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APPENDIX

1) m-sequences:We use the notationfaaag to denote the se-
quencefa1; a2; � � �g, andfaaakg to denote the shifted sequence
fak+1; ak+2; � � �g. We consider a binarym-sequencefaaag with
periodP . Some properties ofm-sequences which will be used
in our discussion in Section IV are [10]

• A1: One period of anm-sequence contains exactly(P +
1)=2 ones and(P � 1)=2 zeros.

• A2: Shift and add:For anyk (k 6= 0modP ), the sum of
the m-sequencefaaag and itsk shift faaakg is another shift
of the samem-sequence; i.e.,

(an � an+k) = an+l 8n

where� denotes modulo two addition, andl is some other
shift of the same sequence.

• A3: Decimation: Consider the sequencefcccg defined by
cn = aJn; 8n. fcccg is called thedecimationby J of the
sequencefaaag. The period offcccg is P=gcd (J; P ). All m-
sequences of periodP can be constructed by decimations
of faaag.

• A4: Periodic autocorrelation function:The periodic au-
tocorrelation function of anm-sequencefaaag, is defined
as

Paaaaaa(l) =

P

n=1

(�1)[a +a ]

= P � 2

P

n=1

(an � an+l)

and is given by

Paaaaaa(l) =
P; l = 0mod P

�1; otherwise.

2) Gold sequences:Gold’s design contains(P + 2) sequences
constructed as follows:

Given anm-sequencefaaag of period P , obtain anotherm-
sequencefaaa0g with the same period by decimatingfaaag by
a J such thatgcd (J; P ) = 1. The remainingP sequences,
[faaa(0)g; faaa(1)g; � � � ; faaa(P�1)g] are given by

• A5: faaa(j)g = faaag � faaa0jg, i.e., a(j)n = [an � a0n+j ]; 8n.
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Error-Rate Characteristics of
Oversampled Analog-to-Digital Conversion

Zoran Cvetkovíc, Member, IEEE, and Martin Vetterli,Fellow, IEEE

Abstract—Accuracy of simple analog-to-digital conversion depends on
both resolution of discretization in amplitude and resolution of discretiza-
tion in time. For implementation convenience, high conversion accuracy
is attained by refining the discretization in time using oversampling. It is
commonly believed that oversampling adversely impacts rate-distortion
properties of the conversion, since the bit rate,B, increases linearly with
oversampling, resulting in a slow error decay in the bit rate, on the order
of O (1=B). We demonstrate that the information obtained in the process
of oversampled analog-to-digital conversion can easily be encoded in a
manner which requires only a logarithmic increase of the bit rate with
redundancy, achieving an exponential error decay in the bit rate.

Index Terms—Error-rate characteristics, oversampled A/D conversion.

I. INTRODUCTION

Digital encoding of an analog signal requires discretization in both
time and amplitude. The simplest approach to this discretization is
sampling with an interval� followed by a uniform scalar quantization
with a quantization stepq. This process is the so-calledsimple analog-
to-digital (A/D) conversion. Fundamental properties of analog-to-
digital conversion, such as accuracy and its dependence on the bit
rate, are not fully understood even in this most elementary form.

Accuracy of analog-to-digital conversion is commonly measured
as the error of a linear reconstruction algorithm, which amounts to
linear interpolation between the quantized samples using a sequence
of sin(x)=x functions (see Fig. 1). If the analog signalf is band-
limited, which is a good model for a broad class of signals that
appear in engineering applications, and� is smaller than the Nyquist
sampling interval�N , then the discretization in time is reversible.
However, the amplitude discretization introduces an irreversible loss
of information. Consequently, the reconstructed signalfr is generally
different from the original, and the errore = f � fr is referred to
as quantization error. A common way to study a quantization error
is to model it as white additive noise, independent of the input [1].
Under the assumption thatf is band-limited and that� < �N , the

Manuscript received December 1, 1995; revised December 16, 1996. This
work was supported in part by the NSF Award MIP-93-21302. The material
in this correspondence was presented in part at the 1997 IEEE Symposium
on Circuits and Systems, Hong Kong, June 1997.

Z. Cvetkovíc was with the University of California at Berkeley. He is now
with AT&T Labs–Research, Florham Park, NJ 07932 USA.

M. Vetterli was with the University of California at Berkeley. He is now
with EPFL-DE, CH-1015 Lausanne, Switzerland.

Publisher Item Identifier S 0018-9448(98)04935-9.

