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Shadow Bounds for Self-Dual Codes

Eric M. Rains

Abstract—Conway and Sloane have previously given an upper this concept has a natural analog in the case of additive codes
bound on the minimum distance of a singly-even self-dual binary over GF(4); that is, GF2)-linear subsets of Gf)~, self-

code, using the concept of the shadow of a self-dual code. Weg nal (i ntained in i I under the inner pr
improve their bound, finding that the minimum distance of a self- orthogonal (i.e., contained in its dual) under the inner product

dual binary code of lengthn is at most4|n /24| 44, except when _ 2
nmod 24 i 22 , when %he bound is4Ln&2ﬁJ —|J-46— We alsf)o show (v, w) = Z T (v ws).
that a code of length a multiple of24 meeting the bound cannot be ¢
singly-even. The same technique gives similar results for additive These codes appear, for instance, in the theory of quantum
codes over GH4) (relevant to quantum coding theory). error-correcting codes [1]. For these codes, we give a bound
Index Terms—Bound, self-dual code, shadow, singly-even. 2| 5] +2,0r2|%] + 3 whennmod 6 = 5. We also give a
result bounding the minimum weight &f+ — C when C is
a self-orthogonal additive code.
A quick note on notation: We will use the notatipn k, d]4
N [5], the following was shown: to refer to an additive code over GE); k will be its dimen-
Theorem: If a doubly-even self-dudlh, /2, d] exists, then sion as a vector space over GB. In particular, a self-dual
d < 4l57] +4. code will havek = n.
The objective of the present work is to remove the restriction
that the code be doubly-even. For singly-even codes, much less Il. SHADOWS
has hitherto been known; a direct extension of the proof in [5]
gives a bound/ < 2| %] + 2, but this bound is almost never
met. The situation was improved greatly by [2], which give
a boundd < 2L"1—Jgfj, except whenn is 2,12,22, or 32; a wt (v 4 w) — wh (v) — wt (w) = 2(v, w) = 0 (mod 4)
further improvement appears in [7], which gives the bound
d < (n/6) + 2 + (2/3)logy(n). This is still higher than the it follows that the subset af’ consisting of elements of weight
bound for doubly-even codes, however. In the sequel, a néwnultiple of4 forms a subspac€’, of C. If C is doubly-

I. INTRODUCTION

Let C be a self-orthogonal binary code. From the congru-
gnce

bound is proved, of the form even, thenC, = C, and we define the shado$(C) = C+.
" Otherwise, we defin&(C) = Cg- — C+. Equivalently,S(C)
d< 4Lﬂj +4 is the set of vectorsw such that

except whemn mod 24 = 22, when 2{w, v) = wh(v) (mod 4)

n for all v € C.
d< 4L2_4J +6. Theorem 1:Let A(z,y) be the weight enumerator df,

: . . . dletS be th ight tor f(C). Th
In particular, wheneven is a multiple of8, so both singly- and letS(x, y) be the weight enumerator &i(C'). Then

even and doubly-even codes exist, we now have the same Sz, y) = iA(a}—i—y i(x — ).
bound for singly-even and doubly-even codes. In fact, when ’ |C| ’

n is a multiple of24, it can be shown that any code meeting  proof: See [2, Theorem 6, in particular, eq. (23)]. Note

the bound must be doubly-even. that [2] considers codes containing their duals, rather than

_ As the present bound is shown using linear programmingyqes contained in their duals; thus one should exchahge
it is natural to inquire how much weaker it is than the full LR, L throughout. 0

bound. Using a high-precision LP package (the author usedSimiIarIy, let C be an additive code over GE), self-

maple ), one can readily verify that for alk in the range ,thogonal under the above inner product. One can readily
8 < n £ 200, there exists a feasible weight enumeratq;erify that

(including the constraints from the shadow enumerator (see
below)) meeting the bound. In some cases, the present bound wt (v + w) — wt (v) — wt (w) = (v, w) = 0 mod 2

n improv n usin rprogramming, however. .
can be improved upon usirigtegerprogra 9. howeve 0 as above, the subsél, of even codewords iC is a

