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a point in Nn dimensions, with each coordinate &f codewords
choosing a point irb. Multilevel coded signal sets with linear codes
over GF(2) as component codes have been studied in [1]-[5] and
in various general settings in [6]-[10]. Kschischagtgal. [11] use
linear codes over nonbinary fields to construct multilevel signal sets
and give algebraic structural properties of these codes. Multilevel
codes for the purpose of unequal error protection have been discussed
in [12] and [13]. Suboptimal multistage decoding and performance
analysis of multilevel codes have been studied in [14]-[16].
This correspondence deals with two-leydl = 2) group codes
with the basic signal set consisting of points on a circle. The block
diagram of a two-level block-coded modulation is shown in Fig. 1(a).
WhenC, and C, are lengthn codes over alphabels = {yi, y=}
. . (mi = 2) and X = {1, w2, 3, 24} {m2 = 4}, Fig. 1(b)
Block-Coded PSK Modulation Using Two-Level shows a labeling of consisting of eight points on the circle with
Group Codes Over Dihedral Groups X and Y. For codewordsa = (ao, a1, ++,an—1) € C. and
b= (bo, b1, - ,bn-1) € Cr, each paifa;, b;),i =0, 1,---,n—1,
selects a point inS, and the pair(a, b) specify a point in2n
dimensions. The collection of all such points #m dimensions
Abstract—A length n group code over a groupG is a subgroup of corresponding to all poss@le pairs of_codewords cgnstltute the two-
G™ under component-wise group operation. Group codes over dihedral level block-coded modulation code (signal set) or signal space code.
groups Dy, with 2A1 elements, that are two-level constructible using a This correspondence conceriisand X being Z. and Zu, residue
binary code and a code overZ,; residue class integer ring moduloM, class integers modul® and M, respectively, and the basic signal

as c_o_mponent_(_:odes are studied for arbitraryM . A set of necessary and set being a collection ot points on a unit circle matched to the
sufficient conditions on the component codes for the two-level construction dihedral group with2 M/ elements

to result in a group code overD); are obtained. The conditions differ for . . . . .
M odd and even. Using two-level group codes oveD,; as label codes, A Signal setS is said to be matched to a grodpif there exists a
performance of block-coded modulation scheme is discussed under all mappingu from G onto S such that for ally andg’ in G
possible matched labelings o2 M-APSK and 2/ -SPSK (asymmetric and , 1
symmetric PSK) signal sets in terms of the minimum squared Euclidean de(p(g), p(g)) =de(p(g™ g), nle)) (1)
distance. Matched labelings that lead to Automorphic Euclidean Distance ) )
Equivalent codes are identified. It is shown that depending upon the whered.(a, b) denotes the squared Euclidean distance between
ratio of Hamming distances of the component codes some labelingsp € S, ande is the identity element of7. If G andS have the same
perform better than other. The best labeling is identified under a set n;mper of elements then the elementsSo€an be labeled with the
of restrictive conditions. Finally, conditions on the component codes | ts ofs d h a labeli tisfyi diti 1] f d
for phase rotational invariance properties of the signal space codes are elements ot an SUC_ alabeling sa Isfylng condition (1) is referre
discussed. to as a matched labeling [17], [18]. A signal set matched to a group
has the property that the Euclidean distance distribution of the points
of the signal set from any point is the same.

A group code over a grous is a subgroupC of G" with
componentwise group operation. Most known good classes of signal

|. INTRODUCTION space codes are geometrically uniform codes [19] for which group

A multilevel block code [1]-[10] ofL levels uses. block codes codes constitute a basic ingredientSlfis a signal set of dimension
each of the same length, called component codes, over finite’ Matched to a grougr and . is a matched labeling, then under
alphabets of possibly different sizes. A signal sét called the the extended mapping
basic signal set, of dimensioN, has[[/_, m: points, wherem;, G
¢ =1, 2,---, L are the size of the alphabets, with each point labeled B
by an ordered.-tuple with one entry from each alphabet. With this = (nlgo), n(gn) -+, pnlgn-1)) (2)
labeling, a set ofl. codewords, one from each code, correspond t]gn,(C) gives a signal set iV
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Fig. 1. (a) Block diagram of a two-level block-codes modulation. (b) Labeling of an 8-PSK signal sef\withd Y.

The component codes used atelinear binary codes with thel- APSK signal set as the basic signal set are studied under general
ary SPSK as the basic signal set. The points of PSK signal set ¢abelings. Conditions under which certain labelings give larger MSED
be designated with either the cyclic group with elements or with compared to a class of other matched labelings are derived. It
the dihedral group witl2Z elements. They derive conditions undeturns out that the ratio of Hamming distances of the component
which the resulting multilevel code is a group code over cyclic arodesC,; and C. can be used to obtain several Euclidean distance
dihedral group. We study in this correspondence two-level groygsoperties of the signal space code. For a case, with rather restrictive
codes over dihedral groups withi/ elements, denoted b§,;, with  conditions, the best matched labeling is identified. 6-SPSK- and 4-
one component code a binary code and the other a codeZayeffo APSK-based modulation schemes are discussed as special cases. The
be specific, the component codes aré€'i) a code oveZ, = {0, 1}  phase rotational properties are discussed in Section V. Finally, some
and ii) C., a code overZy, = {0,1,---,M — 1}. The codes of concluding remarks including possible directions for further research
[1] and [3] are special cases correspondingifo= 2"~ andC, are given in Section VI.

being a decomposable code [3]. There are several ways of achieving
matched labeling of @M -PSK signal set withDs. In Section I, we I
describe all possible matched labelings (Definition 1) of2h&-PSK .
signal set, both symmetri@ {/-SPSK) and asymmetrie {/-APSK) Let » and s be the generators of the dihedral group with!
with Das. Generally, the labeling that is studied is one that mau%‘ements

s € Dy to a point closest to the image of the identity element, _ i ;| M _ 2 _ i _ i . o
which we refer to as the Standard Labelit§f.). The labeling that Du={r's’ |1 =e s"=eris=sr L0<i <M j=0.1}
maps s to a signal point that is farthest away from the image Qfnerec is the identity ofDs. The group operation can be expressed
the identity element is referred to as Maximum Distance Labeling

(MDL). Also the labelings that lead to automorphic Euclidean

distance equivalent [20] signal space codes are identified. In Section (r 7 ) (r'2g72) = pirFi20 =200 gt

Il we first obtain conditions (Theorem 1) on the component codes \

under which the resulting two-level code is a group code dver and the inverse of an element is given bys’) ! = #2717,
and relate these conditions to those obtained in [1] and [7]. Section It i« be a matched labeling of 21/ -PSK signal set, i.e.,

contains the main results of this correspondence: Euclidean distance i i i

properties of signal space codes obtained from two-level grodp (#(r"*s™). n(r'®, %)) = dp(u((r™s") 7 (r"%s")). p(e)).
codes overD,; as label codes witl2A/-SPSK as well a2 - 0<i,ia <M, ji,j2=0,1. (3)

