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Abstract—In this paper we review some recent interactions “ASBOKQTJEL”
between harmonic analysis and data compression. The story Postcard from J. E. Littlewood to A. S. Besicovich,

goes back of course to Shannon'si(D) theory in the case of announcing A. S. B.’s election to fellowship at Trinity
Gaussian stationary processes, which says that transforming into

a Fourier basis followed by block coding gives an optimal lossy “...the 20 bits per second which, the psychologists assure us,
compression technique; practical developments like transform- the human eye is capable of taking in,”

based image compression have been inspired by this result. In D. Gabor, Guest EditorialRE Trans. Inform Theory

this paper we also discuss connections perhaps less familiar to Sept 195;9 '

the Information Theory community, growing out of the field pt. :

of harmonic analysis. Recent harmonic analysis constructions,

such as wavelet transforms and Gabor transforms, are essentially l. INTRODUCTION

optimal transforms for transform coding in certain settings. ATA compression is an ancient activity; abbreviation and
Some of these transforms are under consideration for future other devices for shortening the length of transmitted

compression standards. . .
We discuss some of the lessons of harmonic analysis in thisMeSSages have no doubt been used in every human society.

century. Typically, the problems and achievements of this field Language itself is organized to minimize message length, short
have involved goals that were not obviously related to practical words being more frequently used than long ones, according
data compression, and have used a language not immediatelytg Zipf's empirical distribution.
access[ble to outsiders. Nevertheless, thrc‘)‘ugh an extensive g’en- Before Shannon, however, the activity of data compression
eralization of what Shannon called the “sampling theorem, inf | ancd hoc Sh ted af lintellectual
harmonic analysis has succeeded in developing new forms ofw_as_ln_orma an 0G >hannon created a orma intellectua
functional representation which turn out to have significant discipline for both lossless and lossy compression, whose 50th
data compression interpretations. We explain why harmonic anniversary we now celebrate.
analysis has interacted with data compression, and we describe A remarkable outcome of Shannon’s formalization of prob-
some interesting recent ideas in the field that may affect data lems of data compression has been the intrusion of so-
compression in the future. L . - . .

phisticated theoretical ideas into widespread use. The JPEG

Index Terms—Besov spaces, block coding, cosine packets, . , . .
entropy, Fourier transform, Gabor transform, Gaussian proc- standard, set in the 1980’s and now in use for transmitting

ess, Karhunen—-L@ve transform, Littlewood—Paley theory, non- and storing images worldwide, makes use of quantization, run-
Gaussian processy-widths, rate-distortion, sampling theorem, length coding, entropy coding, and fast cosine transformation.
scalar quantization, second-order statistics, Sobolev spaces, sub{in the meantime, software and hardware capabilities have
band coding, transform coding, wavelet packets, wavelet trans- yo\eloped rapidly, so that standards currently in process of
form, Wilson bases. ..
development are even more ambitious. The proposed standard
for still image compression—JPEG-2000—contains the pos-

“Like the vague sighings of a wind at even sibility for conforming codecs to use trellis-coded quantizers,
That wakes the wavelets of the slumbering sea.” arithmetic coders, and fast wavelet transforms.
Shelley, 1813 For the authors of this paper, one of the very striking

features of recent developments in data compression has been
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the construction of smooth wavelets of compact support wasMoreover, parsimonious representation of data is a fun-
prompted by questions posed implicitly or explicitly by thelamental problem with implications reaching well beyond
multiresolution analysis concept of Mallat and Meyer, and natpmpression. Understanding the compression problem for a
at that time, by direct applications to compression. given data type means an intimate knowledge of the modeling
In asking about this phenomenon—the applicability of comand approximation of that data type. This in turn can be
putational harmonic analysis to data compression—there aneeful for many other important tasks, including classification,
broadly speaking, two extreme positions to take. denoising, interpolation, and segmentation.
The first, maximalist position holds that there is a deep The discipline of harmonic analysis can provide interesting
reason for the interaction of these disciplines, which can gsights in connection with the Grand Challenge.
explained by appeal to information theory itself. This point The history of theoretical harmonic analysis in this cen-
of view holds that sinusoids and wavelets will necessarifyiry repeatedly provides evidence that in attacking certain
be of interest in data compression because they have a sgwallenging and important problems involving characterization
cial “optimal” role in the representation of certain stochastief infinite-dimensional classes of functions, one can make
processes. progress by developing new functional representations based
The secondminimalist position holds that, in fact, com- On certain geometric analogies, and by validating that those
putational harmonic analysis has exerted an influence on dag@logies hold in a quantitative sense, through a norm equiv-
compression merely by happenstance. This point of view holdkence result. Also, the history of computational harmonic
that there is no fundamental connection between, say, waveRi@i@lysis has repeatedly been that geometrically motivated
and sinusoids, and the structure of digitally acquired data @alogies constructed in theoretical harmonic analysis have
be compressed. Instead, such schemes of representation0ff# led to fast concrete computational algorithms.
privileged to have fast transforms, and to be well known, to The successes of theoretical harmonic analysis are interest-
have been well studied and widely implemented at the momdf@ from a data compression perspective. What the harmonic
that standards were being framed. analysts have been doing—showing that certain orthobases
When one considers possible directions that data compréﬁord certain norm equivalences—is analogous to the classical
sion might take over the next fifty years, the two points ictivity of showing that a certain orthobasis diagonalizes a
view lead to very different predictions. The maximalist pos@uadratic form. Of course, the diagonalization of quadratic
tion would predict that there will be continuing interactiondorms is of lasting significance for data compression in con-
between ideas in harmonic analysis and data compressiBction with transform coding of Gaussian processes. So one
that as new representations are developed in computatioffi!d expect the new concept to be interestingiori. In fact,
harmonic analysis, these will typically have applications t§'€ new concept of “diagonalization” obtained by harmonic
data compression practice. The minimalist position wouRalysts really does correspond to transform coders—for ex-
predict that there will probably be little interaction betweeRMPI€, wavelet coders and Gabor coders. o
the two areas in the future, or that what interaction does takeTN€ question of whether the next 50 years will display
place will be sporadic and opportunistic. interactions between data compression and harmonic analysis

In this paper, we would like to give the reader the backnore like a maximalist or a minimalist profile is, of course,
ground to appreciate the issues involved in evaluating tRBYON€'S guess. This paper provides encouragement to those

two positions, and to enable the reader to form his/her oW@King the maximalist position. _ _
evaluation. We will review some of the connections that 1€ Paper is organized as follows. At first, classical results
have existed classically between methods of harmonic analy&Rn rate-distortion theory of Gaussian processes are reviewed
and data compression, we will describe the disciplines gRd interpreted (Sections I and Ill). In Section IV, we
theoretical and computational harmonic analysis, and we wiifV€loP the functional point of view, which is the setting for
describe some of the questions that drive those fields. harmonic analysis results relevant to compression, but which
We think there is a “Grand Challenge” facing the discipline'§, somgwhat at yarlanCE V,V'th the digital S|gnfal rl)rocessmg
of both theoretical and practical data compression in the futupdSwpoInt. In Section V, the important concept of Kolmogorov

the challenge of dealing with the particularity of naturall;?’emmp)r’] tOf fl:gcuon (f:lasses IS _revungd, t_as ?/r: altertr_latcla
occurring phenomena. This challenge has three facets: approach 1o a theory of compression. In Section Vi, practical
transform coding as used in image compression standards is

GC1 Obtaining accurate models of naturally occurringlescribed. We are now in a position to show commonalities
sources of data. between the approaches seen so far (Section VII), and then
GC2 Obta|n|ng “0ptima| representations" of such mode|st0 discuss limitations of classical models (SeCtion Vl”) and
» propose some variants by way of simple examples. This leads
to pose the “Grand Challenges” to data compression as seen
We argue below that current compression methods mightfsem our perspective (Section 1X), and to overview how

far away from the ultimate limits imposed by the underlyingdarmonic Analysis might participate in their solutions. This
structure of specific data sources, such as images or acoulgi#zs to a survey of Harmonic Analysis results, in particu-
phenomena, and that efforts to do better than what is doiae on norm equivalences (Sections XI-XIIl) and nonlinear
today—patrticularly in specific applications areas—are likelgpproximation (Section XIV). In effect, one can show that
to pay off. harmonic analysis, which is effective at establishing norm

GC3 Rapidly computing such “optimal representations.
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equivalences, leads to coders which achievectbatropy of covariance with the same eigenfunctions as thatXqfbut
functional classes (Section XV). This has a transform codirte eigenvalues are reduced in size:

interpretation (Section XVI), showing a broad analogy be-

tween the deterministic concept of unconditional basis and the pr = Ak — ).

stochastic concept of Karhunen-éy@ expansion. In Section

XVII, we discuss the role of tree-based ideas in harmonic To obtain a codebook achieving the value predicted by
analysis, and the relevance for data compression. Sectippij)’ Shannon’s suggestion would be to sample realiza-
XVIII briefly surveys some harmonic analysis results Ofons from the reproducing process realizing the minimum
time—frequency-based methods of data compression. The fgcthe least mutual information problem.

that many recent results from theoretical harmonic analysisFormally, then, the structure of the optimal data compres-

have Computationally effective Counterpal‘ts is described gibn prob'em is understood by passing to the Karhuneawvko
Section XIX. Practical coding schemes using or having led &pansion

some of the ideas described thus far are described in Section

XX, including current advanced image compression algorithms X(t) = Z \/)\_ka(/)k (t).
based on fast wavelet transforms. As a conclusion, a few key "

contributors in harmonic analysis are used to iconify certain

key themes of this paper. In this expansion, the coefficients are independent zero-mean
Gaussian random variables. We have a similar expansion for
Il. R(D) FOR GAUSSIAN PROCESSES the reproducing distribution

Fifty years ago, Claude Shannon launched the subject ~
of lossy data compression of continuous-valued stochastic Y*(t) IZ\/LL_ka¢k(t)-
processes [83]. He proposed a general idea, the rate-distortion k
function, which in concrete cases (Gaussian processes) leads o o
to a beautifully intuitive method to determine the number ofh€ process™ has only finitely many nonzero coefficients,

bits required to approximately represent sample paths off@mely, those coefficients at indicds where A, > ¢; let
stochastic process. K (D) denote the indicated subset of coefficients. Random

Here is a simple outgrowth of the Shannon theory, impof@debook compression is effected by comparing the vector
tant for comparison with what follows. Supposé(t) is a ©Of coefficients (X, ¢r): k € K(D)) with a sequence of
Gaussian zero-mean stochastic process on an intéhanid Codewords(\/snZy;: k € K(D)), fori =1,.--,.N, looking
let N(D, X) denote the minimal number of codewords needd@f @ closest match in Euclidean distance. The approach

in a codebook? = {X’} so that just c_)u_tlined is often calleql “reverse waterfilling,” s?nce gnly
. ) coefficients above a certain water level are described in the
E min [|X ~ X'tz £ D. (2.1) coding process.
. ) As an example, Il = [0, 1) and letX (¢) be the Brownian
Then Shannon proposed that in an asymptotic sense Bridge, i.e., the continuous Gaussian process with covariance
log N(D, X) ~ R(D, X) (2.2) K(s,t) =min(s,t) — st. Th_is Gaussiar_w process ha’s(o) =
. . . _ X(1) = 0 and can be obtained by taking a Brownian motion
where R(D, X)) is the rate-distortion function foX B(t) and “pinning” it down atl: X(¢) = B(t) — tB(1).

2.3) The covariance kernel has sinusoids for eigenvectyrg:) =
7 sin(27kt), and has eigenvalues, = (47%k?)~L. The subset
with I(X,Y") the usual mutual information, given formally by/ (D) amounts to a frequency band of the figt< (D) =
D~1! frequencies asD — 0. (Here and below, we use
I(X,)Y)= /p(a:,y) log de dy. (2.4) A = B to mean that the two expressions are equivalent
p(=)p(w) to within multiplicative constants, at least as the underlying
Here R(D, X) can be obtained in parametric form from g@rgument tends to its limit.) Hence the compression scheme
formula which involves functionals of the covariance kernéimounts to “going into the frequency domain,” “extracting the
K(s,t) = Cov (X (t), X(s)); more specifically of the eigen- low frequency coefficients,” and “comparing with codebook
values(\). In the form first published by Kolmogorov (1956),entries.” The number of low frequency coefficients to keep is
but probably known earlier to Shannon, fér- 0 we have directly related to the desired distortion level. The achieved
R(D, X) in this case scales a&(D, X) < D1,

R(D.X) = inf {I(X.Y): E||X ~ Y|}, < D}

R(Dy) = Z log (Ar/6) (2.5) Another important family of examples is given by stationary
kyAw >0 processes. In this case, the eigenfunctions of the covariance
where are essentially sinusoids, and the Karhunergveoexpansion
] has a more concrete interpretation. To make things simple and
Dy = Z min (6, Ag)- (2.6) analytically exact, suppose we are dealing with the ciitle
k [0,27), and considering stationarity with respect to circular

The random procesg™ achieving the minimum of the mutual shifts. The stationarity condition & (s,t) = v(s — t), where
information problem can be described as follows. It has sa—, ¢ denotes circular (clock) arithmetic. The eigenfunctions
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of K are the sinusoids There are two universality aspects we also find remarkable:

bL(t) = 1/V/2r . Uniyersality Across_Distortion LevelThe structure of
the ideal compression system does not depend on the
$2x(t) = cos (kt)/V/m distortion level; the same transform and coder structure
por1(t) = sin (kt)//m are employed, but details of the “useful components”
K(D) change.
¢ Universality Across Stationary Processdsarge classes
27 of Gaussian processes will share approximately the same
Ax = / ~v(t)pr(t) dt. coder structure, since there are large classes of covariance
0 kernels with the same eigenstructure. For example, all
stationary covariances on the circle have the same eigen-
functions, and so, there is a single “universal” transform
that is appropriate for transform coding of all such
processes—the Fourier transform.

and the eigenvalues;, are the Fourier coefficients of

We can now identify the indext with frequency, and
the Karhunen-Leve representation effectively says that
the Fourier coefficients ofX are independently zero-mean
Gaussian, with variances,, and that the reproducing process
Y™ has Fourier coefficients which are independent Gaussian a higher level of abstraction, we remark on two further
coefficients with variances:;. For instance, consider theaspects of the solution.
casel, ~ Ck~2™ ask — oo; then the stationary process
has nearly(m — 1/2)-derivatives in a mean-square sense.
For this example, the band{(D) amounts to the first
#K(D) < D~Y/@m=1 frequencies. Hence once again the , _ :
compression scheme amounts to “going into the frequency Of the process in an easﬂy_understandable way—via the
domain,” “extracting the low frequency coefficients,” and eigenstructure of the covariance kernel of the process.
“comparing with codebook entries,” and the number of ¢ Optimality of the BasisSince the orthobasis underlying
low frequency coefficients retained is given by the desired the transform step is the Karhunen-&we expansion, it
distortion level. The achieve®(D, X) in this case scales as  has an optimality interpretation independently from its
R(D,X) =< D~/@m=1) coding interpretation; in an appropriate ordering of the
basis elements, partial reconstruction from the fikst
components gives the best mean-squared approximation
IIl. INTERPRETATIONS OFR(D) to the process available from any orthobasis.

The compression scheme described by the solutidf(é¥)

in the Gaussian case has several distinguishing features.

