
Subspace Subcodes of Reed-Solomon Codes' 

A tmct - 

Masayuki Hattori Robert J .  McEliece Wei Lin 
California Institute of Technology 
Pasadena, California 91125, USA 

space subcode of a Reed-Solomon 
(SSRS) code Over GF(2"') is the  set of RS code- 
words, whose components all lie in a particular GF(2)- 
subspace of GF(2"). SSRS codes include both gen- 
eralized B C H  codes and "trace-shortened" Rs codes 
[2][3] as special casea. In this paper we present an 
explicit formula for t h e  dimension of an arbitrary RS 
subspace subcode. Using this formula, we And that 
in many cases, SSRS codes are competetive with al- 
gebraic geometry codes, and that in some cnsea, the  
dimension of the  best subspace subcode is larger than 
that of the corresponding GBCH code. 

I. INTRODUCTION. DEFINITION OF SSRS CODES.  

Let C be the (n, h, &) Rs code over GF(2") defined by the 
parity-check polynomial h(z) = nEl(z - a), where a is a 
primitive nth root of unity in GF(2"), and & = n - ko + 1. 
Let S be a v-dimensional GF(2)-aubspace of GF(2"). We 
define the subspace subcode Cs to be the set of $1 codewords 
from C, whose components all lie in S. The code Cs is thus 
a cyclic group code of length n over the Abelian group S of 
size 2", with minimum distance at Leest 4. For example, if 
S = GF(2'), where uJm, the corresponding SSRS code is a 
generalized BCH code. Also, if we consider subspeces S which 
have dual bases of the form {l,q a', . . . ,a"-'}, we obtain the 
class of "TSRS" cod- [3], which are in turn a generalization 
of the codes introduced by Solomon [2]. 

11. MAIN RESULT. DIMENSION FORMULA. 
Suppoae S has basii {b, ...,& I} and " t r d u a l "  basiis 
{yo,. . . ,?,,-I}, where p = m-u and 'Iky(ayj) = 0 for all i, j. 
Let {j2' : i = 0 . .  . , dj - 1) be the j th  cyclotomic meet modulo 
n, where dj is the degree of j mod n. Let J = {1,2, .  . . , ko}. 
We define the j th  index set Aj for the SSRS code Cs as Aj = 
{i : 0 5 i 5 m- 1 and j .2' modn E J ) ,  with lAj l=  aj. We 
define the j th  cyclotomic matrix for Cs to be the p x aj  matrix 
r j  whose (h,i)th entry kr 7:' where h = 0, . . . , p  - 1 and 
i E A,. The rank of I?, is denoted by r,. 
Theorem 1. The binary dimension of the SSRS code 88 de- 
finned abow is given by the formula 

~(~3s) = dj(aj -r>)> (1) 
,€Im 

where I,, denotes a complete set ofrepresentativw of the mod- 
ulo n cycJotomic oosets. Thus Cs is M (n, k, 4) cyclic group 
code over S, where k = K(C, S)lu. (The notation 4 means 
that the true minimum distance of the code ie at least &.I 
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Since rj is a p x a, matrix, it follows i 
and 80 we have the following Corollary. 

it r, 5 min(p, aj), 

Corollary 1. 
have the Iower bound 

With the &e hypotheses as Theorem I, we 

K(C,S)  I m ( d j ( a j  - P L O ) .  (2) 

It is possible to show that if S has a dual basis of the 
form {l , /3 , .  . . , o"-'}, where p is an element of degree m in 
GF(2'"), then the lower bound of Corollary 1 is exact, for all 
parent RS codes C. (This result is a small generalization of 
the main result proved in [3].) In fact, extensive numerical 
experimentation indicates that "most" subspaces S have this 
property, although we do not have a fully satisfactory thee  
retical explanation of this phenomenon. 

111. EXAMPLES AND CONCLUSION. 
Example 1. Let m = 4, n = 15, rC, = 9 and u = 2. Suppcse 
So and SI are spanned by {l,a} and {l,a5), respectively. 
Starting from a parent (15,9,7) Rs code C, and using T h e  
rem 1, we find that Cs, is a (15,6,7+) code over So and Cs, is 
a (15,7,7+) code over SI. Ch is equivalent to a TSRS code 
given in [3]. On the other hand, since SI = GF(4), Cs, is a 
GBCH code. 
Example 2. Let m = 6, n = 63, ko = 53 and v = 2. Suppoae 
& and SI are spanned by {l,a'} and {l,aal), respectively. 
(Thus SI = GF(4).) Starting from a parent (63,53,11) RS 
code, and using Theorem 1, we find that Cs,, is a (63,42.5,11+) 
code over So, and Cs, is a (63,41,11+) GBCH code over 
GF(4). Note that the dimension of Cs, is higher than that of 
the GBCH code Cs, . 

The only codes with parameters comparable to subspace 
subcodes that we are aware of are the algebraic geometry (AG) 
codes, e.g., [l]. For a given length n and alphabet size q. high- 
rate subspace subcndea are olten superior to AG codes. Fur- 
thermore, decoding a subspace subcode up to the designed 
distance do is almost the same 8s for the parent Rs codes, 
which of course is quite easy. Thus subspace subcodes may 
provide an attractive alternative to AG codes in certain prac- 
tical applications, such as outer codes in concatenated coding 
schemes. 
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