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Decoding Linear Block Codes with Wolf's algorithm [25], the decoding effort of our algorithm is
Using a Priority-First Search: adaptable to the noise level.
Performance Analysis and Suboptimal Version In Section Il we review the MLD of linear block codes, describe the
code tree for a linear code, and briefly state the decoding algorithm
Yunghsiang S. HanMember, IEEE proposed in [13]. In Section Il we give an upper bound on the
Carlos R. P. Hartmanrkellow, IEEE computational effort of this algorithm, and in Section IV we present
and Kishan G. Mehrotra a suboptimal decoding algorithm. Simulation results for(thg 24),

the (104, 52) binary extended quadratic residue codes, and the
(128, 64) binary extended Bose—Chaudhuri-Hocquengham (BCH)
Abstract—An efficient maximum-likelihood soft-decision decoding al- code are given in Section V, and concluding remarks in Section VI.
gorithm for linear block codes using a generalized Dijkstra’s algorithm
was proposed by Han, Hartmann, and Chen. In this correspondence we
prove that this algorithm is efficient for most practical communication Il. PRELIMINARIES
systems where the probability of error is less thanl0—3 by finding an Let C be a binary(n, k) linear block code with generator matrix

upper bound of the computational effort of the algorithm. A suboptimal o ) .
decoding algorithm is also proposed. The performance of this suboptimal &> @nd lete = (co, ¢1, -+, ¢n—1) be a codeword o' transmitted

decoding algorithm is within 0.25 dB of the performance of an optimal Over a time-discrete memoryless channel with output alphZhet
decoding algorithm for the (104, 52) binary extended quadratic residue Furthermore, let = (7o, r1, ---, rn—1),7; € B denote the received
code, and within 0.5 dB of the optimal performance for the(128, 64)  yector, and assume thétr (r,|c;) > 0 for all »; € B ande; €

binary BCH code, respectively. GF(2). Let € be an estimate of the transmitted codewerd

Index Terms—Block codes, decoding, Dijkstra’s algorithm, maximum- The maximum-likelihood decoding rul@MLD rule) for a time-
likelihood, soft-decision, suboptimal. discrete memoryless channel can be formulated as [3], [22], [23]
seté = ¢y, wheree, € C
I. INTRODUCTION

The use of block codes is a well-known error-control technique f(‘;ﬂrnd
reliable transmission of digital information over noisy communication
channels. Linear block codes with good coding gains have been
known for many years; however, these block codes have not been
used in practice for lack of an efficient soft-decision decodinfpr all ¢ € C where
algorithm. gy Pr(@10)

Several researchers [2], [5], [20], [25] have presented techniques ¢i=1n Pr(r;|1)
for decoding linear block codes that convert the decoding problem . . L
into a graph-search problem on a trellis derived from a parity-che&(e' Fherefore, may consider t.hat the ‘received vector'gis=
matrix of the code. Thus theaximum-likelihood decodingviLD) (00, p1, -+, Q)”—l)_'_ln the s_peC|a| case where the codeword@nf
rule can be implemented by applying the Viterbi algorithm [24] to thiQave equal probability of being transmitted, the MLD rule minimizes

trellis. In practice, however, this breadth-first search scheme can PE" probability.

applied only to codes with small redundancy or to codes with a smallOur decoding algorithm (presented in [13]) uses the priority-first

number of codewords [16]. Some coset decoding schemes have b%(ae?{Ch strategy, thus avoiding traversing the entire trellis. Guided

proposed [10], [18], [19], [23]; however, they depend on the selecti@ﬁ( an evaluation functiory, it searches through a graph that is a

of a specific subcode. An efficient algorithm has also been propo§é%“is for a codeC™, which is equivalent to cod€’. " is obtained

for long high-rate codes, and short- and moderate-length codes [4]°™ € by permuting the positions of codewords 6fin such a
We recently proposed a novel maximume-likelihood soft-decisio‘f‘{""y“that the_ﬂrstk _posmon_s of codewc:rds |_rn’_.7 cqrrespond t(_)
decoding algorithm for linear block codes [11]-[13]. This algorithrnhe most rella*ble linearly |ndepenQent *posmons_ in the received

uses a generalization of Dijkstra’s algorithm (GDA) [17] to searchectore- LetG" be a generator matrix df” whose first columns
through the trellis for a code equivalent to the transmitted cod@™ @k x k identity matrix. In this decoding algorithm, the vector

* — [k * - 1%k H “ H ” H
The use of this priority-first search strategy drastically reduces tf’?e = (95, 1, » ©-1) is used as the “received vector.” It is

decoding search space and results in an efficient optimal soft-decis?i@ined by permuting the positions ¢f in the same manner in

decoding algorithm for linear block codes. Furthermore, in contradflich the columns ofz are permuted to obtaiG". _ )
Since the probability is very small that our decoding algorithm
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matrix of C* whose firstk columns form thek x % identity Theorem 3: Assume that there exists a unique optimal path and

matrix. Furthermore, leto, c1, ---, ck—1 be the sequence of labelsthat f* (mstart ) (= 2™ (mstare)) is the cost of the optimal path, where
encountered when traversing a path from the start node to a nedg..: is the start node. Then, for any nodeselected for expansion
m at level k. Then ¢, ck41, -+, cn—1, the sequence of labels (open) by the GDA
encountered when traversing a path from nedeto a goal node, N
can be obtained as follows: flm) < £ (mavar)-
From the above theorems, we intend to design a fundiiGuch
(Coy €Ly v oy Chy Chals =7y Cno1) = (Coy €1, -0y o1 )G that the valug:(m) for any non-goal node: is as large as possible;

however, the computational effort &f(m) is usually higher when
The cost of the branch from a node at leveo a node at level h(m) is larger. The best functioh we may have is*. Usually, the
t+ 1 is assigned the valug; — (—1)°¢)?, wherec] is the label of computation ofh*(m) involves the search of a path from node
the branch. Thus the solution of the decoding problem is convertgda goal node with minimum cost, and such a search is intractable.
into finding a lowest cost path from the start node to a goal nodehus there is a tradeoff between the number of nodes visited and the
Such a path will be called an optimal path. computation complexity of functioh. Normally, to define a good
We define the evaluation functiohfor every noden in the code function h we need to have some knowledge of the structure of the
tree asf(m) = g(m)+h(m), whereg(m) is the cost of the path from graph where the search is performed.
the start node to node: and h(m) is an estimate of the minimum  We use some properties of linear block codes to define our function
cost among all the paths from node to goal nodes. The cost of ah [13] that satisfies inequality (3). For every received veafor
path is obtained by summing all the branch costs encountered wlilace we order the components ¢naccording to their reliability,
constructing this path. The GDA requires that for all nodesand the properties that we use to define functibnrmust be invariant

mj such that nodenr; is an immediate successor of node under any permutation of the positions of the codewords with which
we obtain C* from C; otherwise, we need to define different
h(m;) < h(mj) + c(m;, m;) (3) function k for every received vector, which is impractical. Since the