The key idea in the proof is the use of additional constraints R :
coming from the “shadow” of the code [2]. It turns out tha§Ubgr0uP’ definings(C') as above, or equivalently, as the set

of vectorsw such that
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Theorem 2:Let A(z,y) be the weight enumerator af, linear combination of thes,; for 0 < j < 4, and as a linear

and letS(z,y) be the weight enumerator &f(C). Then combination of theb; for 0 < j < [n/8] — .
1 Define o;(n) to be the coefficient ofy, in the expansion
Sz, y) = FA(a:—l—Ziy,y - ). of ¢; in terms ofg; for 0 < j < ¢, and defines;;(n) to be
o the coefficient oft; in the expansion ot; in terms ofb; for
Proof: Comp|ete|y ana|ogous_ O 0 S j S |_7’L/8J — 1. Then, except in extreme cases, we will
For self-dual codes, the weight enumerators have a spe&@¢ thatv;(n) <0 for suitably chosen, while 3;;(n) > 0 for
form, which carries over to the shadow enumerator the same and0 < j < [n/8] —i. Thus we need to compute

Theorem 3: Let A(z,y) and S(x,y) be, respectively, the (1) andf3;;(n) at strategically chosen points.
enumerator of a self-dual binary code of lengthand that  First, ai(n). Fori>0
of its shadow. Then there exist coefficienisO < i < [g], () = — " coeff. of =1 in (1)~ (/2 —1+4i (1 _ )2
cuch that ai(n) = —5[coeff. ofy™™ in (1+y) (1=y)~"]
This is [2, eq. (48)], and follows from theuBfhann—Lagrange

A(.’L’, y) = Z Ci(-TQ + y2)n/2—41{$2y2($2 - y2)2}Z theorem:
0<i<|n/8] Theorem (Bfmann-Lagrange):Let f(x) and g(z) be for-
Sy)= > (=1)e2V/2 % (zy)"/? (@t —y*)¥.  mal power series, with(0) = 0, andg’(0) # 0. If coefficients
0<i<|n/8) ki; are defined by
Proof: This is part 4 of [2, Theorem 5]. O ! fx) = Z Kijg(x)"
Analogously, we have 0<i

Theorem 4:Let A(z,y) and S(z,y) be, respectively, the then
enumerator of a self-dual additive code over @J-of length i
n and that of its shadow. Then there exist coefficient® < x,;; = = | coeff. ofz'~tin [jz/ 7t f(x) + 2 f' ()] <i> .
i < [5], such that ¢

i i Proof: See [8, ch. 7]. O
Alz,y) = Z ci(z +y)" " (y(z —y)) In particular, forl > 1, we have
0<i<|n/2]
S(z,y) = Z (—1)" 2" ey 2 (22 — )" 12m -1 om—1 :
0<i<In/2] o (24m — 20) = — o [coeff. of y in
—4m—+l—1 _ —4m
Proof: Analogous. O (1+y) L=y
'In each case, we prove our bound b){ expressing an appro- _ _ 12m — l[coeﬁ_ ofy?™Lin
priately chosen:; both as a linear combination of the initial 2m z
coefficients of the weight enumerator and as a linear com- 1+l —y*)™
bination of the initial coefficients of the shadow enumerator. _ 12m -1
All but one of the terms in the first linear combination will T om Z
be 0, based on the putative minimum distance; consequently, 1sksll
the first linear combination reduces to an explicit constant. All -1\ {(10m -k —3)/2
coefficients in the second linear combination will turn out to k am —1 :

have the same sign, a sign inconsistent with the sige .of

Forl1 < [ < 13 andm > 2, each term in the sum is
lll. BINARY CODES nonnegative, so we can conclude that,(24m — 21) < 0,

