiting factor in adding the results of agf (1/My)F*F [i(glg(iffen bwa] (i, 9)

additional iteration. To reduce this entropy, it might be useful
to use coarser dictionaries as the iterations proceed. Another 1
possibility is to adapt the dictionary by augmenting it with < F*F) =
samples from the source. (Dictionary elements might also be ij
deleted or adjusted.) The decoder would have to be aware of
changes in the dictionary, but depending on the nature of the =
adaptation, this may come without a rate penalty.
The experimental results that have been presented are basgd . .
) . T . Where(¢y,); is theith component ofpy,.
on entropy coding each; independently of the indices, which™™ _ : . . N e
: i ey ._First consider the diagonal elemerfts= j). Since for a
are in turn coded separately; there are other possibilities. J(}ln{: . : s
. o : IXed ¢ the random variable§py,);, 1 < k& < M are i.i.d., and
entropy coding of indices was explored in [28] and [30]. Als )
g . . - (}ﬁave zero mean, we find that
conditional entropy coding could exploit the likelihood o
consecutively chosen dictionary vectors being orthogonal or 1
(i) |-

|

M | M
Z (F)indyy = i Z Fri b
k=1 k=1

S

(or)i(en)is

| =
bl
l
i

nearly orthogonal. Vi

Finally, for a broad class of source distributions, the distri-

: s ; 1, 1 M-3 ,
butions of thew;’s will have some common properties because Var || — [*F =— | pa— —— 3 (23)
they are similar to order statistics. For example, the probability M i M M-1

ic:]egilgyntci);cex? \éwells%?]small near zero. This could be explonedwhereu2 = E[(¢x)?] and g = E[(¢r)?] [31, Sec. 8-1]. For
' the off-diagonal element§ # )

IV. CONCLUSIONS

E -0 (24)

1 %
This paper has considered the effects of coefficient quantiza- <M r F) o
tion in overcomplete expansions. Two classes of overcomplete “
expansions were considered: fixed (frame) expansions and <i F*F)
expansions that are adapted to each particular source sample, M i
as given by matching pursuit. In each case, the possible
inconsistency of linear reconstruction was exhibited, compbtoting thatu.» and ., are independent aff, (23) shows that
tational methods for finding consistent estimates were giveViar [(F*F/M);;] — 0 asM — oo, SO (F*F/M);; — pe in
and the distortion reduction due to consistent reconstructitme mean-squared sense [31, Sec. 8-4]. Similarly, (24) and (25)
was experimentally assessed. show that fori # j, (F*F/M);; — 0 in the mean-squared
For a quantized frame expansion with redundanciy was sense. This completes the proof, proviged= 1/N.
proven that any reconstruction method will give MSE that We now derive explicit formulas (depending &) for s,
can be lower-bounded by an(1/r?) expression. Backed by iy, and E[(¢1)7 (1 )3]- For notational convenience, we omit
experimental evidence and a proof of a restricted case, it whe subscrip and use subscripts to identify the components
conjectured that any reconstruction method that gives consi$the vector. To compute expectations, we need an expression
tent estimates will have an MSE that can be upper-boundfed the joint probability density ofe:, @2, - -+, ¢ ). Denote
by anO(1/r?) expression. Taken together, these suggest thiae N-dimensional unit sphere (centered at the origin)Shy.

Vi = 3 Fleiar). @9
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Sinceyp is uniformly distributed orfy, the probability density
function (p.d.f.) of ¢ is given by
1
fle) = —,

CN

Ve Sy (26)

wherecy is the surface area &f . Using spherical coordi-
nates,cy is given by

27 T T
cN = </ d9> </ sin wq dw1> </ sin? wo dw2>
0 0 0
</ sin?¥ 2 WN_2 dwN_2>. (27)
0

Using (26), we can make the following calculation:

= Efg}] =

2
= / PN 44 wheredA is a differential area element
SN

) < sin wq dw1>
™
sin? wo dw2> </ sin™ 2 wh_s dwj\r_;),)
0

112 [o%]

1

CN

(
(L
g

/ cos? wn_s sin®™ "2 wy_o dwN—Q) (28)
0
77 -1
</ sin™ 2 W o dwn— )
0
</ cos? wn_s sin®™ "2 wy_o dwN—Q) (29)
0

N

In this calculation, (28) results from using spherical coordi

nates and (29) follows from substituting (27) and canceli

like terms. The final simplification is due to a standar
integration formula [32, eq. (323)]. Similar calculations give

pa = Elpj] = 3/N(N +2)
and, fori # j,
Blpipi]l = 1/N(N +2).