. LABELING OoF PSK SGNALS SET wWiTH DIHEDRAL GROUPS
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Fig. 2. (a) Matched labeling of a 16-APSK signal set corresponding/te= 8, ¢ # 0,1 = 3, m = 2 in (4). (The points marked adjacent to all the
points marked-’s, j =0, 1,---,7, are those to which’’s will be mapped if¢ = 0, i.e., for the 16-SPSK.) (b) Matched labeling of a 14-APSK signal set
for M =7, ¢ # 0, m = 2 in (5). (The points marked adjacent to all the points marked’s, y = 0, 1,---, 6, are those to which’’s will be mapped if

¢ =0, i.e., for the 14-SPSK.) (c) Standard labeli§.) (inner) and maximum-distance labelifgZDL) (outer) of a 16-APSK signal set as per (5).

Throughout, it is assumed thatis mapped onto the pointl, 0) m = M/2 — 1 (for M even), orm = (M — 1)/2 (for M odd),
on the unit circle. The signal points ar¢’~'®, 0 < ¢ < 2x. and standard labelingSL,) if m = 0 for ¢ < 0 andm = M — 1
For convenience, hereafter(-) = eV=1% will be written only as for ¢ > 0.
ni) = o. That (4) is a matched labeling for all values IofAf, and ¢ can
easily be verified. Labeling of 2//-SPSK is obtained witlh = 0, in
which case the suffix is dropped in the notations L., MDL, and
SL4. Fig. 2(a) shows a matched labeling corresponding#to= 8§,
Il =3 m=2, ¢ # 0, and Fig. 2(b) shows a matched labeling
corresponding tald = 7,1 = 1, m = 2, ¢ # 0. (The distances
w(r's’) = j(2m + D) /M + &) + il (27 /M), marked in Fig. 2(a)—(c) are defined in Section IV.) The matched
i=0,1,---M—1, j=0,1 (4 labelingsm L, MDL,, and SL4 will be collectively referred to as
o i asymmetric labelings an@L, MDL, andSL by symmetric labelings.
where(l, M) =1, i.e.,l and M are relatively prime. The matched For mL,, the image ofs is (2m + 1)7/M + ¢ and the image
labeling 1« is said to be maximum-distance labelif@/DL,) if of r is [(2x /M) which is independent ofn. The matched labeling

Definition 1: A matched labelinge of a 2AM-APSK signal set
matched toDy, is said to be anm-labeling,0 < m < M — 1,
with angle of asymmetry, —7/2M < ¢ < x/2M, and denoted
by mLg, if



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998 1623

1 is completely determined by the imaggss) and p(r) of the u{"(e, e,---,e), i.e., the Euclidean weight distribution of the signal
generators ofD;. In (4), r is mapped onta¥~"'(>")/M without space codes. The signal point corresponding to the component
loss of generality, it can be mapped orté~">™/" in which case codewords
(4) becomes

w(r's’y = j(2m + V)a /M + ) +i(27 /M), and
i=0,1,--,M—1, j=0,1. (5) b= (bo, b1, bur) € Ch

a:(ao,a1,---,an_1) eC,

There is no loss of generality in (5), since as far as two-level groigy” (a, b) wherey is given by (5) and let'” (a, b) denote the signal
codes are concerned the signal space codes obtained by labelingaiat obtained with the matched labeling given by (4). Sihée a
in (4) will lead to signal space codes that are Euclidean distangsitin Zx; andC'. is a linear code over s, there exists a codeword
equivalent to those obtained by the labeling given by (5), i.e., the v = (Y0, F1s s ) € Cy
Euclidean distance distribution of the two signal space codes will be ) ’ )

identical (shown in the following subsection). So, throughout we use wherey; =b;l, i =0,1,---.n =1 (7)

the labeling given by (5). Fig. 2(c) showl and MDL as per (5), Now ;" (a, ) is a signal point which has the same Euclidean weight

of a 16-APSK signal set. as that ofu’"(a, b). Multiplication by keeps invariant the codg,,
Definition 2: LetC’, andC, be lengthn codes over, respectively, @nd indeed an automorphismf; as well. Under appropriate choice
Zy = {0.1} andZy = {0, 1, 2,---, M — 1}, and of labelings these t\/\{o code; ovBn Igad_ to §|gnal space codes that_
have the same Euclidean distance distribution and hence the labeling
a=(ao, a, -+ ,an—1) € Cs (5) and (4) are AEDE.
and Furthermore, among the labelings given by (5) it is sufficient to

considerm in the range) < m < M/2 — 1 for even values of\/

b= (bo, bi,--+sbn1) € Cr and0 < m < (M —1)/2 for odd values of\/. (In other words, there

Let ¢, 5 denote is no loss of generality in restricting the imagesobnly to the upper
b a bW . . . half of the circle.) For the labelings:L, and (M —m — 1)L_g4
(r70s™0, s e s o) € Dy (6) are AEDE, sinceu"(a, b) wherep is (M — m — 1)L_,, has the

same Euclidean weight as that;df (e, —b) wherey is given by (5),

T O’V‘ CS
The subsef{ca,s, | a € C', b € O} of Diy, denoted by "s7, i e easily verified. Moreover, the map

is called the two-level code ovep,,; with component code€’s and
C,. If r7r 57 is a subgroup oD%, then itis called a two-level group (bo, biy- -+ bu_1) = (=bos —=b1, -+, —=bn_1) (8)
code and it is denoted b§. The signal space code obtained with . .
C as the label code and as the matched labeling will be denoted® gn automorphism of the label code. Hence the labelings, and

by 1" (C), and the signal point in” (C') corresponding ta andb (M —m — 1)L, are AEDE.

by " (a, b).

The image ofs under a matched labeling uniquely determines thelll. CHARACTERIZATION OF TWO-LEVEL GROUP CODES OVER D s
labeling and two matched labelings will lead to signal space codes thatn this section we first give the necessary and sufficient conditions
differ in performance for the same label code. So, the central problem the component codes of the two-level construction shown in Fig. 1
is choosing the best labeling for a specified label code. This is similarresult in a group code ovep,,. Then using the fact that dihedral
to the initial vector problem for Slepian signal sets, where the signgdoups are obtainable as semidirect product of its subgroups and the
points are generated by a group of orthogonal matrices isomorphigebraic characterization of multilevel group codes over semidirect
to the group acting on a vector called initial vector whose choig&roduct groups given by Garello and Benedetto [7], rederive these
determines the performance of the signal set [18], [21]. Differesbnditions.
values forpu(s) can also be seen as different coset representative )
selection when the two-level code is seen as block coset code [ll\l'll'heorem 1 The twg-level codeC” = r
where each component of a codeword of the binary d@daelects over D if and only if

Cr (O

is a group code

either the normal subgrouﬁ, 7, r2, - M=) of Doy orits coset i) Cs andC, are linear codes ovef, andZ,,, respectively (9)

{s, rs, 7%s,--- .+ 1}, and then the corresponding component of . , ) ) ,

a codeword of theZ,, code selects an element from within the 1) Cd‘*d‘v 2C, € Cy, if M is even andC; & €, C C, i Aillos)
oda,

subgroup or the coset.

where® denotes pointwise product.

