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Abstract

We obtain minimax lower and upper bounds for the expected distortion redundancy

of empirically designed vector quantizers. We show that the mean squared distortion

of a vector quantizer designed from n i.i.d. data points using any design algorithm is at

least 

�
n
�1=2

�
away from the optimal distortion for some distribution on a bounded

subset of Rd. Together with existing upper bounds this result shows that the minimax

distortion redundancy for empirical quantizer design, as a function of the size of the

training data, is asymptotically on the order of n1=2. We also derive a new upper bound

for the performance of the empirically optimal quantizer.
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1 Introduction

One basic problem of data compression is the design of a vector quantizer without the

knowledge of the source statistics. In this situation, a collection of sample vectors (called

the training data) is given and the objective is to �nd a vector quantizer of a given rate

whose average distortion on the source is as close as possible to the distortion of the optimal

(i.e., minimum distortion) quantizer of the same rate.

Most existing design algorithms (see, e.g., [8, 6, 22, 18]) attempt to implement, in various

ways, the principle of empirical error minimization in the vector quantization context. Ac-

cording to this principle, a good quantizer can be found by searching for one that minimizes

the distortion over the training data. If the training data represents the source well, this em-

pirically optimal quantizer will hopefully perform near optimally also on the real source. The

problem of quantifying how good empirically designed quantizers are compared to the truly

optimal ones has been extensively studied for the case when the training data consists of n

vectors independently drawn from the source distribution. It was shown by Pollard [15, 17]

under general conditions that the method of empirical error minimization is consistent in the

following sense. Let Dn be mean squared error (MSE) of the empirically optimal quantizer,

when measured on the real source, and let D� be the minimumMSE achieved by an optimal

quantizer. An empirically designed quantizer is consistent if the quantity Dn � D
� (called

the distortion redundancy) converges to zero as n tends to in�nity.

Of course mere consistency does not give any indication how large the training data should

be so that the distortion of the designed quantizer be close to the optimum. This question

can only be answered by analyzing the �nite sample behavior of Dn. In this direction, it

was shown in [10, 14] that there exists a c such that Dn � D
� � c

q
log n=n for all sources

over a bounded region. This result has since been extended to empirical quantizer design for

vector quantizers operating on \noisy" sources and for vector quantizers for noisy channels

[11]. An extension to unbounded sources is given in [13].

A deeper analysis of the method used to obtain the above upper bound shows that at

the price of considerable technical di�culties, the
p
log n factor can be eliminated. Indeed,

using a result of Alexander [1] the above upper bound can be sharpened to O(1=
p
n).

Two basic questions relating to the �nite sample behavior of quantizer design algorithms

have remained unanswered. The �rst is whether the O(1=
p
n) upper bound on the distortion

redundancy Dn � D
� is actually tight. The second, more general question is whether there

exist methods, other than empirical error minimization, which provide smaller distortion

redundancy (and thus use less training data to achieve the same distortion). The results of

this paper answer both questions in a minimax sense.
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There are indications that the upper bound can be tightened to O(1=n). Indeed, for

the special case of a one-codepoint scalar quantizer one can de�ne the codepoint to be the

average of the n i.i.d. training samples, a choice which actually minimizes the squared

error on the training data. It is easy to see that Dn � D
� = c=n, where c is the variance

of the source. Another indication that an O(1=n) rate might be achieved comes from a

result of Pollard [16]. He showed that for sources with some specially smooth and regular

densities, the di�erence between the codepoints of the empirically designed quantizers and

the codepoints of the optimal quantizer obeys a multidimensional central limit theorem. As

Chou [3] pointed out, this implies that within the class of sources in the scope of this result,

the distortion redundancy decreases at a rate O(1=n) in probability.

In the main result of this paper (Theorem 1) we show that despite these suggestive facts,

the conjectured O(1=n) distortion redundancy rate does not hold in the minimax sense.

Let B > 0 and consider the class B of d-dimensional sources for which (1=d)kXk2 � B

with probability one. We show that for any d-dimensional k-codepoint (k > 2) quantizer

Qn which is designed by any method from n independent training samples, there exists an

X 2 B for which the per dimension MSE of Qn is bounded away from the optimal distortion

by a constant times
q

k1�4=d

n
. Thus the gap between this lower bound and the existing upper

bound is reduced to a constant factor, if the parameters k and d are kept constant.

In addition to this general lower bound, a new minimax upper bound for the empirically

optimal quantizer is derived in Theorem 2. The bound is a constant times
q

k1�2=d logn
n

. The

main merit of this bound is that it partially explains the curious dependence of the lower

bound on k: the bound decreases in k for very small values of d. Also, for realistic values of

quantizer dimension and rate, it is tighter than the O(1=
p
n) bound obtained via Alexander's

inequality, and yet its proof is rather elementary and accessible.

2 Main Results

A d-dimensional k-point quantizer Q is a mapping

Q(x) = yi if x 2 Bi;

where B1; : : : ; Bk form a measurable partition of Rd, and yi 2 Rd, 1 � i � k. The yi's are

called codepoints, and the collection of codepoints fy1; : : : ; ykg is the codebook. If � is a

probability measure on Rd, the distortion of Q with respect to � is

D(Q) =
Z
Rd
kx�Q(x)k2�(dx);

where kx�Q(x)k is the Euclidean distance between x and Q(x).
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An empirically designed k-point quantizer is a measurable function Qn :
�
Rd
�n+1

! Rd

such that for each �xed x1; : : : ; xn 2 Rd, Qn(�; x1; : : : ; xn) is a k-point quantizer. Thus an

\empirically designed quantizer" consists of a family of quantizers and an \algorithm" which

chooses one of them for each value of the training data x1; : : : ; xn.

In our investigation, X;X1; : : : ;Xn are i.i.d. random variables inRd distributed according

to some probability measure � with �(S(0;
p
d)) = 1, where S(x; r) � Rd denotes the closed

ball of radius r � 0 centered at x 2 Rd. In other words, we assume that the normalized

squared norm (1=d)kXk2 of X is bounded by one with probability one. (By straightforward

scaling one can generalize our results to cases with �(S(0;
p
dB)) = 1 for some �xed B <1.)