B. Proposition 1

Subtracting
M
Z T, or) + Pr)@
from
M
T = (z, o)
k=1
gives
M
—E==> Bfr
k=1

n
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Then we can calculate
M

> Brr

MSE=E|z - &|* = F

k=1
M M L M M
=E|> Y /Jiﬁk@:@k] =" suwo’@iér (30)
=1 k=1 =1 k=1

“Lowl? (31)

M M
=o* Y llallP =0 > I F
k=1 k=1
where (30) results from evaluating expectations using the
conditions on3, and (31) uses (5). From (4) we can derive

B72|lerl? < I(F*F) " oul* < A72 |l
which simplifies to
B2 <||(F"F) | < A7 (32)
because of the normalization of the frame. Combining (31)
and (32) completes the proof.

C. Proposition 2

Let us consider a given reconstruction algorithm. It maps
every possible discrete vectpiof R into a vectori = R(7)
of R". The reconstruction algorithm thus approximates any
input vectorz € RY by & = VQ(x) where VQ(z) =
R(Q(Fa:)) The reconstruction MSE is thuB(||VQ(z) —
z||?). The mappingz — VQ(z) = R(Q(Fz)) is a vector
quantizer of RY. For each discrete vect@re Q(FRY), it
maps all vectors of the subs&t-*Q~'(j) of RY into the
single vectori = R(#) of RY. According to the terminology
in vector quantization [26],F*Q~(f) is a cell of the
partition defined by the vector quantiz&fQ in R, and
& = R(g) is the corresponding code vector.
Let C be the number of cells that can be found in the region
B. 1t was proved by Zador [33], [34] (see also [35]) that there
§<ists a coefficient(N, p) which only depends oV andp,
such that, forC' large enough

E([VQ(x) — «|*) > (33)

To obtain a lower bound in terms of, let us calculate an
upper bound orCC' in terms ofr. From (2) and the definition
of @, we haveQ(Fz) = [c1(z) cofx ) o ep(x)]?, where
ci(z) = ¢({x, (pz>) Foreachi € {1, -, M}, w = ci(z) is
a mapping fromR" to R. Because

QFr)=9 < c(z)=9; Vie{l,---, M}
we have
FQ™H) = 7 () Ney " (G2) 0 Neyf (). (34)

Consider a fixed € {1, -,
scalar quantizer of step siz&;

M. Becausgy; is a uniform

~

(@) = ail(x, i) = G

VAV
= Yi— o> <Az, @i)

T €c;

<“+Ai
Yi 9

Thus ¢;!(¢;) is the subset ofRY delimited by the two
hyperplanes of equations:, ;) = 4; — A;/2 and{z, ¢;) =
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7 + A; /2, respectively. These two parallel hyperplanes are
perpendicular to the vectas;; the distance between them is
¢; = A;/||¢:i||.- Becausey; has its values on a discrete set
of equidistant points separated hy;, the set of all possible
subsets; ! (¢;) forms a partition ofR™ whose cell boundaries
are formed by parallel and equidistant hyperplanes. This type
of partition was studied in [14] and is called a “hyperplane
wave partition.” The numbet /¢; represents the density of
hyperplanes, or the number of hyperplanes per unit length in
their orthogonal direction. The vectal = (1/4;)(¢:/||w:ll)
is called the density vector of the hyperplane wave partition.
Thanks to (34), we see that the partition induced1bg

29

b+

Fig. 13. One period of the signal used in the proof of Lemma 2.

Proof: We will construct a signay(¢) with power P of

is obtained by intersecting/ hyperplane wave partitions. It minimum peak-to-peak amplitude. For conveniencellet 1.

was shown in [14, Theorem A.7] that the number of celiyithout loss of generality, we can assume that 0 < ¢ < 1,
induced by such a partition in a region of diamefercan be ¢ - thaty(t) > 0 for ¢ < ¢ andy(t) < 0 for t > ¢. Then,

upper-bounded as

o< (N )upa+1 35)
where d = maxi<;<pm ||d;]|. In our case,||d;|| = 1/4.
Therefore,

d= max [[gill/A: < do.
Writing M = rN, we have

M\ _MN NN

<N)SRT_RF7' (36)