A. Automorphic Euclidean Distance Equivalent Labelings Proof: Let C' be a group code oveb ;. Then

Caire and Biglieri [20] introduced the notion of automorphic (0% - % %) = (e, e, e) €C (12)
Euclidean distance equivalent (AEDE) codes: ISebe a signal set
matched to a groug? and u: G — S, a matched labeling. Two and hence the “all-zero vector” is a codeword in b6th and C's.
signal space codeS andC"' over G are called AEDE if there exists Consider the subcode™" of C, which consists of all codewords of
an automorphisnf of the groupG™ which mapsC' to " such that € With ap = a1 = -+ = a1 = 0 in Definition 2. Clearly,r“~ is
the composition magy.” f(1")~"') is a symmetry of5™. a group code over the cyclic group of ord&f. Since every group

o ) ] ] code over a cyclic group of ordéd is a linear code over the integer

Definition 3: Two labelingsy: and " given by (4) are said to be regjque ringZ,; [22], it follows thatC' is a linear code ovef,; . By

automorphic Euclidean distance equivalent labelings™itC) and  gimilar arguments(; is a linear code ove,. To show the second

u'™(C) are AEDE codes. condition (10), let
Now we show that the labelings given by (4) and (5) are AEDE. bo ao b as b1 m 1
Since we shall be concerned with only group codes, it is suffi- Ca,b = (178" e s T

x5

cient to consider the squared Euclidean distance distribution from Co,y = (PY0570 oo p¥igTi Lo pUn—lgtn=1)y € O
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Then

by a - b s us
Ca,bCzx,y = (rlosﬂorygsroﬂ'” T i gTipYi

T
s
b1 (On—1,Yn—1 Fn—1

r s r s )

_ (rbo-‘ryo(l—?ao)suo-‘rivo e, plityi(1=2a;) castu; e

N

,’.b7171+y7171(172a7171)sa7171+r7171). (12)

Equation (12) implies

(bo + yo(1 = 2a0), -, bi + y:(1 —2a;), -,
bnfl + ynfl(l - 2“1171)) E C(r

or, equivalently,

(bo 4+ yo — 2a0yo, -~ -, b + Y5 — 2a:ys,-- -,

bn—1+ Yn—1—20n_1Yyn—1) € C, (13)
and

(ag + wo,---,a; +2iy -, Qnot1 + Tn—1) € Cs. (14)
From (13) it follows that

Cs ©2C, € C,.
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Example 3: Let

C, = {0000, 1233, 3211, 0222, 1011, 2022, 3033, 2200}

over Z, andC's = {0000, 1111}. For these codes
C, @20, = {0000, 2022} C C,.

Therefore, the two-level code”~ s+ is a group code oveP. and
the codewords are

(1111), (L, 72, %, %), (%, 72 e ), (o, 12 P 0P,

(o Loryr), (%, 0% 11), (%, 1,07 %), (%1, %, ),

(s, 5, 8, 8), (5,175, 175, 175), (s, 175, rs, rs),

(rs, r?s, s, 'rgs), (rs, s, rs, rs), (7“25, r?s, s, s),

(s, 5,175, r%s), and(+?s, s, r7s, 175).

A. Semidirect Product Group Codes

Since dihedral groups are semidirect product groups, in the first
part of the proof of Theorem 1 (11) can be proved using the
algebraic condition for two-level group codes over semidirect product
groups given by Garello and Benedetto [7, Theorem 2]. Observe that
Theorem 1 does not assume linearity of the component codes whereas

Conversely, given (10), (11), (13), and (14), it is straightforward &/, Theorem 2] does. Given a group and a normal subgrouf

show that (12) holds.

The arguments above hold for bolf odd and even. Whed! is
odd?2 is a unit inZ;; and henced', is the same a€’,., sinceC, is
linear. (Q.E.D)

when there exists a group of coset identifiers for the quotient group
S = G/ R, rather than simply a sef is called the semidirect product

of S by R. Dihedral groups are semidirect product groups with the
normal subgroup generated by the elemerin example of a group
which is not a semidirect product group is the Quaternion group with

In Theorem 1,0 is an arbitrary integer. Whef/ is a power of eight elements. Stated in the notations of this paper [7, Theorem 2]

2, say,M = 2L=1 andC, is decomposable in terms éf— 1 linear
binary codes’;, C3,--+,Cr_1, i.e., can be obtained as

Cr=Cr+2C, +---2" 720,

is “if s normalizesr®, i.e.,

Vb e C,, Yac€C, (15)

C.
Ca,b, —a er T?

then the resulting two-level code is a group code.” That the condition

then Theorem 1 coincides with [1, Theorem 1], the proof of which igiven by (11) is the same as (15) can be seen as follows: $iace
straightforward and is contained in [1, proof of Theorem 1]. Whereas a binary coder = —a in (15), and (15) becomes

[1] is primarily concerned with the case @ff being a power of2
with a restriction that corresponds in our case to the cagé. dfeing
a decomposable code, our treatment is for arbitfdryandC’. is not

necessarily a decomposable code. Our construction can be viewegas - .
a nonbasic multilevel construction [4] with binary codes among

which the lastL — 1 binary codes being related.

Ca,b,a € 7'OT, Vb € Cy, Ya € Cs.

When expressed only in terms 6f; and C,, (15) becomed &
®a) € C, or, equivalently,

b 2(—a)€C,

Example 1: If C,. = Z};, the trivial code consisting of all possible which in turn is equivalent to (11) fo€'. being lineara € C, iff

n-tuples ovelZ,;, andC, any binary linear code or if’, is any linear

—a € C,.

code overZ,; andC; is the repetition code than (11) is satisfied and Moreover, from [7, Theorem 6], it follows that all group codes over

hence the resulting code is a group code olegy.
Example 2: Let
C, = {000, 111}
and

C- = {000, 220, 132, 312, 200, 020, 332, 112}

over Z,. Then the resulting two-level code is a group code dver
and has the following 16 codewords:

162, 09,09, 2 %), G, ), 68 et ),
(12,19, 1), (10, 12, 10), (¢, ¥, 12), (1, 2, 02),

(5,5, 8), (PP s, 178, 8), (s, s, #s), (s, r's, r°s),
(s, 705, 5), (s, 77 5, 5), (r’s, r’s, r%s), (r's, r's, 178)).