Let C be a self-dual binary code, with shaddiwlet A(z,y) With equality only wher = 1. Similarly, azp, +1(24m—2) <0

and S(z,y) be the respective weight enumerators. Write, 4¥€ need this to handie mod 24 = 22).
in Theorem 3, We will need two more values ofr to handle the case

nmod24 = 0 (i.e., to show that a self-dugk4m,12m,

A(l,y) = Z a;y¥ 4m + 4] must be doubly-even):
0<5<|n/2]
= Z a1+ P - )Py o (24m) = —6[coeff. ofy*™~Lin
<z<|n —4dm— —4m
i (@ +9) 7" (L=
S(Ly) = Z biy = —6[coeff. ofy*™Lin (1 —y)(1 —y?) "1
osistl/sl ‘ ‘ ‘ =6[coeff. of 2™ in (1 — z)~*™ 1]
_ Z (_1)zci2n/2—61yn/2—4z(1 _ y4)21 L/ dm—1
0<i<[n/8] =6(-1)™" < m—1 )
wheret = (n/2 mod4). Note thatag = 1, and alla; and _6(5m
b; must be nonnegative integers. Also, one can wjtas a 5\ m
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and
12 .
amt1(24m) = — 5 Tl[coeﬁ‘. ofy*™ in
m
(1 + y)—4m+3(1 _ y)—4m—2]
12 .
= — —" _jcoeff of 4™ in
2m 41

(1+y)°A-y*)* 7

12m <5 ) —k
=5t 2 (g )1
2m+1 o5t 2k
) —4m — 2
m—k

—_192 m om
N 2m+Ddm+1)\m )
It will turn out that

Aom (247’77,) = /3(2771)0(24777‘)
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But thenb; = 0 for 0 < j < m. In other words, the
shadow code must have minimum weight: + 6 as well.
Letting C for 0 < 7 < 3 be the four cosets of the even
subcodeC® in its dual, we can construct an even self-dual
[24m + 24, 12m + 12, 4m + 8] as the set of all vectors of one
of the following four forms:(0,0)|v, for v € C®,(0,1)v,
for v € C (1,0)|v, for v € C® | or (1,1)v, for v € C2),
(This construction is given in [4].)

The possibility of a self-dug)24m + 22,12m + 11,4m +
8] can be eliminated by remarking thas,,;s is a linear
combination oft; for 0 < j <m, so must be), but

Com+3 = Qa(ma1)41(24(m + 1) — 2) <0.
Finally, consider a putativi24m, 12m, 4m + 4]. Consider
F = gy 1(24m)cam — aom(24m)comy1-
Since

Q2m+1(24m) = Bami1)0(24m)

and and

Q21 (24110) = Bram1)0(24m). azm(24m) = Bamyo(24m)

A similar Burmann—Lagrange calculation gives a formul
for Bi;(n)

o k=g (k+i—j5-1
(1)t n/2+Gz—J J
Py = (=12 i < k—i—j )

% is a linear combination ofi; throughazm+1, SO must be
0. On the other hand, we have

I'= a2n1+1(24m)62nl - a2n1(24m)62nl+1
= Z Bam+1)0P@m)ibi — Bam)oP@m+1);b;

valid for ¢ >0, wherek = |n/8]. Note, in particular, that 0<j<m
(=1)'8i; >0 for 0 < j < k — 4. The details are omitted for 384 §(3m — §)(6m — §)
conciseness; the calculation is essentially that in [2], except = — Z j<T (@2m + 1)(dm + D(5m — j)
for an error in [2, eq. (55)] (the second term should be added, 0<j<m J
not subtracted). <5m) <5m - ))

We can now prove ‘A\m J\m—-j )]

Theorem 5: If a self-dual[24m+2I, 12m+1, d] exists, with
0 <[ <11, then

dm+4, I<11
= {4m+6, [ =11.