The distortion of Qn is the random variable

D(Qn) =
Z
Rd
kx�Qn(x;X1; : : : ;Xn)k2�(dx)

= E

�
kX �Qn(X;X1; : : : ;Xn)k2jX1; : : : ;Xn

�

Let D�(k; �) be the minimum distortion achievable by the best k-point quantizer under the

source distribution �. That is,

D
�(k; �) = min

Q

Z
Rd
kx�Q(x)k2�(dx)

where the minimum is taken over all d-dimensional, k-point quantizers. The following quan-

tity is in the focus of our attention:

J(Qn; �) = ED(Qn)�D
�(k; �);

that is, the expected excess distortion of Qn over the optimal quantizer for �. In particular,

we are interested in the minimax expected distortion redundancy, de�ned by

J
�(n; k; d) = inf

Qn
sup
�
J(Qn; �);

where the in�mum is taken over all d-dimensional, k-point empirical quantizers trained on n

samples, and the supremum is taken over all distributions over the ball S(0;
p
d) in Rd. The

minimax expected distortion redundancy expresses the minimal worst-case excess distortion

that an empirical quantizer can have.

A quantizer Q is a nearest neighbor quantizer if for all x, kx � Q(x)k � kx � yik for

all codepoints yi of Q. It is a basic fact that for each quantizer Q and distribution � there

exists a nearest neighbor quantizer which has the same codebook as Q but less then or equal

distortion. Therefore, when investigating the minimax distortion redundancy, it su�ces to

consider nearest neighbor quantizers.
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The empirically optimal quantizer, denoted Q
�
n, is an empirically designed quantizer

which minimizes the empirical error

Dn(Q) =
1

n

nX
i=1

kxi �Q(xi)k2

over all k-point nearest neighbor quantizers Q.

The �rst result upper bounding the minimax distortion redundancy was given in [10],

where it was proved that for the empirically optimal quantizer

J(Q�
n; �) � cd

3=2

s
k log n

n
(1)

for all �, where c is a universal constant. The main message of the above inequality is that

there exists a sequence of empirical quantizers such that for all distributions supported on

a given d-dimensional sphere the expected distortion redundancy decreases as O(
q
log n=n).

Another application of this result, which uses the dependence of this bound on k, was pointed

out in [13] (see the discussion after Theorem 2).

With analysis based on sophisticated uniform large deviation inequalities of Alexander

[1] or Talagrand [20] it is possible to get rid of the
p
log n factor. More precisely, one can

prove that

J(Q�
n; �) � c

0
d
3=2

s
k log(kd)

n
(2)

for all �, where c0 is another universal constant (see the discussion in [9] and Problem 12.10

in [5]).

The theorem below|the main result of this paper|shows that for any empirical quan-

tizerQn (i.e., for any design method whose input is X1; : : : ;Xn and output is a d-dimensional

k-codepoint quantizer Qn) the excess distortion is as large as a constant times d
q

k1�4=d

n
for

some distribution. Let � denote the distribution function of a standard normal random

variable.

Theorem 1 For any dimension d, number of codepoints k � 3, and sample size n �
16k=(3�(�2)2), and for any empirically designed k-point quantizer Qn, there exists a distri-

bution � on S(0;
p
d) such that

J(Qn; �) � c0d

s
k1�4=d

n
;

where c0 is a universal constant which may be taken to be c0 = �(�2)42�12=
p
6.
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Remark. The proof of the theorem is given in the next section. The constant c0 of the

theorem may be improved by more careful analysis.

The above theorem, together with (2), essentially describes the convergence rate of the

minimax expected distortion redundancy in terms of the sample size n by implying that

lim sup
n!1

p
nJ

�(n; k; d) � c1

and

lim inf
n!1

p
nJ

�(n; k; d) � c2

for some constants c1; c2 > 0 depending on d and k. However, there is still a gap if the

bounds are viewed in terms of the number of codepoints k. For large d the di�erence is

small. In fact, if, according to the usual information theoretic asymptotic view, the number

of codepoints is set as k = 2Rd for some constant rate R > 0, then the di�erence between

the upper and lower bounds is asymptotically negligible in an exponential sense. Indeed, (2)

and Theorem 1 imply that for large d, the per-dimension minimax distortion redundancy is

sandwiched as s
2d(R�O(d�1))

n
� d

�1
J
�(n; k; d) �

s
2d(R+O(d�1 log d))

n
:

The di�erence is more essential for small d, not only because of the di�erence in the exponents

of k in the two bounds, but also because the constant c0 in (2) is large (it is of the order of

103), a price paid for eliminating the
p
log n factor in (1). For this reason, we now present a

new minimax upper bound on the distortion redundancy of empirically optimal quantizers.

Theorem 2 For the class of sources considered in Theorem 1, if n � k
4=d

,

q
dk1�2=d log n �

15, kd � 8, n � 8d, and n= log n � dk
1+2=d

, then

J(Q�
n; �) � 32d3=2

s
k1�2=d log n

n
;

where Q
�
n is the empirically optimal quantizer.

Just like the lower bound of Theorem 1, the new upper bound is also a decreasing

function of the number of codepoints k if d = 1. Comparing the two bounds leads to the

conjecture that for very small values of d (i.e., for d = 1 and perhaps for d = 2; 3; 4) the

minimax distortion redundancy is a decreasing function of k, while for large values of d it

is an increasing function of k. We cannot prove this conclusion because of the gap between

the upper and lower bounds, but for d = 1 it is possible to show values of k1 < k2 and n

such that the minimax distortion redundancy for k1 codepoints is larger than that for k2

codepoints. The intuitive reason for such a behavior is that even though for large values of k
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more unknown parameters of the optimal quantizer are to be estimated, the distortion of a

quantizer with many codepoints is smaller, and therefore it can be estimated with a smaller

variance. The proof of Theorem 2 provides further insight. The exact dependence of the

minimax distortion redundancy on k and d is still a challenging open problem.