Observe that in this exampley/ is a power of2, but C. is a
nondecomposable code.

dihedral groups are not necessarily obtainable as two-level codes.

IV. EUCLIDEAN DISTANCE PROPERTIES

In this section the main results of this correspondence, i.e., the
Euclidean distance properties of the signal space ¢ddg’) are
discussed. It is shown that the ratio of the Hamming distances of the
component code€’s and C, provides a good deal of information
about the MSED of the signal space code under different matched
labelings. In Section IV-A, we restrict the discussion to symmetric
labelings and in Section IV-B, the results of symmetric labelings are
extended to asymmetric labelings. Results for 6-SPSK and 4-APSK
are discussed as special cases.

The following notations are used throughout this section.
Fig. 2(a)—(c) illustrates the various distances represented by the
notations.

ds minimum Hamming distance af’s;
d,, minimum Hamming distance of’,;
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d, MSED of p*(C) under the matched labeling, of 23- and in addition ifd,/d, < 6,/64, then
2M- P "
SPSK or_.M APSK (e.g.,ds., = MSED of 1" (C) when dsp, = bsds. (16d)
jis SLy); § i

by Euclidean weight ofu(r) in 2M-SPSK under any label- Specializing (17) toST
ing = 4sin*(xr/M);
6.  Euclidean weight ofy(s) under mL of 2M-SPSK =
4sin?[(2m + 1)x/(2M)]; dsy, > min {é,d,, 6ods, 6o max (d,, ds)}. (17a)
64  Euclidean weight of the signal point nearest tde)
with the asymmetry ¢ under any matched labeling
= 4sin?[((x/M) — |o])/2]; If ds < dy then
bm, Euclidean weight of(s) under

ds, = bods. (17b)
mLy = 4sin’*[(((2m + 1)z /M) + ¢)/2]; If d, > d, andd,/d, < &./8, then
5,  Euclidean weight of the signal poip{s) under the matched dsr 2> bods (17¢c)

labeling . which is well known.
Remark 1: Note thatss andéo, are not the same. In fact, they are

equal for negative values ef, andé, = ds., > b4, for positive A Euclidean Distance Properties for SPSK Modulation
values ofg. I\_/Ioreover,6¢ with ¢ = 0, i.€., & is same aés_L' . This subsection deals with Euclidean distance properties' 6€')

. The following lemma, used often throughout this section, 9VES fhder symmetric labelings. Throughout this subsection a labeling will
simple lower bound on/yz, always mean symmetric labeling. Fig. 3(a) shows an axis used to
Lemma 1: identify a point corresponding to all possible valuesiofd... Given
a pair of component codes their ratio of Hamming distances uniquely
defines a point on this axis. The points corresponding/ta, 6, /6o,
Proof: From and different values ofy/6,, marked on the axis demarcate various
. L o ) regions to be discussed. Note that the péints,.. shifts to the left
i) Any signal point iny."(C') corresponding to a codeword con-o vight according to increase or decrease in the Lee weight.of

Y o ) .
sisting only ofs-terms (elements of~-) has Euclidean weight e entired, /d,-axis in Fig. 3(a) is divided into two correspond-
at leastén;ds, and a signal point exists with weight equal tGng 1o the two major cases discussed:d1) < d,, i.e., the axis to

- 5m($ds; o ) the left of the pointd,/d, = 1 (Theorem 2), and 2}, > d., i.e.,
ii) Any signal point inp" (C') corresponding to a codeword con-yhe axis to the right of the point, /d, = 1 (Theorem 3). Each case

sisting only ofr-power terms (elements of ") has Euclidean i further divided into three subcases identified as Regions I, Il, and

weight at least, d, . 1l for the first case and Regions IV, V, and VI for the second case.

iii) Any signal point in " (C) corresponding to a codeword corgjlaries 2.1 and 2.2, respectively, deal exclusively with Region |
consisting of at least one term of the fonrhs, ¢ # 0, has and Region III.

Euclidean weight at leasi; max(d,., d.) _ o
the inequality (16) follows. Q.E.D. Theorem 2 (Casé, < d,—Region I, Il and Il in Fig. 3(a)):
i) If, for somem

drnr, > min {6, d,, brnyds, 6g max (dy, ds)}. (16)

Remark 2: If

0 < d./di < 80 /8 (18)
min {6-d, bm, ds, by max (dy, ds)} = by ds

then mL gives larger MSED compared to athL, where

thend,.., = i, ds, in view of i) above, i.e., equality holds in (16). Lee (m) < Lee(m).
Specializing (16) forn L, to be used for symmetric labelings i) If, for some m
dmr > min {6r-dr, émds, 6o max (dr, ds)}. a7 80/bm < ds/d. < 1 (29)

Since comparison of different labelings will be made with the corre-  then allm L such thafl.ee (m) > Lee (m), gives larger MSED
sponding standard labelings, we specialize (16) and (17), respectively, thanSL, whereLee (m) denotes Lee weight of..
for later use, toSL, and SL, and a few further special cases i) If d</d. <1, then there exist:L which gives larger MSED

corresponding tal. < d, or d, > d,, as follows: than SL.
o Proof:
Specializing (16) toSL i) Using (18) in (17) and in view of Remark 2, we havg,, =
dsr., > min{8.d.. 6o, ds. 65 max (d., d.)}. bmds. Since 6, < 6m if Lee(m) < Lee(m), it follows that
T ’ dpn1, < dimr, for all m, such thatLee (m) < Lee (m).
If d. < d, then ii) From (17b) we havels;, = dod,. Using (19), (17) becomes
Aty 2 {8drs b0,d.} (162) At 2 min {Bodr. bmd} = bod.
. Lo . Sinced, > d., we havedm,, > ds. for all m such that (19)
and, in addition, ifo < 0, then, using Remark 1 is satisfied. The values of. that satisfy (19) are those for which
dsi, = bpds. (16b) Lee(m) > Lee(m).
‘ iii) Follows from combining parts i) and ii). Q.E.D.
If dg > d, then

Theorem 2 part i) states that given the vallig'd,., the labeling
dsp, > {8:dr, bgds} (16c) corresponding to the closest point of the value to the right of it, say
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Fig. 3. (a)ds/d--axis for 2M-SPSK modulation. (b)l./d,-axis for 16-PSK modulation. (cjs/d--axis for 6-PSK modulation.