» Dependence on Statistical Characterizatiofo the ex-
tent that the orthogonal transform is not universal, it
nevertheless depends on the statistical characterization

These features of th&(D) solution are so striking and
SO0 memorable, that it is unavoidable to incorporate these
« Transform Coding Interpretationundoubtedly the most interpretations as deep “lessons” imparted by B{®) calcu-
important thing to read off from the solution is thafation. These “lessons,” reinforced by examples such as those
data compression can be factored into two componentswa describe later, can harden into a “world view,” creating
transform step followed by a coding stefhe transform expectations affecting data compression work in practical
step takes continuous data and yields discrete sequenoding.

data; the coding step takes an initial segment of this, Factorization: One expects to approach coding problems

sequence and compares it with a codebook, storing the o . .
) . . by compartmentalization: attempting to design a two-step
binary representation of the best matching codeword. . !
system, with the first step a transform, and the second

* Independence of the Transformed Datbhe transform step a well-understood coder.
step yields uncorrelated Gaussian data, hestoghas-
tically independendata, which are, after normalization
by factors 1/4/)x, identically distributed. Hence, the
apparently abstract problem of coding a procesg) o ) o _
becomes closely related to the concrete problem of coding® EMpiricism: One expects that this basis is associated

a Gaussian memoryless source, under weighted distortion With the statistical properties of the process and so, in
measure. a concrete application, one could approach coding prob-

lems empirically. The idea would be to obtain empirical
instances of process data, and to accurately model the co-
variance kernel (dependence structure) of those instances;
then one would obtain the corresponding eigenfunctions
and eigenvalues, and design an empirically derived near-
ideal coding system.

e Optimal RepresentationOne expects that the transform
associated with an optimal coder will be an expansion in
a kind of “optimal basis.”

« Manageable Structure of the Transforfihe transform
itself is mathematically well-structured. It amounts to
expanding the objectX in the orthogonal eigenbasis
associated with a self-adjoint operator, which at the
abstract level is a well-understood notion. In certain
important concrete cases, such as the examples we have
given above, the basis even reduces to a well-knoWwihese expectations are inspiring and motivating. Unfortu-
Fourier basis, and so optimal coding involves explicitlpately, there is really nothing in the Shannon theory which
harmonic analysiof the data to be encoded. supports the idea that such “naive” expectations will apply
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outside the narrow setting in which the expectations wewgth Shannon, who often let the domain of observation grow
formed. If the process data to be compressed are not Gaussigthout bound. The fixed-domain functional viewpoint is
the R(D) derivation mentioned above does not apply, and omssential for developing the themes and theoretical connections
has no right to expect these interpretations to apply. we seek to expose in this paper—it is only through this
In fact, depending on one’s attraction to pessimism, it wouldewpoint that the connections with modern Harmonic analysis
also be possible to entertain completely opposite expectatidrecome clear. Hence, we pause to explain how this viewpoint
when venturing outside the Gaussian domain. If we considean be related to standard information theory and to practical
the problem of data compression of arbitrary stochastic prdata compression.
cesses, the following expectations are essentially all that oneA practical motivation for this viewpoint can easily be
can apply. proposed. In effect, when we are compressing acoustic or
e Lack of Factorization:One does not expect to find animage p_henomena, t-here Is truly. an underlying an.alog. rep-
. . . X resentation of the object, and a digitally sampled object is an
ideal coding system for an arbitrary non-Gaussian process L . . . i
approximation to it. Consider the question of an appropriate

that involves transform coding, i.e., a two-part factoriza- . . : .
o . model for data compression of still-photo images. Over time,
tion into a transform step followed by a step of codin

. Qonsumer camera technology will develop so that standard
an independent sequence. ; : )
cameras will routinely be able to take photos with several
* Lack of Useful Structurein fact, one does not ex- megapixels per image. By and large, consumers using such
pect to find any intelligible structure whatsoever, iameras will not be changing their photographic compositions
an ideal coding system for an arbitrary non-Gaussigf response to the increasing quality of their equipment; they
process—beyond the minimal structure on the randogj|| not be expanding their field of view in picture taking, but
codebook imposed by th&(D) problem. rather, they will instead keep the field of view constant, and

For purely human reasons, it is doubtful, however, that thf§ as cameras improve they will get finer and finer resolution
set of “pessimistic” expectations is very useful as a workin? the same photos they would have taken anyway. So what
hypothesis. The more “naive” picture, taking ti§D) story IS increasing asymptotically in this setting is the resolutlon
for Gaussian processes as paradigmatic, leads to the followfighe object rather than the field of view. In such a setting,
possibility: as we consider data compression in a variety of seif€ functional point of view is sensible. There is a continuum
tings outside the strict confines of the original GaussizD) Mmage, and our digital data will sooner or later represent a
setting, we will discover that many of the expectations form¥gy good approximation to such a continuum observation.
in that setting still apply and are useful, though perhaps in Yltimately, cameras will reach a point where the question of
form modified to take account of the broader settifigus for how to compress such digital data will best be answered by
example, we might find that factorization of data compressidfiowing about the properties of an ideal system derived for
into two steps, one of them an orthogonal transform into a kif@ntinuum data.
of optimal basis, is a property of near-ideal coders that we seel h€ real reason for growing-domain assumptions in infor-
outside the Gaussian case; although we might also find tifa@tion theory is a technical one: it allows in many cases
the notion of optimality of the basis and the specific detaif§" the proof of source coding theorems, establishing the
of the types of bases found would have to change. We mighiymptotic equivalence between the “formal bit ra¢D, X')
even find that we have to replace “expansion in an optim@hd the “rigorous bit rate”N(D, X). In our setting, this
basis” by “expansion in an optimal decomposition,” movin@onnection is obtained by considering asymptotics of both
to a system more general than a basis. guantities asD — 0. In fact, it is the D — 0 setting that

We will see several instances below where the lessonsW§ focus on here, and it is under this assumption that we can

GaussianRk(D) agree with ideal coders under this type ofhow the usefulness of harmonic analysis techniques to data
extended interpretation. compression. This may seem at first again at variance with

Shannon, who considered the distortion fixed (on a per-unit
basis) and let the domain of observation grow without bound.
IV. FUNCTIONAL VIEWPOINT We have two nontechnical responses.

In this paper we have adopted a point of view we call , The Fyture:with the consumer camera example in mind,
the functional viewpoint Rather than thinking of data to be high-quality compression of very large data sets may soon

compressed as numerical arrays with integer indexu, we be of interest. So the functional viewpoint, and low-
think of the objects of interest as functions—functiof\&) distortion coding of the data, may be very interesting
of time or functions of spacg(x,y). To use terminology settings in the near future.

that Shannon would have found natural, we are considering
compression of analog signals. This point of view is clearly )
the one in Shannon’s 1948 introduction of the optimization
problem underlyingR(D) theory, but it is less frequently
seen today, since many practical compression systems start
with sampled data. Practiced IT researchers will find one
aspect of our discussion unnatural: we study the case WherﬁI'heD — 0 case is usually called the fine quantization or high-resolution
the index set7’ stays fixed. This seems at variance evelmit in quantization theory; see [48].

Scaling: In important situations there is a near equiva-
lence between the “growing domain” viewpoint and the
“functional viewpoint.” We are thinking here of phenom-
ena like natural images which have scaling properties: if
we dilate an image, “stretching it out” to live on a growing
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domain, then after appropriate rescaling, we get statistiGald so the subband blocks we must code include longer and
properties that are the same as the original image [3Tdnger blocks farther and farther out in the frequency domain.
[81]. The relevance to coding is evident, for examplélhese blocks behave more and more nearly like long blocks
in the stationary Gaussia®(D) case for the processof Gaussian i.i.d. samples, and can be coded more and more
defined in Section Il, which has eigenvalues obeying grecisely at the rate for a Gaussian source, for example using
asymptotic power law, and hence which asymptotically random codebook. An increasing fraction of all the bits
obeys scale invariance at fine scales. Associated to a givalocated comes from the long blocks, where the coding is
distortion level is a characteristic “cutoff frequency'increasingly close to the rate. Hence we get the asymptotic
#K(D); dually this defines a scale of approximationequality of “formal bits” and “rigorous bits” a® — 0.

to achieve that distortion level it is necessary only to (Of course in a practical setting, as we will discuss farther
know the Fourier coefficients out to frequengyiK (D), below, block coding of i.i.d. Gaussian data, is impractical to
or to know the samples of a bandlimited version of th&nstrument;” there is no known computationally efficient way
object out to scales2w /# K (D). This characteristic scale to code a block of i.i.d. Gaussians approaching&&) limit.
defines a kind of effective pixel size. As the distortiofBut in a practical case one can use known suboptimal coders
level decreases, this scale decreases, and one has nianyhe i.i.d. problem to code the subband blocks. Note also
more “effective pixels.” Equivalently, one could rescal¢hat such suboptimal coders can perform rather well, especially
the object as a function oD so that the characteris-in the high-rate case, since an entropy-coded uniform scalar
tic scale stays fixed, and then the effective domain gfuantizer performs within 0.255 bit/sample of the optimum.)
observation would grow. With the above discussion, we hope to have convinced the

. : reader that our functional point of view, although unconven-
In addition to these relatively general responses, we have a

precise responsel) — 0 allows Source Coding Theoremsﬁ)ﬁii’s\f{vélrltfohnei;g;ne interesting light on at least the high-rate,
To see this, return to thé&(D) setting of Section II, and '
the stochastic process with asymptotic power law eigenvalues
given there. We propose grouping frequencies into subbands V. THE e-ENTROPY SETTING
Ky = {ky,ky +1,---, k41 — 1}. The subband boundaries |n the mid-1950's, A. N. Kolmogorov, who had been
k, should be chosen in such a way that they get increasingbtently exposed to Shannon’s work, introduced the notion
long with increasingt but that in a relative sense, measuregf the ¢-entropy of a functional class, defined as follows. Let
with respect to distance from the origin, they get increasingly be a domain, and Ief be a class of functiongf(t): t € T)
narrow on that domain; supposg is compact for the nornj - ||, so
that there exists arnet, i.e., a system, = {f'} such that
kyy1 — ky — o0, b— o0

(kpg1 — k) /Ky — 1, b — . (4.1) sup IS - fll<e (5.1)

The Gaussian?(D) problem of Section Il has the structure o N(e,F,|| - ||) denote the minimal cardinality of all such

suggesting that one needs to code the #$1)) coefficients ¢-nets. The Kolmogorow-entropy for (£, || - ||) is then
in order to get a near-ideal system. Suppose we do this by

dividing the firstK' (D) Fourier coefficients of into subband H.(F,|| -1 =logs N(e, F, || - - (5.2)

blocks and then code the subband blocks using the appropriate

coder for a block from a Gaussian independent and identicalfyis the least number of bits required to specify any arbitrary

distributed (i.i.d.) source. member of F to within accuracye. In essence, Kolmogorov
This makes sense. For the process we are studying, Bfeposed a notion of data compressiondtasses of functions

eigenvalues), decay smoothly according to a power lawwhile Shannon’s theory concerned compressiorstochastic

The subbands are chosen so that the variangese roughly Processes

constant in subbands There are some formal similarities between the problems
addressed by Shannon®(D) and Kolmogorov's H.. To
max {A\r: k € Ky} /min{A\: k€ Ky} — 1, b— oco. make these clear, notice that in each case, we consider

(4.2) a ‘library of instances"—either a function clasg or a
stochastic proces¥, each case yielding as typical elements

Within subband blocks, we may then reasonably regard thenctions defined on a common domdalr—and we measure
coefficients as independent Gaussian random variables vagiproximation error by the same nofjin ||.
a common variance. It is this property that would suggest toln both the Shannon and Kolmogorov theories we encode by
encode the coefficients in a subband using a coder for an i.fidst constructing finite lists of representative elements—in one
Gaussian source. The problem of coding Gaussian i.i.d. datz@se, the list is called a codebook; in the other case, a net. We
among the most well-studied problems in information theoryepresent an object of interest by its closest representative in
and so this subband partitioning reduces the abstract probltdra list, and we may record simply the index into our list. The
of coding the process to a very familiar one. length in bits of such a recording is called in the Shannon case

As the distortionD tends to zero, the frequency cutoffthe rate of the codebook; in the Kolmogorov case, the entropy
K(D) in the underlying R(D) problem tends to infinity, of the net. Our goal is to minimize the number of bits while
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Shannon Theory Kolmogorov Theory
Library X Stochastic fer
Representers Codebogk Net N
Fidelity Eminxce || X — X'||? max e mingen ||f — f/12
Complexity log #C log #N

achieving sufficient fidelity of reproduction. In the Shannonhoice ofe;—the resulting code has a length described by the
theory this is measured by mean discrepancy across randaght side of (5.3).

realizations; in the Kolmogorov theory this is measured by the

maximum discrepancy across arbitrary membergofThese VI. THE JPEG &TTING

comparisons may be summarized in the table at the top Ofye now discuss the emergence of transform coding ideas in
this page. ractical coders. The discrete-time setting of practical coders

In short, the two theories are parallel—except that one of theyy o< it expedient to abandon the functional point of view
theories postulates a library of samples arrived at by Samp“ﬂﬁoughout this section, in favor of a viewpoint based on
a stochastic process, while the other selects arbitrary elemeggﬁ]med data

of a functional class.

While there are intriguing parallels between theD) and 5 History
H. concepts, the two approaches have developed separateI%J _ ) )
in very different contexts. Work oi(D) has mostly stayed 'ransform coding plays an important role for images and
in the original context of communication/storage of randoudio compression where several successful standards incor-
process data, while work witH. has mostly stayed in the porate linear transforms. The success and wide acceptance of

context of questions in mathematical analysis: the Kolmogor@nsform coding in practice is due to a combination of factors.
entropy numbers control the boundedness of Gaussian pf§€ Karhunen—Leve transform and its optimality under some
cesses [35] and the properties of certain operators [10], [3g]§str|ctlve) conditions form a theoretical basis for transform
of convex sets [78], and of statistical estimators [6], [67]. coding. The wide use of particular transforms like the discrete
At the general level which Kolmogorov proposed, almo&osine transform (DCT) led to a large body of experience,
nothing useful can be said about the structure of an optin{gf!uding design of quantizers with human perceptual criteria.
e-net, nor is there any principle like mutual information whictput most importantly, transform coding using a unitary matrix
could be used to derive a formal expression for the cardinalf§zving a fast algorithm represents an excellent compromise in
of the e-net. térms of computational complexity versus coding performance.

However, there is a particularly interesting case in whichhat is, for a given cost (number of operations, run time,
we can say more. Consider the following typical setting faillicon area), transform coding outperforms more sophisticated

c-entropy. LetT be the circle’ = [0,2r) and letWyu(y) Schemes by a margin. . . .
denote the collection of all functiong = (f(): t c T) The idea of compressing stochastic processes using a linear
such thaffllflliz = |.|f(m)||%2(T_ < ~2. Such functior_ls are tra_m_sfotr_matlfon dates ba:;:k to the 1}950 st[Gﬁ], when S|gr_1kzjalls
called “differentiable in quadratic mean” or “differentiable irP"g'natng irom a vocoder were shown 1o be compressibie
the sense of H. Weyl.” For approximating functions of thiy @ transformation made up of the eigenvectors of the

class in L2-norm, we have the precise asymptotics of thgorrelation matrix. This is probably the earliest use of the
Kolmogorov e-entropy [34] Karhunen-Léve transform (KLT) in data compression. Then,

in 1963, Huang and Schultheiss [55] did a detailed analysis
HE(W%(’Y)) ~ 2m(log, e)(’y/2e)1/m, ¢ — 0. (5.3) ofblock quantization of random variables, including bit allo-
cation. This forms the foundation of transform coding as used
A transform-domain coder can achieve tli{ls asymptotic. in signal compression practice. The approximation of the KLT
One divides the frequency domain into subbafds defined by trigonometric transforms, especially structured transforms
exactly as in (4.1) and (4.2). Then one takes the Fouriellowing a fast algorithm, was done by a number of authors,
coefficientsd;, of the objectf, obtaining blocks of coefficients leading to the proposal of the discrete cosine transform in
6, Treating these coefficients now as if they were arbitrar}974 [1]. The combination of discrete cosine transform, scalar
members of spheres of radiys = [|#*||, one encodes quantization, and entropy coding was studied in detail for
the coefficients using am,-net for the sphere of radius,. image compression, and then standardized in the late 1980's
One represents the objeétby concatenating a prefix codeby the joint picture experts group (JPEG), leading to the JPEG
together with the code for the individual subbands. The prefimage compression standard that is now widely used. In the
code records digital approximations to the, p,) pairs for meantime, another generation of image coders, mostly based
subbands, and requires asymptotically a small number of bits@ wavelet decompositions and elaborate quantization and
The body code simply concatenates the codes for each of érgropy coding, are being considered for the next standard,
individual subbands. With the right fidelity allocation—i.e.called JPEG-2000.
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B. The Standard Model and the Karhuneneize Transform Yo §0

The structural facts described in Section I, concerning*®* | Qo Ey <o
R(D) for Gaussian random processes, become very simple
in the case of Gaussian random vectors. Compression of a )’1 Y
vector of correlated Gaussian random variables factors into a;*—— 0 E, °c,
linear transform followed by independent compression of the
transform coefficients.

