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Block-Coded PSK Modulation Using Two-Level
Group Codes Over Dihedral Groups

Jyoti Bali, Student Member, IEEE, and B. Sundar Rajan,Member, IEEE

Abstract—A length n group code over a groupG is a subgroup of
Gn under component-wise group operation. Group codes over dihedral
groupsDM , with 2M elements, that are two-level constructible using a
binary code and a code overZM residue class integer ring moduloM ,
as component codes are studied for arbitraryM . A set of necessary and
sufficient conditions on the component codes for the two-level construction
to result in a group code overDM are obtained. The conditions differ for
M odd and even. Using two-level group codes overDM as label codes,
performance of block-coded modulation scheme is discussed under all
possible matched labelings of2M-APSK and 2M-SPSK (asymmetric and
symmetric PSK) signal sets in terms of the minimum squared Euclidean
distance. Matched labelings that lead to Automorphic Euclidean Distance
Equivalent codes are identified. It is shown that depending upon the
ratio of Hamming distances of the component codes some labelings
perform better than other. The best labeling is identified under a set
of restrictive conditions. Finally, conditions on the component codes
for phase rotational invariance properties of the signal space codes are
discussed.

Index Terms—Coded modulation, dihedral groups, group codes, mul-
tilevel codes.

I. INTRODUCTION

A multilevel block code [1]–[10] ofL levels usesL block codes
each of the same lengthn, called component codes, over finite
alphabets of possibly different sizes. A signal setS, called the
basic signal set, of dimensionN , has L

i=1
mi points, wheremi,

i = 1; 2; � � � ; L are the size of the alphabets, with each point labeled
by an orderedL-tuple with one entry from each alphabet. With this
labeling, a set ofL codewords, one from each code, correspond to
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a point in Nn dimensions, with each coordinate ofL codewords
choosing a point inS. Multilevel coded signal sets with linear codes
over GF(2) as component codes have been studied in [1]–[5] and
in various general settings in [6]–[10]. Kschischanget al. [11] use
linear codes over nonbinary fields to construct multilevel signal sets
and give algebraic structural properties of these codes. Multilevel
codes for the purpose of unequal error protection have been discussed
in [12] and [13]. Suboptimal multistage decoding and performance
analysis of multilevel codes have been studied in [14]–[16].

This correspondence deals with two-level(L = 2) group codes
with the basic signal set consisting of points on a circle. The block
diagram of a two-level block-coded modulation is shown in Fig. 1(a).
WhenCs andCr are lengthn codes over alphabetsY = fy1; y2g
(m1 = 2) and X = fx1; x2; x3; x4g fm2 = 4g, Fig. 1(b)
shows a labeling ofS consisting of eight points on the circle with
X and Y . For codewordsa = (a0; a1; � � � ; an�1) 2 Cs and
b = (b0; b1; � � � ; bn�1) 2 Cr; each pair(ai; bi); i = 0; 1; � � � ; n�1;
selects a point inS, and the pair(a; b) specify a point in2n
dimensions. The collection of all such points in2n dimensions
corresponding to all possible pairs of codewords constitute the two-
level block-coded modulation code (signal set) or signal space code.
This correspondence concernsY andX beingZ2 andZM , residue
class integers modulo2 andM , respectively, and the basic signal
set being a collection of2M points on a unit circle matched to the
dihedral group with2M elements.

A signal setS is said to be matched to a groupG if there exists a
mapping� from G ontoS such that for allg andg0 in G

dE(�(g); �(g
0)) = dE(�(g

�1
g
0); �(e)) (1)

wheredE(a; b) denotes the squared Euclidean distance betweena,
b 2 S, ande is the identity element ofG. If G andS have the same
number of elements then the elements ofS can be labeled with the
elements ofG, and such a labeling satisfying condition (1) is referred
to as a matched labeling [17], [18]. A signal set matched to a group
has the property that the Euclidean distance distribution of the points
of the signal set from any point is the same.

A group code over a groupG is a subgroupC of Gn with
componentwise group operation. Most known good classes of signal
space codes are geometrically uniform codes [19] for which group
codes constitute a basic ingredient. IfS is a signal set of dimension
N matched to a groupG and � is a matched labeling, then under
the extended mapping

�
n:Gn ! S

n given by�n(g0; g1; � � � ; gn�1)

= (�(g0); �(g1); � � � ; �(gn�1)) (2)

�n(C) gives a signal set inNn dimensions, called the signal space
code, and this is matched to the groupC, and hence is geometrically
uniform [19]. C is referred to as the label code of the signal space
code. The squared Euclidean distance distribution determines the
performance of the signal set when used in an additive white Gaussian
noise channel, and generally the minimum squared Euclidean distance
(MSED) is taken to be the performance index. Given a groupG and
a signal setS, the matching labeling ofS with G is not unique.
So, given a group code the resulting signal space code depends on
the particular matched labeling used, and hence the performance is
dependent on the choice of the matched labeling. The choice of the
best labeling for a label code then becomes an important problem.

In [1], Biglieri and Caire have studied the geometrical uniformity
properties of signal space codes generated by multilevel construction.

0018–9448/98$10.00 1998 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998 1621
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Fig. 1. (a) Block diagram of a two-level block-codes modulation. (b) Labeling of an 8-PSK signal set withX andY .

The component codes used areL linear binary codes with the2L-
ary SPSK as the basic signal set. The points of PSK signal set can
be designated with either the cyclic group with2L elements or with
the dihedral group with2L elements. They derive conditions under
which the resulting multilevel code is a group code over cyclic or
dihedral group. We study in this correspondence two-level group
codes over dihedral groups with2M elements, denoted byDM , with
one component code a binary code and the other a code overZM . To
be specific, the component codes are i)Cs, a code overZ2 = f0; 1g
and ii) Cr, a code overZM = f0; 1; � � � ;M � 1g. The codes of
[1] and [3] are special cases corresponding toM = 2L�1 andCr
being a decomposable code [3]. There are several ways of achieving
matched labeling of a2M -PSK signal set withDM . In Section II, we
describe all possible matched labelings (Definition 1) of the2M -PSK
signal set, both symmetric (2M -SPSK) and asymmetric (2M -APSK)
with DM . Generally, the labeling that is studied is one that maps
s 2 DM to a point closest to the image of the identity element,
which we refer to as the Standard Labeling(SL). The labeling that
mapss to a signal point that is farthest away from the image of
the identity element is referred to as Maximum Distance Labeling
(MDL). Also the labelings that lead to automorphic Euclidean
distance equivalent [20] signal space codes are identified. In Section
III we first obtain conditions (Theorem 1) on the component codes
under which the resulting two-level code is a group code overDM

and relate these conditions to those obtained in [1] and [7]. Section IV
contains the main results of this correspondence: Euclidean distance
properties of signal space codes obtained from two-level group
codes overDM as label codes with2M -SPSK as well as2M -

APSK signal set as the basic signal set are studied under general
labelings. Conditions under which certain labelings give larger MSED
compared to a class of other matched labelings are derived. It
turns out that the ratio of Hamming distances of the component
codesCs andCr can be used to obtain several Euclidean distance
properties of the signal space code. For a case, with rather restrictive
conditions, the best matched labeling is identified. 6-SPSK- and 4-
APSK-based modulation schemes are discussed as special cases. The
phase rotational properties are discussed in Section V. Finally, some
concluding remarks including possible directions for further research
are given in Section VI.