Hamming distance between any two codewords is invariant under
where c¢(m;, m;) is the branch cost between node; and node the permutations with which we obtai@™ from C, our heuristic
m;. This requirement guarantees that the GDA will find an optimdunction is designed to take into consideration the fact that the
path. In the GDA, the next node to be expanded is the one with th@mming distance between any two codeword<’6fmust belong
smallest value off on the list of all leaf nodes (list OPEN) of theto HW, where HW = {w;|0 < i < I} is the set of all distinct
subtree constructed so far by the algorithm. Thus list OPEN mugamming weights that codewords & may have. Furthermore,
be kept ordered according to the valugof its nodes. Every time assumew, < w; < --- < wj. Let ¢* be a given codeword of
the GDA expands a node, it calculates valifesf two immediate C”. Our function is defined with respect te", which is called the
successors of this node and then inserts these two successors 9a&s§l of the decoding algorithm.
list OPEN. In this process the GDA visits are these two successors.

All the nodes on list OPEN also keep the labels of the paths from1) For nodes at level, with 0 < ¢ < k — 1:

the start node to them, which can be used to calculate fungtion Let m be a node at level, and letwvo, 71, ---, T¢—1 be

When the algorithm chooses to expand a goal node, it is time to stop  the labels of the pattP,, from the start node to node:. Let

because the algorithm has constructed a path with minimum cost. the setI'(m) contain all binaryn-tuplesw such that their first
For practical applications there may exist many functiénthat ( entries are the labels dP,, anddy (v, ¢*) € HW, where

satisfy inequality (3). Following are some results presented in [13] du(z, y) is the Hamming distance betweenandy. That is,
that can be used to design a suitable funcfiaio reduce the number T(m) = {ov = (T, T1, -+, T I )
of nodes visited. m) = = (vo, v1, , Ue—1, Vg , Un—1

anddy (v, ¢*) € HW }.
Theorem 1: Let A" (m) be the minimum cost among all the paths

from nodem to goal nodes and Note thatl'(m) # (). This can easily be seen by considering the
binary k-tuple v = (vo, v1, - -+, Te—1, 0, - -+, 0) and noting
Fr(m) = g(m) + 1™ (m). thatu - G* € T(m).

We now define functiorl: as

n—1
h(m) = o {; O (—1)”")2}-

2) For nodes at leved, with £ < ¢ < n:

For every noden, if h(m) satisfies inequality (3), then

h(m) < h*(m).

Theorem 2: Let two functions Let m be a node at level. We define functiom: as
n—1
f1(7n) :g(vn) + hl(7n) h(m) — Z ((/)7 _ (_l)v:)2
and =t
m) =g(m) + ha(m
. fam) (m) 2(m) wherev;, vy, -+, v, _, are the labels of the only patR,.
satisfy from nodem to a goal node. Note that if node is a goal
hi(m) <hz(m) < h*(m) node, thenh(m) = 0. Since we can construct the only path
from any nodem at level ¢, with ¢ > &, to the goal node
for every non-goal nodern. Furthermore, there exists a unique using G*, the estimatdi(m) computed here is always exact.
optimal path. Then the GDA, using evaluation functin will never Furthermorel.(m) = h*(m,) since there is only one path from

expend more nodes than the algorithm using evaluation fungtion nodem to a goal node and(m) is the cost of this path.
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An algorithm to calculatek(m) for node m at level ¢, with bound algorithm will perform on a given problem [6]; however, we
0 < ¢ < k-1, whose time complexity i$)(n), is presented in can derive an upper bound on the average number of nodes visited
[12] and [13]. In [13] it is shown that our decoding algorithm is @y our decoding algorithm, which shows that this decoding algorithm
depth-first search type that will search the code tree only up to levelvery efficient for most practical communication systems where the
k. The labels of the combined paths from the start node to nod¢ probability of error is less tham0—>.
level &, and from noden to a goal node, correspond to a codeword. One important measure of the computational effort of an algorithm
Therefore, the cost of this paff(m) can be used as an upper bounds its time complexity [1]. If the complexity is taken as the “average”
(UB) on the cost of an optimal path. Therefore, we can use thiemplexity over all inputs of fixed size, then the complexity is
UB to reduce the size of list OPEN. Furthermore, the algorithm witalled the expected (average) complexity. In a decoding problem,
still find an optimal path even if in the computation of functibn the inputs are received vectors. The time complexity of our decoding
the algorithm considers all the Hamming weights of any supersagorithm is the multiplication of the number of nodes visited and
of HWW. More details about this decoding algorithm can be found ithe time complexity to calculate the functigi{m ) [11]. Since the
[12] and [13], where we also described other speedup techniques sticte complexity to calculate the functiofi(sm) in our decoding
as the stopping criterion and changing the seed during the decodahgorithm isO(n), the average complexity of our decoding algorithm
procedure. It is shown by the simulation results in [12] and [13}% determined by the average numbers of nodes visited [12], [13].
that speedup techniques reduce the number of nodes visited by oun order to derive an upper bound on the average number of nodes
decoding algorithm. Therefore, it is worthwhile to briefly describ&isited by our decoding algorithm, we will define another heuristic

the speedup techniques here. function, h,, that satisfies the condition
The search procedure can be stopped at any time wher_l we know he(m) < hy(m) for every node of the code tree
that a generated codewod = (cfy, iy, - -, 07(,7.—1)) satisfies ] ) . . ) )
inequality (1). The following criterion can be used to indicate thi¢here?, is the function defined in the preceding section. Thus by
fact. Theorem 2, the decoding algorithm using the functignwill never
o open more nodes than the decoding algorithm using the funétion
Criterion: Let msare be the start node. We now define the functioh, and the functionf.. Let m be a
n—1 node at level, with ¢ < k—1, and letvy, 71, - - -, T,—1 be the labels
If h(matart) = Z (6] — (—=1)74)* of the pathP!,, from the start node to node. Definek, and f, as
Jj=0 n—1
whereh (mqtart ) is calculated with respect to seetl thenc; satisfies hs(m) = Z(|¢i| - 1)
inequality (1). =t
and
Hence, during the decoding procedure, if the algorithm generates a
new codeword and the cost of the path whose labels correspond to Js(m) = g(m) + hs(m)

this codeword is the lowest found so far by the algorithm, then wihere
may check whether the new codeword satisfies the criterion or not. If 2\2
so, this codeword satisfies inequality (1) and the decoding procedure glm) = Z (“)Z = (=1) ) .
=0

st(?‘f)nsomer speedup technique is not fixing seédiuring the decod- For a node at a level greater than 1, the function’; will be defined
ing of ¢*. When seea* is allowed to change, we have an adaptiv@s in the previous section. It is easy to see thatm) < h,(m)
decoding procedure. In order to avoid increasing computatiof@f €very node of the code tree. By the above definition, when
complexity when the seed is changed at some stage of the decodfgy decoding algorithm is calculating (m) and hs(m), ¢:, with
procedure, we may not want to recalculate the values of fundtion® < ¢ < » — 1, andz;, with 0 < i < ¢ — 1, must be known.
with respect to this new seed for every node on list OPEN. UndBgfore the decoding procedure starts,can be obtained by (2) and
these circumstances, nodes on list OPEN may calculate the valueff received vector. Hencej; can be stored and used when the
function h with respect to different seeds. algorithm calculatesfs(m) and s(m) for any nodem. When the