The relatively simple proof of this result is given in Section 3.2. Note that this upper

bound is always better than (2) if

k
2=d

> log n

or

n < 22
2R
:

For practical values of the training set size, this condition is satis�ed for medium bit rates.

For example, for n = 106, the new upper bound is smaller than (2) if R � 2:16.

In recent work, Merhav and Ziv [13] studied a problem closely related to quantizer design.

In their setup the \design algorithm" is given N bits of information (called side information

bits) about the source. The question is how many side information bits are necessary and

su�cient to obtain a d-dimensional rate R quantizer (R = (1=d) log k, where k is the number

of codepoints) whose distortion is close to the optimum. Their main result gives the answer

N = 2dR in exponential sense, if d is large. The su�ciency part of this statement was proved

using (1). Note that this problem is more general than the problem we consider. The N

information bits are allowed to represent an arbitrary description of the source, of which

discretized independent training samples are a special case. While the necessity part of this

result does not translate directly to a lower bound on the convergence rate we study, it does

have implications on how the minimax bounds can depend on the rate R and dimension d.

For example, it is not hard to see that the fact that N = 2d(R��) side information bits are not

enough implies that the minimax distortion redundancy convergence rate cannot be upper

bounded in the form c

�
2d(R��)

n

��
for any constants c; �; � > 0.

Our setting is slightly di�erent from that studied in [13]. While Merhav and Ziv concen-

trated on stationary and ergodic sources, we only restrict the distribution to have support

in a bounded subset of Rd. It is not hard to see that in general there does not exist a

real stationary process whose d-dimensional marginals have exactly our counterexample dis-

tribution. We presently do not see a way of constructing stationary and ergodic sources

(as was done in [13] for determining the number of necessary side information bits) whose

d-dimensional marginals approximate the counterexample distributions well enough so that

the rather �ne analysis of the lower bound carries over without destroying the n�1=2 rate.
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3 Proofs

3.1 Proof of Theorem 1

The basic idea of the proof may be illustrated by the following simple example: let d = 1,

k = 3, and assume that � is concentrated on four points: 0; �; 1� �, and 1, such that either

�(0) = �(�) = 1=4 + � and �(1) = �(1 � �) = 1=4 � �, or �(0) = �(�) = 1=4 � � and

�(1) = �(1 � �) = 1=4 + �. Then if � is su�ciently small, the codepoints of the optimal

quantizer are 0; �; 1� �=2 in the �rst case, and �=2; 1� �; 1 in the second case. Therefore, an

empirical quantizer should \learn" from the data which of the two distributions generates

the data. This leads to a hypothesis testing problem, whose error may be estimated by

appropriate inequalities for the binomial distribution. Proper choice of the parameters �; �

yields the desired 

�
n
�1=2

�
lower bound for the minimax expected distortion redundancy.

The general, d > 1, k > 3 case is more complicated, but the basic idea is the same.

We present the proof in several steps. Some of the technical details are given in the

Appendix.

Step 1. First observe that we can restrict our attention to nearest-neighbor quantizers, that

is, to Qn's with the property that for all x1; : : : ; xn, the corresponding quantizer is a nearest

neighbor quantizer. This follows from the fact that for any Qn not satisfying this property,

we can �nd a nearest-neighbor quantizer Q0
n such that for all �, J(Q0

n; �) � J(Qn; �).

Step 2. Clearly,

sup
�
J(Qn; �) � sup

�2D
J(Qn; �);

where D is any restricted class of distributions on S(0;
p
d). We de�ne D as follows: each

member of D is concentrated on the set of 2m = 4k=3 �xed points fzi; zi+w : i = 1 : : : ;mg,
where w = (�; 0; 0; : : : ; 0) is a �xed d-vector, and � is a small positive number to be

determined later. The positions of z1; : : : ; zm 2 S(0;
p
d) satisfy the property that the

distance between any two of them is greater than A�, where the value of A is determined in

Step 5 below. For the sake of simplicity, we assume that k is divisible by 3. (This assumption

is clearly insigni�cant.) Let � � 1=2 be a positive number. For each 1 � i � m, set

�(fzig) = �(fzi + wg) =

8<
: either 1��

2m

or 1+�
2m

such that exactly half of the pairs (zi; zi + w) have mass (1 � �)=m, and the other half

of the pairs have mass (1 + �)=m, so that the total mass adds up to one. Let D contain

all such distributions. The cardinality of D is M =
�

m
m=2

�
. Denote the members of D by

�1; �2; : : : ; �M .
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Step 3. Let Q denote the collection of k-point quantizers Q 2 Q such that for m=2 values

of i 2 f1; : : : ;mg, Q has codepoints at both zi and zi+w, and for the remaining m=2 values

of i, Q has a single codepoint at zi + w=2. If A �
q
2=(1 � �) + 1, then for any k-point

quantizer Q there exists a ~Q in Q such that, for all � in D, D( ~Q) � D(Q). The proof of this

is given in the Appendix.

Step 4. Consider a distribution �j 2 D and the corresponding optimal quantizer Q(j).

Clearly, from Step 3, if A �
q
2=(1 � �) + 1, then for the m=2 values of i in f1; : : : ;mg

that have �j(fzi; zi + wg) = (1 + �)=m, Q(j) has codepoints at both zi and zi + w. For the

remaining m=2 values of i there is a single codepoint at zi + w=2.

For any distribution in D and any quantizer in Q, it is easy to see that the distortion of

the quantizer is between (1 � �)�2
=8 and (1 + �)�2

=8.

Step 5. Let Qn denote the family of empirically designed quantizers such that for every

�xed x1; : : : ; xn, we have Q(�; x1; : : : ; xn) 2 Q. Since � � 1=2, the property of the optimal

quantizer described in Step 4 is always satis�ed if we take A = 3. In particular, if A = 3, we

have

inf
Qn

max
�2D

J(Qn; �) = min
Qn2Qn

max
�2D

J(Qn; �);

and it su�ces to lower bound the quantity on the right-hand side.