II. L ABELING OF PSK SIGNALS SET WITH DIHEDRAL GROUPS

Let r and s be the generators of the dihedral group with2M
elements

DM = frisj j rM = e; s
2 = e; r

i
s = sr

�i
; 0 � i < M; j = 0; 1g

wheree is the identity ofDM . The group operation can be expressed
as

(ri sj )(ri sj ) = r
i +i (1�2j )

s
j +j

and the inverse of an element is given by(risj)�1 = ri(2j�1)sj .
Let � be a matched labeling of a2M -PSK signal set, i.e.,

dE(�(r
i
s
j ); �(ri ; sj )) = dE(�((r

i
s
j )�1(ri sj )); �(e));

0 � i1; i2 < M; j1; j2 = 0; 1: (3)
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Fig. 2. (a) Matched labeling of a 16-APSK signal set corresponding toM = 8, � 6= 0, 1 = 3, m = 2 in (4). (The points markedx adjacent to all the
points markedrjs, j = 0; 1; � � � ; 7, are those to whichrj ’s will be mapped if� = 0, i.e., for the 16-SPSK.) (b) Matched labeling of a 14-APSK signal set
for M = 7, � 6= 0, m = 2 in (5). (The points markedx adjacent to all the points markedrj ’s, j = 0; 1; � � � ; 6; are those to whichrj ’s will be mapped if
� = 0, i.e., for the 14-SPSK.) (c) Standard labeling(SL) (inner) and maximum-distance labeling(MDL) (outer) of a 16-APSK signal set as per (5).

Throughout, it is assumed thate is mapped onto the point(1; 0)
on the unit circle. The signal points aree

p
�1�, 0 � � < 2�.

For convenience, hereafter,�(�) = e
p
�1� will be written only as

�(�) = �.

Definition 1: A matched labeling� of a 2M -APSK signal set
matched toDM is said to be anm-labeling, 0 � m � M � 1,
with angle of asymmetry�, ��=2M < � < �=2M , and denoted
by mL�, if

�(risj) = j((2m+ 1)�=M + �) + il(2�=M);

i = 0; 1; � � � ;M � 1; j = 0; 1 (4)

where(l; M) = 1, i.e., l andM are relatively prime. The matched
labeling � is said to be maximum-distance labeling(MDL�) if

m = M=2 � 1 (for M even), orm = (M � 1)=2 (for M odd),
and standard labeling(SL�) if m = 0 for � � 0 andm = M � 1

for � > 0.
That (4) is a matched labeling for all values ofl, M , and� can

easily be verified. Labeling of a2M -SPSK is obtained with� = 0, in
which case the suffix� is dropped in the notationsmL�, MDL�, and
SL�. Fig. 2(a) shows a matched labeling corresponding toM = 8,
l = 3, m = 2, � 6= 0, and Fig. 2(b) shows a matched labeling
corresponding toM = 7, l = 1, m = 2, � 6= 0. (The distances
marked in Fig. 2(a)–(c) are defined in Section IV.) The matched
labelingsmL�, MDL�, andSL� will be collectively referred to as
asymmetric labelings andmL, MDL, andSL by symmetric labelings.

For mL�, the image ofs is (2m + 1)�=M + � and the image
of r is l(2�=M) which is independent ofm. The matched labeling
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� is completely determined by the images�(s) and �(r) of the
generators ofDM . In (4), r is mapped ontoe

p
�1l(2�)=M . Without

loss of generality, it can be mapped ontoe
p
�1(2�)=M , in which case

(4) becomes

�(risj) = j((2m+ 1)�=M + �) + i(2�=M);

i = 0; 1; � � � ;M � 1; j = 0; 1: (5)

There is no loss of generality in (5), since as far as two-level group
codes are concerned the signal space codes obtained by labeling as
in (4) will lead to signal space codes that are Euclidean distance
equivalent to those obtained by the labeling given by (5), i.e., the
Euclidean distance distribution of the two signal space codes will be
identical (shown in the following subsection). So, throughout we use
the labeling given by (5). Fig. 2(c) showsSL andMDL as per (5),
of a 16-APSK signal set.

Definition 2: Let Cs andCr be lengthn codes over, respectively,
Z2 = f0; 1g andZM = f0; 1; 2; � � � ;M � 1g, and

aaa = (a0; a1; � � � ; an�1) 2 Cs

and

bbb = (b0; b1; � � � ; bn�1) 2 Cr:

Let cccaaa; bbb denote

(rb sa ; rb sa ; � � � ; rb sa ) 2 Dn
M : (6)

The subsetfcccaaa; bbb j aaa 2 Cs; bbb 2 Crg of Dn
M , denoted byrC sC ,

is called the two-level code overDM with component codesCs and
Cr. If rC sC is a subgroup ofDn

M then it is called a two-level group
code and it is denoted byCCC. The signal space code obtained with
CCC as the label code and� as the matched labeling will be denoted
by �n(CCC), and the signal point in�n(CCC) corresponding toaaa andbbb
by �n(aaa; bbb).

The image ofs under a matched labeling uniquely determines the
labeling and two matched labelings will lead to signal space codes that
differ in performance for the same label code. So, the central problem
is choosing the best labeling for a specified label code. This is similar
to the initial vector problem for Slepian signal sets, where the signal
points are generated by a group of orthogonal matrices isomorphic
to the group acting on a vector called initial vector whose choice
determines the performance of the signal set [18], [21]. Different
values for�(s) can also be seen as different coset representative
selection when the two-level code is seen as block coset code [11],
where each component of a codeword of the binary codeCs selects
either the normal subgroupf1; r; r2; � � � ; rM�1g of DM or its coset
fs; rs; r2s; � � � ; rM�1sg, and then the corresponding component of
a codeword of theZM code selects an element from within the
subgroup or the coset.

A. Automorphic Euclidean Distance Equivalent Labelings

Caire and Biglieri [20] introduced the notion of automorphic
Euclidean distance equivalent (AEDE) codes: LetS be a signal set
matched to a groupG and �:G ! S, a matched labeling. Two
signal space codesC andC0 overG are called AEDE if there exists
an automorphismf of the groupGn which mapsC to C 0 such that
the composition map(�nf(�n)�1) is a symmetry ofSn.

Definition 3: Two labelings� and�0 given by (4) are said to be
automorphic Euclidean distance equivalent labelings if�n(C) and
�0n(C) are AEDE codes.