ConsiderX = [XoX;---Xn_]*, a size N vector of
zero mean random variables abd= [YoY; --- Yn_1]% the
vector of random variables after transformation By or
Y = T.X. Define Rx = E[XX'] and Ry = E[YY"] N1 N1
as autocovariance matrices &f andY, respectively. Since *¥1* On-1 Ey.y ®CN-L
Rx is symmetric and positive-semidefinite, there is a full _ ' _
set of orthogonal eigenvectors with nonnegative eigenvalué{% alr'quzr?tri‘zsé?gma?ﬂd'”e?resisntterg‘éy"‘éhcfeér'ss a unitary transform¢; are
The Karhunen-Leve transform matrid’k, is defined as the ' ' '
matrix of unit-norm eigenvectors dRx ordered in terms of
decreasing eigenvalues, that is,

is D(R) = o% - 272 (using block coding). This means that a
RxTyr = TxiA, A = diag (Mo, AL, Aw—1) penalty of about a quarter bit per sample is paid, a small price
at high rates or small distortions.
where; > A; > 0,4 < j (for simplicity, we will assume that
A; > 0). Clearly, transformingX with TEL will diagonalize ) )
Ry C. The Discrete Cosine Transform
To make the KLT approach to block coding operational
requires additional steps. Two problems need to be addressed:

The KLT satisfies a best linear approximation property in tHf€ Signal dependence of the KLT (finding eigenvectors of
mean-squared error sense which follows from the eigenvectBf coereIatlon matrix), and the complexity of computing the
choices in the transform. That is, if only a fixed subset of tHeLT (V™ operations). Thus fast fixed transforms (with about

transform coefficients are kept, then the best transform is thelogV operations) leading to approximate diagonalization
KLT. of correlation matrices are used. The most popular among
The importance of the KLT for compression comes fror{pese transforms i_s the discr_ete cosine 'Fransform, which has
the following standard result from source coding [46]. A sizdl€ Property that it diagonalizes approximately the correla-
N Gaussian vector sourcE with correlation matrixRx and tion ma.trlx of a first-order Gauss—Markov process ywth high
mean zero is to be coded with a linear transform. Bits af@relation(p — 1), and also the correlation matrix of an
allocated optimally to the transform coefficients (using rever&sPitrary Gauss2—Markov process (with correlation of sufficient
waterfilling). Then the transform that minimizes the MSE iff€cay, XiZo k7°(k) <o) and block sizesN — oo. The
the limit of fine quantization of the transform coefficients iPCT 1S closely related to the discrete Fourier transform, and

the Karhunen—Léve transforn’r.. The coding gain due to thus can be computed with a fast Fourier transform like
optimal transform coding over straight PCM coding is algorithm in Vlog V' operations. This is a key issue: the
DCT achieves a good compromise between coding gain or

Ry = E[T}; XX "Tx1] = Ti; RxTxr = A.

= y compression, and computational complexity. Therefore, for a
D ) 1/szfi given computational budget, it can actually outperform the
PCM (o =0
Drx = v NUN = oy \UR (6.1) KLT [49].
2 2
<1:£ai> <1:£ai> VII. THE COMMON GAUSSIAN MODEL

At this point we have looked at three different settings in

2w 2 . .
where we usedv - o7 = Y. o7. Recalling that the variance§’ ich we can interpret the phrase “data compression.” In each
are the eigenvalues dly, it follows that the coding gain is the 5 qe\ve have available a library of instances which we would
ratio of the arithmetic and geometric means of the eigenvalygs, 1, represent with few bits

of the autocorrelation matrix.

Using reverse waterfilling, .the abpye constrqction can be, a) In Section Il (onR
used to derive the®(D) function of i.i.d. Gaussian vectors
[19]. However, an important point is that in a practical
setting and for complexity reasons, only scalar quantization
is used on the transform coefficients (see Fig. 1). The high* b) In Section V (one-entropy) we are considering the
rate scalar distortion rate function (with entropy coding) for  instances to be smooth functions. The librafyis the
i.i.d. Gaussian samples of varianeé is given by D,(R) = collection of such smooth functions obeying the constraint
(r€)/6 - 0% - 272F while the Shannon distortion rate function || 1172y + /"7y < 7

(D) theory) we are considering the
instances to be realizations of Gaussian processes. The
library is the collection of all such realizations.
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* ¢) In Section VI (on JPEG), we are considering the inR(D) theory, we could be interested in complex non-Gaussian
stances to be existing or future digital images. The libragrocesses; irH. theory we could be interested in functional
is implicitly the collection of all images of potential classes defined by norms other than those basedprin
interest to the JPEG user population. image coding we could be interested in particular image

é:gmpression tasks, say specialized to medical imagery, or to

Satellite imagery.

Certainly, the simple idea of Fourier transform followed by

e Transform into the frequency domain. block i.i.d. Gaussian coding cannot be universally appropriate.

« Break the transform into homogeneous subbands. ~ AS the assumptions about the collection of instances to be

represented changepresumably the correspondingptimal

representation will changeHence it is important to explore
Why the common strategy of transform coding? a range of modeling assumptions and to attempt to get the
The theoretically tightest motivation for transform codingissumptions right! Although Shannon’s ideas have been very
comes from Shannon'®(D) theory, which tells us that in important in supporting diffusion of frequency-domain coding
order to best encode a Gaussian process, one should transforpractical lossy compression, we feel that he himself would
the process realization to the Karhunenéiie domain, where have been the first to suggest a careful examination of the
the resulting coordinates are independent random variablesderlying assumptions, and to urge the formulation of better

This sequence of independent Gaussian variables can be camletimptions. (See, for instance, his adhortations in [85].)

by traditional schemes for coding discrete memoryless sourcesln this section we consider a wider range of models for the
So when we use transform coding in another settingbraries of instances to be compressed, and see how alternative

e-entropy or JPEG—it appears that we @ehaving as if that representations emerge as useful.

setting could be modeled by a Gaussian process
In fact, it is sometimes said that the JPEG scheme is

appropriate for real image data because if image data wéreSome Non-Gaussian Models

first-order Gauss—Markov, then the DCT would be approxi- Over the last decade, studies of the statistics of natural
mately the Karhunen—leve transform, and so JPEG wouldmages have repeatedly shown the non-Gaussian character of
be approximately following the script of th&(D) story. image data. While images make up only one application area
Implicitly, the next statement is “and real image data beha¥gr data compression, the evidence is quite interesting.
something like first-order Gauss—Markov.” Empirical studies of wavelet transforms of images, consid-
What aboute-entropy? In that setting there is no obviougring histograms of coefficients falling in a common subband,
‘randomness,” so it would seem unclear how a connectigave uncovered markedly non-Gaussian structure. As noted
with Gaussian processes could arise. In fact, a proof By many people, subband histograms are consistent with
(5.3) can be developed by exhibiting just such a connectigfobability densities having the fori - exp {—|u|*), where
[34]; one can show that there are Gaussian random functigRg exponent /i” would be “2” if the Gaussian case applied,
whose sample realizations obey, with high probability, theut where one finds radically different values of”“in
constraint || f[|7zry + (/™32 < ~* and for which practice; e.g., Simoncelli [87] reports evidence foe 0.7. In
the R(D) theory of Shannon accurately matches the numbfict, such generalized Gaussian models have been long used
of bits required, in the Kolmogorov theory, to represgit to model subband coefficients in the compression literature
within a distortion levele? (i.e., the right side of (5.3)). The (e.g., [101]). Field [37] investigated the fourth-order cumulant
Gaussian process with this property is a process naturadlyucture of images and showed that it was significantly
associated with the class obeying the indicated smoothnessionzero. This is far out of line with the Gaussian model, in
constraint—the least favorable process for Shannon daghich all cumulants of order three and higher vanish.
compression; a successful Kolmogorov-net for the prodéss In later work, Field [38] proposed that wavelet transforms of
will be effectively a successful Shannon codebook for thmages offered probability distributions which were “sparse.”
least favorable process. So even in the Kolmogorov cagesimple probability density with such a sparse character is
transform coding can be motivated by recours&{d®) theory the Gaussian scale mixtufé — ¢)¢(x/6)/6 + ep(z), where
for Gaussian processes, and to the idea that the situatioand s are both small positive numbers; this corresponds to
can be modeled as a Gaussian one. (That a method deridgéh being of one of two “types:” “small,” the vast majority,
from Gaussian assumptions helps us in other cases may se@i “large,” the remaining few. It is not hard to understand
curious. This is linked to the fact that the Gaussian appeatiere the two types come from: a wavelet coefficient can be
as a worst case scenario. Handling the worst case well wakalized to a small region which contains an edge, or which
often lead to adequate if not optimal performance for modbes not contain an edge. If there is no edge in the region, it
favorable cases.) will be “small;” if there is an edge, it will be “large.”
Stationary Gaussian models are very limited and are unable
to duplicate these empirical phenomena. Images are best
thought of as spatially stationary stochastic processes, since
We have so far considered only a few settings in whidbgically the position of an object in an image is rather
data compression could be of interest. In the context afbitrary, and a shift of that object to another position would

We can see a clear similarity in the coding strategy us
in each setting.

¢ Apply simple coding schemes to the subbands.

VIII. GETTING THE MODEL RIGHT
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produce another equally valid image. But if we impose stities between the pieces. The resource allocation is therefore
tionarity on a Gaussian process we cannot really exhibit badlchieving some of the same effect as an explicit two-stage
edges and smooth areas. A stationary Gaussian process rapptoach.
exhibit a great deal of spatial homogeneity. From results in theHence, adaptivity to the segmentation can come from ap-
mean-square calculus we know that if such a process is meplying a fixed orthogonal transform together with adaptive
square-continuous at a point, it is mean-square-continuaesource allocation of the coder. Practical coding experience
at every point. Clearly, most images will not fit this modesupports this. Traditional transform coding of i.i.d. Gaussian
adequately. random vectors at high rate assumes a fixed rate alloca-
Conditionally Gaussian models offer an attractive way twon per symbol, but practical coders, because they work at
maintain ties with the Gaussian case while exhibiting globallpw rate and use entropy coding, typically adapt the coding
non-Gaussian behavior. In such models, image formation takete to the characteristics of each block. Specific adaptation
place in two stages. An initial random experiment lays dowmechanisms, using context modeling and implicit or explicit
regions separated by edges, and then in a subsequent ssidginformation are also possible.
each region is assigned a Gaussian random field. Adaptive resource allocation with a fixed orthogonal trans-
Consider a simple model of random piecewise-smooth furfierm is closely connected with a mathematical procedure
tions in dimension one, where the piece boundaries are throwhich we will explore at length in Sections XIV and XV: non-
down at random, say by a Poisson process, the pieces are rgagar approximation using a fixed orthogonal basis. Suppose
izations of (different) Gaussian processes (possibly stationajjat we have an orthogonal basis and we wish to approximate
and discontinuities are allowed across the boundaries of @@ object using only. basis functions. In traditional linear
pieces [12]. This simple one-dimensional model can replicaa@proximation, we would consider using the firstbasis
some of the known empirical structure of images, particularfynctions to form such an approximation. In nonlinear approx-
the sparse histogram structure of wavelet subbands and ithation, we would consider using the besbasis functions,
nonzero fourth-order cumulant structure. i.e., to adaptively select the terms which offer the best
approximation to the particular object being considered. This
adaptation is a form of resource allocation, where the resources
Unfortunately, when we leave the domain of Gaussiaare then terms to be used. Because of this connection, we will
models, we lose the ability to compuf®(D) in such great begin to refer to “the nonlinear nature of the approximation
generality. Instead, we begin to operate heuristically. Suppopegcess” offered by practical coders.
for example, we employ a conditionally Gaussian model.
There is no general solution fd®(D) for such a class; but it C. Variations on Stochastic Process Models

seems reasonable that the two-stage structure of the modef, bring home the remarks of the last two subsections, we
gives clues about optimal coding; accordingly, one mighlynsiger some specific variations on the stochastic process
suppose that an effective coder should factor into a part thahgels of Section II. In these variations, we will consider
adapts to the apparent segmentation structure of the imaggcesses that are non-Gaussian; and we will compare useful
and a part that acts in a traditional way conditional on thehging strategies for those processes with the coding strategies

structure. In the simple model of piecewise-smooth functiog§; the Gaussian processes having the same second-order
in dimension one, it is clear that coding in long blocks igi4tistics.

useful for the pieces, and that the coding must be adapted Spike ProcessFor this example, we briefly leave the

to the characteristics of the pieces. However, discontinuities functional viewpoint '

must be well-represented also. So it seems natural that one ) B ) ) )

attempts to identify an empirically accurate segmentation and Consider the fo.llowmg .S|mple Fhscrete-ﬂme random

then adaptively code the pieces. If transform coding ideas are Process, generating a single “spike.” Letn) = « -

useful in this setting, it might seem that they would play a (7 — &) wheren,k € [0,---,N — 1],k is uniformly

role subordinate to the partitioning—i.e., appearing only in distributed betweed and N — 1 anda is N(0,0?). That

the coding of individual pieces. It might seem that applying 1S: &fter picking a random locatiok, one puts a Gaussian

a single global orthogonal transform to the data is simply not "andom variable at that location. The autocorrelatdg

compatible with the assumed two-stage structure. is equal to(o?/N) - I, thus the KLT is the identity
Actually, transform codings able to offer a degree of adap- transformatlor_w. AII_ocatng/N bits tq each coeff_|C|ent

tation to the presence of a segmentation. The wavelet transform €2ds 1o a distortion of orde2*2<Rl/1\‘> for the single

of an object with discontinuities will exhibit large coefficients ~nonzero coefficient. Hence the distortion-rate function

in the neighborhood of discontinuities, and, at finer scales, describing the operational performance of the Gaussian

will exhibit small coefficients away from discontinuities. If ~ c0debook coder in the KLT domain has

one designs a coder which does well in representing such DiiL(R) ~ ¢ g% . 272E/N),

“sparse” coefficient sequences, it will attempt to represent

all the coefficients at coarser scales, while allocating bits Here the constantdepends on the quantization and coding

to represent only those few big coefficients at finer scales. Of the transform coefficients.

Implicitly, coefficients at coarser scales represent the structure An obvious alternate scheme at high rates is to spend

of pieces, and coefficients at finer scales represent discontinu- log, (N) bits to address the nonzero coefficient, and use

B. Adaptation, Resource Allocation, and Nonlinearity
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performance curves of scalar quantization coding.

the remainingR — log, (V) bits to represent the Gaussian
variable. Thisposition-indexingmethod leads to

DP(R) 2 2—2(R—10g2 (]\‘r)).

~NC-07 -
This coder relies heavily on the non-Gaussian character of
the joint distribution of the entries im(n), and for R >
log, (N) this non-Gaussian coding clearly outperforms
the former, Gaussian approximation method. While this
is clearly a very artificial example, it makes the point that
if location (or phase) is critical, then time-invariant, linear
methods like the KLT followed by independent coding of
the transform coefficients are suboptimal.

Images are very phase critical: edges are among the
most visually significant features of images, and thus

efficient position coding is of essence. So it comes as no
surprise that some nonlinear approximation ideas made it
into standards, namely, ideas where addressing of large
coefficients is efficiently solved.

Ramp ProcessYves Meyer [75] proposed the following
model. We have a process(t) defined on[0, 1] through
a single random variable uniformly distributed on0, 1]

by
X(t) = t - 1[t27‘}'

This is a very simple process, and very easy to code
accurately. A reasonable coding scheme would be to
extract7 by locating the jump of the process and then
quantizing it to the required fidelity.