m L, performs better than all other labelings on the right and Theore®inced,/d,, = 1/19 = 0.0526315 < & /8> = 0.05505, this case
2 part ii) states that all labelings that are to the leftmoL, perform corresponds to Region Il in Fig. 3(a). Moreové®s, = 2.8925771,

better thanSL. anddsr = 2.8925771, dor, = 2.765366, dir = 1.23463, dor =
The following two corollaries follow, respectively, from Theorem0.1522409. It is clear thatm = 2 gives larger MSED tham = 1
2 parts i) and ii). andm = 0 (SL) and lesser tham = 3, (MDL).
Corollary 2.1 (Region | in Fig. 3(a)):If d,/d. satisfies Example 6:This example illustrates Corollary 2.1. Lét, = Z3°
0 < do/dy < 80 /600 and C, be the Ieng_th30 code overZs with ge_neratpr matrix
[4 4 ... 4 4]. This case corresponds to Region | in Fig. 3(b),

then MDL gives larger MSED than any other matched labeling.  sinced. /d, = 1/30 = 0.0333333 < & /6nmr, = 0.039566137. In

Corollary 2.2 (Region lll in Fig. 3(a)): If d./d. satisfiesh /61 < this case
ds/d, < 1, than any matched labeling other thah will give larger ., = 3.84776 do; = 2.765366 d,; = 1.23463
MSED than SL. anddo;, = 0.1522400.
Several examples are given for 16-PSK signal set, i&.= 8.
Accordingly, Fig. 3(a) is redrawn as Fig. 3(b), for the specific valu®oreover, (r's, r's,---,r"'s) has Euclidean weight= 306, =
of M = 8 with specific values demarcating the regions marked.567228. Obviously, MDL gives the best performance. If asymme-
Fig. 2(c) shows the 16-SPSK signal set with relevant parametefgis introduced thews will increase and the figurg0é, = 4.567228
marked. will decrease. The best asymmetry is that which equals these two.
In the following subsection we pursue this example further by

E le 4: Let C he | F20 bi li . . .
xampre et C’. be the lengti20 binary cyclic code generated introducing the angle of asymmetry and improve the MSED.

by 14+2% andC, be the lengtl20 code overZs with generator matrix
[44...44]. Sinced,/d, =2/20 = 0.1 < 8o /61 = 0.123309, this Example 7: This illustrates Corollary 2.2. Let’, be the lengtt83

case corresponds to Region Il in Fig. 3(b). We have binary code consisting of the following four codewords:
dsp, = 3.044818 d2r = 5.530732 dyp = 2.46926 (0000...00 (1100...00)
dor, = 0.3044818 (00o11...11 (1111...11)

from which it is seen that, = 2 corresponds to the best labeling. andC'. be the lengtf83 code overZs with generator matrix shown at
. . the bottom of the next page. Sinkgd, = 2/20 = 0.1 < 60/61 =
Example 5: Let C; be the lengtf80 binary code consisting of the () 12339, this case corresponds to Region I1l in Fig. 3(b). We have
following four codewords: 2060 = 3.044818, and

(000...00) (100...00) (011...11) (111...11) dar = 3.044818  doy = 3.044818  dy7 = 2.46026

andC' be the lengttB0 code overZs whose generator matrix is dor, = 0.3044818.

1r1...11 111...11 000...00

. ltis clear that all the three labelindd., 2L, and3L are better than
oo0...00 111...11 111...11

SL.
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Fig. 4. (a)d,/dr-axis for 2M-APSK modulation with angle of asymmetiy, 0 < ¢ < =/2M (shown only for M even; for M odd it is similar).
(b) ds/d--axis for 4-PSK modulation.

Theorem 3 (Casé. > d,—Region IV, V, and VI in Fig. 3(a)):  All labelings have larger MSED thafil, as expected sinc€, does
i) If d./d, is in Region IV in Fig. 3(a), i.e., ift < d./d. < notcontainacodeword of the form that will give equality as discussed
6,/60, then for allm in the proof of Theorem 3.

If C, is changed to
A1, > dsr, (20)

1 2 3 3
and strict inequality holds for those valuesf for which if {2 2 0 0}
C'. contains a codeword, say of Hamming weightd, with _ . .
nonzero components in those locations in which a minimuﬁg&g*/drd =2 _and lhEml:.e still corresponds to Region IV. The
weight vector ofC'; has nonzero components then at least o under various fabelings are
nonzero component @fdoes not belong tdM—1—m, M —m}. dg = 0.608967 dqi. = 1.6906 dor = 1.6906
Moreover, if a minimum we_lght vector df’; is present also in and daup. = 0.608967.
C, then all labelings will give the same MSED.
i) If ds/d, isin RegionV, in Fig. 3(a), i.e., 6, /60 < ds/d- < In this caseC, contains the codeword5455) which leads to

A/bo, thend,,;, > dsr,, whereh = 4 if M is even and ds;, = dupr = dsi. Instead, ifC) is changed to
M—1 ¢
X\ =4cos” (7/2M) = Euclidean weight ofi(r~ 2z 1233
cos” (w/2M) g ﬁL(7 ) |:1 100
it M is o_dd_. . A L ] thend, /d. remains a and the MSED under different labelings are
i) If ds/d- is in Region VI in Fig. 3(a), i.e., ifls/d- > \/6o, )
then MSED is same for all matched labelings. dsi, = 0.608967 di, = 1.1716 d21 = 0.608967

The proof of Theorem 3 is given in Appendix I. It follows and dupr = 0.608967.
from Theorem 3 that if the ratio of the Hamming distances of thg, inis case,(6555) € C, leads to the equalitylz;, = ds. and
component code lies in Region VI then all labelings lead to the Same, 55) € ¢, maintains the equalitys, = dap. = ds . Further,
MSED, i.e., there is no preferred labeling; if the ratio lies in Regiop C., is changed to
V then we are able to say that all nonstandard labelings perform as
good as or better than standard labeling, but we are unable to identify {1 2.3 3}
situations with strictly better performance; if the ratio lies in Region 1111

IV-we not only show that all nonstandard labelings perform at least ggen 4, /d, becomest and the MSED under all labelings iy =

good as standard labelings but identify situations where they perfom@og%z including MDL in accordance with Corollary 1 above.
strictly better and situations where they perform exactly as good as

standard labelings. We illustrate these in the following two examples.Example 10: Let C; be the lengtf8 repetition code and’. be the
cyclic code overZs with generator polynomiall + z%). In this case
Example 9: Let C; = {0000, 1111} and

) 6y /60 = 3847715 < ds/d, = 4 < 4/b6p = 26.27413115
Cr = {0000, 1233, 2466, 3611, 4044, 5277, 6422, 7655}

and hence this example corresponds to Region V in Fig. 3(b). The

a linear code ovefZs with generator matrixl 2 3 3]. This corres- MSEDis1.1716 corresponding to the codewofd, e, r, ¢, e, -+, €)

ponds to Region IV in Fig. 3(b), sinde< d./d.. <6, /60=3.847715.  which is26, = 2(0.5858). Note that’s, = 1.2179 hence the MSED

Moreover, is achieved by anm-power-only codeword and hence the same for
ds, = 0.608067 and dy; = 4.93852 all labelings.