Now we show that the labelings given by (4) and (5) are AEDE.
Since we shall be concerned with only group codes, it is suffi-
cient to consider the squared Euclidean distance distribution from

�(n)(e; e; � � � ; e), i.e., the Euclidean weight distribution of the signal
space codes. The signal point corresponding to the component
codewords

aaa = (a0; a1; � � � ; an�1) 2 Cs

and

bbb = (b0; b1; � � � ; bn�1) 2 Cr

is�n(aaa; bbb) where� is given by (5) and let�0n(aaa; bbb) denote the signal
point obtained with the matched labeling given by (4). Sincel is a
unit in ZM andCr is a linear code overZM , there exists a codeword




 = (
0; 
1; � � � ; 
n�1) 2 Cr;

where
i = bil; i = 0; 1; � � � ; n� 1: (7)

Now �n(aaa; 


) is a signal point which has the same Euclidean weight
as that of�0n(aaa; bbb). Multiplication by l keeps invariant the codeCr,
and indeed an automorphism ofZn

M as well. Under appropriate choice
of labelings these two codes overDM lead to signal space codes that
have the same Euclidean distance distribution and hence the labeling
(5) and (4) are AEDE.

Furthermore, among the labelings given by (5) it is sufficient to
considerm in the range0 � m � M=2 � 1 for even values ofM
and0 � m � (M�1)=2 for odd values ofM . (In other words, there
is no loss of generality in restricting the image ofs only to the upper
half of the circle.) For the labelingsmL� and (M � m � 1)L��
are AEDE, since�n(aaa; bbb) where� is (M � m � 1)L��, has the
same Euclidean weight as that of�n(aaa; �bbb) where� is given by (5),
which can be easily verified. Moreover, the map

(b0; b1; � � � ; bn�1)! (�b0; �b1; � � � ;�bn�1) (8)

is an automorphism of the label code. Hence the labelingsmL� and
(M � m � 1)L�� are AEDE.

III. CHARACTERIZATION OF TWO-LEVEL GROUP CODES OVERDM

In this section we first give the necessary and sufficient conditions
on the component codes of the two-level construction shown in Fig. 1
to result in a group code overDM . Then using the fact that dihedral
groups are obtainable as semidirect product of its subgroups and the
algebraic characterization of multilevel group codes over semidirect
product groups given by Garello and Benedetto [7], rederive these
conditions.

Theorem 1: The two-level codeC = rC sC is a group code
over DM if and only if

i) Cs andCr are linear codes overZ2 andZM , respectively (9)

ii) Cs � 2Cr � Cr, if M is even andCs � Cr � Cr, if M is
odd, (10)

where� denotes pointwise product.
Proof: Let C be a group code overDM . Then

(r0s0; � � � ; r0s0; � � � ; r0s0) = (e; e; � � � ; e) 2 C (11)

and hence the “all-zero vector” is a codeword in bothCr andCs.
Consider the subcoderC of C, which consists of all codewords of
C with a0 = a1 = � � � = an�1 = 0 in Definition 2. Clearly,rC is
a group code over the cyclic group of orderM . Since every group
code over a cyclic group of orderM is a linear code over the integer
residue ringZM [22], it follows thatCr is a linear code overZM . By
similar arguments,Cs is a linear code overZ2. To show the second
condition (10), let

caaa; bbb = (rb sa ; � � � ; rb sa ; � � � ; rb sa )

cxxx; yyy = (ry sx ; � � � ; ry sx ; � � � ; ry sx ) 2 C:



1624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998

Then

caaa; bbbcxxx; yyy = (rb sa ry sx ; � � � ; rb sa ry sx ; � � � ;

rb sa ry sx )

= (rb +y (1�2a )sa +x ; � � � ; rb +y (1�2a )sa +x ; � � � ;

rb +y (1�2a )sa +x ): (12)

Equation (12) implies

(b0 + y0(1� 2a0); � � � ; bi + yi(1� 2ai); � � � ;

bn�1 + yn�1(1� 2an�1)) 2 Cr

or, equivalently,

(b0 + y0 � 2a0y0; � � � ; bi + yi � 2aiyi; � � � ;

bn�1 + yn�1 � 2an�1yn�1) 2 Cr (13)

and

(a0 + x0; � � � ; ai + xi; � � � ; an�1 + xn�1) 2 Cs: (14)

From (13) it follows that

Cs � 2Cr 2 Cr:

Conversely, given (10), (11), (13), and (14), it is straightforward to
show that (12) holds.

The arguments above hold for bothM odd and even. WhenM is
odd2 is a unit inZM and hence2Cr is the same asCr, sinceCr is
linear. (Q.E.D.)

In Theorem 1,M is an arbitrary integer. WhenM is a power of
2, say,M = 2L�1, andCr is decomposable in terms ofL�1 linear
binary codesC1; C2; � � � ; CL�1, i.e., can be obtained as

Cr = C1 + 2C2 + � � � 2L�2CL�1

then Theorem 1 coincides with [1, Theorem 1], the proof of which is
straightforward and is contained in [1, proof of Theorem 1]. Whereas
[1] is primarily concerned with the case ofM being a power of2
with a restriction that corresponds in our case to the case ofCr being
a decomposable code, our treatment is for arbitraryM , andCr is not
necessarily a decomposable code. Our construction can be viewed as
a nonbasic multilevel construction [4] withL binary codes among
which the lastL � 1 binary codes being related.

Example 1: If Cr = Zn
M , the trivial code consisting of all possible

n-tuples overZM , andCs any binary linear code or ifCr is any linear
code overZM andCs is the repetition code than (11) is satisfied and
hence the resulting code is a group code overDM .

Example 2: Let

Cs = f000; 111g

and

Cr = f000; 220; 132; 312; 200; 020; 332; 112g

overZ4. Then the resulting two-level code is a group code overD4

and has the following 16 codewords:

f(r0; r0; r0); (r2; r2; r0); (r1; r3; r2); (r3; r1; r2);

(r2; r0; r0); (r0; r2; r0); (r3; r3; r2); (r1; r1; r2);

(s; s; s); (r2 s; r2 s; s); (r1s; r3s; r2s); (r3s; r1s; r2s);

(r2s; r0 s; s); (s; r2 s; s); (r3s; r3s; r2s); (r1s; r1s; r2s)g:

Observe that in this example,M is a power of2, but Cr is a
nondecomposable code.