Since all the theorems and simulation results are obtained when $&€0ding algorithm visits node:, the path from the start node to
assume that cod@ is transmitted over a memoryless, additive whité0der in the code tree is known, since all nodes on list OPEN keep
Gaussian noise (AWGN) channel, we describe the channel here. {he labels of the paths from the start node to them. Therefore, the
assume that antipodal signaling is used in the transmission so thatlgels on this pathy;, are known. Since the calculation ¢f(m)

jth components of the transmitted codewerdnd received vector @nd %s(im) involves only n terms, at most, of known values for
r are which the algorithm does not need to calculate or search, the time

complexities of calculating:,(m) and f,(m) are O(n). However,
c;=(-DYVE and r;=(-1)VE+e¢; for any nodem at level¢, with ¢ < k — 1, if the value of function
fs of its immediate predecessor’ is known, we may obtairf;(m)
fr%m fs(m') by the simple computation given below.
W '& .
ssume that noden is not the start nodens:a:;, and that node

=1

respectively, wherer is the signal energy per channel bit andis
a noise sample of a Gaussian process with single-sided noise po
per hertzN,. The variance of; is Ny/2 and the signal-to-noise . o . :
ratio (SNR) for the channel is ]: E/N/o. In order to account for " 'S at level(, with ¢ < k — 1. Let nodem’ be the immediate
the redundancy in codes of different rates, we used the SNR Ig)é?decessor of node.. Furthermore, ley = (yo. y1. -+, yn—1) be
transmitted information bity, = Ey/No = vn/k = /R, where thie hard decision of. That is, )
R = k/n is the code rate. ve = {17 if 6: <0

' 0, otherwise.

IIl. ANALYSIS OF THE COMPUTATIONAL EFFORT OF THEALGORITHM Let o, be the label of the branch between nedéand noden

Our decoding algorithm can be considered a branch-and-bmﬁ'ﬂ)d letd denote a modula addition. Since

algorithm. In general, it is difficult to know how well a branch-and- he(m) = ho(m') = (|pe—1| = 1)°
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then Next, we prove that if thé:-most reliable positions ap are linearly
£o(m) = g(m) + ha(m) independent, then the reordering will not increase the computational

; , 5 , R effort of the SDA.
=g(m') + (do—1 — (=1)" )" + hy(m') = (|pe—1] = 1)". . - ]
Theorem 5: If the k-most reliable positions ot are linearly
Consequently, independent, then

falm) = fo(m") + (g1 @ Te1) (4 [60-1]).- (4) N.(¢") < N.(¢)

Thus whenf, (m') is calculated f (m) can be obtained by (4). Sinceyhere N, (%) and N.(¢) are the number of nodes visited by the
the start nodens..;« has no predecessor, we cannot use (4) to obta§ba wheng* and ¢ are decoded, respectively.
the value f; (mstart).- . The proof of Theorem 5 can be found in Appendix B.

In order to obtain an upper bound of the computational effort . o _
of our decoding algorithm, we first derive an upper bound of the Let N(¢") be the number of nodes visited by the decoding

computational effort of a simplified version of it, which we denot@lgorithm proposed in [13] when it decode$ and let N be the
by SDA. In this version average number of nodes visited by this decoding algorithm. By
1) we do not order the positions o, Theorems 2, 4, and 5 as well as the Markov inequality [21], we

2) we use functior, as the heuristic function. have the following result.

For a given received vectdr, by Theorem 3, if node. is selected  Theorem 6: If the k-most reliable positions of are linearly
for expansion, thery(m) < f*(mstart), Where f*(msiart) IS the independent, then
cost of the optimal path. Since we do not order the positiong,of . _ AT
the components ap are independent random variables. Furthermore, N(e )_S Aidb ) Sj\s(m
since the cost of the path whose labels correspond to the transmitted NIN, <N
codeword is greater than or equal £8(m.art ), By the central limit and
theorem we can calculate an upper bound on the probability of a node .
being expanded. Consequently, we may calculate an upper bound on Pr(N(¢") > L) < N
the average number of nodes visited by the SDA. L

We now state the main results of the computational effort of thehere L is any positive real number.
SDA when codeC is transmitted over the AWGN channel given
in Section Il. Since the result is derived by using the central IimB
theorem, it only holds when is large.

We remark here that it is not always true that thenost reliable
ositions of ¢ are linearly independent. In this case, we cannot
guarantee thafV(¢*) < N,(é). However, in our simulations we
Theorem 4: Let N, be the average number of nodes visited bjave never encountered a case whaigs*) > N.(4). Therefore,
the SDA and let)(-) be the standard normal distribution. Then, fowe can takeV to be a good estimator of an upper bound®¥nthe
a largen average number of nodes visited by our decoding algorithm in [13].
When the GDA (SDA) searches for an optimal path in a code
tree of an(n, k) linear block code, the minimum number of nodes
where visited by the GDA (SDA) is2k, which is the number of nodes
k—1 ¢ - visited while the GDA (SDA) searches along the optimal path only.
E+ Z Z <£>Q<— i, f))} (5) Therefore, the average number of nodes visited by the SDAMNNd
d a(l,d) are greater than or equal @k. However, the average number of

N, <N

N=2

(=0 3=
- 7 = nodes visited by the decoding algorithm proposed in [13] may be
n(l, d) = \/NO{Qd Ry, + (n— 1) less than2k due to the effect of the stopping criterion. Since the

) computation complexity of the stopping criterion is the same order
2/ R Q(=/2R) — 7671275}} as the computation complexity of the SDA that searches along the
{ ) VT optimal path only [13], it is reasonable that we comparewith the
and average number of nodes visited by the decoding algorithm in [13]
o, o — , . without using the stopping criterion whe¥ is close to2k.
7 (6 d) _NO{Z‘I + (n =0 | (4B +2)Q(= V2 BRw) The values ofN for the (48, 24) code forvy, equal to 2, 3, 4,
5,6,7,8,9, and 10 dB are given in Fig. 1. In this figure are also
_9 ﬁe—Rn given the simulation results of the average number of nodes visited
™ by the SDA and by the decoding algorithm proposed in [13] with and
’ 1 _py, 2 without using the stopping criterion. These averages were obtained
- <2\/RW’bQ(—\/QR%) - ﬁe 1) } } by simulating 10000 samples. The 10000 samples were generated
randomly by a codeword generator and then transmitted over the
The proof of Theorem 4 is given in Appendix A. AWGN channel described in Section Il. For the AWGN channel, by