0018–9448/98$10.00 1998 IEEE



1962 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 5, SEPTEMBER 1998

Fig. 1. Block diagram of simple A/D conversion followed by classical
reconstruction. The input�-band-limited signalf(t) is first sampled at a
frequencyfs = 1=� , which is above the Nyquist frequencyfN = 1=�N . The
sequence of samplesf [n] is then discretized in amplitude with a quantization
stepq. Classical reconstruction amounts to linear interpolation between the
quantized samples, usingsinc (sin (x)=x) functions, and gives a signalfr(t).

white noise model shows that the error average power is given by

E(e(t)2) =
1

12

q2

r
(1)

wherer is the oversampling ratio,r = �N=� . This formula suggests
that conversion accuracy can be improved by refining resolution
of either discretization in time or discretization in amplitude. For
convenience, high accuracy of analog-to-digital conversion is usually
attained by refining time discretization. This technique is referred to
as oversampled analog-to-digital conversion.

Only recently it was observed that (1) is misleading about conver-
sion accuracy. Namely, it can be shown that a band-limited signal
can be reconstructed from its digital representation with an error
which behaves in the squared norm1 as kek2 = O (1=r2) [2], [3].
This conversion accuracy is attained using nonlinear reconstruction
algorithms. Moreover, the white noise model is not asymptotically
valid, and experimental results demonstrate that for high oversam-
pling ratios the error decay rate of linear reconstruction is lower than
that implied by the white noise model [2].

The purpose of this correspondence is to set forth some new
facts about the dependence of accuracy of oversampled analog-to-
digital conversion on the bit rate. It is commonly believed that even
though oversampling improves accuracy, it has adverse impact on
the overall rate-distortion performance of the conversion. That is,
since the bit rateB increases linearly with the oversampling ratio,
the error (its average power or its squared norm) decays asO (1=B)
or O (1=B2), depending on the reconstruction algorithm. However,
if the quantization step is successively reduced for a fixed sampling
interval, the error decays exponentially in the bit rate.

This poor performance of oversampling with respect to quantiza-
tion refinement can be significantly improved with adequate lossless
encoding of the sequence of quantized samples. As the sampling
interval tends towards zero, quantized samples of a band-limited
signal become more and more correlated. Pulse-code modulation
(PCM), which is the standard way to binary-encode these samples,
does not take advantage of these correlations to reduce the bit rate.
In this correspondence we demonstrate that the information obtained
in the process of oversampled analog-to-digital conversion can be
represented in a simple and efficient manner, and that the required
bit rate increases only as a logarithm of the oversampling ratio.
This follows from the observation that oversampled analog-to-digital
conversion amounts to characterizing a signal by its quantization
threshold crossings, that are given in time with precision determined
by the sampling interval� . The error of the conversion can thus be
shown to be an exponentially decaying function of the bit rate, with an
exponent that is close to the exponent of the error-rate characteristic
that is obtained when the quantization step tends towards zero for a
fixed sampling interval.

Notation: A signal f is said to be�-band-limited if it is square-
integrable,f 2 L2(RRR), and its Fourier transform̂f satisfiesjf̂(!)j =

1The termnorm is used throughout the paper to denote theL2 norm, hence

kfk = +1

�1
jf(t)j2 dt

1=2
.

0; j!j > �: A space of periodic band-limited signals, with a period
T , is a space of trigonometric polynomials

f(t) = a0 +

N

i=1

(ai cos (2�it=T ) + bi sin (2�it=T)):

The dimension of this space of periodic band-limited signals is
2N + 1. In this correspondence, the termband-limited signalswill,
unless otherwise stated, refer to both periodic band-limited signals
and �-band-limited signals. The Nyquist sampling interval�N , in
the space of periodic band-limited signals with the periodT and
dimension2N + 1, is equal to�N = T=(2N + 1). In the space of
�-band-limited signals it is given by�N = �=�.

II. I MPROVED RECONSTRUCTIONACCURACY

Information contained in the digital representation, which is gen-
erated in the process of oversampled analog-to-digital conversion,
allows for reconstruction of the corresponding analog signal with an
error that behaves in the squared norm asO (1=r2). This improved
performance with respect to linear reconstruction can be achieved by
so-calledconsistent reconstruction. The latter denotes an algorithm
which always gives a consistent estimate of the original analog
signal, that is, a band-limited signal which has the same digital
representation as the original. This fact was first pointed out for
the case of periodic band-limited signals [2], and later also proven
for band-limited signals inL2(RRR) [3]. The result about accuracy of
oversampled A/D conversion inL2(RRR) is formulated in the following
theorem.

Theorem 1: Let g 2 C1 be a consistent estimate of a�-band-
limited signal f , with respect to the digital representation off
obtained in the process of simple oversampled analog-to-digital
conversion with a sampling interval� < �=�. If the sequence of
quantization threshold crossings off forms a sequence of stable
sampling for the space of�-band-limited signals, there exists a
positive constant� such that for� < �

kf � gk2 �
k

r2
(2)

wherer = �=�� andk is a constant which does not depend onr or g.