This is a negative linear combination éf throughb,,. In
other words b, throughb,, must all be0. But then

Bam+1)0 = @2m41(24m) = comi1 = Bm+1)0b0

If a self-dual[24m+22, 12m+11, 4m+6] exists, then so doesso by = 1. But this can only happen if the code is doubly
a doubly-even self-dug4m+24,12m+12,4m+38]. Finally, even. O
any self-dual[24m, 12m, 4m + 4] must be doubly-even.
Proof: We first show thatd < 4m + 4 for 0 < [ < 11.
Suppose, on the contrary, that 4m+4. Considercy,, 2. On
the one handgy,, 2 IS aam42(n) plus a linear combination
of the q; for 1 < i < 2m + 2; since these are afl, we have

IV. ApDITIVE CODES OVER GF(4)
Let C be a self-dual additive code over GH, with
shadows; let A(z,y) and S(x,y) be the respective weight
enumerators. Write, as in Theorem 4,

Cam+2 = X2(m+1 (24(m + 1) - 2(12 - l)) <0. j
) A(]-vy): Z ajyj

On the other hand, 0<5<n
n—2% i
Com42 = Zﬁ(Qm—l—Q)jbj- = Z a(l+y) (y(1-v))
j 0<i<|n/2]
. . . S(1,y) = Z B itt
But B(2m+2);b; is nonnegative for allji. So czmq2 > 0, @ Y Y
contradiction. 0<ji<|n/2]
qu, consider a self-dugl4m + 22,12m + 11,4m + 6]. = Z (—=1)82n3icyn (1 — 42
In this case, we have 0<i<|n/2]

> Bemtnibi = camiz = amen)(24(m+1) = 2) = 0. wheret = (nmod2). As before,ap = 1, 0 < aj,b;, and
0<j<m ¢; can be written either as a linear combination of the
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for 0 < j < ¢, or as a linear combination of thi for minimum distance ofCt, we could simply apply Theorem

0<j< |n/2]—i 6, sinceC+ would contain some self-dual code; however, the
Definea;(n) to be the coefficient of, in ¢;; definej;; to  problem as stated is not quite so simple.
be the coefficient ob; in ¢;. As above, we calculate Let A(x,y), B(x,y), and S(x,y) be the enumerators of
6m — | -1 C,C+, and the shadow of, respectively; thenB(z,y) —
a2 (6m — 1) = — om Z < E ) A(z,y) is the weight enumerator @+ — C. Thus we need
1<k<i-1,2m—1 to find a nonnegative linear combination of the coefficients
(6m — & — 3)/2 of B(a:., y) — A(a:,y)., A(a:,y), and S(z,y) that equalso,
: om — 1 . producing a contradiction.
Note, first, that
Forl1 <[ <7andm > 2,orl <[ < 5andm > 1, "
each term in the sum is nonnegative, so we can conclude that B(z,y) =2"A((z + 3y)/2,(z — 9)/2)

aam(6m — 1) < 0, with equality only whenl = 1. Similarly, so

aama1(6m — 1) <0. A z+3y r—y
Also Alz,y) = Alz,y) = A —5—
Qo (6m) = <3m) = (1 =27 A(z,y) - 27"(B(z,y) — A, v)-
2m ) . . . -
m In particular, since the first coefficients ofB(z, y) — A(z, y)
and are 0 (by assumption), we have
6y — g 3m A(Ly) = (1-27)A(Ly) + O(yY).
aamya(6m) = =8{ 5 0y ) Note that
Finally, Sz, y) 2r_1A<wz3y7 y;x)
_ iggi—n [k —J 1
In particular so X(x,y) must have nonnegative coefficients.
’ What we will do, then, is produce a linear combination
Bam+1)0(6m) = opm1(6m), Bramyo(6m) = azm(6m) of the first d coefficients of A(1,%) that is also a linear
and combination of certain coefficients &f(1, y); again, the signs

will give a contradiction. The main reason we can do this is

m 3 m)j m} m J .
2t 1P(zm)) = CzmBam+1); the following theorem (analogous to Theorems 3 and 4 above).