The first term on the right-hand side of (5) is due to the assumptig "esult given in Appendix A we can substitate") for ¢(¢) in
that the path whose labels correspond to the transmitted codewttd decoding algorithm. Since

will be expanded. In the second terd(—m((, d)/7((, d)) is an 1 (r; — VE)?
upper bound on the probability of a node being expanded, where the Pr(ri]0) = VN, exXp {_ No }

node is at level and the sequence of the labels of the path from the ) .

start node to this node have Hamming distarde the transmitted for th_e AWGN cha_r!nel, the bit error probability of uncoded o_Iata

codeword. (P.) |5_Fhe prc_)bai_olllty that; < 0 [7]. It can be shown that this
In the decoding algorithm proposed in [13] we ordered the positioRéObab'“ty F. is given by

of ¢ to obtain g™, which is assumed to be the “received vector.” P. = Q(\/2Rv). (6)
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Fig. 1. Average number of nodes visited for t(48, 24) code.

knowledge, this algorithm is still the only feasible optimal decoding

When the probability of error of uncoded data is less than® algorithm for these two codes, even far greater than 5 dB.
(P. < 107%) and al/2 rate code is transmitted over the AWGN
channel, by (6);7, > 6.8 dB. IV. SuBOPTIMAL DECODING ALGORITHM

By the results given in Fig. 1, the values of for the (48, 24) In the previous section we showed that the GDA is quite efficient
code are very tight to the average numbers of nodes visited by e codes of moderate lengths for most practical communication
SDA that are obtained by computer simulations. Furthermore, tBgstems where probability of error is less tHan *; however, by the
values of NV are very tight to the average numbers of nodes visited bgsults given in Figs. 2 and 3, for codgg)4, 52) and(128, 64), the
the decoding algorithm proposed in [13] without using the stoppingumber of nodes on list OPEN in the decoding algorithm presented
criterion when SNR is greater than 6 dB. However, because of the[13] (GDA) is still too large for the algorithm to have practical
simplifying assumptions we had to make, the valuedadre nottight - applications for low SNR's.
to the average numbers of nodes visited by the decoding algorithmrhe results of our simulations have shown that the number of
proposed in [13] with and without using the stopping criterion wheRodes that need to be stored on list OPEN before an optimal path is
SNR is less than 6 dB. N found is considerably smaller than the total number of nodes stored

In Figs. 2 and 3 we give the values of for the (104, 52) code  pefore the algorithm stops. Thus we may limit the search with small
and the(128, 64) code fory; from 2 to 10 dB, respectively. We also degradations on the performance of the algorithm.
give the average numbers of nodes visited by the decoding algorithmy, this section we present a suboptimal soft-decision decoding
proposed in [13] with and without using the stopping criterion foélgorithm in which we limit the size of list OPEN by using the
v from 5 to 10 dB. By the results presented in Figs. 2 and 3, ﬂ?Sllowing two criteria.
values ofN are very tight to the average numbers of nodes visited by
the decoding algorithm proposed in [13] without using the stopping
criterion for SNR greater than 6.8 dB. Furthermore, the value¥ of
are closed t@k for SNR greater than 6.8 dB. Thus we may conclude
that the decoding algorithms proposed in [13] are efficient for codes . . .
of moderate lengths for most practical communication systems wher If the pl’ObabI|I'[¥ that an optimal path goes through a npde IS
the probability of error is less thab0~* when we assume &/2 smallgr than a given parameter, then we do not store this ner.
rate code is transmitted over the AWGN channel. Even though this 1 nat iS, we can make sure that every node that stays on list
upper bound is not tight for SNR of less than 6.8 dB, we still have ~ OPEN has a high probability that an optimal path goes through

1) If a nodem needs to be stored on list OPEN when the size of
list OPEN has reached a given upper bound, then we discard
the node with largeyf value between node: and the node on
list OPEN with the maximum value of functiofi.

complexity gains10°2~° = 10*7(10°*~% = 10°*) on SNR= 5 dB It o _ o
for the (104, 52) code (the(128, 64) code) compared with Wolf's Next, we describe in detail how to use these criteria.
algorithm. Memory requirements are usually a crucial factor in the practical

It should be mentioned here that we could not get simulatidmplementation of any decoding algorithm, especially in the VLSI
results when we applied the decoding algorithm given in [13] tenplementation. Since, in the worst case, for dmy k) code the
the (104, 52) and the (128, 64) for v, under 5 dB. Due to the maximum size of list OPEN i€ "', the GDA is impractical even
limitations of the memory of the computer, we encountered a receivéat the (48, 24) code for low SNR’s. However, simulation results
vector, generated by our simulation program, that could not lmdicate that the required size of list OPEN may be much smaller
decoded before the computer crashed. However, to the authors’ lean2*~" if a small degradation on the performance of the GDA is
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Formula in Theorem 4 —o—
The algorithm in [13] —+—
algorithm in [13] without using stopping criterion -8--

average number of nodes visited (in loglO scale)

SNR per transmitted information bit (dB)

Fig. 2. Average number of nodes visited for th€04, 52) code.
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Formula in Theorem 4 -6—
The algorithm in [13] —+-
The algorithm in [13] without using stopping criterion -B---

11

average number of nodes visited (in logl0 scale)

SNR per transmitted information bit (dB)

Fig. 3. Average number of nodes visited for th&28, 64) code.

tolerated. Thus in the first criterion we limit the size of list OPEN bygalculate the probability that an optimal path goes through a node.
giving an upper bound on the maximum number of nodes that céve now demonstrate how to calculate this probability for an AWGN
be stored on list OPEN. channel. For any received vecist, if an optimal decoding algorithm
While the GDA searches for an optimal path in a code tree, diecodes it to a nontransmitted codeword, then it is almost impossible
calculatesf(m) for every noden visited. If f(m) is large, then node for a suboptimal decoding algorithm to decode it to the transmitted
m has a low probability of being expanded before the optimal patodeword. Thus when an optimal decoding algorithm decodes a
is found. In other words, whefi(m) is large, the probability that the received vector to a nontransmitted codeword, we do not care which
optimal path goes through node is low and we can discard node codeword a suboptimal decoding algorithm decodes to. Therefore,
before the optimal path is found without degrading the performanieis reasonable to consider only those received vectors that will be
of the GDA much. Therefore, to use the second criterion we needdecoded to transmitted codewords by an optimal decoding algorithm.
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That is, when we derive the probability that an optimal path goes V. SIMULATION RESULTS FOR THEAWGN CHANNEL

through a node, we will assume that no decoding error will occur | grder to verify the performance of our suboptimal decoding algo-

if we employ an opt.lmal decoding algorithm. Under this assumptiqithm, we present simulation results for thés, 24), the (104, 52)

we have the following theorem. binary extended quadratic residue codes, and(i¥8, 64) binary
Theorem 7: Let a codeword of arfn, k) codeC' be transmitted €xtended BCH code_wher_1 these_ codes are transmitted over the

over an AWGN channel. Furthermore, assume the branch cost A4/GN channel described in Section 1.