Example 3: Let

Cr = f0000; 1233; 3211; 0222; 1011; 2022; 3033; 2200g

overZ4 andCs = f0000; 1111g. For these codes

Cs � 2Cr = f0000; 2022g � Cr:

Therefore, the two-level coderC sC is a group code overD4 and
the codewords are

(1111); (1; r2; r2; r2); (r3; r2; r; r); (r; r2; r3; r3);

(r; 1; r; r); (r2; r2; 1; 1); (r3; 1; r3; r3); (r2; 1; r2; r2);

(s; s; s; s); (s; r2s; r2s; r2s); (r3s; r2s; rs; rs);

(rs; r2s; r3s; r3s); (rs; s; rs; rs); (r2s; r2s; s; s);

(r3s; s; r3s; r3s); and(r2s; s; r2s; r2s):

A. Semidirect Product Group Codes

Since dihedral groups are semidirect product groups, in the first
part of the proof of Theorem 1 (11) can be proved using the
algebraic condition for two-level group codes over semidirect product
groups given by Garello and Benedetto [7, Theorem 2]. Observe that
Theorem 1 does not assume linearity of the component codes whereas
[7, Theorem 2] does. Given a groupG and a normal subgroupR
when there exists a group of coset identifiers for the quotient group
S = G=R, rather than simply a set,G is called the semidirect product
of S by R. Dihedral groups are semidirect product groups with the
normal subgroup generated by the elementr. An example of a group
which is not a semidirect product group is the Quaternion group with
eight elements. Stated in the notations of this paper [7, Theorem 2]
is “if sC normalizesrC , i.e.,

caaa; bbb;�aaa 2 rC ; 8bbb 2 Cr; 8aaa 2 Cs (15)

then the resulting two-level code is a group code.” That the condition
given by (11) is the same as (15) can be seen as follows: SinceCs

is a binary codeaaa = �aaa in (15), and (15) becomes

caaa; bbb; aaa 2 rC ; 8bbb 2 Cr; 8aaa 2 Cs:

When expressed only in terms ofCs and Cr, (15) becomesbbb �
(1 � 2 � aaa) 2 Cr or, equivalently,

bbb� 2(�aaa) 2 Cr

which in turn is equivalent to (11) forCr being linearaaa 2 Cr iff
�aaa 2 Cr.

Moreover, from [7, Theorem 6], it follows that all group codes over
dihedral groups are not necessarily obtainable as two-level codes.

IV. EUCLIDEAN DISTANCE PROPERTIES

In this section the main results of this correspondence, i.e., the
Euclidean distance properties of the signal space code�n(CCC) are
discussed. It is shown that the ratio of the Hamming distances of the
component codesCs andCr provides a good deal of information
about the MSED of the signal space code under different matched
labelings. In Section IV-A, we restrict the discussion to symmetric
labelings and in Section IV-B, the results of symmetric labelings are
extended to asymmetric labelings. Results for 6-SPSK and 4-APSK
are discussed as special cases.

The following notations are used throughout this section.
Fig. 2(a)–(c) illustrates the various distances represented by the
notations.

ds minimum Hamming distance ofCs;
dr minimum Hamming distance ofCr;
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d� MSED of �n(CCC) under the matched labeling�, of 2M -
SPSK or2M -APSK (e.g.,dSL = MSED of �n(CCC) when
� is SL�);

�r Euclidean weight of�(r) in 2M -SPSK under any label-
ing = 4 sin2(�=M);

�m Euclidean weight of�(s) under mL of 2M -SPSK =
4 sin2[(2m + 1)�=(2M)];

�� Euclidean weight of the signal point nearest to�(e)
with the asymmetry � under any matched labeling
= 4 sin2[((�=M) � j�j)=2];

�m Euclidean weight of�(s) under

mL� = 4 sin2[(((2m+ 1)�=M) + �)=2];

�� Euclidean weight of the signal point�(s) under the matched
labeling �.

Remark 1: Note that�� and�0 are not the same. In fact, they are
equal for negative values of�, and�0 = �SL > ��, for positive
values of�. Moreover,�� with � = 0, i.e., �0 is same as�SL.

The following lemma, used often throughout this section, gives a
simple lower bound ondmL .

Lemma 1:

dmL � min f�r dr; �m ds; ��max (dr; ds)g: (16)

Proof: From

i) Any signal point in�n(CCC) corresponding to a codeword con-
sisting only ofs-terms (elements ofsC ) has Euclidean weight
at least�m�ds, and a signal point exists with weight equal to
�m�̂ds.

ii) Any signal point in�n(CCC) corresponding to a codeword con-
sisting only ofr-power terms (elements ofrC ) has Euclidean
weight at least�rdr.

iii) Any signal point in �n(CCC) corresponding to a codeword
consisting of at least one term of the formris; i 6= 0, has
Euclidean weight at least�� max(dr; ds)

the inequality (16) follows. Q.E.D.

Remark 2: If

min f�rdr; �m ds; �� max (dr; ds)g = �m ds

thendmL = �m ds, in view of i) above, i.e., equality holds in (16).
Specializing (16) formL, to be used for symmetric labelings

dmL � min f�rdr; �mds; �0 max (dr; ds)g: (17)

Since comparison of different labelings will be made with the corre-
sponding standard labelings, we specialize (16) and (17), respectively,
for later use, toSL� and SL, and a few further special cases
corresponding tods < dr or ds > dr, as follows:

Specializing (16) toSL�

dSL � minf�rdr; �0 ds; �� max (dr; ds)g:

If ds < dr then

dSL � f��dr; �0 dsg (16a)

and, in addition, if� < 0, then, using Remark 1

dSL = ��ds: (16b)

If ds > dr then

dSL � f�rdr; ��dsg (16c)

and in addition ifds=dr < �r=��, then

dSL = ��ds: (16d)

Specializing (17) toSL

dSL � min f�rdr; �0ds; �0 max (dr; ds)g: (17a)

If ds < dr then

dSL = �0ds: (17b)

If ds > dr andds=dr � �r=�0, then

dSL � �0ds (17c)

which is well known.

A. Euclidean Distance Properties for SPSK Modulation

This subsection deals with Euclidean distance properties of�n(CCC)
under symmetric labelings. Throughout this subsection a labeling will
always mean symmetric labeling. Fig. 3(a) shows an axis used to
identify a point corresponding to all possible values ofds=dr. Given
a pair of component codes their ratio of Hamming distances uniquely
defines a point on this axis. The points corresponding to4=�0, �r=�0,
and different values of�0=�m marked on the axis demarcate various
regions to be discussed. Note that the point�0=�m shifts to the left
or right according to increase or decrease in the Lee weight ofm.

The entireds=dr-axis in Fig. 3(a) is divided into two correspond-
ing to the two major cases discussed: 1)ds < dr, i.e., the axis to
the left of the pointds=dr = 1 (Theorem 2), and 2)ds > dr, i.e.,
the axis to the right of the pointds=dr = 1 (Theorem 3). Each case
is further divided into three subcases identified as Regions I, II, and
III for the first case and Regions IV, V, and VI for the second case.
Corollaries 2.1 and 2.2, respectively, deal exclusively with Region I
and Region III.

Theorem 2 (Caseds < dr—Region I, II and III in Fig. 3(a)):

i) If, for some mmm

0 < ds=dr̂ � �0=�m (18)

then mmmL gives larger MSED compared to allmL, where
Lee (m) < Lee (mmm).

ii) If, for some mmm

�0=�m � ds=dr < 1 (19)

then allmL such thatLee (m) � Lee (mmm), gives larger MSED
thanSL, whereLee (m) denotes Lee weight ofm.

iii) If ds=dr < 1, then there existmL which gives larger MSED
than SL.