On the other handRampis covariance equivalent to
the Brownian Bridge procesB,(t) which we mentioned
already in Section Il, the Gaussian zero-mean process on
[0, 1] with covarianceCov(By(t), Bo(s)) =min(¢, s)— st.

200 400 600 800 1000

1078 107 10°

(a) Realization oRamp (b) Wavelet and (c) DCT coefficients. (d) Rearranged coefficients. (e) Nonlinear approximation errors (14.2). (f) Operating

An asymptotically R(D)-optimal approach to coding
Brownian Bridge can be based on the KarhunereMeo
transform; as we have seen, in this case the sine transform.
One takes the sine transform of the realization, breaks the
sequence of coefficients into subbands obeying (4.1) and
(4.2) and then treats the coefficients, in subbands, exactly
as in discrete memoryless source compression.

Suppose we ignored the non-Gaussian character of the
Ramp process and simply applied the same coder we
would use for Brownian Bridge. After all, the two are
covariance-equivalent. This would result in orders of mag-
nitude more bits than necessary. The coefficients in the
sine transform ofRamp are random; their typical size

is measured in mean square by the eigenvalues of the
covariance—namely);, = (472k?)~L. In order to accu-
rately represent the Ramp process with distortionwe
must code the first K (D) < D~ coefficients, at rates
exceeding 1 bit per coefficient. How many coefficients
does it take to represent a typical realizatiorRaimpwith

a relative error of 1%? About0®.

On the other hand, as Meyer pointed out, the wavelet
coefficients ofRampdecay very rapidly, essentially ex-
ponentially. As a result, very simple scalar quantization
schemes based on wavelet coefficients can capture real-
izations of Rampwith 1% accuracy using a few dozens
rather than tens of thousands of coefficients, and with
a corresponding advantage at the level of bits; this is
illustrated in Fig. 2.

The point here is that if we pay attention to second-
order statistics only, and adopt an approach that would
be good under a Gaussian model, we may pay orders
of magnitude more bits than would be necessary for
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coding the process under a more appropriate model. Bgalar quantization of the Fourier coefficients would not work
abandoning the Karhunen—&ee transform in this non- nearly as well; as the desired distortien— 0, the number
Gaussian case, we get a transform in which very simpdé bits for Fourier/scalar quantization coding can be orders of
scalar quantization works very well. magnitude worse than the number of bits for wavelet/scalar
Note that we could in principle build a near-optimafuantization coding. This follows from results in Sections XV

scheme by transform coding with a coder based on Fourfftd XVI below.
coefficients, but we would have to apply a much more
complex quantizer; it would have to be a vector quantize
(Owing to Littlewood—Paley theory described later, it i
possible to say what the quantizer would look like; it When we consider transform coding as applied to empirical
would involve quantizing coefficients near wavenumbefata, we typically find that a number of simple variations can
k in blocks of size roughlyk/2. This is computationally lead to significant improvements over what the strict Gaussian
impractical.) R(D) theory would predict. In particular, we see that when
going from theory to practice, KLT as implemented in JPEG
becomes nonlinear approximation!
The image is first subdivided into blocks of si?2é by N
In Section V, we saw that subband coding of Fourier coefzy is typically equal tos or 16) and these blocks are treated
ficients offered an essentially optimal method, under the Kqhdependently. Note that blocking the image into independent
mogorove-entropy model, of coding objectsknowna priori  pieces allows to adapt the compression to each block individ-
to obeyZ* smoothness constrairi{g |7z ;) +11/"|I72(zy < ually. An orthonormal basis for the two-dimensional blocks
2 is derived as a product basis from the one-dimensional DCT.
Wh|le this may not be apparent to outsiders, there awhile not necessarily best, this is an efficient way to generate
major differences in the implications of various smoothnesstwo-dimensional basis.
constraints. Suppose we maintain thé distortion measure,  Now, quantization and entropy coding is done in a manner
but make the seemingly minor change from th& form of that is quite at variance with the classical setup. First, based
constraint to arl” form, || f|[7, i, + 11/ |7z, < 77 with  on perceptual criteria, the transform coefficiept. !) is
p<2. This can cause major changes in what constitutes goantized with a uniform quantizer of stepsixg ;. Typically,
underlying optimal strategy. Rather than transform coding in, ; is small for low frequencies, and large for high ones,
the frequency domain, we can find that transform coding #nd these stepsizes are stored in a quantization mafeix
the wavelet domain is appropriate. Technically, one could pick different quantization matrices for
Bounded Variation Model:As a simple example, considerdifferent blocks in order to adapt, but usually, only a single
the model that the object under consideration is a functiggale factore is used to multiplyM ¢, and this scale factor
f(t) of a single variable that is of bounded variation. Suckan be adapted depending on the statistics in the block. Thus
functions f can be interpreted as having derivatives which atae approximate representation of tk,7)th coefficient is
signed measures, and then we measure the norm by (k1) = Qy(k, 1), aAy ] whereQly, Al = A-|y/A]+A/2.
The quantized variablg(k, l) is discrete with a finite number
1 |lsy = / \df|. of p_ossible vaIL_JeSg;((k,l) is bounde_d) and is entrop_y-cod_ed.
Since there is no natural ordering of the two-dimensional
DCT plane, yet known efficient entropy coding techniques
The important point is suclf can have jump discontinuities,work on one-dimensional sequences of coefficients, a pre-
as long as the sum of the jumps is finite. Hence, the classgefibed 2D to 1D scanning is used. This so-called “zig-zag”
functions of bounded variation can be viewed as a model fetan traverses the DCT frequency plane diagonally from low
functions which have discontinuities; for example, a scan line high frequencies. For this resulting one-dimensional length-
in a digital image can be modeled as a typical BV function.v? sequence, nonzero coefficients are entropy-coded, and
An interesting fact about BV functions is that they can bstretches of zero coefficients are encoded using entropy coding
essentially characterized by their Haar coefficients. The Bdf run lengths. Anend-of-block(EOB) symbol terminates

. Variations on Transform Coding and JPEG

D. Variations on Function Class Models

functions with norm<~ obey an inequality a sequence of DCT coefficients when only zeros are left
(which is likely to arrive early in the sequence when coarse

Supz Iaj,k|2j/2 < dy gquantization is used).
i Let us consider two extreme modes of operation: In the first

case, assume very fine quantization. Then, many coefficients

where«; ;, are the Haar wavelet expansion coefficients. It iwill be nonzero, and the behavior of the rate—distortion tradeoff
almost the case that every function that obeys this constramtdominated by the quantization and entropy coding of the
is a BV function. This says that geometrically, the class a@fdividual coefficients, that isD(R) ~ 2722, This mode is
BV functions with norm<~ is a convex set inscribed in aalso typical for high variance regions, like textures.
family of ¢! balls. In the second case, assume very coarse quantization. Then,

An easy coder for functions of Bounded Variation can bmany coefficients will be zero, and the run-length coding is
based on scalar quantization of Haar coefficients. Howevan efficient indexing of the few nonzero coefficients. We are
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Fig. 3. Performance of real transform coding systems. The logarithm of the MSE is shown for JPEG (top) and SPIHT (bottom). Above about 0.5 bit/pixel,
there is the typica-6 dB per bit slope, while at very low bit rate, a much steeper slope is achieved.

in a nonlinear approximation case, since the image blockAs How Many Bits for Mona Lisa?
approximated with a few basis vectors corresponding to large .assic question, somewhat tongue in cheek, is: how many

gme_r progugts. hTh?n, th@d(R) befhavié)r isd very (;Iifferent, bits do we need to describe Mona Lisa? JPEG uses 187 Kbytes
pmmate by the a_ster ecay of ordered transform coeflly ne yersion. From many points of view, this is far more than
cients, which in turn is related to the smoothness class of number intrinsically required

images. Such a behavior is also typical for structured regions, . : .
9 yp 9 Humans will recognize a version based on a few hundred

C\ﬁiﬁ Er;os(;tgrzgrfaces cut by edges, since the DCT CoemC'erE)tl%s. An early experiment by L. Harmon of Bell Laboratories

These two different behaviors can be seen in Fig. 3. Whesrgows a recognizable Abraham Lincoln at 756 bits, a trick also

the logarithm of the distortion versus the bit rate per pix sed by S. Daliin his paintingSlave Market with Invisible

is shown. The—2R slope above about 0.5 bit/pixel is clear, ust of Voltaire . o
as is the steeper slope below. An analysis of the Iow-rateAnOther way to estimate the number of bits in a representa-

behavior of transform codes has been done recently by Malt@ is to consider an index of every photograph ever taken in

and Falzon [70]; see also related work in Cohen, Daubechidd history of mankind. With a generous estimate of 100 billion
Guleryuz, and Orchard [14]. pictures a year, the 100 years of photography need an index of

about 44 bits. Another possibility yet is to index all pictures
that can possibly be viewed by all humans. Given the world
IX. Goob MODELS FORNATURAL DATA? population, and the fact that at most 25 pictures a second are

We have now seen, by considering a range of differefRcognizable, a hundred years of viewing is indexed in about
intellectual models for the class of objects of interest to ug9 bits.
that depending on the model we adopt, we can arrive at veryGiven that the Mona Lisa is a very famous painting, it is
different conclusions about the “best” way to represent fear that probably a few bits will be enough (with the obvious
compress those objects. We have also seen that what se¥aii@ble length code: [is it Lena?, is it Mona Lisa?, etc)).
like a good method in one model can be a relatively podmother approach is the interactive search of the image, for
method according to another model. We have also seen tB¥ample, on the Web. A search engine prompted with a few
existing models used in data compression are relatively pda@ry words will quickly come back with the answer at the top of
descriptions of the phenomena we see in natural data. Ve following page, and just a few bytes have been exchanged.
think that we may still be far away from achieving an optimal These numbers are all very suggestive when we consider
representation of such data. estimates of the information rate of the human visual system.
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http : //www.paris.org/Musees/Louvre/Treasures/gifs/Mona Lisa.jpg

Barlow [4] summarizes evidence that the many layers of The problem of determining the solution of ti& D, X)-
processing in the human visual system reduce the informatiproblem, given a limited number of realizationsf could be
flow from several megabits per second at the retina to abaansidered a branch of what is becoming known in statistics
40 bits per second deep in the visual pathway. as “functional data analysis"—the analysis of data when the
From all points of view,images ought to be far moreobservations are images, sounds, or other functions, and so
compressible than current compression standards allow  naturally viewed as infinite-dimensional. Work in that field
aims to determine structural properties of the probability distri-
B. The Grand Challenge _butio_n of funct_ional data—for_ exgm_ple, the coyariance an_d/or
its eigenfunctions, or the discriminant function for testing
An effort to do far better compression leads to the Grargbtween two populations. Functional data analysis has shown
Challenge, items GC1-GC3 of Section |. However, to addreggt many challenging issues impede the extension of simple
this challenge by orthodox application of the Shannon theogytivariate statistical methods to the functional case [79].
seems to us hopeless. To understand why, we make thig&tain simple multivariate procedures have been extended to
observations. the functional case: principal components, discriminant anal-
« Intrinsic Complexity of Natural Data Sourcesn accu- YSiS, canonical correlations being carefully studied examples.
rate model for empirica| phenomena would be of poThe prOblem that must be faced in such work is that one has
tentially overwhelming complexity. In effect, images@ways a finite number of realizations from which one is to in-
or sounds, even in a restricted area of application 8" aspects of the infinite-dimensional probabilistic generating
medical imagery, are naturally infinite-dimensional phel€chanism. This is a kind of rank deficiency of the data set
nomena. They take place in a continuum, and in principf¥hich means that, for example, one cannot hope to get quanti-
the recording of a sound or image cannot be constrainkively accurate estimgtes of_eigenfunctions of t.he covariance.
in advance by a finite number of parameters. The true The mutual information optimization problem in Shannon’s

underlying mechanism is in many cases markedly nofi(£) in the general non-Gaussian case requires far more
Gaussian, and highly nonstationary. than just knowledge of a covariance or its eigenfunctions; it
e o . involves in principle all the joint distributional structure of the
 Difficulty of Characterization:There exists at the mo- ) . .

. - .process. It is totally unclear how to deal with the issues that

ment no reasonable “mechanical” way to characteri?t . -

would crop up in such a generalization.
the structure of such complex phenomena. In the zero-
mean Gaussian case, all behavior can be deduced from
properties of the countable sequence of eigenvalues of X. A ROLE FOR HARMONIC ANALYSIS
the covariance kernel. Outside of the Gaussian case, veryn this section, we comment on some interesting insights
little is known about characterizing infinite-dimensionajhat harmonic analysis has to offer against the background of
probability distributions which would be immediatelyihis “Grand Challenge.”
helpful in modeling real-world phenomena such as images

and sounds. Instead, we must live by our wits.

« Complexity of Optimization Problentf. we take Shannon The phrase “harmonic analysis” means many things to

literally, and apply the abstradk(D) principle, deter- many different people. To some, it is associated with an

mining the best way to code a naturally occurring sourc . .
abstract procedure in group theory—unitary group representa-

of data would require to solve a mutual information). i . . . > .
. . S . ions [54]; to others it is associated with classical mathematical
problem involving probability distributions defined on an . . . : . .
hysics—expansions in special functions related to certain

|nf|n|te—d|men3|onaI. space. Umfortunately, It is n.Ot.Cleanr)fifferential operators; to others it is associated with “hard”
that one can obtain a clear intellectual description g

such probability distributions in a form which would beanaly5|s in its modern form [30]. .
. The usual senses of the phrase all have roots in the bold
manageable for actually stating the problem coherentlg . . o .
. Ssertions of Fourier that a) “any” function can be expanded
much less solving it. . ) . .
in a series of sines and cosines and that, b) one could
In effect, uncovering the optimal codebook structure afnderstand the complex operator of heat propagation by un-
naturally occurring data involves more challenging empiricalerstanding merely its action on certain “elementary” initial
questions than any that have ever been solved in empirididtributions—namely, initial temperature distributions follow-
work in the mathematical sciences. Typical empirical questioimgy sinusoidal profiles. As is now well known, making sense
that have been adequately solved in scientific work to ddte one way or another of Fourier's assertions has spawned
involve finding structure of very simple low-dimensional, wellan amazing array of concepts over the last two centuries; the
constrained probability distributions. theories of the Lebesgue integral, of Hilbert spacesLbf

A. Terminology
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spaces, of generalized functions, of differential equations, diest choice—Fourier coefficients—could not offer such a
all bound up in some way in the development, justificatiortharacterization whep # 2, and eventually, after a long series
and refinement of Fourier's initial ideas. So no single writesf alternate characterizations were discovered, it was proved
can possibly meandll of harmonic analysis” when using thethat wavelet expansions offered such characterizations—i.e.,
term “harmonic analysis.” that by looking at the wavelet coefficients of a function, one

For the purposes of this paper, harmonic analysis refarsuld learn theL”-norm to within constants of equivalence,
instead to a series of ideas that have evolved throughout thig p < oc. It was also learned that fop € {1,00} no
century, a set of ideas involving two streams of thought. norm characterization was possible, but after repladiig

On the one hand, to develop ways to analyze functions usibg the closely related spac&® and L= by the closely
decompositions built through a geometrically motivated “cutelated spaceBM O (the space of functions of Bounded
ting and pasting” of time, frequency, and related domains inlean Oscillation), the wavelet coefficients again contained the
“cells” and the construction of systems of “atoms” “associate@quired information for knowing the norm to within constants
naturally” to those “cells.” of equivalence.