Step 6. Let Z be a random variable which is uniformly distributed on the set of integers

f1; 2; : : : ;Mg. Then, for any Qn, we obviously have,

max
�2D

J(Qn; �) � EJ(Qn; �Z) =
1

M

MX
i=1

J(Qn; �i):

Step 7.

min
Qn2Qn

EJ(Qn; �Z) = EJ(Q�
n; �Z); (3)

where Q�
n is the \empirically optimal" (or \maximum-likelihood") quantizer from Q, that

is, if Ni denotes the number of Xi's falling in fzi; zi + wg, then Q
�
n has a codepoint at both

zi and zi+w if the corresponding Ni is one of the m=2 largest values. For the other i's (i.e.,

those with the m=2 smallest Ni's) Q
�
n has a codepoint at zi + w=2.

The proof is given in the appendix.

Step 8. By symmetry, we have

EJ(Q�
n; �Z) = J(Q�

n; �1):

The rest of the proof involves bounding J(Q�
n; �1) from below, where Q�

n is the empirically

optimal quantizer.
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Step 9. Recall that the vector of random integers (N1; : : : ; Nm) is multinomially distributed

with parameters (n; q1; : : : ; qm), where q1 = q2 = � � � = qm=2 = (1� �)=m, and qm=2+1 = � � � =
qm = (1 + �)=m. Let N�(1); : : : ; N�(m) be a reordering of the Ni's such that N�(1) � N�(2) �
� � � � N�(m). (In case of equal values, break ties according to indices.) Let pj (j = 1; : : : ;m=2)

be the probability of the event that among N�(1); : : : ; N�(m=2), there are exactly j of the Ni's

with i > m=2 (i.e., the \maximum likelihood" estimate makes j mistakes). Then it is easy

to see that

J(Q�
n; �1) =

�2
�

2m

m=2X
j=1

jpj ;

since one \mistake" increases the distortion by �2
�=(2m).

Step 10. From now on, we investigate the quantity
Pm=2

j=1 jpj , that is, the expected number

of mistakes. First we use the trivial bound

m=2X
j=1

jpj � j0

m=2X
j=j0

pj

with j0 to be chosen later.
Pm=2

j=j0 pj is the probability that the maximum likelihood decision

makes at least j0 mistakes. The key observation is that this probability may be bounded

below by the probability that at least 2j0 of the events A1; : : : ; Am=2 hold, where

Ai = fNi > Nm=2+ig:

In other words,
m=2X
j=j0

pj � P

8<
:
m=2X
j=1

IAi � 2j0

9=
; :

Proof. De�ne the following sets of indices:

S1 = fi : �(i) � m=2; i � m=2 + 1g; S2 = fi : �(i) � m=2; i � m=2g

Then the maximum likelihood decision makes jS1j mistakes. If i 2 S2 and Ni > Nm=2+i,

then m=2 + i 2 S1. Thus, the number of indices i for which Ni > Nm=2+i is bounded from

above by jS1j+m=2 � jS2j = 2jS1j, since jS2j = m=2� jS1j. 2

Step 11. Thus, we need a lower bound on the tail of the distribution of the random variablePm=2
j=1 IAi. First we obtain a suitable lower bound for its expected value.

E

2
4m=2X
j=1

IAi

3
5 = m

2
PfA1g: (4)
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Now, bounding PfA1g conservatively, we have

PfA1g = PfN1 > Nm=2+1g

� PfN1 > n=m and Nm=2+1 � n=mg

= PfN1 > n=mg �PfN1 > n=m and Nm=2+1 > n=mg

� PfN1 > n=mg �PfN1 > n=mgPfNm=2+1 > n=mg

= PfN1 > n=mgPfNm=2+1 � n=mg:

The last inequality follows by Mallows' inequality (see Mallows [12]) which states that if

(N1; : : : ; Nm) are multinomially distributed, then

PfN1 > t1; N2 > t2; : : : ; Nm > tmg �
mY
i=1

PfNi > tig:

Finally, we approximate the last two binomial probabilities by normals. To this end, we use

the Berry-Ess�een inequality (see, e.g., Chow and Teicher [4]), which states that if Z1; : : : ; Zn

are i.i.d. random variables with EZ1 = 0, E[Z2
1 ] = �

2, and E [jZ1j3] = 
, then

�����P
(

nX
i=1

Zi < x�
p
n

)
��(x)

����� � 


�3
p
n
;

where � is the distribution function of a standard normal random variable. Choose � =q
m=n. Observe that N1 is the sum of n i.i.d. Bernoulli((1� �)=m) random variables. Then

the Berry-Ess�een inequality implies that if n � 8m=�(�2)2, then PfN1 > n=mg � �(�2)=2,
and similarly PfNm=2+1 � n=mg � �(�2)=2.

Therefore, by (4) we get

E

2
4m=2X
j=1

IAi

3
5 � m�(�2)2

8
: (5)

Step 12. To obtain the desired lower bound for

P

8<
:
m=2X
j=1

IAi � 2j0

9=
; ;

we use the following elementary inequality: if the random variable Z satis�es PfZ 2
[0; B]g = 1, then

P

(
Z �

EZ

2

)
�

EZ

2B
: (6)

To see this, notice that for � in [0; B], EZ � �+BPfZ � �g, and substitute � = EZ=2.
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Step 13. To apply this inequality, choose j0 = m�(�2)2=32. Then (5) implies that 2j0 �
(1=2)E

hPm=2
j=1 IAi

i
, and therefore

P

8<
:
m=2X
j=1

IAi � 2j0

9=
; � P

8<
:
m=2X
j=1

IAi �
1

2
E

2
4m=2X
j=1

IAi

3
5
9=
;

�
1

m
E

2
4m=2X
j=1

IAi

3
5

�
�(�2)2

8
;

where the second inequality follows from (6) and the last inequality follows from (5).