The notion of sequence of stable samplingwas introduced by
Landau [4] to denote a sequence of sampling points which provides a
complete and numerically stable description of band-limited signals.
If a space of periodic band-limited signals is considered, this condi-
tion is satisfied by any set of points with cardinality greater than or
equal to the dimension of the space. The constant of proportionality
k in (2) depends on the norm off , and also on the distribution of its
quantization threshold crossings [2], [3]. It is important to note that
if f is a periodic band-limited signal, its digital representation allows
for reconstruction with an error which either tends towards zero as
kek2 = O (1=r2), or does not approach zero at all. The latter occurs
whenf does not have a sufficient number of quantization threshold
crossings. The situation with band-limited signals inL2(RRR) is much
more subtle [3]. However, if reconstruction error is to converge to
zero in a numerically stable manner asr ! 1, then quantization
threshold crossings of the signal should constitute a sequence of stable
sampling, and in that casekek2 = O (1=r2).

Algorithms for consistent reconstruction were proposed in [2] and
[5], and are based on alternating projections onto convex constraints
which are determined by the digital representation. Note that in the
case of conversion with sampling at the Nyquist rate, linearsin (x)=x
interpolation is also a consistent reconstruction algorithm; however,
this is no longer true if some oversampling is introduced.
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Fig. 2. Quantization threshold crossings. Two band-limited signalsf andg,
having the same pattern of quantization threshold crossings, also have the
same quantized values of corresponding samples.

III. A N EFFICIENT ENCODING SCHEME

An efficient scheme for lossless encoding of quantized samples of a
band-limited signal, follows from the observation that for sufficiently
fine sampling, these can be determined from the corresponding
sequence of quantization threshold crossings.

Consider a band-limited signalf and suppose that its quantization
threshold crossings are separated; that is, there is an� > 0 such that
no two threshold crossings are closer than�. Note that sincef is a
band-limited signal of finite energy, it has a bounded slope, so that
there is always an�1 > 0 such thatf cannot go through more than one
quantization threshold in a time interval shorter than�1. The condition
for separated quantization threshold crossings requires in addition that
the intervals between consecutive crossings through any given thresh-
old are limited from below by an�2 > 0. For any sampling interval
smaller than� � min(�1; �2), all quantization threshold crossings
of f occur in distinct sampling intervals. Under this condition,
quantized samples off are completely determined by the corre-
sponding sequence of quantization threshold crossings (see Fig. 2).
Another effect of high oversampling is that the quantized values of
consecutive samples differ with a small probability. An efficient way
to represent such a digital sequence would be to encode incidences of
data changes, that is, sampling intervals where quantization threshold
crossings occur, rather than the quantized samples themselves.

Quantization threshold crossings can be grouped on consecutive
time intervals of a given length, for instanceT . In the case of periodic
band-limited signals we can takeT to be equal to the signal period.
For each of the crossings, at most1 + log

2
(T=�) bits are needed to

specify its position inside an interval of lengthT . Each threshold level
can be specified with respect to the level of the preceding threshold
crossing; for this information, only one additional bit is needed, to
denote the direction of the crossing (upwards or downwards). Hence,
in order to encode the information on quantization threshold crossings
on an interval whereQ of them occur, at mostQ(2+log

2
(T=�))+C0

bits are needed (see Fig. 3). Here,C0 denotes the number of bits used
to specify the level of the first crossing on the interval. The bit rate
B is then bounded as

B �
Qm
T

2 + log
2

T

�
+
C0

T
(3)

whereQm denotes the maximal number of crossings on an interval
of length T . Recall that if the samples are themselves encoded
using pulse-code modulation, the bit rate increases linearly with the
oversampling ratio; therefore, the quantization threshold crossings
encoding is substantially more efficient. If this efficient representation
is used together with consistent reconstruction, it follows from (2) and

Fig. 3. Quantization threshold crossings encoding. Quantization threshold
crossings are grouped on intervals of a lengthT . Refining the sampling
interval by a factor2k requires additionalk bits per quantization threshold
crossing, to specify the position of the crossing within the intervalT .

(3) that the error of oversampled analog-to-digital conversion can be
bounded as

kek2 � K2�2�B (4)

whereK = 16kT 222C =Q and � = T=Qm. The C0 factor can
be made arbitrarily small if instead of specifying the level of the
first threshold crossing in each of the lengthT intervals, we specify
it once per a number of consecutive intervals, and specify levels of
other crossings with respect to that level.

The result in (4) can be established in a nonconstructive, but more
general manner. That is, if for a given sampling interval�0 at most
Bm bits are needed for encoding quantization threshold crossings on
an interval of lengthT , then as the sampling interval is successively
refined, the bit rate can be bounded as

B �
Bm
T

2 + log
2

�0
�

:

This also immediately gives an exponentially decaying error-rate
characteristic.