signed to the branch from a node at leveb a node at levet + 1 For the (48, 24) code, HW = {0,12,16, 20, 24, 28, 32, 36,48}.

in the code tree is replaced with the value We do not knowH W for the (104, 52) and the(128, 64) codes, so
N 2 we use a superset for them. Fdi04, 52) we know thatd,in = 20
<‘7°_éf - /\/E(—l)“?) and that the Hamming weight of any codeword is divisible by
4V E

[15]. Thus for this code the superset usedig$(x is divisible by 4
wherec; is the label of the branch. When no decoding error occurand 20 < = < 84) or (z = 0) or (@ = 104)}; for (128, 64), the
the probability distribution of the cost of an optimal patfi(m.t.:¢), superset used i§z| (= is even and22 < = < 106) or (z = 0) or
is approximately a normal distribution with mearand variancer®, (& = 128)}, since this code hagmi, = 22.

where We have implemented a suboptimal version of the adaptive decod-
i :n& ing algorithm presented in [13]. Lgt= (yo, y1, - - -, yn—1) be the
2 hard decision of*. In the optimal version of the adaptive decoding
s N algorithm presented in [13], the initial seed is constructed by
7 cy = u-G*, whereu; = y; for 0 < i < k — 1. Although the
The proof of Theorem 7 is given in Appendix C and the theoremgceived vector was reordered to get” according to the reliability
holds only for largen. of its components, some errors may occur in the firsomponents

. . of y when the channel is noisy. Thus the initial segds constructed
Let nodem be a node in the code tree of the transmitted &) by considering the 16 codewords as follows. Let

codeC and letUB be the lowest upper bound on the cost of an

optimal path found so far by the algorithm. By Theorem 1, for an§ = {ufu = (wo. wy, -
nodem of the code treefi(m) < h*(m). Thus if an optimal path andu; =0orlfork—4<:<k-—1}
goes through node:, theni(m) < h*(m) < h*(msiar). Thus the  For every elemenw in S, we get a codeword™ = u - G*.
probability that an optimal path goes through nodeis less than Now we let¢f = ¢*, where the value ofi(matart), calculated
or equal toPr (h(m) < h™(maart) < UB). This leads us to the with respect toc*, is the largest among all the 16 codewords. We

“ytg—1) andu; = y; for0 < i<k -5

following theorem. remark here that the selection of these codewords is based on a
Theorem 8: Let T' be the probability that an optimal path goesimulation observation that—.. yx—s, yx—2, andy;—, are the four
through noden. Furthermore, leE’B be an upper bound on the costcOmpPonents among, yi, ---, andyx— with higher probability to
of an optimal path. Thel’ < Tz, where contain errors. The rule of updating seed is as follows [12], [13].
B ) Let ¢; be the seed constructed so far by the decoding algorithm.
Tog = 1 exp [_1 <f - /l) }dt Whenever a codeword], is generated during the decoding procedure,
a2 Juim) 2\ o the algorithm calculates (mscar) With respect toc;;. If this value
where is greater than thé (msar¢) calculated with respect te;, thene;,
No will be the new seed.
H=n— The simulation results for th@t8, 24) code fory, equal to 1, 2, 3,
) N2 and 4 dB are given in Fig. 4 and in Table | for thi&eB'’s; 6 is equal
o"=n—-. to 0.0. Bit error probability of the uncoded dat&.) is also given.

From the results given in Fig. 4, for thé48, 24) code the
rformance of the suboptimal decoding algorithm withB =
is the same as that of the optimal decoding algorithm whose
MB = 2°' = 83838608. When M B = 250, the performance of
the suboptimal decoding algorithm is slightly worse than that of the
. optimal decoding algorithm. From the results given in Table I, the
<A_0@j — \/f(—l)“f> average number of nodes visited is smaller whdi3 is smaller.
4E' ' Furthermore, when we do not limit the size of list OPEN in the
Now we describe the outline of our decoding algorithm. In oueptimal decoding, the maximum number of nodes in list OPEN will
suboptimal decoding algorithm we will fix the maximum numbegrow to3961, which is far smaller thaB388608, the possible largest
of nodesM B allowed on list OPEN. As in an optimal decodingsize of list OPEN. However, it is still very large if we compare it
algorithm, list OPEN is always kept ordered. When a naedeis  with 500. Therefore, for cod¢48, 24) to limit A/ B to 500 seems a
visited, the algorithm calculatéls 5 for this node. IfTy5 is less than feasible solution for practical application when the SNR is low. Since
a given threshold, then discard this node. Otherwise, we need tthe average number of nodes visited by the suboptimal decoding
insert this node into list OPEN. If the number of nodes on list OPENIgorithm with M B = 500 is small(754), it is not necessary to use
is equal toM B, then the algorithm discards the node with larger the second criterion given in Section IV.
value between node:. and the node with the largegtvalue on list The simulation results for thé104, 52) code for~, equal to
OPEN. The algorithm inserts the remaining node into list OPEN. 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, and 3.25 dB are given in Fig. 5
We remark here that all the speedup techniques describedaimd in Table Il for three threshold valued/ B is equal t03000.
Section I, such as stopping criterion and changing the seed durimgFig. 5 we also give a lower bound on the bit error probability
the decoding procedure, can be applied to the suboptimal decodaighe maximum-likelihood decoding algorithm. This lower bound
algorithm. is obtained as follows [8]. For every sample, when the suboptimal

Thus when a node is visited, the algorithm calculdfes for this
node. If this value is less than a given threshold, then we will discaEﬁ
this node. We remark here that to use the second criterion we néy
to replace the branch cost from a node at leved a node at level

t + 1 in the code tree with the value
2
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Fig. 4. Performance of suboptimal decoding algorithm for (&, 24) code for several\/ B’s.