— 8my : <3m —j> <3m> >0 Theorem 7:Let A(z,y) and X(z,y) be as above. Then
(2m+1)2m—-j+1)\ m m there exist coefficients;,0 < i < |(n — 1)/2], such that
with equality only when; = 0. . n—1—2 i
We can now prove the following Alw,y) = Z cilz=3y)(z+y) (lz=y)

Theorem 6:If a self-dual [6m + 1, 6m + 1, d], exists, with 0Zi<|(n—1)/2]

0 <1< 5 then S(ey) = Y (=LA lm2i 2y 2y
4 < {2m+ 2, I<5 0<i<|(n—1)/2]
=\ 2m+3, [=5. Proof: Simply note thatA(z,y) is taken to its negative
If a self-dual [6m + 5,6m + 5,d], exists, then so does anPy the MacWilliams transform
even self-dual[6m + 6,6m + 6,d]s. Finally, any self-dual A(a: +3y z— y) _ _A(ny)
[6m + 6,6m + 6, d]4 must be even. 2 72 dd

Proof: Proof as before. We need only give a constructiophis follows from the fact that the substitution
of a[6m+6, 6m+6, 2m+4]4 from a[6m+5, 6m+5, 2m+3la. T4+3y T—y
Letting C for 0 < 7 < 3 be the four cosets of the even (z,y) — < 5 5 )
subcodeC® in its dual, we can construct an even self-dual .
[6m + 6,6m + 6,2m + 4]4 as the set of all vectors of one of SE_If-TverseA be in the i
the following forms:0|v, for v € C0, 1|v, for v € CWV), w|v, This forcesA(z, y) to be in the ring
for v € C?, andw?|v, for v e C®), O

(z = 3y)Clz +y,y(x — y)]-

V. SELF-ORTHOGONAL ADDITIVE CODES One readily verifies that every element of this ring is anti-
For applications to quantum error-correcting codes, thevariant under the MacWilliams transform; on the other hand,
objects of interest are additive codés over GF(4), self- the Molien series of the ring of anti-invariantsw
orthogonal under the trace-Hermitian inner product. In partictthus we have exhausted the space of anti-invariants.
lar, we would like a bound on the minimum weight@f- —C, The theorem follows immediately. |
given thatC has lengthn and dimensiom —» <n. (If » =0, As one might expect, the linear combination we use will be
thenC+ — C is empty.) If we merely wanted a bound on the suitably chosem;. Let us therefore writey = 2k + ¢ + 1,
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with ¢ € {0,1}, and

Yy
0<i<n

Ly) = > gy

0<i<k

Let ¢,; be the coefficient off; in the expansion ok; in
terms of thef;; similarly, let +;; be the coefficient of; in
the expansion of;. Then we can compute;; and v;; by
applying the Birmann—Lagrange theorem to the identities

Y (1=3y) 1y = Y %( )> +O(y"*)
0<i<k
and
(_1)k2r+k—2—tyj( _Y)—k
8Y 1\ 4
_ Z V(- z)]( )) +O(Yk+l)
0<i<k

whereY = 72
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Forl =1
P2m—1); = [coeff. of ™17 in

(i

y 1 _ y2)—27n—1]

S_
)

and
b(omy; = [coeff. ofy?™ =7 in (1 +)?(1 - y*)~*™ Y]
el (om0, v
_ m 2m _ 1 P
3m—[3] -1 .
2< 2@ ) J odd.
In particular

1)
]}

3m — LiJ .
< 2m2 ), j even

Pmy; T 4P@m-1); =

Before applying the Brmann-Lagrange theorem, it will be  Similarly, we can computey;;

helpful to restate the theorem slightly.

Lemma 8: Let f(x) andg(z) be formal power series, with

¢(0) =0, andg’(0) # 0. If coefficientsmj are defined by

2 f(x Z/{“g

0<4

2 0(35) |

then

Kij = [coeff. ofz'~7 in

Proof: The Birmann—Lagrange theorem, as stated above,

tells us that

S [Coeﬁ' of ' in (i~ (2) +xjf'<x>><$)i]
L 50(55) |

[coeff. of '~ in (i — j)h(z) — zh'(x)] = 0.