IV. A N ESTIMATE OF THE � EXPONENT

Considerations in this subsection pertain to band-limited signals
in L2(RRR). Analogous results for the case of periodic band-limited
signals are straightforward. In order to estimate the exponent� =
T=Qm in (4), we consider the two types of quantization threshold
crossings and denote them asd-crossings ands-crossings. A quanti-
zation threshold crossing is said to be ad-crossing if it is preceded
by a crossing of a different quantization threshold, and ans-crossing
if it is preceded by a crossing of the same threshold (see Fig. 4). The
total number of quantization threshold crossings of a�-band-limited
signalf on an intervalT is the sum of these two types of crossings.
The count ofd-crossings,Qd, depends on the slope off as well as
on the quantization step sizeq. The slope off can be bounded as
jf 0(t)j � �3=2kfk, which gives

Qd

T
�

�3=2

q
kfk: (5)

For the count ofs-crossings,Qs, we can investigate some average
density. A sequence of pointsf�ng on the real axis is said to have
uniform densityd if there exist two numbers� > 0 andL <1 such
that the following is satisfied:

j�n � n=dj �L; n = 0; �1; �2; � � �

j�n � �mj � �; n 6= m:



1964 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 5, SEPTEMBER 1998

TABLE I
ERROR-RATE CHARACTERISTICS OFOVERSAMPLED A/D CONVERSION AS THE SAMPLING INTERVAL TENDS TO ZERO,

FOR THE FOUR DIFFERENT COMBINATIONS OF RECONSTRUCTION AND ENCODING. THE QUANTIZATION ERROR e

IS EXPRESSES AS AFUNCTION OF THE BIT RATE B

Fig. 4. Quantization threshold crossing types. A quantization threshold
crossing can be immediately preceded by a crossing of the same quantization
threshold, as illustrated by the crossings at pointsxn and xn+1. These
are denoted ass-crossings, and each of them is preceded by a point where
the considered signal assumes an extremum. The other type of quantization
threshold crossings,d-crossings, are those which occur after a crossing of a
different quantization threshold. The threshold crossing atxn+2 is of this
type.

Each of thes-crossings off is preceded by a point wheref assumes
a local extremum. Ifs-crossings constitute a sequence of a uniform
density d, then a subset of zeros of the first derivative off also
constitutes a sequence of uniform densityd. According to results on
nonharmonic Fourier expansions,d should be bounded asd � �=�

[6], except in a degenerate case, where the first derivative off

is identically equal to zero. If we assume that the sequence of
quantization threshold crossings off is a realization of an ergodic
process, then when the intervalT grows

Qs

T
! c (6)

wherec � �=�. Hence, the exponent� in the error-rate characteristic
in (4)

kek2 = O(2�2�B)

has the form� = 1=(�1 + �2) where �1 � �3=2kfk=q and
�2 � �=�. Note that the average error power of analog-to-digital
conversion with a fixed sampling frequencyfs � �=�, when the
quantization step tends towards zero, behaves as

E(e(t)2) = O(2�2�B)

where� = �=�. Thus with consistent reconstruction and efficient
encoding the error-rate characteristic of oversampled analog-to-digital

conversion is drastically improved, approaching the characteristic of
conversion with a fixed sampling interval and quantization refine-
ment.

V. SUMMARY OF ERROR-RATE CHARACTERISTICS

It is interesting to assess the accuracy of oversampled analog-
to-digital conversion as a function of the bit rate, for the four
combinations of reconstruction and encoding, i.e., linear versus
consistent reconstruction, and pulse-code modulation (PCM) versus
quantization threshold crossings encoding.

Recall that the accuracy of linear reconstruction is characterized
by average error power and that it is given byE(e(t)2) = O (1=r),
wherer is the oversampling ratio. On the other hand, results on the
accuracy of consistent reconstruction are obtained using deterministic
analysis, which asserts that the error squared norm behaves as
kek2 = O (1=r2).

Results concerning the dependence of the bit rate on the oversam-
pling factor are established without reference to a particular kind of
reconstruction. ThusB = O (r) for the PCM, andB = O (log r) for
the quantization threshold crossings encoding, regardless of whether
linear or consistent reconstruction is used. The overall error-rate
characteristics are summarized in Table I.

VI. CONCLUSION

In this correspondence we discuss error-rate characteristics of
oversampled analog-to-digital conversion. We describe a simple and
efficient scheme for lossless encoding of digital sequences produced
in the conversion process. With this scheme we demonstrate that the
information on analog signals which is retained in the oversampled
analog-to-digital conversion can be efficiently represented, and that
exponential decay of quantization error in the bit rate can easily be
attained.
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