TABLE |
THE AVERAGE NUMBER OF NODES VISITED AND THE MAXIMUM SizE OF LIsT OPEN REQUIRED
DURING THE DECODING OF (48, 24) CobE

Y 1dB 2dB 3dB 4 dB
ave | |[OPEN]| || ave | |OPEN| || ave | |OPEN]| || ave | |OPEN]|
Optimal || 843 3810 301 3916 71 2495 9 919
MB=500 || 754 500 277 500 68 500 9 500
MB=250 | 631 250 244 250 63 250 9 250
MB=100 | 398 100 171 100 50 100 8 100

decoding algorithm terminates, we have a codeword that is obtainedier bound on the bit error probability of the maximum-likelihood
from the algorithm. If this codeword is closer with respect taecoding algorithm and bit error probability of the uncoded data.
Euclidean distance to the received vector than to the transmitted-rom Fig. 6, for the (128, 64) code the performance of the
codeword, then any optimal decoding algorithm will also decode tlseiboptimal decoding algorithm with = 0.0 is within 0.5 dB of
received vector to a nontransmitted codeword. Thus we assume tiat performance of an optimal decoding algorithm; the performance
the optimal decoding algorithm will decode to the codeword obtained the suboptimal decoding algorithm with= 0.25 is within 0.6
from the suboptimal decoding algorithm and report if a decoding errdB of the performance of an optimal decoding algorithm; and the
occurs. Bit error probability of the uncoded data is also given iperformance of the suboptimal decoding algorithm witk= 0.5 is
Fig. 5. within 0.75 dB of the performance of an optimal decoding algorithm.
From Fig. 5, for the(104, 52) code the performance of the Thus for the samples tried, limiting the size of list OPENG@0
suboptimal decoding algorithm with = 0.0 is within 0.25 dB of nodes introduced only a small degradation on the performance of the
the performance of an optimal decoding algorithm; the performanatgorithm for the(128, 64) code. However, the average number of
of the suboptimal decoding algorithm with= 0.25 is within 0.65 nodes visited for the samples tried is several orders of magnitude
dB of the performance of an optimal decoding algorithm; and themaller than the upper bound given in Fig. 3.
performance of the suboptimal decoding algorithm witk= 0.5 is
within 1.025 dB of the performance of an optimal decoding algorithm. VI. CONCLUSIONS
Thus for the samples tried, limiting the size of list OPEN3@0 In this correspondence we present an upper bound on the average
nodes introduced only a small degradation on the performance mimber of nodes visited by the maximum-likelihood soft-decision
the algorithm for the(104, 52) code. However, the average numbedecoding algorithm given in [13] (GDA). Since this upper bound is
of nodes visited for the sample tried is several orders of magnituderived by applying the central limit theorem to a simplified version
smaller than the upper bound given in Fig. 2. of the GDA, the results hold only for large code lengths. However,
The simulation results for thel28, 64) code for~, equal to 1.0, from the results presented in Section Ill, this upper bound shows
1.25, 1.5, 1.75, and 2.0 dB are given in Fig. 6 and Table Il for thrabat the GDA is efficient for codes of moderate lengths when the
threshold valuesM B is equal to6000. In Fig. 6 we also give a probability of error of the channel is less tha®>. For low SNR's,
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Fig. 5. Performance of suboptimal decoding algorithm for fhé4, 52) code.
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Fig. 6. Performance of suboptimal decoding algorithm for ¢he8, 64) code.

TABLE I
THE AVERAGE NUMBER OF NODES VISITED DURING THE DECODING OF (104, 52) CoDE

| threshold [1.5dB [ 1.756dB [2.0dB [2.25dB [ 25 dB [ 2.76 dB [ 3.0 dB | 3.25 dB |

0.0 26357 23909 18366 13240 10070 6698 4281 2612
0.25 10976 9643 6481 3980 2879 1579 821 435
0.5 3166 2827 1818 950 703 344 185 101

1241

the GDA becomes impractical for these codes. In order to solve tmmy be replaced with the value(—1)“ ¢; to save computation

problem, we also give a suboptimal version of the GDA that reducpswer. However, the designed heuristic function cannot violate the

the decoding complexity, but compensates for a loss in performanoequirement of inequality (3) in order to guarantee that the GDA will
The branch cost assigned to the branch from a node at tevelind an optimal path. For example, in the case fhat) = 0 for any

to a node at levet + 1 in the code tree, presented in Section lhodem at level?, with ¢ < k —1, the branch cost cannot be changed
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TABLE Il g(Pg). That is,
THE AVERAGE NUMBER OF NODES VISITED

DURING THE DECODING OF (128, 64) CobE
| threshold | 1.0dB [1.25dB [ 1.56dB [ 1.75dB [ 2.0 dB |

n—1

g(Py) = Z(n - 1%

0.0 88325 | B2650 | 75005 | 65223 | 55474 - . L .
025 | 54416 | 41694 | 35613 | 20554 | 23162 From the definition off. (1m.tari) Which is the cost of an optimal
05 22294 | 16705 | 13478 | 10389 | 6910 path, we have

(}(Pl{.)) 2 f:(7nstart)-

to the new value since it violate the requirement of inequality (3Now let nodemn be a node at level in the code tree and the labels of
More discussion of the new branch costs can be found in Appendix gathP;,,, the path from nod@:s.,+ to noden, bety, 7y, -+ -, Tr_;.

It is interesting to verify the performance of the decoding algorithibet S’ = {i|7;, = 1,0 < i < £ — 1} and|S’| = d. From the
given in [13] when all simulated samples contain at least one errordefinition of function f
the hard decision of the received vector for high SNR’s. We simulated )
10000 samples and the samples containing at least one error among fa(m) :-Z(”]”) + ha 1
these 10000 samples for SNR were equal to 7 and 8 dB. There — = —
are 4489 and 2510 samples containing errors among the samples = Z (’1’7 - (=1 ) + Z (Iril =17
simulated for SNR= 7 dB and SNR= 8 dB, respectively. For SNR =0 =t
= 7 dB, the average number of nodes visited for both cases are 0.0Ngv we want to calculate the probability that nodeis expanded
and 0.0232, respectively. For SNR 8 dB, the average number of by the algorithm. By Theorem 3, if the GDA expands the node
nodes visited for both cases was 0.0. Therefore, for high SNR’s, the then f.(m) < fI(muart). Thus this probability will be less
decoding algorithm given in [13] is still very efficient when we applythan or equal to the probability that(m) < fI(mstart), i€
it to those received vectors whose hard decisions contain at least &g fs(m) < fi(mgear)). Since

error. *
g(P:)) 2 f (’"l'start)

m)

APPENDIX A then

PROOF OF THEOREM 4

Pr(fs(m) < f5 (mstart)) <

Pr(f.(m) < g(Pj)).