Proof:
i) Using (18) in (17) and in view of Remark 2, we havedmmmL =

�mmmds. Since �m < �mmm if Lee (m) < Lee (mmm), it follows that
dmL < dmmmL for all m, such thatLee (m) < Lee (mmm).

ii) From (17b) we havedSL = �0ds. Using (19), (17) becomes

dmmmL � min f�0dr; �mmmdsg = �0dr:

Since dr > ds, we havedmmmL > dSL for all mmm such that (19)
is satisfied. The values ofm that satisfy (19) are those for which
Lee (m) � Lee (mmm).

iii) Follows from combining parts i) and ii). Q.E.D.

Theorem 2 part i) states that given the valueds=dr, the labeling
corresponding to the closest point of the value to the right of it, say
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(a)

(b)

(c)

Fig. 3. (a)ds=dr-axis for 2M -SPSK modulation. (b)ds=dr-axis for 16-PSK modulation. (c)ds=dr-axis for 6-PSK modulation.

mmmL, performs better than all other labelings on the right and Theorem
2 part ii) states that all labelings that are to the left ofmmmL, perform
better thanSL.

The following two corollaries follow, respectively, from Theorem
2 parts i) and ii).

Corollary 2.1 (Region I in Fig. 3(a)): If ds=dr satisfies

0 < ds=dr � �0=�MDL

thenMDL gives larger MSED than any other matched labeling.

Corollary 2.2 (Region III in Fig. 3(a)): If ds=dr satisfies�0=�1 <
ds=dr < 1, than any matched labeling other thanSL will give larger
MSED thanSL.

Several examples are given for 16-PSK signal set, i.e.,M = 8.
Accordingly, Fig. 3(a) is redrawn as Fig. 3(b), for the specific value
of M = 8 with specific values demarcating the regions marked.
Fig. 2(c) shows the 16-SPSK signal set with relevant parameters
marked.

Example 4: Let Cs be the length20 binary cyclic code generated
by 1+x2 andCr be the length20 code overZ8 with generator matrix
[4 4 : : : 4 4]. Sinceds=dr = 2=20 = 0:1 < �0=�1 = 0:123309, this
case corresponds to Region II in Fig. 3(b). We have

d3L = 3:044818 d2L = 5:530732 d1L = 2:46926

d0L = 0:3044818

from which it is seen thatm = 2 corresponds to the best labeling.

Example 5: Let Cs be the length30 binary code consisting of the
following four codewords:

(0 0 0 : : : 0 0) (10 0 : : : 00) (0 1 1 : : : 11) (1 1 1 : : : 1 1)

andCr be the length30 code overZ8 whose generator matrix is

0 1 1 : : : 1 1 1 1 1 : : : 1 1 0 0 0 : : : 0 0
0 0 0 : : : 0 0 1 1 1 : : : 1 1 1 1 1 : : : 1 1

:

Sinceds=dr = 1=19 = 0:0526315 < �0=�2 = 0:05505, this case
corresponds to Region II in Fig. 3(a). Moreover,19�0 = 2:8925771,
andd3L = 2:8925771; d2L = 2:765366; d1L = 1:23463; d0L =
0:1522409: It is clear thatm = 2 gives larger MSED thanm = 1
andm = 0 (SL) and lesser thanm = 3, (MDL).

Example 6:This example illustrates Corollary 2.1. LetCs = Z30

2

and Cr be the length30 code overZ8 with generator matrix
[4 4 : : : 4 4 ]. This case corresponds to Region I in Fig. 3(b),
sinceds=dr = 1=30 = 0:0333333 < �0=�MDL = 0:039566137. In
this case

d3L = 3:84776 d2L = 2:765366 d1L = 1:23463

andd0L = 0:1522409:

Moreover, (r4s; r4s; � � � ; r4s) has Euclidean weight= 30�0 =
4:567228. Obviously,MDL gives the best performance. If asymme-
try is introduced then�3 will increase and the figure30�0 = 4:567228
will decrease. The best asymmetry is that which equals these two.
In the following subsection we pursue this example further by
introducing the angle of asymmetry and improve the MSED.

Example 7: This illustrates Corollary 2.2. LetCs be the length33
binary code consisting of the following four codewords:

(0 0 0 0 : : : 0 0) (1 1 0 0 : : : 0 0)
(0 0 1 1 : : : 1 1) (1 1 1 1 : : : 1 1)

andCr be the length33 code overZ8 with generator matrix shown at
the bottom of the next page. Sinceds=dr = 2=20 = 0:1 < �0=�1 =
0:123309, this case corresponds to Region III in Fig. 3(b). We have
20�0 = 3:044818, and

d3L = 3:044818 d2L = 3:044818 d1L = 2:46926

d0L = 0:3044818:

It is clear that all the three labelings1L, 2L, and3L are better than
SL.
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(a)

(b)

Fig. 4. (a) ds=dr-axis for 2M -APSK modulation with angle of asymmetry�, 0 < � < �=2M (shown only forM even; forM odd it is similar).
(b) ds=dr-axis for 4-PSK modulation.

Theorem 3 (Caseds > dr—Region IV, V, and VI in Fig. 3(a)):

i) If ds=dr is in Region IV in Fig. 3(a), i.e., if1 < ds=dr <
�r=�0, then for allm

dmL � dSL (20)

and strict inequality holds for those values ofm for which if
Cr contains a codeword, sayccc, of Hamming weightds with
nonzero components in those locations in which a minimum
weight vector ofCs has nonzero components then at least one
nonzero component ofccc does not belong tofM�1�m; M�mg:
Moreover, if a minimum weight vector ofCs is present also in
Cr then all labelings will give the same MSED.

ii) If ds=dr is in Region V, in Fig. 3(a), i.e., if�r=�0 < ds=dr <
�=�0, thendmL � dSL, where� = 4 if M is even and

� = 4 cos2 (�=2M) = Euclidean weight of� r

if M is odd.
iii) If ds=dr is in Region VI in Fig. 3(a), i.e., ifds=dr > �=�0,

then MSED is same for all matched labelings.

The proof of Theorem 3 is given in Appendix I. It follows
from Theorem 3 that if the ratio of the Hamming distances of the
component code lies in Region VI then all labelings lead to the same
MSED, i.e., there is no preferred labeling; if the ratio lies in Region
V then we are able to say that all nonstandard labelings perform as
good as or better than standard labeling, but we are unable to identify
situations with strictly better performance; if the ratio lies in Region
IV we not only show that all nonstandard labelings perform at least as
good as standard labelings but identify situations where they perform
strictly better and situations where they perform exactly as good as
standard labelings. We illustrate these in the following two examples.

Example 9: Let Cs = f0000; 1111g and

Cr = f0000; 1233; 2466; 3611; 4044; 5277; 6422; 7655g

a linear code overZ8 with generator matrix[1 2 3 3 ]. This corres-
ponds to Region IV in Fig. 3(b), since1<ds=dr<�r=�0=3:847715:
Moreover,

dSL = 0:608967 and d1L = 4:93852

d2L = 5:3868729 anddMDL = 4:304984:

All labelings have larger MSED thanSL, as expected sinceCr does
not contain a codeword of the form that will give equality as discussed
in the proof of Theorem 3.