On the other hand, to use these decompositions to find charThe three parts HA1-HA3 of the harmonic analysis program
acterizations, to within notions of equivalence, of interestirgre entirely analogous to the three steps GC1-GC3 in the
function classes. Grand Challenge for data compression—except that for data

It is perhaps surprising that one can combine these twompression, the challenge is to deal wittturally occurring
ideas.A priori difficult to understand classes of functions irdata sourceswhile for harmonic analysis the challenge is to
a functional space turn out to have a characterization asi@al withmathematically interesting classes of objects
superposition of “atoms” of a more or less concrete form. Of It is very striking to us that the natural development of har-
course, the functional spaces where this can be true are quitenic analysis in this century, while in intention completely
special; the miracle is that it can be done at all. unrelated to problems of data compression, has borne fruit

This is a body of work that has grown up slowly over thgvhich seems very relevant to the needs of the data compression
last ninety years, by patient accumulation of a set of tool®mmunity. Typical byproducts of this effort so far include
and cultural attitudes little known to outsiders. As we starhe fast wavelet transform, and lossy wavelet domain coders
at the end of the century, we can say that this body of wothich exploit the “tree” organization of the wavelet transform.
shows that there are many interesting questions about infiniktrthermore, we are aware of many other developments in
dimensional function classes where experience has shown ta&tmonic analysis which have not yet borne fruit of direct
it is often difficult or impossible to obtain exact results, buimpact on data compression, but seem likely to have an impact
where fruitful analogies do suggest similar problems which aji¢ the future.

“good enough” to enable approximate, or asymptotic solutions.There are other insights available from developments in

In a brief survey paper, we can only superficially mention garmonic analysis. In the comparison between the three-part
few of the decomposition ideas that have been proposed amdllenge facing data compression and the three-part program
a few of the achievements and cultural attitudes that hageharmonic analysis, the messiness of understanding a natural
resulted; we will do so in Sections Xll, XVII, and XVIII data source—which requires dealing with specific phenomena
below. The reader will find that [58] provides a wealth ofn all their particularity—is replaced by the precision of
helpful background material complementing the present papghderstanding a class with a formal mathematical definition.

Thus harmonic analysis operates in a more ideal setting for
B. Relevance to the Grand Challenge making intellectual progress; but sometimes progress is not as
complete as one would like. It is accepted by now that many
Eharacterization problems of function classes cannot be exactly
solved. Harmonic analysis has shown that often one can

HAL1 Identify an interesting class of mathematically definethake substantial progress by replacing hard characterization
objects (functions, operators, etc.). problems with less demanding problems where answers can

HA2 Develop tools to characterize the class of objects pe obtained explicitly. It has also shown that such cruder

terms of functionals derivable from an analysis of the objec&Proximations are still quite useful and important.
themselves. A typical example is the study of operators. The eigen-

functions of an operator are fragile, and can change radically
i the operator is only slightly perturbed in certain ways.
It is in general difficult to get explicit representations of

This program, while perhaps obscure to outsiders, hd® eigenfunctions, and to compute them. Harmonic analysis,
borne interesting fruit. As we will describe below, wavelehowever, shows that for certain problems, we can work with
transforms arose from a long series of investigations into tfelmost eigenfunctions” that “almost diagonalize” operators.
structure of classes of functions defined by constraints, For example, wavelets work well on a broad range of op-
p # 2. The original question was to characterize functioarators, and moreover, they lend themselves to concrete fast
classes{f: | |f|" <o} by analytic means, such as by thecomputational algorithms. That is, the exact problem, which is
properties of the coefficients of the considered functiommotentially intractable, is replaced by an approximate problem
in an orthogonal expansion. It was found that the obviodisr which computational solutions exist.

Much of harmonic analysis in this century can be chara
terized as carrying out a three-part program

HA3 Improve the characterization tools themselves, refi
ing and streamlining them.
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C. Survey of the Field in characterization results, or that the Fourier basis works in

In the remainder of this paper we will discuss a set &ther settings as well. _ _
developments in the harmonic analysis community and how'Ve mention now five kinds of norms for which we might
they can be connected to results about data compressiffff 0 Solve norm-equivalence, and for which the answers
We think it will become clear to the reader that in fact thé® all these norm-equivalence problems are by now well-
lessons that have been learned from the activity of harmorigderstood.
analysis are very relevant to facing the Grand Challenge for, rr_norms:Let1 < p < . The LP-norm is, as usual, just

data compression. 1/p
il = ([ 1o ar)

Xl. NORM EQUIVALENCE PROBLEMS ) ]
o . We can extend this scale of normszic= oo by taking
The problem of characterizing a class of functiahs=
{f:|Ifllr <<}, where|| - ||r is a norm of interest, has Lf 1] e =sup £

occupied a great deal of attention of harmonic analysts in this,
century. The basic idea is to relate the norm, defined in say
continuum form by an integral, to an equivalent norm defined

in discrete form .

A1l = 160 ¢-

Here & = 6(f) denotes a collection of coefficients arising in
a decomposition off; for example, these coefficients would
be obtained by

Sobolev-normstet 1 < p < 0. The LP-Sobolev norm is

1 llwgeery = 1 11ze + 1F e

Holder classesiet 0 <« < 1. The Hoilder classC*(T’)

is the collection of continuous functionson the domain
T with |f(t) = f(#)] < Clt — #|* and ||f||1~ <C,

for some C > 0; the smallest sucl” is the norm. Let
m<a<m+ 1, for integerm > 1; the Holder class
C*(T) is the collection of continuous functionson the
domain?’ with

£ (8) — FO Y < Ot — ')

for § = o — m.

(11.1)

if the (¢5,) made up an orthonormal basis. The ndim||r

is a norm defined on the continuum objettand the norm

|| - || is @ norm defined on the corresponding discrete object
8(f). The equivalence symbok in (11.1) means that there

* Bump Algebra:Suppose thaf is a continuous function
. 2
on the lineT = (—oc0,¢). Let g(t) = e ¥ be a
Gaussian normalized to height one rather than area one.

are constantsi and B, not depending orf, so that

Allfllr < 116Dy < Bl

The significance is that the coefficierftontain within them
the information needed to approximately infer the siz¢ df
the norm|| - || ». One would of course usually prefer to have

(11.2)

Suppose thaf can be represented a5 a;g((t — t;)/s;)
for a countable sequence of triples, ¢;, s;) with s; > 0,

t; € T,and%; |a;| = C < oo. Then f is said to belong
to the Bump Algebra, and its Bump norfif|s is the
smallest value ofC for which such a decomposition
exists. Evidently, a function in the Bump Algebra is

A = B, in which case the coefficients characterize the size
of f precisely, but often this kind aight characterization is
beyond reach. .
The most well-known and also tightest form of such a rela-
tionship is the Parseval formula, valid for the continuum norm
of L2 ||f|lrz = (Jz |f(H)|? dt)*/2. If the (¢1.)x constitute a
complete orthonormal system fd?(7’), then we have

1/2
L2y = <Z |9k|2> :
k

a superposition of Gaussians, with various polarities,
locations, and scales.

Bounded Variation:Suppose thaff is a function on the
interval 7 = [0,1] that is integrable and such that the
increment obeys

I[fC+R) = fCOllLrp,i-n) < Clh|
for 0 <h < 1. The BV seminorm off is the smallest”

(11.3) for which this is true.

In each case, the norm equivalence problemFisid an

Another frequently encountered relationship of this kind {@rthobasis (¢x) and a discrete normj|é[|; so that the
valid for functions on the circle” = [0,2n), with (¢) the NOrM [/]|~ is equivalent to the discrete norfi( /)|l In-

Fourier basis of Section II. Then we have a norm equivalenggPth discussions of these spaces and their norm-equivalence
for a norm defined on the:th derivative problems can be found in [103], [89], [90], [96], [43], and
[74]. In some cases, as we explain in Section Xl below,

the norm equivalence has been solved; in other cases, it has
been proven that there can never be a norm equivalence, but
a closely related space has been discovered for which a norm
These two equivalences are, of course, widely used in thguivalence is available.

mathematical sciences. They are beautiful, but also potentiallyin these five problems, Fourier analysis does not work;
misleading. A naive reading of these results might promote that is, one cannot find a “simple” and “natural” norm on
expectation that one can frequently have tightnéss B =1 the Fourier coefficients which provides an equivalent norm

1/2
1 2y = <Z k2™ |62k ] + |92k+1|2)> - (11.4)

k
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to the considered continuous norm. It is also true that tight Warmup: The Sampling Theorem

equivalence results, withh = B = 1, seem out of reach in A standard procedure by which interesting orthobases have
these cases. _ _ _ been constructed by harmonic analysts is to first develop a
_The key point in seeking a norm equivalence is that thg,y of “gvercomplete” continuous representation, and later
discrete norm must be “simple” and “natural.” By this W&jeyelop a discretized variant based on a geometric model.
really mean that the discrete norshould depend only on  ap glementary example of this procedure will be familiar
the size of the coefficien@nd not on the signs or phaseg, yeaders in the information theory community, as Shannon’s
of the _cpeffppnts. We will say that. the discrete norm I8ampling Theorem [84] in signal analysis. Lﬁ(‘w) be anL?
unconditionalif it obeys the relationship function supported in a finite frequency intenjalrQ2, 7€);
and let f(t) = (1/2r) [ f(w)exp {iwt}dw be the time-

/
16711 =< 1191l domain representation. This representation ig.afsometry,
whenevert; = s with s, any sequence of weighis;| < so that
1. The idea is that “shrinking the coefficients in size” should 1™, 2
“shrink” the norm. e |flw)I = /T |f(@)]" dt.

A norm equivalence result therefore requires discoverin% ) ) ) )
both a representing Syste(rd)k) and a Specia' norm on aT e size of the function on the frequency side and on the time
sequence space, one which is equivalent to the considered cfie are the same, up to normalization. By our assumptions,
tinuum norm and also has the unconditionality property. F§te time-domain representatidift) is a bandlimited function,
future reference, we call a basis yielding a norm equivalené@ich is very smooth, and so the representatiory ah the
between a norm on function space and such an unconditioH&€ domain is very redundant. A nonredundant representation
norm on sequence space anconditional basisIt has the IS obtained by sampling, and retaining only tfig:/<2). The

property that for any object in a function clags and any set Mathematical expression of the perfect nonredundancy of this
of coefficients#), obeying representation is the fact that we have the norm equivalence

1/2
05| < 16k(F)], vk 1
il = 1) 1l = <5 > If(k/9)|2> (121)
the newly constructed object b

and that there is an orthobasis of sampling functigpé&t) =
I'=>_t Q12 gine (Qf — k) so thatf(k/Q) = (k. f) - Q12 and
k

16 = Fk/Qent).
k

belongs toF as well.

There is a famous result dramatizing the fact that the Fourier ] ] ) )
basis is not an unconditional basis for classes of continuoli8iS time-domain representation has the following geometric

functions, due to DeLeeuw, Kahane, and Katznelson [ZgT_terp_retation: there is a sequence of disjpint “cells” of Igng_th
Their results allows us to construct pairs of functions: ape, 1/¢% indexed byk; the samples summarize the behavior in
say, which is uniformly continuous on the circle: and the othf?0Se cells; and the sampling functions provide the details
h, say, very wild, having square integrable singularities on® that behavior. While this circle of ideas was known to

dense subset of the circle. The respective Fourier coefficiei@@nnon and was very influential for signal analysis, we
obey should point out that harmonic analysts developed ideas such

as this somewhat earlier, under more general conditions, and
|0k(9)| > |6 ()] V. based on an exploration of a geometric model explaining the
phenomenon. For example, work of Paley and Wiener in the
In short, the ugly and bizarre objekthas thesmallerFourier €arly 1930's and of Plancherel and Polya in the mid 1930's
coefficients. Another way of putting this is that an extremelgoncerned norm equivalence in the more general case when the
delicate pattern in the phases of the coefficients, rather tH@ints of sampling were not equispaced, and obtained methods
the size of the coefficients, control the regularity of th&iving equivalence for alL? norms,p >0
function. The fact that special “conditions” on the coefficients, 1/p
unrelated to their size, are needed to impose regularity may {1
help to explain the term “unconditional” and the preference [ llee ) = <§ zk: |f(tk)|p> (12.2)
for unconditional structure.
provided the pointg;. are approximately equispaced at density
1/Q.
The results that the harmonic analysts obtained can be
We now describe a variety of tools that were developedterpreted as saying that the geometric model of the sampling
in harmonic analysis over the years in order to understatiteorem has a very wide range of validity. For this geometric
norm equivalence problems, and some of the norm equivalemaedel, we define a collection of “cells},, namely, intervals
problems that were solved. of length1/€2 centered at the sampling poirits and construct

XIl. HARMONIC ANALYSIS AND NORM EQUIVALENCE
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the piecewise-constant objeft= %, f(tx)17 (t). The norm DefiningV (t,y) = 2v/2x-y-(8/3y)U(t,y), this formula says
equivalence (12.2) says, in fact, that

© d
11|y = N1 F1l 2o oy (12.3) /R|f<t>|2dt= /R / VP d @26)

for a wide range ofp. . o .
This pattern—continuous representation, discretization, ge’\clf—)W the objectV’(#,y) is itself an integral transform

metric model—has been of tremendous significance in har-
monic analysis. Vit,y) = /Qy(“)f(t —u)du
B. Continuous Time-Scale Representations where the kernel),(u) = 2v/2r - y - (8/dy)P,(u) results

8om differentiating the Poisson kernel. This gives a method

relationships between Fourier series and harmonic functi8f1ass'gn"?g' to a_funct|(2)n of a single rgal variaple, a fl_Jr_wctlon
theory were discovered, which showed that valuable inform@t WO variables, in anl.” norm-preserving way. In addition,
tion about a functiony defined on the circld” or the linelr IS association is invertible since, formally,

can be garnered from its harmonic extension into the interior _ _ 1 oo dy

of the circle, respectively the upper half plane; in other words, f(t) = lim U(t,¢') = lim on / V(@y)?
by viewing f as the boundary values of a harmonic function ! 1 oo ! d e ;
UJ. This theory also benefits from an interplay with complex = —/ V(t7y)_y

analysis, since a harmonic functidn is the real part of an 2v2x Jo v

analytic functiont” = U +:U. The imaginary partl/ iS ynen f is a “nice” function. In the 1930’s, Littlewood and
called the conjugate function df. The harmonic function paiey working again in the closely related setting of functions
U and the associated analytic functiéhgive much important yefined on the circle, found a way to obtain information on
information about/. We want to point out how capturing thiSihe 1» norms of a function defined on the circle, from an
information on/ through the function#/(-, ) ultimately leads - 5,5 priate analysis of its values inside the circle. This is now
to favorable decompositions of into fundamental building |, qerstood as implying thdt contains not just information
blocks called “atoms.” These decompositions can be viewed 8yt theZ,2 norm as in (12.6), but also Qb norms,p # 2.

a precursor to wavelet decompositions. For expository reas@fistining 92(t) = (JS° [V (t,9) 2 (dy /)2, Littlewood—Paley
we streamline the story and follow [89, Chs. Ill, IV], [43, Chtheory in its modern formulation says that

1], and [45]. Letf be any “reasonable” function on the line.