Applying this whenh(z) = f(x)(z/g(z))",
kij, we get the desired result.
In particular

1 i .
== [coeff. ofz*~7 in <g +
(3

Now, for any functionh(zx)

and adding into
O

¢i; = [coeff. ofy' = in (1+ y)%_"(l _ y)_i_l],

Thus takingn = 6m — [ as before
2)—2771]'

This is positive whenevel> 2; for [ = 2, it is nonnegative,
and 0 only whenj is even. We also have, fér= 2

2)—2771—1] > 0.

¢(2m—l)j = [Coeﬁ' Onym_l_j in (1 + y)l_2(1 -y

P(am); = [coeff. of y*"~7in (1 +y)*(1 -y

14
6<3m 2}71 3] ) 4 odd.
This is nonnegative, antl only whenj = 0.
Yi—iy; =27 coeff. of Y~ in
(_1)k—i2k—t—1—3i(1 _ Y)—l—k—i—i]'

So
vij = (=1)"2% =" coeff. of Y in (1 - V)17

_1)i23i—n—’l‘+l k - j
i .

In particular, this is negative farodd; furthermore, fof = 1

_r k—y
Y(2m)j +4’7(27n—1)j =-2 +1 J <I€ Til) <0

except whenj = 0. Also, forl =1

i (3m—1 _
Yem)o = 27"t <2m _ 1) =2 ¢(2m)0-

We now have the inequalities necessary to prove
Theorem 9:Let C be an additive code over GE), of
length n 6m —1+1 with 0 <[ < 5, and dimension

n —r <n, such thatC+ — C has minimum weightl. Then

d < 2m+1, except wherl = 5, whend < 2m + 2. Any code
meeting the bound fof = 0 must be the even subcode of a
[6m — 1,6m — 1,2m + 1]4.

Proof: For 1 < I < 4, we have ¢my1); >0 and
Yeem+1); <0, giving a contradiction. Fol = 5, we have
$2m+1); = 0 whenjj is even; consequently, we can conclude
only that f; = 0 for odd j < (2m + 1), and thaty; = 0 for all
j <m. Now, consideres,,+2. This is a linear combination of
the g; for j <'m — 1, so must equad. On the other hand, it is
also a positive linear combination ¢f for 0 < j < 2m + 2;
this is impossible unlesg < 2m + 2.

Finally, for [ = 0, we consideres,,, +4esnm_1. This is a
positive linear combination off; for 1 < j < 2m, and a
negative linear combination gf for 1 <j <m. Consequently,
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all of thesef; and g; must be0. Then, consideringy,,, we
have

C2m = Y(2m)090 = d)(an)OfO

SO
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noted that one could prove a similar result for self-orthogonal
binary codes that contain a vector of full weight; however, the
object C+ — C is much less natural in that case.

The theory of shadows also has an analogue for integral
lattices [3]; as one might expect, therefore, the above bounds
have analogues for lattices as well. For more details, consult

go=2"fo=2"-1 [6].

If »> 1, thengo > 1, which is impossible (sincg, = S(1,0));
thus we must have = 1, sogo = 1 and the code is even.
Clearly, then, if we takeD to be any self-dual code lying
betweenC andC+, thenD must be d6m—1,6m—1, 2m-+1]4,
andC is its even subcode. The theorem follows.

VL.

There is still some room for improvements in the above
bounds. For instance, integer programming readily show&
that no self-dual binary code of lengt®6 can meet the
bound. It should be possible to systematize such effects Bl
considering certain congruences modulo small poweriof
the coefficients of the weight and shadow enumerators. Also, ji]
should be possible to show that only a finite number of codea]
can meet the bound, by considering,,s; in general, one
would like a result saying that any bound of the forfs — ¢ [5]
can be exceeded only a finite number of times (this is know%]
for doubly-even codes).

For self-orthogonal additive codes, the bound we give makédg!
no use of the dimension of the code; for smaller codes, on
ought to be able to produce much stronger bounds. It should be

FURTHER DIRECTIONS
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