If Cr is changed to

1 2 3 3
2 2 0 0

then ds=dr = 2, and hence still corresponds to Region IV. The
MSED under various labelings are

dSL = 0:608967 d1L = 1:6906 d2L = 1:6906

and dMDL = 0:608967:

In this caseCr contains the codeword(5 4 5 5) which leads to
d3L = dMDL = dSL. Instead, ifCr is changed to

1 2 3 3
1 1 0 0

thends=dr remains at2 and the MSED under different labelings are

dSL = 0:608967 d1L = 1:1716 d2L = 0:608967

and dMDL = 0:608967:

In this case,(6 5 5 5) 2 Cr leads to the equalityd2L = dSL and
(5 4 5 5) 2 Cr maintains the equalityd3L = dMDL = dSL. Further,
if Cr is changed to

1 2 3 3
1 1 1 1

thends=dr becomes4 and the MSED under all labelings isdSL =
0:608967, includingMDL in accordance with Corollary 1 above.

Example 10: LetCs be the length8 repetition code andCr be the
cyclic code overZ8 with generator polynomial(1+x2). In this case

�r=�0 = 3:847715 < ds=dr = 4 < 4=�0 = 26:27413115

and hence this example corresponds to Region V in Fig. 3(b). The
MSED is1:1716 corresponding to the codeword(r; e; r; e; e; � � � ; e)
which is2�r = 2(0:5858). Note that8�0 = 1:2179 hence the MSED
is achieved by anr-power-only codeword and hence the same for
all labelings.

When considering the special case of 6-SPSK, the above results
take a simpler form, as given in the following theorem. Notice that

0 0 1 1 : : : 1 1 1 1 1 : : : 1 1 0 0 0 : : : 0 0
0 0 0 0 : : : 0 0 1 1 1 : : : 1 1 1 1 1 : : : 1 1

:
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for 6-SPSK there are only two labelings,MDL andSL. This means
the situations corresponding to Regions II and V of the general setting
of Fig. 3(a) do not arise since there is only one labeling to the left
of ds=dr = 1 which is MDL.

Theorem 4 (6-SPSK case—Fig. 3(c)):

i) If ds=dr < 1 (Regions I and II in Fig. 3(c)) thendMDL > dSL.
ii) If 1 < ds=dr < 3 (Region III in Fig. 3(c)) thendMDL � dSL

with strict inequality if Cr does not contain a codeword
of weight ds with nonzero components exactly in the same
locations as those of a minimum-weight codeword ofCs.

iii) If ds=dr > 3 (Region IV in Fig. 3(c)) then the MSED is the
same for all matched labelings.

Proof: i), ii), and iii) follow from specializing toM = 3,
respectively, Theorem 2 part iii), Theorem 3 part i), and Theorem
3 part iii).

B. Euclidean Distance Properties for APSK Modulation

In this subsection we discuss the Euclidean distance properties of
�n(CCC) under asymmetric labelings. Like Fig. 3(a) for SPSK in the
previous subsection, theds=dr-axis shown in Fig. 4(a) will be used
to identify the different regions discussed in the theorems of this
subsection. Note that the point�0=�m shifts by at most�=2M to the
left or right according to a positive or a negative angle of asymmetry
if 0 < �(s) < �, and in the opposite way if� < �(s) < 2�.

As in the case of SPSK in the previous section, we also consider
two major cases for APSK: 1)ds < dr (Theorem 5 and the special
case 4-APSK in Theorem 6) and 2)ds > dr (Theorem 7). The first
case is further divided into two subcases identified as Regions I and II
(Fig. 4(a)) and the second into three subcases identified as Regions
III, IV, and V.

Theorem 5 (Case:ds < dr—Regions I and II in Fig. 4(a)):

1) For all values ofmmm, satisfyingds=dr < �0=�mmm, the MSED of
�n(CCC) monotonically increases (from the MSED correspond-
ing tommmL) with respect to the angle of asymmetry0 < � � �,
where� is given by (21) at the bottom of this page, unlessM
is odd andmmm = (M � 1)=2, in which case� = 0. For� < 0,
the MSED of�n(CCC) decreases.

2) If mL satisfies�0=�m < ds=dr < 1, thendmL > dSL for
all values of�, in the range

�2 tan�1
ds=dr sin((2m+ 1)�=2M)� sin(�=2M)

ds=dr cos((2m+ 1)�=2M)� cos(�=2M)

< � < (�=M): (22)

Proof: Given in Appendix II.

Remark 3: Note that the value of�, given by (21), depends onmmm.
The essence of part i) of Theorem 5 is the following: In comparison

with every SPSK labeling, saymL, whends=dr < �0=�m, then the
MSED increases due to asymmetry up to some fixed positive angle
(the image ofs is moved away from(1; 0)) given by (21) and this
fixed angle is a function ofmmm. Notice that nothing is said regarding
the increase or decrease for positive angles more than this fixed angle.
For negative angles of asymmetry, the MSED decreases. The essence
of part ii) of Theorem 5 is that the superiority ofmmmL over SL for

SPSK case proved in part ii) of Theorem 2 continues to hold in the
case of APSK also for angles in the range given by (22).

Example 5 (continued):If 2L is chosen, then the performance can
be improved by introducing the asymmetry. As per Theorem 5, the
improvement is guaranteed up to� = 0:4485548�, in which case we
get d2L = �2L = 2:7798089 and19�� = 2:7798092.

Observe that in the example above, further increase will decrease
the MSED of the code sinced2L will then be 19��. Whereas
Theorem 5 does not say anything regarding the decrease or further
increase of the MSED as� is increased, the following corollary
gives conditions for decrease.

Corollary 5.1: i) In Theorem 5 part i) if a minimum-weight vector
bbb 2 Cr consists of the nonzero valueM=2 only and there isaaa 2 Cs,
with nonzeros in exactly same locations as that ofbbb, thendmmmL will
decrease for further increase in�.

ii) In Theorem 5 part i), ifm is even,mmm = M=2 � 1, and if a
minimum-weight vectorbbb 2 Cr consists of the nonzero valueM=2
only and there isaaa 2 Cs, with nonzeros in exactly the same locations
as that ofbbb, thenmmmL� gives the largest MSED compared to any
matched labeling, i.e.,mmmL� is the best matched labeling.

Proof: i) The signal point�n(aaa; bbb) has Euclidean weightdr��.
Therefore, for� > � given by (21) the MSED isdr�0 , which
decreases fromdmmmL as� increases.

ii) The signal point�n(aaa; bbb) has Euclidean weightdr�0 . There-
fore, for � > � given by (21) the MSED isdr��, which decreases
from dMDL as� increases. Q.E.D.

Example 6 (continued):Now using (21), the angle of asymmetry
if � = 1:8064609�, �MDL = 3:8709678, and30�0 = 3:870967.
Note that�MDL increases and30�0 decreases as� increases and
the point that makes these two equal is the best angle. Observe that
this example satisfies the condition in part ii) of Corollary 5.1 above
and hence� = 1:8064609� corresponds to the best labeling.