By combining (33), (35), and (36), we obtain
B(|VQ(z) — |?) > b/r*

where
2

b= (w#o/ﬁn) oA 2)

to have minimum amplitude for given powey(t) must be
piecewise-constant as in Fig. 13, with> 0 and b > 0.
The mean and power constraints can be combined to give
ab = P. Under this constraint, the amplitudet b is uniquely
minimized bya = b = V/P. O
This final lemma relates the peak-to-peak amplitude of a
continuous signal to its quantization threshold crossings:
Lemma 3: A continuous, periodic signal with peak-to-peak
amplitude > A which is subject to uniform quantization
with stepsizeA has at leas2| A/A| quantization threshold
crossings per period.
Proof: Consider first a signal(t) with peak-to-peak
amplitudeA. The “worst case” is ford = kA with k € Z, and
for min y(¢) and max y(¢) to lie at quantization thresholds.
In this case, the most we can guaranteg is 1 “increasing”
QTC's andk — 1 “decreasing” QTC's per period. If the peak-
to-peak amplitude exceeds, this worst case cannot happen,
and we get at least| A/A| QTC's. O
Proof of the Proposition:

i) N odd Quantized frame expansion afwith A frame

D. Proposition 3

The proof is based on establishing the hypotheses of the

following lemma:
Lemma 1: Assumez,(t) defined in (7) has at least=

2W +1 quantization threshold crossings (QTC's) and consider
sampling at a rate a4 samples per period. Then there exist
constants: > 0 andry > 1 depending only om.(¢) such that
for all M = rn > ron, wheneverz.(¢) and z.(t) have the
same quantized sampled versions

1/T/T|a:c(t)—a:ﬁ:(t)|2dt<c/r?.

Proof: This is a version of [1, Theorem 4.1] for real-
valued signals. |
The following lemma gives a rough estimate which allows
us to relate signal amplitude to signal power.
Lemma 2: Among zero-mean, periodic signals with power
P, the minimum possible peak-to-peak amplitud@éP.

9We use the standard notion of power; fgit) with period 7":

1/T Z ly(t)]? dt.

vectors is precisely equivalent to quantized sampling of
x.(t) with M samples per period (see Section 1I-A2).
Denote the quantized frame expansion mfand the
corresponding continuous-time signal iy and z’(¢),
respectively. It is easy to verify that the average time-
domain SE

UTLMAQ—%@Fﬁ

is the same as the vector g — 2/||?. Let z.(¢t) =
zc(t) — x1. Theni,(¢) is a zero-mead -periodic signal
with power ||[x2 z3 --- zx]¥]|?, which by hypothesis
is greater thar{(V + 1)A/4)2. Applying Lemma 2 we
conclude thatz.(t) has peak-to-peak amplitude greater
than (N + 1)A/2. Sincez.(¢t) has precisely the same
peak-to-peak amplitude as.(¢), we can apply Lemma
3 to z.(t) to conclude that:.(¢) has at least

2[((N +1)A/2)/A] = 2|(N +1)/2] = N +1

QTC'’s. Applying Lemma 1 withn = N completes the
proof.
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ii) N even We need only make slight adjustments from, . K LA AT
i / ™ ha S AR
the previous case. Let < < L YLt
S K K A s
N/2 / . N / ~. 7 T 4
2kt . 27kt . LT LT 2T
x(t) = Z Ton_1V?2 cos + V2 sin /‘ _ - /\\ \g\/\
k=1 T T < > < > s >
~ ) }/ ;&<< TN
. . . \“\ . \\\ k\ / & .
and definex’ and «’(¢t) correspondingly. Again the ( K /\\ p ’,/3§
average time-domain SE / %S / . 7*\/4>< :
1T / [we(t) — al(t) dt LTSS AR
T ‘ ‘ ™. I / N }(@/ b
is the same as the vector & — «’||?>. The power of @ (b)
ze(t) equ-als||g-u||2 > ((N+2)A/4)2- Applying Lemmas Fig. 14. Examples of hyperplane wave partitionsIR?. (a) M = 3. (b)
2 and 3 implies that:.(¢) has at least M = 5.

2[((N+2)A/2)/JA] =2|(N+2)/2] =N +2 _ _ o o ) _
increasing directional resolution is as good as increasing
QTC’s. We apply Lemma 1, this time with = N 4+ 1 coefficient resolution.
to match the form of (7), to complete the proof. In Section 1I-B5 it was mentioned that coding each com-
Note that the bounds in the hypotheses of the propositiganent ofj separately is inefficient when >> 1. This can
are not tight. This is evidenced in particular by the fadie explained by reference to Fig. 14. Specifyifig and ¢
that the bound in Lemma 2 is not attainable by bandlimitedefines a parallelogram within which lies. Then there are
signals. For example, faN = 2 the minimum peak-to-peak @ limited number of possibilities fofi;. (In Fig. 14(a), there
amplitude isv/2 - 2v/P and for N = 4 the minimum is are exactly two possibilities. In Fig. 14(b), there are three or
~1.3657 - 2v/P, compared to the bound dfv/P. Because four possibilities.) Then witl,, i, andjs specified, there are
of Gibbs’ phenomenon, the bound is not even asymptoticalgt fewer possibilities forj,. If this is exploited fully in the
tight, but a more complicated lemma would serve no purposeding, the bit rate should only slightly exceed the logarithm

here. of the number of partition cells.
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