It has a harmonic extensidn into the upper half plane given 1 flre =< |lg2]| e (22.7)

by the Poisson integral

At the beginning of this century, a number of interestin

for 1<p<oo. The equivalence (12.7) breaks down when
Ulty) = / Py(w)f(t —uydu,  y>0, (12.4) p — 1. (We shall not discuss the other problem pgint oo

R here since these>-spaces are not separable and therefore do
where P,(t) = 7~ 'y/(y* + t°) is the Poisson kemel. Thisnot have the series representations we seek.) To understand
associates to a functiorf of one variable the harmonicthe reason for this breakdown one needs to examine the
functionU of two variables, where the argumeragain ranges conjugate functionl/ of I/ mentioned above. It enjoys the
over the line and; ranges over the positive reals. The physicalgme properties of/ provided 1 < p < oc. It has boundary
interpretation of this integral is thﬁtls the bOUndary value of values f‘ and the functionf (Ca"ed the Conjugate function
[ 'andU(t,y) is what can be sensed at some “depfhEach of f) is also in L?(IR). But the story takes a turn for the
of the fUnCtionSU(',y) is |nf|n|te|y differentiable. Whenever worse Whenp = 1: for a functionf c Ll(IR), its Conjugate
f e L’(R), 1 < p < oo, the equal-depth sectionl$(-,y)  function f need not be ir.! (IR). The theory of the real Hardy
converge tof asy — 0 and, therefore, the norms converge agpaces4 is a way to repair the situation and better understand
well: [|U(, y)|lz» — ||f||z»- We shall see next another waythe norm equivalences (12.7). A functighis said to be in
to capturef| f||» through the functiod/(-, ). Hardy in 1914 eq) g7, 1 < p < oo, if and only if both £ and its conjugate
developed an identity in the closely related setting where ofighction f are inL?; the norm of f in H? is the sum of the
has a function defined on the unit circle, and one uses the norms of f and f. Replacing||f||z» by ||f||z» on the left
harmonic extension into the interior of the unit disk [53]; hgjde of (12.7), we obtain equivalences with absolute constants
noticed a way to recover the norm of the boundary values fromat hold even forp = 1. In summary, the spaceH? are
the norm of the values on the interior of the disk. By conformg| natyral replacement fdt? when discussing representations
mapping and some simple identities based on Green’s theorgiid norm equivalences.
this is recognized today as equivalent to the statement that ing modern parlance, the objedt would be called an
the setting (12.4) th&.” norm of the “boundary valuesf(t) instance ofcontinuous wavelet transfornhis terminology
can be recovered from the behavior of the whole functiqas ysed for the first time in the 1980's by Grossmann and

Ult,y) Morlet [52], who proposed the study of the integral transform
9 2
2 — _
[ =sa [[| vt

ydydt.  (12.5) W f(a.b) = [ () dt (12.8)
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where into atoms obeying various size, oscillation, and support
constraints. Since then “atomic decomposition” has come
— |q—1/2 _ . o .
bap(t) = lal »((t~b)/a) to mean a decomposition of a functioh into a discrete
andy is a so-called “wavelet,” which must be chosen to Obe?}.lperposition of nonrigidly specified pieces, where the pieces

an admissibility condition for convenience, we shall require®bey various analytic constraints (size, support, smoothness,
here a special form of this condition moments) determined by a space of interest, with the size
o properties of those pieces providing the characterization of
o :/ |Z/;(£)|2|£|71 de¢ :/ |Z/;(£)|2|£|71 de. (129) the norm of the function [16], [29], [42], [43]
0 oo The continuous wavelet transform gives a natural tool to
Here b is a location parameter and is a scale parameter build atomic decompositions for various spaces. Actually,
and the transform map# into a time-scale domain. (Under éthe tool predates the wavelet transform, since already in the

. ) o ... 1960's Caldebn [9] established a general decomposition, a
different terminology, a transform and admissibility condition . . g I
esolution of identity operator” which in wavelet terms can

of the same type can also be found in [2].) The wavel i .
) o L . be written
transform with respect to an admissible wavelet is invertible

o> OO da
10 = [[ Wit taate) % a (12.10) L]y bbb = 1o
The goal is not just to write the identity operator in a more
and also an isometry complicated form; by decomposing the integration domain
da using a partition into disjoint sets, one obtains a family
I1£1172 :/ |Wf(a,b)|2a—2 db. (12.11) of nontrivial operators, corresponding to different time-scale

regions, which sum to the identity operator.

. . L I ici ie. [ | of th
One sees by simple comparison of terms that the ch0|]%e et now I denote adyadic interva) i.e., an interval of the

: Lo tmI=1;;=1[k/27,(k+1)/2/) with j andk integers, and
t) = t) yields V(t,y) = W{(a,b) under the calibration Js . - o !
Z}(z)u a%g ):);) We trfu;yg);ain a (r?e’w) interpretation B the let () denote a time-scal@, a)-rectangle sitting “abovel

function @, has “scale”y and so we can interpret (¢, y) R(I)=1x (2797t 277].
as providing an association of the objeftwith a certain ) o ) )
“time-scale” portrait. The collectionZ of all dyadic intervals/ is obtained as the

The continuous wavelet transform is highly redundant, 6@/€ index; runs through the integers (both positive and
the particular instanc& shows: it is harmonic in the uppern€dative) and the position indéxruns through the integers as
half-plane. Insights into the redundancy of the continuoy¥e!l- The corresponding collectiof of all rectanglesri(1)

wavelet transform are provided (for example) in [23]. Suppodgms & disjoint cover of the wholga,b) plane; compare
we associate to the poirfb, ) the rectangle Fig. 4. If we now take the Calden reproducing formula and

partition the range of integration using this family of rectangles
pla,b) = [b—a,b+ a] X [a/2,24] we have formally thatfd = ¥; A;, where

then the information “neafb, a)” in the wavelet transform is Arf = // Ty s
weakly related to information neéd’, «’) if the corresponding R G g2

rectangles are well-separated. Here Ay is an operator formally associating fothat “piece”

coming from time-scale regio®&(!). In fact, it makes sense
to call A;f a time-scale atom [43]. The regioR(7) of
the wavelet transform, owing to the redundancy properties,
As pointed out earlier, it is natural to replace the studypnstitutes in some sense a minimal coherent piece of the
of the spaced.” with that of the spacedi”; in particular, ayelet transform. The corresponding atom summarizes the
we avoid certain unsatisfactory aspects Iof, which does contributions of this coherent region to the reconstruction, and
not have any unconditional basis, and which behaves qui{gs properties one would consider natural for such a summary.
unlike its logically neighboring spacds’ for p > 1. The norm ¢ 4 is supported if—1, 1], thenA; £ will be supported irg- I,
equivalence (12.7), which does not work jat= 1, is then the interval with same center dsbut three times its width.
replaced by Also, if ¥ is smooth and admissible thety f will be smooth,
oscillating only as much as required to be supported id.
For example, iff is m-times differentiable, and the wavelet
valid for all 1 < p < . ¥ is chosen appropriately,
In the late 1960's and early 1970’s, one of the most | 4.,
successful areas of research in harmonic analysis concern?Jd%(A,f)(t)‘ < CW) - |I|—m+1/2 Nfllewin (12.12)
H' and associated spaces. At that time, the concept of “atomi
decomposition” arose, the key point was the discovery and we cannot expect a better dependence of the properties
Fefferman that one can characterize membership in the spatean atom onf in general. So the formulg = >; A;f
H*! precisely by the properties of its atomic decompositiodecomposeg into a countable sequence of time-scale atoms.

C. Atomic Decomposition

Al < []g2ll e
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Fig. 4. A tiling of the time-scale plane by rectangles.

This analysis into atoms is informative about the propertiésan atoms. Unfortunately, while it gives an unconditional
of f; for example, suppose that “is built from many large basis for L2, it does not give an unconditional basis for
atoms at fine scales” then from (12.12) cannot be very most of the spaces where Littlewood—Paley theory applies;
smooth. As shown in [43], one can express a variety tfie discontinuities in thé; are problematic.

function space norms in terms of the size properties of theCarleson’s attempt at ‘repairing the Haar basis’ stimulated
atoms; or, more properly, of the continuous wavelet transfor8tromberg (1982), who succeeded in constructing an orthog-
associated to the “cellsR(T). For example, if our measure ofonal unconditional basis foH? spaces withO<p < 1.

the “size” of the atomA; f is the “energy” of the “associatedIn effect, he showed how, for any < 1, to construct a

time-scale cell” function ¥ so that the functions;(t) = 2//2)(29t — k)
1/2 were orthogonal and constituted an unconditional basisffar

si(f) = // W f(a,b)2(da/a?) db Today we would call such & a wavelet; in fact, Stromberg's
R(I) 1 is a spline wavelet—a piecewise polynomial—atdy)

constituted the first orthonormal wavelet basis with smooth

thenX; s7 = |[fI7:- elements. In [92], Stromberg testifies that at the time that he
developed this basis he was not aware of, or interested in,
applications outside of harmonic analysis. Stromberg’s work
was published in a conference proceedings volume and was

By the end of the 1970’s, atomic decomposition method®t widely noticed at the time.
gave a satisfactory understanding HP spaces; but in the In the mid-1980's, Yves Meyer and collaborators became
early 1980’s, the direction of research turned toward estalery interested in the continuous wavelet transform as de-
lishing a basis for these spaces. B. Maurey had shown Wgioped by Grossmann and Morlet. They first built frame
abstract analysis that an unconditional basigféfmust exist, expansions, which are more discrete than the continuous
and Carleson had shown a way to construct such a basis Wwavelet transform and more rigid than the atomic decompo-
in a sense. repairing the lack of smoothness of the Haar basifon. Then, Meyer developed a bandlimited functien-the

Let A(t) = 1j1/2,1)(t) — 1jp,1/2)(t) denote the Haar function; Meyer wavelet—which generated an orthonormal basis for
associate a scaled and translated versioh tf each dyadic L? having elements); which were infinitely differentiable
interval I =2-9[k, k, +1] according toh;(t) =2/2h(2/t—k). and decayed rapidly atoc. Lemaré and Meyer [64] then
This collection of functions makes a complete orthonormahowed that this offered an unconditional basis for a very wide
system forL2(R). In particular, f = X; (f,h;)h;. This is range of spaces: all the?-Sobolev,1 < p < oo, of all orders
similar in some ways to the atomic decomposition idea of the = 0, 1,2, ---; all the Holder H*, and more generally, all
last section—it is indexed by dyadic intervals and associate®asov spaces. Frazier and Jawerth have shown that the Meyer
decomposition to a family of dyadic intervals. However, it ibasis offers unconditional bases for all the spaces in the Triebel
better in other ways, since thie; are fixed functions rather scale; see [43].

D. Unconditional Basis
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E. Equivalent Norms Membership in the Bump Algebra thus requires that the

The solution of these norm-equivalence problems required SUM of the wavelet coefficients decay like an appropriate

the introduction of two new families of norms on sequence POWer of scale. Note, however, that some coefficients

space: the general picture is due to Frazier and Jawerth [42], could be large, at the expense of others being corre-
[43]. spondingly small in order to preserve the size of the

The first family is the (homogeneoulesov sequence  SUM-

norms With 6, a shorthand for the coefficiert; arising we can also give examples using the Triebel sequence norms.

from the dyadic interval = I, = [k/27,(k 4+ 1)/27), . .

e LP: Forl< p< oo, use an orthobasis built from, e.g., the
a/p\ /1 Meyer wavelets, and measure the norm of the wavelet
6] = [ S 2itert/2-1/ma <Z|9j,k|p> : coefficients by the Triebel sequence norm with =

e S & 0, ¢ = 2, andp precisely the same as thein L?.

* L?-Sobolev spaced’}": For1 < p < oo, use an orthobasis
built from, e.g., the Meyer wavelets, and measure the
norm of the wavelet coefficients by a superposition of
two Triebel sequence norms, one with= 0, ¢ = 2,
and p precisely the same as thein L?; the other with
o =m, g =2, andp precisely the same as thein L.

with an obvious modification if eithep or ¢ = ~c. These
norms first summarize the sizes of the coefficients at all
positionsk with a single scalg using ané? norm and then
summarize across scales, with an exponential weighting.

The second family involves the (homogeneous)ebel
sequence norm&\ith x; the indicator off = I},

1/q . .
. F. Norm Equivalence as a Sampling Theorem
Ol = 9i(at1/2) 16,19 . o
l ”fva <§1:( xi(#)161]) ’ The Besov and Triebel sequence norms have an initially
Le opaque appearance. A solid understanding of their structure

with an obvious modification i = oo and a special modifi- comes from a view of norm equivalence as establishing a

cation if g = oo (which we do not describe here; this has to desampling theorem for the upper half-plane, in a manner remi-

with the space BMO). These norms first summarize the sizeiscent of the Shannon sampling theorem and its elaborations

of the coefficients across scales, and then summarize acrdss1) and (12.2).

positions. Recall the Littlewood—Paley theory of the upper half plane
The reader should note that the sequence space norm expoé$ection XlI-A and the use of dyadic rectanglB$!/) built

sions have the unconditionality property: they only involve thtabove” dyadic intervals from Section XII-B. Partition the

sizes of the coefficients. If one shrinks the coefficients in sucipper half-plane according to the famifg(7) of rectangles.

a way that they become term-wise smaller in absolute valu&iyen a collection of wavelet coefficients = (6;), assign

then these norms must decrease. to rectangleR(/) the value|fr|. One obtains in this way a
We give some brief examples of norm equivalences usipgeudoV -function

these families. Recall the list of norm equivalence problems .

listed in Section XI. Our first two examples use the Besov Vit,y) = Z 011 r(n)(t,v)-

sequence norms. T

This is a kind of caricature of the Poisson integ¥alUsing

this function as if it were a true Poisson integral suggests to

calculate, forg < oo,

« (Homogeneous) blder Space™ (R): For0 <« <1, the
norm || f||z. is the smallest constardt so that

[f() = fE < Clt =]

- * 5 A Ya
To get an equivalent norm, use an orthobasis built from 9q(t) = A [Vt vl o .
(say) Meyer wavelets, and measure the norm of the
wavelet coefficients by the Besov norm with p = ¢ = As it turns out, the Triebel sequence nornpisciselya simple
oo. This reduces to a very simple expression, namely, continuum norm of the objeat,

1l _ = sup B2+ (12,19 16150, = llgall o

In short, the Triebel sequence norm expresses the geometric

In short, membership irC* requires that the wavelet . . -
coefficientsall decay like an appropriate power of theanalogy that the piecewise-constant objgctnay be treated

associated scaldd;| < C' . 2-i(o+1/2). as if it were a Poisson integral. Why is this reasonable’
Observe that the wavelet coefficieghtis preciselya sample

* Bump Algebra:Use an orthobasis built from the Meyeryt he continuous wavelet transform with respect to the wavelet
wavelets, and measure the norm of the wavelet Coe%'generating the orthobasis;

cients by the Besov norm with = 1,p = ¢ = 1. This

reduces to a very simple expression, namely, Or = (f, 1) = (Wyf) (279 k279).
16l = > 1651277 (12.14) The sampling point i$a;, b, ), wherea; = 277 b, = k/27;
’ I these are the coordinates of the lower left corner of the
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rectangleR(I;x). In the « = 0 case, we have This is a body in infinite-dimensional space; defined as it is
. h h by quadratic constraints, we call it an ellipsoid. Owing to the
Vit,y) = Z (W (277, k27 LR, 0t )- exact norm equivalence properties (11.3), (11.4), the axes of
ik symmetry of the ellipsoid are precisely the sinusdidg).

That is, V' is a pseudo-continuous wavelet transform, gotten SOMething similar occurs in the nonclassical cases. Con-
by replacing the true continuous wavelet transform on eagiflér. for example, the &ider norm equivalence (12.13). This

cell by a cell-wise constant function with the same value #2YS that, up to an equivalent re-norming, thidder class is
the lower left corner of each cell. a kind of hyperrectangle in infinite-dimensional space. This

The equivalence of the trué&? norm with the Triebel hyperrectangle has axes of symmetry; the direction_s of these
sequence norm of the wavelet coefficients expresses the &S are given by the members of the wavelet basis.
that the piecewise-constant functi®f built from time-scale _ €onsider now the Bump Algebra norm equivalence (12.14).
samples of¥’ f has a norm—defined on the whole time-scal&NiS Says that, up to an equivalent re-norming, the Bump

plane—which is equivalent t& f. Indeed, define a norm on Algebra is a kind of octahedron in infinite-dimensional space.
the time-scale plane by ' This octahedron has axes of symmetry, and these are again

given by the members of the wavelet basis.
o o dy r/a L/p So theunconditional basis propertyneans that thdasis
WUllz,, = / </ |U(t,y)|q?> dt functions serve as axes of symmetoy the corresponding
Teo MO i function ball. This is analogous to the existence of axes of
summarizing first across scales and then across positions. $¥e1metry for an ellipsoid, but is more general: it applies in
have the identity|g, ||, =||V||r,.,. The equivalence of norms the case of function balls which are not ellipsoidal, i.e., not
[1f]re =< ||9(f)||f2 , can be broken into the following stagesdefined by quadratic constraints.
’ There is another way to put this that might also be useful.
Al =NV Iz, . The axes of orthosymmetry of an ellipsoid can be derived as
eigenfunctions of the quadratic form defining the ellipsoid.
The axes of orthosymmetry solve the problem of “rotating
WVlz,. < [IWfllr, . the space” into a frame where the quadratic form becomes
diagonal. In the more general setting, where the norm balls
are not ellipsoidal, we can say that an unconditional basis
solves the problem of “rotating the space” into a frame where
[|W fllr, ., < ||V’||Tp12, the norm, although not involving a quadratic functional, is

. . _“diagonalized.”
This is a sampling theorem for the upper half-plane, showing

that an objectV f and its piecewise-constant approximationy |y g st ORTHOBASIS FORNONLINEAR APPROXIMATION
V' have equivalent norms. It is exactly analogous to the . ) _ o
equivalence (12.3) that we discussed in the context of the!he unconditional basis property has important implications

Shannon sampling theorem. Similar interpretations can [ Schemes of nonlinear approximation which use the best
given for the Besov sequence norm peeciselya simple n-terms in an orthonormal basis. In effect, the unconditional

which follows from Littlewood—Paley theory,

which says that the “Poisson wavela®;, and some other
nice wavelet) obtain equivalent information, and finally

continuum norm of the objedt. In the casep, g < oo basis of a clasg” will _be, in a certain a_symptotic sense, the
. best orthonormal basis fatr-term approximation of members
oo oo a/p dy /1 of the associated function baff. We highlight these results

10]]eo . = / </ IVt wl dt) — | and refer the reader to [26] and [30] for more details on

nonlinear approximation.
The difference is that the Besov norm involves first a summa-
rization in positiont and then a summarization in scalethis A. n-Term Approximations: Linear and Nonlinear

is the opposite order from the Triebel case. Suppose one is equipped with an orthobaGig), and

that one wishes to approximate a functignusing n-term
XIIl. N ORM EQUIVALENCE AND AXES OF ORTHOSYMMETRY  expansions

There is a striking geometric significance to the uncondi- n
tional basis property. f o Pafi (o), (k) = aitr,.