Step 14. Collecting everything, we have that

inf
Qn

sup
�
J(Qn; �) �

�2�(�2)4

512

r
m

n
;

where � is any positive number with the property that m pairs of points fzi; zi+wg can be

placed in S(0;
p
d) such that the distance between any two of the zi's is at least 3�. In other

words, to make � large, we need �nd a (desirably large) � such that m points z1; : : : ; zm can

be packed into the ball S(0;
p
d��). (We decrease the radius of the ball by � to make sure

that the (zi+w)'s also fall in the ball S(0;
p
d).) Thus, we need a good lower bound for the

cardinality of the maximal 3�-packing of S(0;
p
d ��). It is well known (see Kolmogorov

and Tikhomirov [7]) that the cardinality of the maximal packing is lower bounded by the

cardinality of the minimal covering, that is, by the minimal number of balls of radius 3�

whose union covers S(0;
p
d � �). But this number is clearly bounded from below by the

ratio of the volume of S(0;
p
d��), and that of S(0; 3�). Therefore, m points can certainly

be packed in S(0;
p
d ��) as long as

m �
 p

d��

3�

!d
:

If � �
p
d=4 (which is satis�ed by our choice of � below), the above inequality holds if

m �
 p

d

4�

!d
:

Thus, the choice

� =

p
d

4m1=d

satis�es the required property. Resubstitution of this value proves the theorem. 2

11



3.2 Proof of Theorem 2

The �rst step in the analysis of the performance of the empirical quantizerQ�
n is the following

lemma:

Lemma 1 Let S(x; r) denote the closed d-dimensional sphere of radius r centered at x. Let

� > 0 and let N(�) denote the cardinality of the minimum � covering of S(0; r), that is,

N(�) is the smallest integer N such that there exist points fy1; : : : ; yNg � S(0; r) with the

property

max
x2S(0;r)

min
1�i�N

kx� yik � �: (7)

Then, for all � � 2r we have

N(�) �
 
4r

�

!d
:

Proof. By a classical observation of Kolmogorov and Tikhomirov [7] the covering (7) exists

if it is impossible to construct another set fz1; : : : ; zN+1g � S(0; r) which is �-separated,

that is,

min
i6=j

1�i;j�N+1

kzi � zjk � �: (8)

Let us now consider an arbitrary �-separated set of cardinality N + 1. Then the open

balls of radius �=2 centered at the zi are disjoint and their union is included in S(0; r+�=2).

Also, if �=2 � r, then S(0; r + �=2) � S(0; 2r). Thus such a separating set cannot exist as

long as N + 1 is greater than the ratio of the volumes of S(0; 2r) and S(0; �=2), that is,

N >

 
4r

�

!d
� 1:

Since there exists an integer N �
�
4r
�

�d
which satis�es the above inequality, the lemma is

proved. 2

Corollary 1 Let 0 < � � 8d. There exists a �nite collection of k-point quantizers Q� such

that

(i) the cardinality of Q� is bounded as

jQ�j �
 
16d

�

!kd

(ii) all quantizers in Q� have their codepoints inside S(0;
p
d)

12



(iii) for any k-point nearest neighbor quantizer Q whose codepoints are contained in S(0;
p
d),

there exists a Q
0 2 Q� such that for all x 2 S(0;

p
d),

���kx�Q
0(x)k2 � kx�Q(x)k2

��� � �:

Proof. Let � = �=(4
p
d). Then 0 < � � 2

p
d, and by Lemma 1 there exists a �-covering set

of points fy1; : : : ; yNg � S(0;
p
d) if N �

�
4
p
d

�

�d
. De�ne Q� as the collection of all k-point

nearest neighbor quantizers whose codepoints are from the covering set fy1; : : : ; yNg. Then

jQ�j �
 
4
p
d

�

!kd
=

 
16d

�

!kd
:

If fx1; : : : ; xkg are the codepoints of Q, then there exists a quantizerQ0 2 Q� with codepoints

fx01; : : : ; x0kg such that kxi� x
0
ik � � for all i. If Q(x) = xj, we have by the nearest neighbor

property that

kx�Q
0(x)k2 � kx�Q(x)k2 � kx� x

0
jk

2 � kx� xjk2

� 4
p
dkx0j � xjk

� �:

The inequality kx�Q(x)k2 � kx�Q
0(x)k2 � � may be proved similarly. 2

Corollary 2 For all distributions such that PfkXk �
p
dg = 1, there exists a k-point

quantizer (k � 1) whose codepoints are contained in S(0;
p
d) and whose distortion satis�es

D(Q) � 16dk�2=d:

Proof. If k � 2d, then the statement trivially holds for the quantizer having one codepoint

at the origin. Otherwise, let � = 4
p
dk

�1=d. Then � � 2
p
d and by Lemma 1 there exists

a set of points fy1; : : : ; ykg � S(0;
p
d) that �-covers S(0;

p
d). Letting Q be the nearest

neighbor quantizer with these codepoints, we get D(Q) � �
2 = 16dk�2=d. 2

Let 0 < � � 8d, and let Q� be a set of quantizers satisfying properties (i),(ii), and (iii) of

Corollary 1. Let Q̂ 2 Q� denote a quantizer whose distortion is minimal in Q�, that is,

D(Q̂) � D(Q) for all Q 2 Q�:

Then it is clear that D(Q̂) � D
� + �, where D� denotes the minimum distortion achievable

by any quantizer. Let Qn be a quantizer in Q� such that for all x 2 S(0;
p
d),

kx�Qn(x)k2 � kx�Q
�
n(x)k

2 + �:

13



Such a quantizer exists by Corollary 1. Then clearly, by the de�nition of the empirically

optimal quantizer Q�
n,

Dn(Qn) � Dn(Q) + � for all Q 2 Q�:

The next lemma is based on ideas of Vapnik and Chervonenkis [21]:

Lemma 2 For all � > �, we have

PfD(Qn)�D(Q̂) > 2�g

� PfDn(Q̂)�D(Q̂) > � � �g+P

8<
:max
Q2Q�

D(Q) �Dn(Q)q
D(Q)

>
�q

D(Q̂) + 2�

9=
; :

Proof. If

max
Q2Q�

D(Q)�Dn(Q)q
D(Q)