When considering the special case of 6-SPSK, the above results

d>p = 5.3868729 anddupr = 4.304984. take a simpler form, as given in the following theorem. Notice that

0o11...11
0000...00

[EEry—
— =
— =

=
=
= o
= o
= o
[en)
[en)
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for 6-SPSK there are only two labeling&/DL and SL. This means SPSK case proved in part ii) of Theorem 2 continues to hold in the
the situations corresponding to Regions Il and V of the general setticgse of APSK also for angles in the range given by (22).
of Fig. 3(a) do not arise since there is only one labeling to the left

of d,/d, = 1 which is MDL. Example 5 (continued):f 2L is chosen, then the performance can

be improved by introducing the asymmetry. As per Theorem 5, the

Theorem 4 (6-SPSK case—Fig. 3(c)): improvement is guaranteed updo= 0.4485548°, in which case we
i) If d./d. < 1 (Regions | and Il in Fig. 3(c)) theds, > ds;,. 9€tdar, = bor, = 2.7798089 and 196, = 2.7798092.
i) If 1 <d,/d. < 3 (Region lll in Fig. 3(c)) thendamr, > dsr, Observe that in the example above, further increase will decrease

with strict inequality if C,. does not contain a codewordthe MSED of the code sincéz., will then be 195¢. Whereas
of weight d, with nonzero components exactly in the samdheorem 5 does not say anything regarding the decrease or further
locations as those of a minimum_weight codeword bt increase of the MSED a® is increased, the fO”OWing corollary

iy If d./d. > 3 (Region IV in Fig. 3(c)) then the MSED is the gives conditions for decrease.

same for all matched labelings. Corollary 5.1: i) In Theorem 5 part i) if a minimum-weight vector

Proof: i), ii), and iii) follow from specializing toM = 3, ¢ (. consists of the nonzero value/2 only and there i € C.,
respectively, Theorem 2 part iii), Theorem 3 part i), and Theoreith nonzeros in exactly same locations as thah,dhendmr,,, will

3 part iii). decrease for further increase in
ii) In Theorem 5 part i), ifm is even,m = M/2 — 1, and if a
B. Euclidean Distance Properties for APSK Modulation minimum-weight vectob € C'. consists of the nonzero valud/2

In this subsection we discuss the Euclidean distance propertiesggghzr:dotfgertig fng vzczsn?rr]zel;c:ségtezﬂaggétti;argﬁa?igtlggs
#"(C) under asymmetric labelings. Like Fig. 3(a) for SPSK in the ' ¢ 9 g P y

) . Y Lo . matched labeling, i.em Ls is the best matched labeling.
previous subsection, th&, /d,.-axis shown in Fig. 4(a) will be used Proof: i) The signal poiniu” (a, b) has Euclidean weight, s,

to identify the different regions discussed in the theorems of thj , . - .
subsection. Note that the poifg/s,. shifts by at mostr/2M to the hﬁg{:;‘;rees’ ;rc')orr(ii > (I)aglg\;eirrllc?ga(szels) the MSED ist, b0, which
‘mLg ) .

left or right according to a positive or a negative angle of asymmetryii) The signal point:” (a, b) has Euclidean weight, 8, . There-

if 0 < p(s) < w, and in the opposite way if < p(s) < 2w. , . | .
As in the case of SPSK in the previous section, we also consi are: foré > @ given by (21) the MSED isl,4;, which decreases

two major cases for APSK: 1. < d, (Theorem 5 and the special " dapLe @S¢ Increases. QED.
case 4-APSK in Theorem 6) and &) > d, (Theorem 7). The first ~ Example 6 (continued)Now using (21), the angle of asymmetry
case is further divided into two subcases identified as Regions | andflky = 1.8064609°, i, = 3.8709678, and 308y, = 3.870967.

(Fig. 4(a)) and the second into three subcases identified as RegiNase thatépr, increases and0do, decreases as increases and

I, 1v, and V. the point that makes these two equal is the best angle. Observe that
. - . this example satisfies the condition in part ii) of Corollary 5.1 above
Theorem 5 (Casel. < d,—Regions I and Il in Fig. 4(2)): and hencep = 1.8064609° corresponds to the best labeling.

1) For all values ofm, satisfyingd. /d» < é/ém, the MSED of ~  cogjiary 5.1 leads to a simple characterization and identification
p”(C) monotonically increases (from the MSED correspondss the pest labeling for 4-APSK case df < d,.
ing tom L) with respect to the angle of asymmetrx ¢ < @,

where® is given by (21) at the bottom of this page, unldds ~ Theorem 6 (4-APSK Case—Fig. 4(b)):

is odd andm = (M —1)/2, in which caseP = 0. For¢ < 0, i) For the caseM = 2, the conditionC, @ 2C, C C. fol-
the MSED of 1" (C) decreases. lows from the linearity of the component codes and hence is
2) If mL satisfiesdo/6m < ds/d < 1, thend,,r, > dsz, for redundant.
all values of¢, in the range ‘ ‘ i) If d;/d. < 1 (Region | in Fig. 4(b)) monotonic increase in
MSED from that corresponding to SPSK is guaranteed up to
otan! V. /d, sin((2m + 1)z /2M) — sin(x/2M) an angle®, where
Vds/d. cos((2m + 1)x/2M) — cos(n /2]M) & = 2tan""[(1 = \/do/d)/(1+ /d.d, ). 23)

< ¢ < (n/M). (22)
i) If a minimum-weight vector ofC'. is present inC’; thenm Lg
Proof: Given in Appendix II. gives the largest MSED compared to any matched labeling.

) . Proof: i) Follows from the fact that whed/ = 2, 2C,. = 0,
Remark 3: Note that the value o®, given by (21), depends an. which is always inC, since it is linear.