Corollary 5.1 leads to a simple characterization and identification
of the best labeling for 4-APSK case ifds < dr.

Theorem 6 (4-APSK Case—Fig. 4(b)):

i) For the caseM = 2, the conditionCs � 2Cr � Cr fol-
lows from the linearity of the component codes and hence is
redundant.

ii) If ds=dr < 1 (Region I in Fig. 4(b)) monotonic increase in
MSED from that corresponding to SPSK is guaranteed up to
an angle�, where

� = 2 tan�1[(1� ds=dr)=(1+ ds=dr)]: (23)

iii) If a minimum-weight vector ofCr is present inCs thenmmmL�
gives the largest MSED compared to any matched labeling.

Proof: i) Follows from the fact that whenM = 2, 2Cr = 0,
which is always inCs since it is linear.

ii) The only labeling for 4-PSK isMDL. SubstitutingM = 2 in
(21) gives (23).

iii) Follows from substitutingM = 2 in part ii) of Corollary 5.1.
Q.E.D.

Example 11:
Case i) LetCs = f000; 101; 110; 011g andCr = f000; 111g.

For this pair of component codesds=dr = 2=3 and the angle

� = 2tan�1
sin (�=2M)� ds=dr sin ((mmm�=M) + (�=2M))

ds=dr cos ((mmm�=M) + (�=2M)) + cos (�=2M)
(21)
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given by (23) is� = 11:536965�, and the corresponding MSED
is dMDL = 4:8. The minimum-weight vector ofCr is not present
in Cs and hence this MSED is not the best. For instance,� = 20�

gives MSED5:3680806.
Case ii) LetCs = Z3

2 and Cr = f000; 011; 101; 110g. For
this pair of component codesds=dr = 1=2 and the angle given
by (23) is � = 19:471227�, and the corresponding MSED is
dMDL = 2:666666. All the minimum-weight vectors ofCr are
present inCs and hence this MSED is the best. It is easily verified
by inspection that for�� = 1:333333 the codeword(rs; rs; e)
has Euclidean weight2�� = 2:666666 which will decrease for any
increase in the value of�, thus decreasing the MSED of the code.

Case iii) LetCs = Z3

2 and Cr = f000; 111g. In this case,
ds=dr = 1=3 and the corresponding value is� = 29:999998�,
giving the MSEDdMDL = 3. The minimum weight vector(1 1 1)
of Cr is present inCs and hence this MSED is the best. It is verified
by seeing that�� = 1 and the codeword(rs; rs; rs) has Euclidean
weight3�� = 3 which will decrease for any increase in the value of
�, thus decreasing the MSED of the code.

Theorem 7 (Caseds > dr):

i) If ds=dr is in Region III in Fig. 4(a), i.e., if1 � ds=dr < �r=�0,
then for��=M < � < �=M , we have

dmL � dSL

with strict inequality holding for those values ofm for which
if Cr contains a codeword, sayccc, of Hamming weightds with
nonzero components in those locations in which a minimum-
weight vector ofCs has nonzero components then at least one
nonzero component ofccc is notM � 1 �m, if � > 0, and is
not M � m, if � < 0.

ii) If ds=dr is in Region IV in Fig. 4(a), i.e., if�r=�0 < ds=dr <
4=�0, then for all values of� in the range

j�j < �=M � 2 sin�1 [ ds=dr sin (�=M)] (24)

we have

dmL � dSL :

iii) If ds=dr is in Region V in Fig. 4(a), i.e., ifds=dr > 4=�0,
then for all values of�, where

j�j < �=M � 2 sin�1( dr=ds) (25)

dmL is independent ofm, i.e., MSED is the same for all
matched labelings satisfying (25).

Proof: Given in Appendix III.

Corollary 7.1: In Theorem 7 part i), for somem if (m; M) = 1
and equality is achieved in (34) in Appendix III, then the all-1 vector
belongs toCr, and conversely. Hence, if the all-1 vector does not
belong toCr, then for allm relatively prime toM , strict inequality
holds in (34).

Example 9 (continuation):By introducing � = 2:5� angle of
symmetry the calculated MSED for various labelings are

dSL = 0:4824588 d1L = 0:6159982 d2L = 1:1716

and d3L = 0:5492285:

It is seen that all matched labelings give larger MSED compared to
SL� as per Theorem 7 part i).

V. PHASE ROTATIONAL INVARIANCE

For L-level multilevel codes with binary component codes phase
invariance properties have been reported in [3]. In this section we
consider the phase rotational invariance property of the two-level
group codes overDM .

For mL� of a 2M -APSK signal set, a codeword

(ry sx ; ry sx ; � � � ; ry sx ; � � � ; ry sx ) 2 C (26)

is mapped onto the point

exp
p�1 x0 (2m+ 1)

�

M
+ � + y0

2�

M
; � � � ;

exp
p�1 xi (2m+ 1)

�

M
+ � + yi

2�

M
; � � � ;

exp
p�1 xn�1 (2m+ 1)

�

M
+ � + yn�1

2�

M
(27)

in 2n-dimensional space. There is a one-to-one correspondence
between codewords and2n-dimensional points given by (26) and
(27). The code is said to be rotationally invariant to angle�, if
whenever (27) is a signal point for a codeword inC, then the
vector corresponding to the expression at the bottom of this page is
a codeword inC. Theorem 8 gives the conditions on the component
codes for a two-level group code overDM to be invariant to different
angles of rotations including the minimum angle.

Theorem 8:
a) FormL of a 2M -SPSK signal set andmL� of a 2M -APSK

signal set,CCC = rC sC is invariant to

i) k(2�=M), rotations wherek dividesM , iff the all-k vector
(k; k; � � � ; k) 2 Cr;

ii) k(2�=M), rotations wherek andM are relatively prime, iff
the all-1 vector (1; 1; � � � ; 1) 2 Cr.

b) For mL of a 2M -SPSK signal setCCC is invariant to�=M
rotations iff the all-1 vector is present inCr andCs.

Proof: a) i) Let M=K = �. Then replacingyi by yi + �,
i = 0; 1; � � � ; n�1, in (26) corresponds to� in (27) getting replaced
by �(2�=M), and conversely.

ii) If k andM are relatively prime, thenk(2�=M) rotations can
be obtained byk successive2�=M rotations and2�=M rotations can
be obtained byu successivek(2�=M) rotations whereu is given by
uk+ �M = 1 (Bezout’s Theorem). Hence it is sufficient to consider
2�=M rotations only for which the all-1 vector(1; 1; � � � ; 1) should
be inCr which follows from i) with � = M .

b) Suppose the all-1 vector is present in bothCr and Cs. The
presence of the all-1 vector inCs guarantees rotational invariance
by (2m + 1)�=M = m(2�=M) + �=M . The presence of the all-
1 vector inCr guarantees rotational invariance by all multiples of
2�=M , including�m(2�=M). Clearly, rotational invariance for both
m(2�=M)+�=M and�m(2�=M) implies rotational invariance for
�=M . The converse is straightforward. Q.E.D.