�
�q

D(Q̂) + 2�
;

then for each Q 2 Q�

Dn(Q) � D(Q) � �

vuut D(Q)

D(Q̂) + 2�
:

If, in addition, Q is such that D(Q) > D(Q̂) + 2�, then by the monotonicity of the function

x� c
p
x (for c > 0 and x > c

2
=4),

Dn(Q) > D(Q̂) + 2� � �

vuutD(Q̂) + 2�

D(Q̂) + 2�
= D(Q̂) + �:

Therefore,

P

(
min

Q:D(Q)>D(Q̂)+2�
Dn(Q) � D(Q̂) + �

)
� P

8<
:max
Q2Q�

D(Q)�Dn(Q)q
D(Q)

>
�q

D(Q̂) + 2�

9=
; :

But if D(Qn)�D(Q̂) > 2�, then there exists an Q 2 Q� such that D(Q) > D(Q̂) + 2� and

Dn(Q) � Dn(Q̂) + �. Thus,

PfD(Qn)�D(Q̂) > 2�g

� P

(
min

Q:D(Q)>D(Q̂)+2�
Dn(Q) � Dn(Q̂) + �

)

� P

(
min

Q:D(Q)>D(Q̂)+2�
Dn(Q) � D(Q̂) + �

)
+PfDn(Q̂) > D(Q̂) + � � �g

� P

8<
:max
Q2Q�

D(Q)�Dn(Q)q
D(Q)

>
�q

D(Q̂) + 2�

9=
;+PfDn(Q̂)�D(Q̂) > � � �g:

2

14



Lemma 3 Let Q 2 Q�. Then for all 
 > 0,

P

8<
:D(Q)�Dn(Q)q

D(Q)
> 


9=
; � e

�3n
2=(32d)
:

Proof. The probability is clearly zero if 
 >

q
D(Q). For 
 �

q
D(Q), we may use

Bernstein's inequality (Bernstein [2]),

P

�
D(Q)�Dn(Q) > 


q
D(Q)

�
� e

� n
2D(Q)

2�2+2
3
4d

p
D(Q)

;

where �2 = var (kX �Q(X)k2). But observe that kX �Q(X)k2 � 4d with probability one,

and therefore �2 � 4dD(Q), and the statement follows. 2

Corollary 3 For all � > �,

PfD(Qn)�D(Q̂) > 2�g � (jQ�j+ 1)e�3n(���)
2=(32d(D(Q̂)+2(���)))

:

Proof. By Lemma 3 we have

P

8<
:max
Q2Q�

D(Q)�Dn(Q)q
D(Q)

>
�q

D(Q̂) + 2�

9=
;

� jQ�jmax
Q2Q�

P

8<
:D(Q)�Dn(Q)q

D(Q)
>

�q
D(Q̂) + 2�

9=
;

� jQ�je�3n�
2=(32d(D(Q̂)+2�))

� jQ�je�3n(���)
2=(32d(D(Q̂)+2(���)))

:

On the other hand, by Bernstein's inequality,

PfDn(Q̂)�D(Q̂) > � � �g � e
�n(���)2=(8dD(Q̂)+8d(���)=3)

;

and applying Lemma 2 �nishes the proof. 2

Proof of Theorem 2. Since the distribution of X is supported on S(0;
p
d), we have that

with probability one, D(Qn)�D(Q̂) � 4d, hence for every u > 0,

ED(Qn)�D(Q̂) � u+ 4dPfD(Qn)�D(Q̂) > ug:

Thus, it follows from Corollary 3 that for any u > �,

ED(Qn)�D(Q̂) � u+ 8djQ�je�3n(u��)
2=(32d(D(Q̂)+2(u��)))

:

15



If D(Q̂) �
32d log(8djQ�j

p
n)

n
, then with

u =

s
32dD(Q̂) log (8djQ�j

p
n)

n
+ �

we have u� � � D(Q̂). In such a case

ED(Qn)�D(Q̂) � u+ 8djQ�je�n(u��)
2=(32dD(Q̂))

=

s
32dD(Q̂) log (8djQ�j

p
n)

n
+

1
p
n
+ �:

On the other hand, if D(Q̂) <
32d log(8djQ�j

p
n)

n
, then take

u =
32d log (8djQ�jn)

n
+ �:

Then D(Q̂) < u� �, and therefore

ED(Qn)�D(Q̂) � u+ 8djQ�je�n(u��)=(32d)

=
32d log (8djQ�jn) + 1

n
+ �:

Noting that ED(Q�
n) � ED(Qn) + � and D(Q̂)�D

� � �, we obtain

ED(Q�
n)�D

� � 3�+max

0
@
s
32dD(Q̂) log (8djQ�j

p
n)

n
+

1
p
n
;
32d log (8djQ�jn) + 1

n

1
A :

Take � = 16dn�1=2, and also recall that by Corollary 2,

D(Q̂) � D
� + � � 16dk�2=d +

16d
p
n
� 32dk�2=d

whenever n � k
4=d. Substituting these values into the above inequality, we obtain

ED(Qn)�D
�

�
48d
p
n
+max

0
@
s
16kd2D(Q̂) log n+ 16dD(Q̂) log n+ 32dD(Q̂) log(8d)

n
+

1
p
n
;

16kd2 log n + 32d log n + 32d log(8d) + 1

n

!

� max

0
@32d3=2

s
k1�2=d log n

n
;
32kd2 log n

n

1
A

if
q
dk1�2=d log n � 15, kd � 8 and n � 8d. In particular, if n= log n � dk

1+2=d, then

J(Q�
n; �) � 32d3=2

s
k1�2=d log n

n
:

2
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4 Concluding Remarks

The main results of the paper are new upper and lower bounds for the minimax expected

distortion redundancy of empirical quantizers. Combining these with previously known

bounds we see that for some universal constants c0; c1 > 0,

c0d

s
k1�4=d

n
� J

�(n; k; d) � c1d
3=2

s
k1�2=d

n
min

�q
log n;

q
k2=d log(kd)

�
:

For most practical values of the dimension d, the number of codepoints k, and the number

of training vectors n, the two bounds are fairly close to each other, essentially describing

the behavior of the minimax distortion. For example, it follows that the minimax distortion

redundancy, as a function of the number of training samples n, is on the order of n�1=2.