The essence of part i) of Theorem 5 is the following: In comparison ii) The only labeling for 4-PSK isVIDL. Substitutingd = 2 in
with every SPSK labeling, say L, whend, /d, < 6o/é., then the é%l) gives (23) . ]
MSED increases due to asymmetry up to some fixed positive angle.: : L o -
(the image ofs is moved away from(1, 0)) given by (21) and this iii) Follows from substitutingd = 2 in part ii) of CorollagES.é.
fixed angle is a function ofe. Notice that nothing is said regarding B
the increase or decrease for positive angles more than this fixed angl&xample 11:
For negative angles of asymmetry, the MSED decreases. The essen@ase i) LetC, = {000, 101, 110, 011} andC, = {000, 111}.

of part ii) of Theorem 5 is that the superiority @i over SL for For this pair of component codes;/d. = 2/3 and the angle

1| sin (7 /2M) — \/ds/drsin (ma /M) + (w/2M))
Vds/drcos (mm /M) + (x/2M)) + cos (w/2M)

P = 2tan

(1)
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given by (23) is® = 11.536965°, and the corresponding MSED It is seen that all matched labelings give larger MSED compared to
is dapr, = 4.8. The minimum-weight vector of. is not present SL. as per Theorem 7 part i).
in C, and hence this MSED is not the best. For instardees 20°
gives MSED5.3680806. V. PHASE ROTATIONAL INVARIANCE
Case ii) LetC, = Z3 and C. = {000, 011, 101, 110}. For
this pair of component code$;/d, = 1/2 and the angle given
by (23) is ® = 19.471227°, and the corresponding MSED is
dypre = 2.666666. All the minimum-weight vectors of”,. are
present inC's and hence this MSED is the best. It is easily verifie
by inspection that forée = 1.333333 the codeword(rs, rs, €)
has Euclidean weightée = 2.666666 which will decrease for any (P00 Vs L YT sttt € O (26)
increase in the value @b, thus decreasing the MSED of the code.
Case iii) LetC, = Z3 and C, = {000, 111}. In this case,

For L-level multilevel codes with binary component codes phase
invariance properties have been reported in [3]. In this section we
consider the phase rotational invariance property of the two-level
8r0up codes ovelD;.

For mL, of a 2M-APSK signal set, a codeword

is mapped onto the point

d./d, = 1/3 and the corresponding value # = 29.999998°, <exp /1 |:;t0 ((gm + 1)% + Q,)) Ty ”}

giving the MSEDdpr, = 3. The minimum weight vectof111) R

of C, is present inC; and hence this MSED is the best. It is verified =

by seeing thate = 1 and the codewordrs, rs, rs) has Euclidean P { ( (2m + 1) + O) tyi U}

weight36e = 3 which will decrease for any increase in the value of T ’

®, thus decreasing the MSED of the code. expyv —1 {wn,l ((2’” + l)ﬂ + @) +Yn—1 ”D (27)
Theorem 7 (Casé; > d.): in 2n-dimensional space. There is a one-to-one correspondence
i) If ds/d,isin Region Ill in Fig. 4(a), i.e.,il < d,/d, < §./6,, between codewords andh-dimensional points given by (26) and

then for—n/M < ¢ < w/M, we have (27). The code is said to be rotationally invariant to ang)eif

whenever (27) is a signal point for a codeword @\ then the
vector corresponding to the expression at the bottom of this page is
with strict inequality holding for those values of for which & codeword inC'. Theorem 8 gives the conditions on the component
if C, contains a codeword, say of Hamming weightZ, with ~ codes for a two-level group code ovBr; to be invariant to different
nonzero components in those locations in which a minimunangles of rotations including the minimum angle.

weight vector ofC's has nonzero components then at least one +poorem s:

nonzero component af is not A/ =1 —m, if 6 > 0.and s 4) Form of a21/-SPSK signal set andiL, of a 2)/-APSK
not M —m, if ¢ < 0. signal set,C' = s+ is invariant to

ii ds/d,isi i in Fig. ,i.e., ib. /8 1s/d. . . . .
) Il/&]/thelfl I%F:ﬁlsglllj\éslnoggn%ag rlatrangéﬁ /80 < dsfdr < i) k(2w/M), rotations wheré: divides M, iff the all-k vector
’ " (k' k,...,k) e C,:

|¢] < /M — 2sin~" [\/ds /d, sin (7 /M)] (24) i) k(2w /M), rotations wheré: and M are relatively prime, iff
the all1 vector (1, 1,---,1) € C,.

dmr, > dsr,,

we have . . .
b) For mL of a 2A/-SPSK signal seC is invariant tox /M
dmr, 2 dst,- rotations iff the alli vector is present i€, and C..
iiiy If d./d, is in Region V in Fig. 4(a), i.e., ifl./d, > 4/6, Proof: a) i) Let M/ = ). Then replacingy; by i + A,

t=0,1,---,n—1,in (26) corresponds té in (27) getting replaced
by A(2x /M), and conversely.
6| < /M — 2sin™' (\/d,/ds) (25) i)y If ¥ and M are relatively prime, thei (2= /M) rotations can
be obtained by: successiv@r /M rotations an®= /M rotations can
be obtained by: successivé:(2x /M) rotations where: is given by
uk+vM =1 (Bezout's Theorem). Hence it is sufficient to consider
2w /M rotations only for which the all-vector(1, 1,---,1) should
Corollary 7.1: In Theorem 7 part i), for some: if (m, M) =1 be inC, which follows from i) with A = M.
and equality is achieved in (34) in Appendix Ill, then the aitector ) Suppose the all-vector is present in botld', and C.. The
belongs toC'., and conversely. Hence, if the dllvector does not Presence of the all-vector in C'; guarantees rotational invariance
belong toC,, then for allm relatively prime toM, strict inequality bY (2m + 1)w/M = m(2x /M) + =/M. The presence of the all-
holds in (34). 1 vector in C,. guarantees rotational invariance by all multiples of
27 /M, including—m (2= /M). Clearly, rotational invariance for both
Example 9 (continuation)By introducing ¢ = 2.5° angle of (27 /M) + /M and—m(2x/M) implies rotational invariance for
symmetry the calculated MSED for various labelings are 7 /M. The converse is straightforward. Q.E.D.

dsr., = 04824588 dir, = 0.6159982 d»r, = 1.1716 Note that the minimal angle of rotational invariance #dd-SPSK
and dyr, = 0.5492285. is /M whereas for2 M-APSK is 27 /M.

then for all values of, where

dmr., 1S independent ofn, i.e., MSED is the same for all
matched labelings satisfying (25).

Proof: Given in Appendix IlI.

“1lao ( (2 R ST o/—1 L (2 L
<exp\/ 1|;L(J((217L+1)AI+Q)+y0 M—I—H -, expy/—1 .11((2m—|—1)]\[—|—(p)+y1 7\[—1—9

expyv—1 |:;L’,L_1 ((2771 + 1)

))+ 2 g
In=131



1630 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 4, JULY 1998

VI. DISCUSSION Case a) Restricting the consideration to within the class of all-

Group codes over dihedral groups witii/ elements which are COdeWOrdsdmy = bmds > bods 2 dsi. o
constructible as two-level codes with component codes from a binaryCase b) Restricting the consideration to within the class of all
code and a linear code over appropriate residue class integer fingoWwer codewordsd,.r, = dsr. )
modulo M have been studied. Block-coded modulation scheme Case c) Restricted to within the class of vectors not covered in
using both2A7-SPSK and2M-APSK as signal sets matched toca@ses &) and b) above, we have
the dihedral groups have been discu§sed corlsidering aII. possible dmp > 60 max {d,, dy} = Sods > dsp.
matched labelings. Automorphic Euclidean distance equivalence,
rotational phase invariance, and Euclidean distance properties haviél) Using éods > Ad, andé, < X, (28) givesdmr > 6,d;.
been discussed. Given a pair of component codes, the best Iabelinﬁ1 . . .