Note that the minimal angle of rotational invariance for2M -SPSK
is �=M whereas for2M -APSK is 2�=M .
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VI. DISCUSSION

Group codes over dihedral groups with2M elements which are
constructible as two-level codes with component codes from a binary
code and a linear code over appropriate residue class integer ring
modulo M have been studied. Block-coded modulation scheme
using both2M -SPSK and2M -APSK as signal sets matched to
the dihedral groups have been discussed considering all possible
matched labelings. Automorphic Euclidean distance equivalence,
rotational phase invariance, and Euclidean distance properties have
been discussed. Given a pair of component codes, the best labeling
among a subset of possible labelings has been identified only for
specific ranges of values of the ratio of the Hamming distances of
the component codes. One possible direction for further research is
to find the best labeling for a given set of component codes at least
for selected ranges of values for the ratio of the Hamming distances
of the component codes.

Another direction to pursue is the comparison of performance with
group codes over cyclic groups. Symmetric PSK signal sets can be
labeled with cyclic group or with dihedral groups of the same order.
It will be interesting to see under which labeling MSED is larger for
identical code parameters like rate and dimension.

The signal space codes discussed in this correspondence admit
minimal trellis [23], [24] and hence trellis-decoding techniques [25]
can be used to decode. The method of construction of minimal
trellis is first obtaining minimal trellises for the component codes and
then taking their product. For the binary-code Kschischang–Sorokine
algorithm [26] gives the minimal trellis and for the other code an
algorithm to construct minimal trellis is given in [27].

APPENDIX I
PROOF OF THEOREM 3

For ds > dr, (17) becomes

dmL � min f�rdr; �0dsg: (28)

i) Using �0ds < �rdr, (28) becomes

dmL � �0ds (28a)

and from (17a) and Remark 2

dSL = �0ds: (28b)

Therefore,dmL � dSL. Moreover, if we consider signal points
corresponding to only all-s codewords thendmL > dSL, and if we
consider signal points corresponding to only all-r power codewords
then alsodmL > dSL, since�rdr > �0ds. Then, if equality is to
hold in (28a) then any codeword that achieves equality is necessarily
of the form

(e; � � � ; e; z1; e; � � � ; e; zd ; e � � � e)

where

zk = rM�1�ms or rM�ms; k = 0; 1; � � � ; ds (28c)

for only rM�1�ms andrM�ms are points with Euclidean weight�0.
If a minimum weight vector ofCs is present also inCr then the

MSED is �0ds for all labelings since this Euclidean weight will be
achieved by either the minimum-weight vector or a scalar multiple
of it depending onmL.

ii) Using �0ds > �rdr, (17) becomes

dmL � �rdr (29)

and for SL, we always have

�0ds � dSL: (29a)

Case a) Restricting the consideration to within the class of all-s
codewordsdmL = �mds > �0ds � dSL.

Case b) Restricting the consideration to within the class of all
r-power codewords,dmL = dSL.

Case c) Restricted to within the class of vectors not covered in
cases a) and b) above, we have

dmL � �0 max fdr; dsg = �0ds � dSL:

iii) Using �0ds > �dr and�r < �, (28) givesdmL � �rdr.

In this case, any vector that is not allr-power codeword will have
minimum distance at least�0ds which is larger than�dr. A minimum
Hamming weight vector inCr can at most have Euclidean weight
�dr. Hence the minimum Euclidean weight is achieved by an all-r-
power vector for any labeling. Hence thedmL is independent ofm,
includingMDL andSL. Q.E.D.

APPENDIX II
PROOF OF THEOREM 5

For ds < dr, (16) becomes

dmL � min f��dr; �m dsg: (30)

i) Let the angle of symmetry introduced tommmL be � > 0, where
ds=dr � ��=�mmm < �0=�mmm. We have

ds=dr < ��=�mmm : (31)

Using (31) in (30) and from Remark 2, we have

dmmmL = �mmm ds: (32)

As � increases, the right-hand side of (31) decreases and that of
(32) increases. Moreover, (31) and (32) together imply that up to the
maximum value of� satisfying (31), the MSED will increase unless
M is odd andmmm = M�1

2
, in which case the MSED will decrease.

Substituting the values of�� and�mmm in (33), and after rearranging
terms, we get (21). If� < 0, then the right-hand side of (31) increases
and the right-hand side of (34) decreases.

ii) Let � be such that��=�m < ds=dr < 1. Then, using (30), we
havedmL > ��dr. For � < 0, from (22b), we have

dSL � min f��dr; ��dsg = ��ds:

Now, sincedr > ds, we havedmL > dSL . Substituting the values
for �� and �m we get the first inequality of (22a).

For 0 < � < �=M , we have

dSL � min f��dr; �0 dsg = ��ds

and from Remark 1,�0 > �� and hencedmL > dSL .

APPENDIX III
PROOF OF THEOREM 7

Using ds > dr, (16) becomes

dmL � min f�rdr; ��dsg: (33)

i) Since�� � �0, we haveds=dr < �r=�0 < �r=��, which when
used in (33) gives

dmL � ��ds: (34)

But from (16d)

dSL = ��ds:

Therefore,dmL � dSL . Moreover, if we consider only all-s
codewords thendmL > dSL , and if we consider only all-r power
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codewords then alsodmL > dSL , since�rdr > ��ds. Hence, if
equality is to hold in (34) then the codeword that achieves equality
in (34) has to be necessarily of the form

(e; � � � ; e; z1; e; � � � ; e; z2; e; � � � ; e; zd ; e � � � e)

wherezk=rM�1�ms; k=0; 1; � � � ; ds, if �> 0, andzk=rM�ms;
k = 0; 1; � � � ; ds, if � < 0, for rM�1�ms, and rM�ms being
the only closest point with Euclidean weight��, respectively, when
� > 0 and � < 0.

ii) Suppose for some�, we have

�r=�� < ds=dr < 4=��: (35)

Then (33) gives

dmL � �rdr

and for SL�, we always have

��ds � dSL :

Case a) Restricting the consideration to within the class of all-s
codewords

dmL = �m ds > ��ds � dSL :

Case b) Restricting the considering to within the class ofall
r-power codewords,dmL = dSL .

Case c) Restricted to within the class of vectors not covered in
a) and b),

dmL � �� max fdr; dsg = ��ds � dSL :

Cases a)–c) together implydmL � dSL . With straightforward
adjustments after substituting values for�� in (35), it is easy to check
that � has to be in the range given by (24) for (35) to hold.

iii) For all values of� satisfying (25), we haveds=dr > 4=��,
which when used in (33) givesdmL � �rdr, since4dr > �rdr. In
this case, any vector which consists of other thanr-power terms will
have the minimum distance at least��ds which is larger than4dr. A
minimum Hamming weight vector inCr can at most have Euclidean
weight4dr. Hence the minimum Euclidean weight is achieved by an
all-r-power vector for any labeling. Hence thedmL is independent
of m. Q.E.D.
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