Also, if k = 2dR for a constant rate R, we obtain that the per dimension minimax distortion

redundancy is approximately s
2dR

n

for large d and n.

However, some interesting questions remain unanswered. We conjecture that the factor

of
p
log n in the upper bound of Theorem 2 might be eliminated, and the minimax expected

distortion redundancy is some constant times

d
a

s
k1�b=d

n

for some values of a 2 [1; 3=2] and b 2 [2; 4].

Another interesting problem is to determine the weak minimax convergence rate of the

distortion redundancy for empirical quantizer design. Following analogous de�nitions in

universal lossless coding [19], a nondecreasing positive function n ! f(n) is called a weak

rate for empirical quantizer design for the class of d-dimensional sources P if the following

simultaneously hold.

(i) there exists a sequence of empirical quantizers fQng such that for each � 2 P there is a

�nite number M(�) for which

J(Qn; �) �M(�)f(n) n � 1: (9)

(ii) for any sequence of empirical quantizers fQng and function g(n) = o(f(n)) there exists

a source � 2 P such that J(Qn; �)=g(n) is unbounded as n!1.

17



Note that the constantM in (9) can depend on the source distribution �. For this reason,

the minimax lower bound in Theorem 1 does not imply that the weak rate for the class of

sources over S(0;
p
d) cannot be less than n�1=2. It is an interesting and challenging problem

to �nd the weak rate for this source class.

Appendix

Proof of Step 3. Let C = fy1; : : : ; ykg be the codebook of Q. Consider the Voronoi

partition of Rd induced by the set of points fzi; zi + w; 1 � i � mg and for each i de�ne Vi

as the union of the two Voronoi cells belonging to zi and zi+w. Furthermore, let mi be the

cardinality of C \ Vi. A new nearest neighbor quantizer Q̂ with codebook Ĉ is constructed

as follows. Start with Ĉ empty. For all i

� if mi � 2, put zi and zi + w into Ĉ ,

� if mi = 1 or mi = 0, put zi + w=2 into Ĉ.

Note that Ĉ may contain more than k codepoints, but this will be �xed later. De�ne

Di(Q) = kzi �Q(zi)k2�(fzig) + kzi + w �Q(zi + w)k2�(fzi + wg):

Then we have the following

� if mi � 2, then Di(Q̂) = 0 so that Di(Q) � Di(Q̂),

� if mi = 1, then there are two cases:

1. Q(zi) = Q(zi+w) 2 Vi. Then Di(Q) � Di(Q̂) since Q̂(zi) = Q̂(zi+w) = zi+w=2

is the optimal choice with the condition that both zi and zi +w are mapped into

the same codepoint.

2. either zi or zi + w is mapped by Q to a codepoint outside Vi. Say Q(zi) 62 Vi.

Then

Di(Q) �
1 � �

2m
kQ(zi)� zik2 �

1� �

2m

 
(A� 1)�

2

!2

;

where the second inequality follows by the triangle inequality. (Here � means +

if � puts mass (1 + �)=m on fzi; zi + wg, and � otherwise.) On the other hand,

Di(Q̂) = (1� �)�2
=(4m) so that Di(Q) � Di(Q̂) if A �

p
2 + 1.
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� if mi = 0, then both Q(zi) and Q(zi + w) are outside Vi. Thus

Di(Q) �
1 � �

m

 
(A� 1)�

2

!2

;

which implies

Di(Q) � Di(Q̂) +
1 � �

m

 
(A� 1)�

2

!2

�
1� �

m

�2

4
; (10)

so that Di(Q) � Di(Q̂) if A � 2.

Thus we conclude that D(Q) � D(Q̂), and we are done if Ĉ has no more than k code-

points. If Ĉ contains k̂ > k codepoints, pick k̂�k arbitrary pairs fzi; zi+wg 2 Ĉ and replace

them with the corresponding codepoint zi + w=2. We thus obtain a nearest neighbor quan-

tizer ~Q. Each such replacement increases the distortion by no more than (1 + �)�2
=(4m),

so that

D( ~Q) � D(Q̂) + (k̂ � k)
(1 + �)�2

4m

On the other hand, there must be k̂ � k indices i for which mi = 0. For each of these (10)

holds, so that

D(Q̂) � D(Q)� (k̂ � k)
1� �

m

�2

4
((A� 1)2 � 1):

Therefore,

D( ~Q) � D(Q) + (k̂ � k)
�2

4m

�
(1 + �)� (1� �)((A� 1)2 � 1)

�
;

and this is no more than D(Q) if A �
q
2=(1 � �) + 1. 2

Proof of Step 7. Let (Y; Y1; : : : ; Yn) be jointly distributed as the mixture (1=M)
PM

i=1 �
n+1
i ,

where �n+1
i is the (n+ 1)-fold product of �i. Then for any Qn,

EJ(Qn; �Z) = E
�
kY �Qn(Y; Y1; : : : ; Yn)k2

�
�

(1� �)�2

8
:

Since Y; Y1; : : : ; Yn are exchangeable random variables, the distribution of Y given (Y1; : : : ; Yn)

depends only on the empirical counts (N1; : : : ; Nk). It follows that the empirical quantizerQn

achieving the minimum in (3) chooses its codebook as a function of the vector (N1; : : : ; Nm).

Thus, it su�ces to restrict our attention to empirical quantizers that choose their codebook

only as a function of (N1; : : : ; Nm). Recall that each quantizer in Q is such that for each

i it either has one codepoint at zi + w=2 or has codepoints at both zi and zi + w. Since

k = 3m=2, there must be m=2 codepoints of the �rst kind, and m of the second.
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We will represent the distribution �Z as an m-vector, 
 = (
1; : : : ; 
m) 2 �m � f�1; 1gm,
with

�Z(fzi; zi + wg) = (1 + 
i�)=m;

where

�m =

(

 2 f�1; 1gm :

mX
i=1


i = 0

)
:

We writeP
;n(E) to denote the probability of the eventE under the multinomial distribution

with parameters (n; q1; : : : ; qm) where

qi =
1 + 
i�Pm

j=1(1 + 
j�)
:

We will represent a quantizer's choice of the codebook as a vector � = (�1; : : : ; �m) 2 �m,

with �i = �1 indicating one codepoint at (i+�=2)=m and �i = 1 indicating codepoints at

both i=m and (i+�)=m.