Let an(n, k) codeC' be transmitted over an AWGN channel. It is
easy to show that the MLD rule can be formulated as [7]

R Furthermore,
setc =c¢,, Wwheree, € C and
n—1

=174 (il - 1)?
i=f

fu(m) < g(Py) iff

n—1

> (ag; —b(=

=0

n—1

1)%)* <3 (ag; —b(—

j=0

) (@)

for all ¢; € C, wherea andb are any positive nonzero real number.
By the above MLD rule, the branch cost assigned to the branch

from a node at levet to a node at levet + 1 in the code tree may iff Z dri + Z —ri) <0
be replaced with the valugip; — b(—1)*)?, wherec; is the label s’ 1

of the branch. Furthermore, we may substit(te, — b(—1)“")? for ) —

the value(¢; — (—1)°)? in the definition off:,. The proof thath,, it Z 2ri+ 2(7’ — Il <0.

satisfies inequality (3) is very similar to that given in [13] where we

use old branch costs. Hence, we omit the proof here.
From [14]

Gy 1 (ri — VE)?
Pr(rilo) = NS exp {—T
1 (ri + VE)? }
Pr(ri|1) = xp | —
I(T | ) \/m (‘}\1’)|: 7\/
and
, Pr(ri|0)  4VE
¢; =In ———= 7
Pr(r;|1) N
Thus
o= WE,
17\/0

and we can substitute for ¢ in our decoding algorithm whe€' is
transmitted over the AWGN channel [3], [7] if we set= NO and

€S/
Now let us define two new random variables, and 2/, as
Zi = 27r; and Z,I =7r; = |7'i|-

Since 0 is transmitted,

1 ) - VE)?
Pr(r;) = Nes cxp|: ~ :|
Thus E(r;) is VE and Var (r;) is No/2. Then
E(Z;)=2VE
and
Var (Z;) = 4Var (r;)
:217\/.0.

Now let us calculateE(Z;) and Var (Z;). We first note that
Zi =2r; if r; < 0andZ; = 0 if r;, > 0, wherer; is normally

b = 1. Furthermore, without loss of generality we can assume thistributed with mean/E and varianceV, /2. Thus

all zero codeword$ are transmitted over the AWGN channel.
Let Py be the path from the start node..... to a goal node
whose labels are all zero. Let us define the cost of the Pgttas

(t— VE)
No

E(Z)) = 2t exp |:—

:| dt.

1
VT jV’D —o0
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Let
t—+E
J':
Ng
2
then
N e - 2
2 No N _=z
E(Z) = V32 ZLe+VE ™7 d:
(7)) = v7TNg /3o < * ) v
9,/ No VE
2 / L
V ‘ o
__VE
2, g 7 22
+ Zﬁ \% \;0 e 2 dx
fom )
ZVO
2 /210 VE
/ Ve e 2(1L+2\/_Q —ﬂ
No
whereQ(-) is the standard normal distribution,
If y = 2?/2, thendy = xzdz. Thus
E(Z)=2VEQ| — vE No (=t/no),
Ng ™
2
Similarly,
Var (Z)) = B(Z) — E*(Z))
1 , = VE)? 5
= 2 o dt — EX(Z!
—/ ()
B E
=202E + No)Q —L,
J\i
2
_oy BN _ g2z
™
=202E + No)Q| — ‘/E _2,/E“° N
No T
2
2
avEg| - YE | - \[M%
No T

2
Now let us define a new random variab’é as

X=> 7 +ZZ

€57

By Lindeberg’s central limit theorem [9], the probability distribution | & 6 =

of X is approxmately a normal distribution with mean/, d) and
variancez> (¢, d), where

At @) =AE(Z) + (n - OE(Z)

=2dVE + (n — O){ 2VEQ| — \/f —\/&67%
Ng ™
2

No {23\/}%’% +(n—1)

1243

v vem - o)

7 ((, d)y=dVar(Z:) + (n — {) Var (Z})
=2dNo + (n — ()
22E + No)Q z,/E: ~ %
2
2
No —E
- 2'\/EQ = —4/—e o
Y (s
2
=Ny {2& +(n—1)
(4R + 2)Q(= 2y = 21 [
2
- <2\/qu,Q(—\/2Rm,) — %efm’/") :| }
Thus
Pr(f,(m) < £ (maa) < Pr(X < 0) = Q (— %%)

Since f,(mo) < g(Pg) for any nodemo on path Py, we can
assume that node, will be expanded. There are nodes on this
path that will be expanded. We now consider those nodes that are not
on this path. It is easy to see that, for any node that is not on path
Py, the labels of the path from node,.. to it will contain at least
one 1. Consider those nodes at levelvhose paths contaii ones,
wherel < d < ( and0 < ( < k — 1. From the above argument,

the probability of these nodes being expanded@fe- ﬂti Z;) The
total number of these nodes (| (é) Since the firs& positions of any
codeword are information bits, the average number of nodes expanded

by the algorithm is less than or equal to

k—1

»>

=0 g—1

((,d)
(t,d)

(@)=

Since, when a node is expanded by the algorithm, the algorithm will
visit two nodes, the average number of nodes visited is less than or

(@)e(-5

APPENDIX B
PROOF OF THEOREM 5

k—1 ¢

DY

£=0 g—1

2

(6o, ¢1, -+, dn—1) be the received vector and let
o" = (&5, 07, -+, o5_1) be obtained by permuting the positions
of ¢ such that the firstt positions are the “most reliable lin-
early independent” positions ig. Furthermore, letps = & (o),

#1 = Oy, -+, and @51 = dr(n—1), Wherer is a position
permutation. We now prove tha¥,(¢”) < N.(¢) by proving that,

for every nodem; in the search tree generated by the decoding
algorithm when it decodes, we can find a one-to-one correspondent
nodem in the search tree generated by the decoding algorithm when
it decodesp™ such thatf.(m1) < fs(m2). Let the labels of the path
from the start node to noder, at levell be cg, c1, ---, andc,—;.
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Let us defineS,(f), S.((), Sp({), S-(f), Sa(f), which are subsets and ¢(¢, ) is a bijection fromS;(f) to S.(¢), then |S¢(¢)] =

of {0, 1, 2, ---, n — 1} as follows:
S(f)y ={zle <(-1 and w(x) < (-1}
Sa(l) ={z|lz <L -1} — {n(x)|z € S5:()}
Sp(l) ={z|]z <L —1} = {z|x € S;(0)}
Se(f) ={x(x)|x € Sp(¢)}, and
Sa(l) ={z|m(x) € S, (0)}.

It is clear that

1Sa(O)] = [S6(O)] = 1S (O)] = [Sa(O)]-

Now let us define the labels;, ¢i, ---, c;_; from the start node to

node ms as follows:
for x € Ss({)
o = Yo B Yg(e, 0)(x) P Co(s, ()

* p——
Cx = Cr(z)s

where

yi =0, when ¢; >0
=1, otherwise

y, =0, when ¢; >0
=1, otherwise

andq(¢, () is a bijection fromS,(£) to S.(f).

It is easy to see that for any node,, nodem. is a one-to-one

correspondence to node;.
We next prove thaf,(m1) < fs(m2).