Consider a classical example using the exact norm equiv- i=1
alence properties (11.3) and (11.4) from Fourier analysi§.the f; are fixed—for example as the first-basis ele-
Suppose we consider the cla$k;,(y) consisting of all ments in the assumed ordering—this is a problem of linear

functions f obeying approximation, which can be solved (owing to the assumed
Wl < orthogonality of theg,) by takinga, = (f, ¢i.). Supposing
20 that the(k;: ¢ = 1,2, ---) is an enumeration of the integers, the
with approximation error in such an orthogonal systemjs ,, a?,

which means that the error is small if the important coefficients

2 J— 2 (m))2 ) : . I
”f”Wz,o Az + 1171 occur in the leading-terms rather than in tail of the sequence.
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Fig. 5. Two objects, and performance of best@nd firstn. approximations in both Fourier and wavelet bases, and linear and nonlinear approxima-
tion numbers (14.2).

Such linear schemes of approximation seem very natufabt-n-termsin a fixed ordering; compare Fig. 5. Equivalently,
when the orthobasis is either the classical Fourier basis or elge consider the ordering; = k() defined by coefficient
a classical orthogonal polynomial basis, and we think in ternasnplitudes
of the “first n-terms” as the # lowest frequencies.” Indeed,
several results on harmonic analysis of smooth functions 4%,
promote the expectation that the coefficieds ¢,) decay !
with increasing frequency indeX. It therefore seems naturaland define
in such a setting to adopt once and for all the standard ordering
k; = i, to expect that the; decay withé, or in other words, n
that the important terms in the expansion occur at the early Qn(f; (o) = Zaid)kj(f)
indices in the sequence. There are many examples in both i=1
practical and theoretical approximation theory showing the
essential validity of this type of linear approximation. where againa; = (f,$w:(s)). This operator at first glance

In general, orthobases besides the classical Fourier/orthegems linear, because the functional§f) derive from inner
onal polynomial sets (and close relatives) cannot be expecigdducts off with basis functionsp,-; however, in fact it is
to display such a fixed one-dimensional ordering of coefficienbnlinear, because the functionat,s(f) depend onyf.
amplitudes. For example, the wavelet basis has two indicesThis nonlinear approximation operator conforms in the
one for scale and one for position, and it can easily happen thast possible fashion with the idea that thenost-important
the “important terms” in an expansion cluster at coefficientoefficients should appear in the approximation, while the less
corresponding to the same position but at many differeimhportant coefficients should not. It is also quantitatively better
scales. This happens, for example, when we consider than any fixed linear approximation operator built from the
coefficients of a function with punctuated smoothness, i.e.basis (¢;)
function which is piecewise-smooth away from discontinuities.

Since, in general, the position of such singularities varies from If = Qu(f; (¢ 12 = min ||f — Pa(f; (dn), (k)| 12

one function to the next, in such settings, one cannot expect the (ks)

“n-most important coefficients” to occur in indices chosen in

a fixed nonadaptive fashion. It makes more sense to consitecause the square of the left-hand sidEjs ,, {f, ¢k;(f)>2,
approximation schemes usingterm approximations where which by the rearrangement relation (14.1) is not larger than
the n-included terms are thbiggestn-termsrather then the any sumy; .. .. (f, ¢ )?.

2 larg| 2 -+ 2 |axy | 2 lagy, | = - (14.1)
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B. Best Orthobasis for-Term Approximation to obtain asymptotic results. Thus for function bafg™(v)

In general, it is not possible to say much interesting abogfined by quadratic constraints on the function andits

the error inn-term approximation for a fixed functioi. We derivative, we have

therefore consider the approximation for a function cl#ss 4 (WJ*(v))

WhICh is a ball{ f: ||f||F' <~} of a normed (or quasinormed) = d,,(FOURIER W (7))

linear spacel’ of functions. Given such a clasg and an

orthogonal basi®, the error of best-term approximation is

defined by saying that either the standard Fourier basis, or else a smooth
(B, F) = su Q. (f; ' 14.2 periodic wavelet basis, is a kind of best orthobasis for such a

( ) fcp 17 = Qnlfs D2 (14.2) class. For the function balls BY) consisting of functions on
the interval with bounded variatiog~y

< d,, (PERIODIC WAVELETS, W*(¥)) < n™™, n — o0

We call the sequendgl,(F))22 ; the Stechkin numbers of,
honoring the work of Russian mathematician S. B. Stechkin, d*(BV(v)) x d,(HAAR, BV (7)) xn !

who worked with a similar quantity in the Fourier basis. o ) )
The Stechkin numbers give a measure of the quality 8P that the Haar basis is a kind of best orthobasis for such a

representation ofF from the basisd. If d,,(F,®) is small, class. For c_omparison, a smooth wavelet bagis is also_ a kind

this means that every element&fis well-approximated by-  Of best basisd, (WAVELETS, BV(v)) = n™*, while a Fourier

terms chosen from the basis, with the possibility that differeR@SiS i not:d, (FOURIER BV(v)) < n~HE # 0(7?_1)' A

sets ofn-terms are needed for differerfte . summary is given in the tabl_e at the bott(_)m qf this page.
Different orthonormal bases can have very different approx- R€sults on rates of nonlinear approximation by wavelet

imation characteristics for a given function class. Suppose We"€S for an interesting range Besov classes were obtained

consider the class BW) of all functions onT = [0,2x), M [29]-

with bounded variation<1 as in [31]. For the Fourier sys- _

tem, d,,(BV(1), FOURIER) =< n~%/2, owing to the fact that C. Geometry of Best Orthobasis

BV contains objects with discontinuities, and sinusoids have There is a nice geometric picture which underlies these

difficulty representing such discontinuities, while for the Haafesults about best orthobases; essentially,orthobasis un-

wavelet systemi, (BV(1), HAAR) < n !, intuitively because conditional for a function classF is asymptotically a best

the operatoK?,, in the Haar expansion can easily adapt to therthobasis for that classThus the extensive work of harmonic

presence of discontinuities by including terms in the expansianalysts to build unconditional bases—a demanding enterprise

at fine scales in the vicinity of such singularities and using onfyhose significance was largely closed to outsiders for many

, n — 00

terms at coarse scales far away from singularities. years—can be seen as an effort which, when successful, has as
Consider now the problem of finding a best orthonormal byproduct the construction of best orthobases for nonlinear
basis—i.e., of solving approximation.

To see this essential point requires one extra element. Let
0 < p <2, and note especially that we include the possibility
t that0<p<1. Let [f|) denote thekth element in the de-
reasing rearrangement of magnitudes of entrie®, iso that
l(1y = |8](2) = ---. The weaké’-norm is

43(F) = inf d (@, F).

We call d¥ (F) the nonlinear orthowidth ofF; this is no
one of the usual definitions of nonlinear widths (see [77
but is well suited for our purposes. This width seeks
basis, in some sense, ideally adaptedApgetting the best |
guarantee of performance in approximation of memberg of
by the use ofn adaptively chosen terms. As it turns out, i
seems out of reach to solve this problem exactly in ma
interesting cases; and any solution might be very complex,
example, depending delicately on the choicenofHowever,

it is possible, for ballsF arising from classe$” which have

|0]|wer = sup kl/p|9|(k).
k>0

Yhis is really only a quasinorm; it does not in general obey

Ne triangle inequality. This norm is of interest because of the
y it expresses the rate of approximation of opera€gysn

a given basis. Indeed, ff = 2/(2m + 1) then

an unconditional orthobasis and sufficient additional structure, ||f — Q. f|l2 < C1(P)||0]|wer - (n + 1), n > 0.
Name r Best Basis i (F) =< o (F)
L2-Sobolev wan Fourier or Wavelet | n=™ m
LP-Sobolev wr Wavelet n=" m
Holder ce Wavelet n=® o
Bump Algebra Bl | Wavelet n~! 1
Bounded Variation | BV Haar n~! 1
Segal Algebra S Wilson n~1/2 1/2
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The result has a converse A. State of the Art
. Consider the problem of determining the Kolmogorev
sup (n+ )" |f = Qufll2 =2 Co(p)[|0]]wer- entropy for a function ballF; this gives the minimal number
"= of bits needed to describe an arbitrary membefFadb within
accuracye.

A given function f can be approximated bg, with error
<Ci(n + 1)~™ for all n if ||8]|we < 1; it can only be
approximated with erro<Co(n + 1)=™ if ||0]]wer < 1. A
given function ballF(~) has functionsf all of which can be

This is a hard problem, with very few sharp results. Un-
derscoring the difficulty of obtaining results in this area is the
commentary of V. M. Tikhomirov in Kolmogorov'§elected

approximated by, (f; (¢x)) at error<C - (n+1)"™ for all Works [94]
n and for someC fixed independently of if and only if for The question of finding the exact value of thentropy
some C’ ... is a very difficult one.... Besides [one specific
example]. .. the author of this commentary knows no
sup{||0(N)|wer: f € F(y)}<C. meaningful examples of infinite-dimensional compact
sets for which the problem of-entropy... is solved
Suppose we have a balf arising from a class” with an exactly.

unconditional basig¢,) and we consider using a possibly This summarizes the state of work in 1992, more than 35
different orthobasig ) to do the nonlinear approximation:years after the initial concept was coined by Kolmogorov. In
Qn(+; (1)) The coefficient sequence = ((¢x, f)) ObeYS fact outside of the case alluded to by Tikhomiroveantropy

w = Uf wherel is an orthogonal transformation 6f. Define of Lipschitz functions measured B metric, and the case
then © = {0(f): f € F(v)}. The rate of convergence ofhich has emerged since then, of smooth functions%morm
nonlinear approximation with respect to the new system is mentioned above, there are no asymptotically exact results.

constrained by the relation The typical state of the art for research in this area is that
within usual scales of function classes having finitely many
sup {[|w(f)llwer: f € F(2)} derivatives, one gets order bounds: finite positive constants
= sup{||UO(/)||wer: f € F(7)} Ao and A;, and an exponent: depending onF but not on
> sup {||U8)|wer: 0 € O € < ¢p, such that

3 _ _ Ape™ V™ < H(F) < Aie™¥™ ¢ —0.  (15.1)
By the unconditional basis property, there is an orthosym-

metric set®® and constantsi and B such thatA - ©° ¢ Such order bounds display some paradigmatic features of
©® C B - 6° Hence, up to homothetic multiple®® is the state of the art of-entropy research. First, such a result
orthosymmetric. doestie down the precise rate involved in the growth of the

Now the fact that®° is orthosymmetric means that it is innet (i.e., H. = O(¢~*/™) ase — 0). Second, itdoes not
some sense “optimally positioned” about its axes; hence ittie down the precise constants involved in the decay (i.e.,
intuitive that rotating byl/ cannot improve its position. Thus Ag # A1). Third, the result (and its proof) does not directly

[31] exhibit information about the properties of an optineatet.
For a review of the theory see [66].
sup {||U8]|wer: 0 € ©°) > ¢(p) sup {||6]]wer: 6 € O°). In this section we consider only the rough asymptotics of

the e-entropy via the critical exponent

We'conclude thgt if(¢r) is an orthog_;onal unc_on.dit'ional o*(F) = sup {o: Ho(F) = O(e /).
basis for £ and if d,(F(v);(¢r)) < n~™, then it is im-

possible thatd* (F(v)) < C -n~™ for any m’>m. In- If H(F) =e ¥/ thena*(F) = a; but it is also true that if
deed, if it were so, then we would have some basis) Hc(F) =log(e~!)?-¢~/* thena*(F) = . We should think
achievingd,, (F(7); (¢x)) < € -n~", which would imply of «* as capturing only crude aspects of the asymptotics of
that also the unconditional basis achievBgF(v); (¢x)) < e-entropy, since it ignores “log terms” and related phenomena.
¢’ -n~™',m’ >m, contradicting the assumption that merelyVe will show how to code in a way which achieves the rough
d.(F(7): (¢r)) < n~™. In a sense, up to a constant factoRSymptotic behavior.

improvement, the axes of symmetry make a best orthogonal

basis. B. Achieving the Exponent efEntropy

Suppose we have a function bafi(~) of a classF with
unconditional basig¢x), and that, in addition,F(~) has a
certain tail compactness for ti& norm. In particular, suppose

We now show that nonlinear approximation in an orthogongat in some fixed arrangemefit;) of coordinates
unconditional basis of a clads can be used, quite generally,

to obtain asymptotically, as— 0, the optimal degree of data sup If = Pu(f; (¢n), ki)l|7- < C-n7"  (15.2)
compression for a corresponding b&l This completes the €7
development of the last few sections. for some > 0.

XV. e-ENTROPY OF FUNCTIONAL CLASSES
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We use nonlinear approximation in the ba&ig) to con- Let#n = min;<;<, |a;|. By the unconditionality of the norm
struct a binary coder giving astdescription for all members ||6]|, for every sequence of sigriis-;: 1 < ¢ < n) the object
f of F(v). The idea: for an appropriate squargd-distortion ¢ =%; +; néx: belongs taF. Hence we have constructed an
levele2, there is am = n(e, F) so that the best-term approx- orthogonal hypercub®l of dimension» and sidelengthy with
imation @,.(f; (¢x)) achieves an approximation errete/2. H C F. Consider now: a random vertex of the hypercubé
We then approximately represefitby digitally encoding the Representing this vertex with? error <n!/2.5-v is, owing to
approximant. A reasonable way to do this is to concatenate orthogonality of the hypercube, the same as representing
a lossless binary code for the positioks, - --,k* of the the sequence of signs wit error <n'/2.~. Fix v < 1; now
important coefficients with a lossy binary code for quantizeakse rate-distortion theory to obtain the rate-distortion curve for
valuesa; of the coefficients:;, taking care that the coefficientsa binary discrete memoryless source with mean-squared error
are encoded with an accuracy enabling accurate reconstrucfimnsingle-letter difference distortion measure. Ndaithful
of the approximant code for this source can use essentially fewer thdn) - n
bits, whereR(v) > 0. Hence setting = n/? -7 - v, we have

[1Qn(f;5 (1)) — ;did)k; 2 < €/2. (15.3) H.(F) > R(7) -n. (15.6)

Such a two-part code will produce a decodable binary reprsince, for sufficiently large”, de, (F, (¢n) < AJ2-n™,

sentation having distortiore for every element ofF(~). we find that
Here is a very crude procedure for choosing the quantization
of the coefficients: there are coefficients to be encoded; the  [|@n(fa; ($1)) — Qcn(fn; (Pr))llL2 = A/2- 27"

coefficients can all be encoded with accurgcysing a total o o .
of log (4/8)n bits. If we choose’ so thatné® = ¢?/4, then Wr"Chl implies thaty*(C' — 1)n > [A4/2- 27", or g >
we achieve (15.3). C’'n~/?. In other words,

To encode the positional information giving the locations
kf,---, kX of the coefficients used in the approximant, use
(15.2). This implies that there ar€ and » so that, with \We then conclude from (15.6) that
K, = Cn¥, for a givenn, we can ignore coefficients outside
the rangel < k < K,,. Hence, the positions can be encoded o (F) = m.
using at mostz - log, (Cn”) bits.