Represent the quantizerQ�
n(�;X1; : : : ;Xn) by �

�(N1; : : : ; Nm) 2 �m for the corresponding

values of Ni. De�ne � similarly in terms of Qn. Then it su�ces to show that (with suitable

abuse of notation)

X

2�m

(D(�(n1; : : : ; nm))�D(��(n1; : : : ; nm)))P
;n(8i; Ni = ni) � 0

for all m-tuples of nonnegative integers (n1; : : : ; nm) that sum to n and for all functions �.

For the numbers n1; : : : ; nm, let � = �(n1; : : : ; nm) and �
� = �

�(n1; : : : ; nm). De�ne

� 2 f�1; 0; 1gm by �i = (��i � �i)=2. Note that
P

i �i = 0. It is easy to see that

D(�) =

0
@m� �

mX
j=1


j�j

1
A�2

=(8m);

hence the di�erence D(�)�D(��) is some positive constant times
P

j �j
j, and so it su�ces

to show that X

2�m

P
;n(8i; Ni = ni)
mX
j=1

�j
j � 0:

To prove this inequality, we shall split the outer sum into several parts, and show that each

part is nonnegative. Each part corresponds to a set of distributions that satisfy a convenient

symmetry property. First, divide the components of � into m=2 pairs (i; j), with �i = ��j.
Without loss of generality, suppose

�2i�1 = ��2i;
�2i�1 � 0; and

�2i � 0

9>>=
>>; for all 1 � i � m=2. (11)
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Then for ~
 2 f�1; 1gm, let S(~
) denote the set of all permuted versions of ~
 obtained by

swapping the components ~
2i�1 and ~
2i, for all i in some subset of f1; : : : ;m=2g. Clearly, it
su�ces to show that for all ~
 2 �m,

X

2S(~
)

P
;n(8i; Ni = ni)
mX
j=1

�j
j � 0:

But we have

X

2S(~
)

P
;n(8i; Ni = ni)
mX
j=1

�j
j

=
X


2S(~
)

P
;n (8i; Ni = ni j8i; N2i�1 +N2i = n2i�1 + n2i )

�P
;n (8i; N2i�1 +N2i = n2i�1 + n2i)
mX
j=1

�j
j

= P~
;n (8i; N2i�1 +N2i = n2i�1 + n2i)

�
X


2S(~
)

P
;n (8i; Ni = ni j8i; N2i�1 +N2i = n2i�1 + n2i )
mX
j=1

�j
j:

We can ignore the nonnegative constant factor, and the other probabilities are of independent

events, so we can write

X

2S(~
)

P
;n (8i; Ni = ni j8i; N2i�1 +N2i = n2i�1 + n2i )
mX
j=1

�j
j

=
X


2S(~
)

m=2Y
i=1

P(
2i�1;
2i);n2i�1+n2i (N2i�1 = n2i�1; N2i = n2i)
mX
j=1

�j
j :

So it su�ces to show that for all ~
 2 f�1; 1gm, all n1; : : : ; nm summing to n, and all

� 2 f�1; 0; 1gm satisfying (11), we have

X

2S(~
)

m=2Y
i=1

P(
2i�1;
2i);n2i�1+n2i (N2i�1 = n2i�1; N2i = n2i)
mX
j=1

�j
j � 0: (12)

Without loss of generality, we can assume that �j 6= 0 for all j. Indeed, suppose that

�2i�1 = �2i = 0 for some i. Then we can split the sum over 
 in (12) into a sum over the

pair (
2i�1; 
2i) and a sum over the other components of 
, and the corresponding factors in

the product can be taken outside the outermost sum, since
Pm

j=1 �j
j is identical for both

values of the pair (
2i�1; 
2i).

Now, �2i�1 = �1 and �2i = 1 imply that n2i�1 � n2i. So to show that (12) holds for

the cases of interest, it su�ces to show that for all even m, for all n1; : : : ; nm satisfying

21



n2i�1 � n2i, and all ~b 2 f�1; 1gm, we have

X
b2S(~b)

mX
j=1

(�1)jbj
m=2Y
i=1

Pi � 0;

where

Pi = P(b2i�1;b2i);n2i�1+n2i(N2i�1 = n2i�1; N2i = n2i):

First suppose m = 2. If ~b1 = ~b2, the expression is clearly zero. Otherwise, it is equal to

2
�
P(�1;1);n1+n2(N1 = n1; N2 = n2) �P(1;�1);n1+n2(N1 = n1; N2 = n2)

�
= 2

�
P(�1;1);n1+n2(N1 = n1; N2 = n2) �P(�1;1);n1+n2(N1 = n2; N2 = n1)

�
;

which is clearly nonnegative, since n2 � n1. Next, suppose the expression is nonnegative up

to some even number m. Let ~b 2 f�1; 1gm+2. Then

X
b2S(~b)

m+2X
j=1

(�1)jbj
m=2+1Y
i=1

Pi

=
X

b1;:::;bm

X
bm+1;bm+2

0
@ mX
j=1

(�1)jbj +
m+2X

j=m+1

(�1)jbj

1
Am=2Y

i=1

PiPm=2+1

=
X

bm+1;bm+2

Pm=2+1

0
@ X
b1;:::;bm

mX
j=1

(�1)jbj
m=2Y
i=1

Pi

1
A

+
X

b1;:::;bm

m=2Y
i=1

Pi

0
@ X
bm+1;bm+2

m+2X
j=m+1

(�1)jbjPm=2+1

1
A ;

and both of these terms are nonnegative, since the expressions in parentheses are nonnegative

by the inductive hypothesis. 2
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