F(m2) — f(mq)

£—1 n—1
=307 - (=) + Y (Igt| - 1)?
=0 i=0

n—1

£—1

=3 (60 = (=) = 3 (leil - 1)?
1=0 1=

S er - -+ Y (el -1)°

i€5,(£) i€54(0)
— D Bi— (=)= > (il - 1)°
1€5,(0) 1€5.(0)
= > 6r === 3 (el - 1)
i€S,(£) i€S.(£)
=1 D (b= (=)= > (lsi|-1)?
i€Sq(0) ieSq(0)
= 3 611+ 17 = (18] - 7]
i€57(0)
= > el +1)" = (Jo:i] = 1)°]
1€Se(L)
=40 3 Jerl—= > el
i€5(0) i€S(0)
where
S¢(t) = {z|z € Sp(£) andc, Dy, = 1}
and
Se(l) = {x]x € S.(0) ande, & y. = 1}.
Since

Co =Y S Yg.0(x) D Cqs,00(w)s T € Sp(0)

for @ € S,(0)

|Sc(¢)|. Furthermore, since thé-most reliable positions i are
linearly independent, it follows thab; | > |¢;| foranyi € S¢(¢) and
j € S.(0). Thus f,(m2) > f.(m). By Theorem 3, the GDA wiill
expand the noden only when fs(m) < f7(mstare). Furthermore,
the cost of the optimal path is the same, no matter when the GDA
decodesp or ¢*. Therefore, we havéV,(¢") < N,(¢). O

APPENDIX C
PROOF OF THEOREM 7

Let an(n, k) codeC be transmitted over an AWGN channel. If
we assume that no decoding error occurs, then the decoded codeword
that forms an optimal path is the transmitted codeword. Assume the
transmitted codeword i, ¢1, - -, ¢n—1). By inequality (7), given
in Appendix A, if we sete = ;Y& andb = VE, then

" (Mmatart) = fF (Mastare)

n—1

=D (adi = b(=1)%)*

=0

n—1 2
= Z (7‘7: b (—1)Ci \/F)
i=0
n—1 5
= ((p n (_1)%@) - (-1)67‘@)
1=0
n—1
=S
i=0
where for eacl) < i < n — 1, ¢;'s are independent and identically
distributed (i.i.d.) and; is a normal random variable with me#én
and varianceN, /2. Consequently,

n—1

2 .2,
]V() Zei - ZV(] h (7nsta‘rt)

=0

will be distributed as a chi-square random variable witkegrees
of freedom. From [21] it follows that

N,
= E(R* (mstar)) = 71,70

and¢? =Var (h* (Mstare)) = nﬁ.

However, by the central limit theorem, for large values of
the probability distribution of.* (mtart) is approximately a normal
distribution with meary: and variances?, given above.

APPENDIX D

In this appendix we show that the branch cost assigned to the
branch from a node at levelto a node at levet + 1 in the code
tree may be replaced with the value(—1)“ ;. First, we derive
another form of MLD rule which contains the value(—1)% ¢}.
Next, we prove that the functioh, defined in this correspondence
still satisfies inequality (3).

Another form of MLD rule can formulated as follows [3], [14]:

sete =¢;,, where ¢ €C

and
n—1 n—1
> (=DM, <Y ~(-D)Ve,.  foral GeC (@)
i=0 =0
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where Case 3. > k:
6 =In LEl0) () = by (my)
Pr (r,|1)
and
Proof: Since
_— ne1 hy(mz) = hy(m2).
Z(@] - (_I)C[j)z S Z(d)] - (_1)67.].)‘) S”'lce
j=0 j=0
iff h;('ml) —c(my, mg) = h;(mg)
n—1 n—1 n—1 n—1 then
S0 =23 (- e 0 < 36 =23 (<16 4
= = = = hp(mi) = hy(me) + c(mq, ma).
iff Since the proof that, satisfies inequality (3) is easy we omit it
n—1 n—1 here.

Z _(_1>(7[j¢j < Z —(—1)“5.(/’)]'
7=0 7=0

then the result holds directly from the MLD rule given in Section The authors wish to thank Elaine Weinman for her invaluable
II. help in the preparation of this manuscript and on the language
By the above MLD rule we may substitute(—1)" ¢ (—|¢,|) Check. In addition, the authors wish to thank the reviewers for their
for the value(s! — (—1)")? ((|¢s] — 1)?) in the definition ofh, iNvaluable suggestions, which helped to improve the presentation of
(hs). Next, we prove that, satisfies inequality (3). the correspondence.
Let nodem at level¢ be an immediate successor of node.
Furthermore, lets,_; be the label of the branch from node, to REFERENCES
nodems andc(m, ms) = —(—1)"—1¢_,. We now prove that
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Abstract—The Fisher information J(X) of a random variable X =] Fola) 20 ) 20 dx 4)
under a translation parameter appears in information theory in the o
classical proof of the Entropy-Power Inequality (EPI). It enters the whered = (61, -+, 6,,), the set{ fo(z)} is a family of densities o

proof of the EPI via the De-Bruijn identity, where it measures the . . .
variation of the differential entropy under a Gaussian perturbation, and parameterized bg, 9/06 denotes the gradient (i.e., a coluwector

via the convolution inequality J(X + Y)~! > J(X)~! 4+ J(v)~! (for  Of partial derivatives) with respect to the parametérs:-- .0,
independent.X’ and Y’), known as the Fisher Information Inequality (FIl).  lu(-) denotes the natural logarithm, a@&@V{-} denotes then x m
The Fll is proved in the literature directly, in a rather involved way.  coyariance matrix calculated relative to the distributioXofHere X
We give an alternative derivation of the FIl, as a simple consequence may either be a single measurement or a vector aieasurements.

of a “data-processing inequality” for the Cramer—Rao lower bound on . o
parameter estimation. The importance of the matriX(X; ) follows from the Cramer—Rao

Index T < Rao bound. dat - lit " Bound (CRB), [4], [6], [10], saying that for any unbiased estimator
ndex Terms—Cramer—Rao bound, data processing inequality, entropy- 7 5 , ! : - -

power inequality, Fisher information, linear modeling, non-Gaussian 0 =6(z) .("?" estimator for whichE{#(X)} = 6) the error vector
noise, prefiltering. # — 0 satisfies

COV{B(X)} > J(X:;6) " (5)

I. INTRODUCTION . )
where throughout the correspondence an inequality between (nonneg-

The_ d"_ita processing inequality (qr the data processing theoremgme definite) matrices means that the difference matrix is nonneg-
used in information theory for proving the converse channel-coding, o gefinite. As it turns out (see Lemma 3 below), the notion of

theorem [4, Secs. V.3, V.4], [6, Secs. 11.8, VIII.9]. This inequalityy,, processing extends easily to the F8 # X — Y satisfy a chain
asserts that if the random variabls— X' Y’ form a Markov chain g \iion of the formf(z, y|d) = fo(z)f(y|z) (ie., the conditional

in this order, then the mutual informations between them satisfy distribution of Y given X is independent of), then we have the

I(W:Y) < I(W; X). 1) data processing inequality
In the special case whef€ is given by a deterministic function J(Y:6) < J(X;9) ©)
of X, (1) becomes whose deterministic version (in analogy with (2)) is
IW;6(X) < I(W: X) @ J(6(X):0) < J(X:0). (7)
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