. . . i this case, any vector that is not alpower codeword will have
among a subset of possible labelings has been identified only for . . L -
i . . . m*nlmum distance at leastd, which is larger than\d,-. A minimum
specific ranges of values of the ratio of the Hamming distances . : ) . .
. N amming weight vector irC',. can at most have Euclidean weight
the component codes. One possible direction for further research\éf - . - ) .
) ; . Ad,.. Hence the minimum Euclidean weight is achieved by an-all-
to find the best labeling for a given set of component codes at least . L
. : . Cpower vector for any labeling. Hence tig, . is independent ofr,
for selected ranges of values for the ratio of the Hamming distances, . )
including MDL and SL. Q.E.D.
of the component codes.

Another direction to pursue is the comparison of performance with
group codes over cyclic groups. Symmetric PSK signal sets can be APPENDIX I
labeled with cyclic group or with dihedral groups of the same order. PROOF OF THEOREM 5
It will be interesting to see under which labeling MSED is larger for For d, < d., (16) becomes
identical code parameters like rate and dimension.

The signal space codes discussed in this correspondence admit
minimal trellis [23], [24] and hence trellis-decoding techniques [25] ) et the angle of symmetry introduced L be ¢ > 0, where
can be used to decode. The method of construction of minimal/q, < 86/6m, < 60/6m. We have
trellis is first obtaining minimal trellises for the component codes and
then taking their product. For the binary-code Kschischang—Sorokine ds/dy < 8¢ /bm,,. (31)
algorithm [26] gives the minimal trellis and for the other code a
algorithm to construct minimal trellis is given in [27].

dmr, > min {64d-r, ﬁmq,,d,q}. (30)

[‘Jsing (31) in (30) and from Remark 2, we have

A1, = 6m,ds. (32)

APPENDIX |

As ¢ increases, the right-hand side of (31) decreases and that of
PROOF OF THEOREM 3

(32) increases. Moreover, (31) and (32) together imply that up to the
For d, > d,, (17) becomes maximum value of) satisfying (31), the MSED will increase unless
M is odd andm = ¥=L in which case the MSED will decrease.

m > 1 rrs ) S ) . . 2 . .
dmz 2 win {8:dr, bod. } (28) Substituting the values df, andénm, in (33), and after rearranging
i) Using é0ds < 6.d,, (28) becomes terms, we get (21). b < 0, then the right-hand side of (31) increases
and the right-hand side of (34) decreases.
dmr, 2 bod.s (28a) i) Let ¢ be such thats /6., < d./d, < 1. Then, using (30), we
and from (17a) and Remark 2 haved,.., > é4d,. Foré < 0, from (22b), we have
der = bod.. (28b) dsp, > min{bsdy, byds} = d4ds.

Therefore,d,.. > ds.. Moreover, if we consider signal points NOW, sinced, > d., we haved.,.., > dst,. Substituting the values
corresponding to only al-codewords them,,. > dsz, and if we fOr és andé.., we get the first inequality of (22a).
consider signal points corresponding to onlysafpower codewords For0 < ¢ < /M, we have

then alsod,.;, > dsz, sinceé,.d, > 69d,. Then, if equality is to dsp,, > min {8,d,, 8o, d.} = 4d,
hold in (28a) then any codeword that achieves equality is necessarily v T '
of the form and from Remark 140, > 64 and hencel..r, > dsr,,.
(€r-vr€, 21, €1ne €, Za,, € €)
APPENDIX IlI
where PROOF OF THEOREM 7
o= Mol op M k=0,1,+.d, (28¢) Using ds > d., (16) becomes
for only » =1~ andr»* ~™s are points with Euclidean weigh. dinr, > min {6.d;, dpd}. (33)

If a minimum weight vector o, is present also it then the i) Since s, < &, we haved, /d, < 6, /80 < 6./6s, which when
MSED is od. for all labelings since this Euclidean weight will be e in (33) E]ive’s ' v

achieved by either the minimum-weight vector or a scalar multiple
of it depending onmL. dmr, 2 bsds. (34)
ii i s {57’ 1A ]
i) Using 6ods > 6.d,, (17) becomes But from (16d)
Ay, > 6rdy (29) ds, = ad..

and for SL, we always have . .
4 Therefore, d..r., > dsi.,. Moreover, if we consider only aH-

bods > dsi.. (29a) codewords themlqu,, > dﬁ,qu,,, and if we consider only alt- power
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codewords then als@,. ., > dsr.,, sinced.d, > b4d;. Hence, if  [7]
equality is to hold in (34) then the codeword that achieves equality
in (34) has to be necessarily of the form (8]

°) )
wherez, =M =177 k=0, 1,---,d,, if > 0 andz, =rM"™s, [10]
E=0,1,--,ds, if ¢ < 0, for #="=™5 and r~"s being

the only closest point with Euclidean weight, respectively, when

(87"'787 Zly €yttt €, 22, €000, €y T, €00t

¢ > 0and¢ < 0. [11]
ii) Suppose for some, we have
80 /66 < do/dr < 4/55. @5 12
Then (33) gives [13]
dmr/d, Z 67‘dr

[14]

and for SL., we always have
[15]

Spds > dst,.

Case a) Restricting the consideration to within the class of all{16]
codewords

Aty = 6m,ds > 6g3ds > dsr,,.
i i i [17]

Case b) Restricting the considering to within the classabf
r-power codewordsd,.., = dsL,.

Case c) Restricted to within the class of vectors not covered o]
a) and b),

(18]

[20]
dmr, > 6p max{d,, d.} = 64ds > dsr,.
‘ ‘ [21]

Cases a)—c) together imph.r., > dsr.,. With straightforward
adjustments after substituting values #grin (35), it is easy to check (22]
that ¢ has to be in the range given by (24) for (35) to hold.

i) For all values of¢ satisfying (25), we have,/d, > 4/6,,
which when used in (33) gives...., > 6.d., since4d, > 6.d,. In
this case, any vector which consists of other thagower terms will
have the minimum distance at ledsti, which is larger thanid... A [24]
minimum Hamming weight vector iat'. can at most have Euclidean o5
weight4d,.. Hence the minimum Euclidean weight is achieved by an
all-~-power vector for any labeling. Hence tHe,;,, is independent
of m. Q.E.D.

[23]

[26]

[27]
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