This gives a total codelength ¢ + Cslog(n)) - n bits. D. Order Asymptotics of-Entropy
Now if d;,(F) < n~™ thenn(e) x ¢~!/™. Hence, assuming  The notion of achieving the exponent of thentropy, while
only thatdy, () < »~" and that’" is minimally tail compact, |eading to very general results, is less precise than we would
we conclude that like. We now know that for a wide variety of classes of smooth

o (F)<m (15.4) functions, not only can the exponent be achieved, but also the

) o ) correct order asymptotics (15.1) can be obtained by coders
and that a nonlinear approximation-based coder achieves fhiged on scalar quantization of the coefficients in a wavelet

e > constn/271P = const n .

upper bound. basis, followed by appropriate positional coding [14], [7], [15].
' An important ingredient of nonlinear approximation results
C. Lower Bound viak(D) is the ability of the selectedh-terms to occur at variable

The upper bound realized through nonlinear approximati@®sitions in the expansion. However, provision for the selected
is sharp, as shown by the following argument [32]. Assunierms to occur incompletely arbitraryarrangements of time-
that F is a ball in a function class that admits(¢;) Scale positions is actually not necessary, and we can obtain
as an unconditional basis. The unconditional basis propekiy savings by exploiting the more limited range of possible
means, roughly speaking, tha& contains many very-high- positional combinations. A second factor is that most of the
dimensional hypercubes of appreciable sidelength. As weefficients occurring in the quantized approximant involve
will see, R(D) theory tells us precisely how many bits areémall integer multiples of the quantum, and it can be known
required toD-faithfully represent objects in such hypercubei advance that this is typically so at finer scales; provision for
chosen on averag®bviously, one cannot faithfully representhe “big coefficients” to occur in completely arbitrary orders
every objecin such hypercubes with fewer than the indicate@mong the significant ones is also not necessary. Consequently,
number of bits. there are further bit savings available there as well. By

Suppose now that (15.2) holds. We shall assume also tB#ploiting these two facts, one can develop coders which are
m is the best possible exponent; more precisely, we assumighin constant factors of the-entropy. We will explain this
that, for someA, B >0 further in Section XVII below.

A-n™ < d(F, (fr) < B-n~™. (15.5)
XVI. COMPARISON TO TRADITIONAL TRANSFORM CODING
For fixed n, take f,, such that it attains the nonlinear

width The results of the last few section offer an interesting

comparison with traditional ideas of transform coding theory,
[|fr — Qn(fn; (D)2 = di(F, (Pr))- for example theR(D) theory of Section II.
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Fig. 6. A comparison of “diagonalization” problems. (a) Karhunereue finds axes of symmetry of concentration ellipsoid. (b) Unconditional basis
finds axes of symmetry of function class.

A. Nonlinear Approximation as Transform Coding to calibrateq with n via
Effectively, the above results on nonlinear approximation n(q) = Zl[lek(f)|>(1}'
can be interpreted as describing a very simple transform coding &

scheme. Accordingly, the results show th@nsform coding
in an unconditional basis for a clags provides a near-optimal
coding scheme for corresponding function baHs

After this calibration the two coders are roughly equivalent:
they select approximants with precisely the same nonzero co-
. . : .., efficients. The nonzero coefficients might be quantized slightly
Consider the fpllowmg very simple transform coding 'de‘%iﬁerently (¢ # &), but using a few simple estimates deriving

It has the following steps. from the assumptiod’ (F(~)) < n~™, one can see that they

* We assume that we are given a certgirantization step give comparable performance both in bits used and distortion
g and a certairbandlimit . achieved.

e Given an f to be compressed, we obtain the first
coeffici?nts off according to the systeix) : (ax: 1 < B, Comparison of Diagonalization Problems
k < K). . . .
* We then apply simple scalar quantization to those Coe>]2_| N)?Q’/V V\{eha:]e 'gﬁ p03|rt]|}§)nDto compafrg the_ theilor_l)fhoefRSle)ctlons
ficients, with stepsizey. —XV with the ShannonZ(D) story of Section II. (D)

story of Section Il says: to optimally compress a Gaussian sto-
ay = sgn (ay) - q - Floor (Jax|/q). chastic process, transform the data into the Karhuneivé.o
domain, and then quantize. Theentropy story of Sections

* Anticipating that the vast majority of thes¢ quantized XI-XV says: to (roughly) optimally compress a function ball

coe_ﬁ‘lments will turn QUt to be zero, we appl_y_run-lengtl}__’ transform into the unconditional basis, and quantize.
coding to the quantized coefficients to efficiently code In short, an orthogonal unconditional basis of a normed

long runs of zeros. . . .
o ) ] _space plays the same role for function classes as the eigenbasis
Thls is a very simple coding procedure, perhaps even naiyg.the covariance plays for stochastic processes.
But it turns out that We have pointed out that an unconditional basis furnishes
« if we apply this procedure to functions in the b#l(~); a generalization to nonquadratic forms of the concept of
- if this ball arises from a function class for which (¢x)  diagonalization of quadratic form. Thedktier class has, after

is an unconditional basis; _ ~ an equivalent renorming, the shape of a hyperrectangle. The
« if this ball obeys the m_lnlmal tail compactness conditioBump Algebra has, after an equivalent renorming, the shape
(15.2), and the Stechkin numbers obey (15.5); of an octahedron. A wavelet basis serves as axes of symmetry

« if the coding parameters are appropriately calibrated; of these balls, just as an eigenbasis of a quadratic form serves
the coder can achieve-descriptions of everyf € F(y) as axes of symmetry of the corresponding ellipsoid.
achieving the rough asymptotics for thentropy as described For Gaussian random vectors, there is the concept of “el-
by o*(F). lipsoid of concentration;” this is an ellipsoidal solid which

Essentially, the idea is that the behavior of the “nonline@ontains the bulk of the realizations of the Gaussian distribu-
approximation” coder of Section XV can be realized by thgon. In effect, the Gaussiaf{ D) coding procedure identifies
“scalar quantization” coder, when calibrated with the righhe problem of coding with one of transforming into the basis
parameters. Indeed, it is obvious that the paraméfeof serving as axes of symmetry of the concentration ellipsoid. In
the scalar quantizer and the paramekgr of the nonlinear comparison, our interpretation of the Kolmogoré-theory
approximation coder play the same role; to calibrate the tvi®that one should transform into the basis serving as axes of
coders they should simply be made equal. It then seems natgsahmetry of the function ball, as illustrated by Fig. 6.
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Class Process Basis
L? Ellipsoid Gaussian Eigenbasis
non-L? Body non-Gaussian Unconditional Orthobasjs

In effect, the function balls that we can describe by wavelet A powerful strategy in harmonic analysis is to construct
bases through norm equivalence, are often nonellipsoidal @RBP’s according to “stopping time rules” which describe when
in such cases do not correspond to the concentration ellipsdidstop refining. This gives rise to data structures that are highly
of Gaussian phenomena. There is in some sense an analadgpted to the underlying objects driving the construction.
here to finding arappropriate orthogonal transform for non- One then obtains analytic information about the objects of
Gaussian dataln the table at the top of this page, we recorthterest by combining information about the structure of the
some aspects of this analogy without taking space to fulbpnstructed partition and the rule which generated it. In short,
explain it. See also [34]. recursive dyadic partitioning is a flexible general strategy for

The article [27] explored using functional balls as modelsertain kinds of delicate nonlinear analysis.
for real image data. The “Gaussian model” of data is an The RDP concept allows a useful decoration of the time-
ellipsoid; but empirical work shows that, within the Besowscale plane, based on the family of time-scale rectangles
and related scales, the nonellipsoidal cases provide a bette?¥fif) which we introduced in Section XII-B. If we think of
to real image data. So the “better” diagonalization theory majl the intervals visited in the sequential construction of an
well be the nontraditional one. RDP starting from the roof, as intervals where something
“important is happening” and the ones not visited, i.e., those
occurring at finer scales than intervals in the partition, as ones
where “not much is happening,” we thereby obtain an adaptive

The effort of the harmonic analysis community to develogibeling of the time-scale plane by “importance.”
unconditional orthogonal bases can now be seen to havé{ere is a simple example, useful below. Suppose we con-
relevance to data compression and transform coding. struct an RDP using the rule “stop when no subinterval

Unconditional bases exist only in very special settings, ard the current interval has a wavelet coefficidf| > ¢;”
the harmonic analysis community has developed many othré corresponding labeling of the time-scale plane shows a
interesting structures over the years—structures which go fatopping time region” outside of which all intervals are
beyond the concept of orthogonal basis. unimportant, i.e., are associated to wavelet coefficietis

We expect these broader notions of representation alsoFer later use, we call this stopping-time region trexeditary
have significant data compression implications. In this sectiatbver of the set of wavelet coefficients larger thait includes
we discuss representations based on the notion of dyadic tegonly the cellsR(1) associated to “big” wavelet coefficients,

XVIl. BEYOND ORTHOGONAL BASES TREES

and some data compression interpretations. but also the ancestors of those cells. The typical appearance
of such a region, in analyzing an object with discontinuities,
A. Recursive Dyadic Partitioning is that of a region with very fine “tendrils” reaching down

to fine scales in the vicinity of the discontinuities; the visual
appearance can be quite striking; see Fig. 7.
Often, as in the Whitney and CaldeZygmund con-
« Starting Rule:{/,} itself is an RDP. structions, one runs the “stopping time” construction only
« Dyadic Refinementif {I;,---,I,,} is an RDP, and once, but there are occasions where running it repeatedly is
I; = I;; U, is a partition of the dyadic inter- ?mportant. D_oing so will produce a sequence of neste(_j sets;
val I; into its left and right dyadic subintervals, therin the hereditary cover example, one can see that running the
(L, I; 1,1;1,1;9,1;41, -+, I} is a new RDP, stopping time argument for = 2=* will give a sequence of
) . _regions; outside of thé&th one, no coefficient can be larger
RDP’s are also naturally associated to binary trees; if Wggn o—%
label the root node of a binary tree by and let the two | the 1950's and early 1960's, Carleson studied problems
children of the node correspond to the two dyadic SUb'nterV%Finterpolation in the upper half-plane. In this problem, we

of Ip, we associate with each RDP a tree whose terminglynose we are given prescribed valugsat an irregular set
nodes are subintervals comprising members of the partitiqy. points (£, vx) in the upper half-plane
o Yk

This correspondence allows us to speak of methods exploiting
RDP’s as “tree-structured methods.” Ultr, yr) = ug, k=12,

Recursive dyadic partitioning has played an important role
throughout the subject of harmonic analysis, as one can seel we ask whether there is a bounded functforon the
from many examples in [89] and [45]. It is associated withne whose Poisson integrdl obeys the stated conditions.
ideas like the Whitney decomposition of the 1930’s, and th@wing to the connection with wavelet transforms, this is much
Caldebn—-Zygmund Lemma in the 1950's. like asking whether, from a given scattered collection of data

A recursive dyadic partitioRDP) of a dyadic interval
is any partition reachable by applying two rules.
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about the wavelet transforrfby, a;,) we can reconstruct the This type of result works in a broader scale of settings
underlying function. Carleson developed complete answelan just thel”-Sobolev balls. A modern understanding of
to this problem, through a method now called the “Cororthe underlying nonlinear approximation properties of this
Construction,” based on running stopping time estimates Igpproach is developed in [28].

peatedly. Recently P. Jones [57] discussed a few far-reachinghis approximation scheme is highly adaptive, with the
applications of this idea in various branches of analysigartition adapting spatially to the structure of the underlying
reaChing the conclusion that it . is one of the most malleable Object. The ab|||ty of the scheme to refine more aggressive|y in
tools available.” certain parts of the domain than in others is actually necessary
B. Trees and Data Compression to obtaining optimal order bounds for certain choices of the

, . . index p defining the Sobolev norm; if we usé? norm
In the 1960's, Birman and Solomjak [8] showed how Sor measuring approximation error, the adaptive refinement

use recursive dyadic partitions to develop coders aCh'eV'Egnecessary whenever< 2. Such spatially inhomogeneous
the correct order of Kolmogorov-entropy for LP-Sobolev ' . .
refinement allows to use fewer bits to code in areas of

function classes. ) o .
unremarkable behavior and more bits in areas of rapid change.

The Birman—Solomjak procedure starts from a functjon RDP ideas can also be used to develop wavelet-domain
of interest, and constructs a partition based on a paramieter ' u velop wav '

Beginning with /, the whole domain of interest, the stoppinggansgorm cogersbtk;at SCITIGVS the 9E“mal ordesntropy
rule refines the dyadic interval only if approximating the P0unds oveL’-Sobolev ballgv, (v), with m+1/2-1/p> 0.

function £ on I by a polynomial of degree: gives an error Rec_all that the argument of Section XV1 shovyed thgt any
exceedings. Call the resulting RDP &-partition. The coding ¢0ding of such a space must requireCe ™ /™ bits, while
method is to construct @-partition, where the parameter? VEry crude transform coding was offered that .requwed order
5 is chosen to give a certain desired global accuracy Wi (¢™")e'/™ bits. We are claiming that RDP ideas can be
approximation, and to represent the underlying function Msed to eliminate the log term in this estimate [14]. In effect,
digitizing the approximating polynomials associated with th@e are saying that by exploiting trees, we can make the cost
§-partition. By analyzing the number of pieces of an Of coding the position of the big wavelet coefficients at worst
partition, and the total approximation error ofégpartition, comparable to the-entropy.

and by studying the required number of bits to code for the The key point about a function ib”-Sobolev space is that,
approximating polynomials on each individual, they showeoh average, the coefficients , decay with decreasing scale
that their method gave optimal order bounds on the numidt’. Indeed, from theg-function representation described in
of bits required to:-approximate a function in &"(v) ball. ~Section XII-D, we can see that the wavelet coefficients of
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such a function obey, at levgl nonzero quantizer output occurs aK j;, where

g=C .2 /21

At scales intermediate between the two special values,
Jo <j<ji, there are possibly “sparse levels” which can con-
In the rangem +1/2—1/p > 0, this inequality controls rather tain wavelet coefficients exceeding in a subset of the
powerfully the number and position of nonzero coefficients ipositions. However, the maximum possible numbgof such
a scalar quantization of the wavelet coefficients. Using it inonzero quantizer outputs at levekhins out rapidly, in fact
conjunction with RDP ideas allows to code the position of theéxponentially, with increasing — jo. Indeed, we must have
nonzero wavelet coefficients with far fewer bits than we have
employed in the run-length coding ideas of Section XV.

After running a scalar quantizer on the wavelet coeff"Lj—md fromn.
cients, we are left with a scattered collection of nonzero
guantizer outputs; these correspond to coefficients exceeding n; < Const - 9o, 9—B(i—jo)
the quantizer interval,. Now form the hereditary cover of
the set of all coefficients exceediggusing the stopping time with 3> 0. i
argument described in Section XVII-A. The coder will consist N short, there are about’™ possible “big” coefficients
of two pieces: a lossless code describing this stopping tirfilk the level nearesf,, but the maximal number of nonzero
region (also the positions within the region containing nonzef®efficients decays exponentially fast at scales away figm
guantizer outputs), and a linear array giving the quantiz8t an obvious probabilistic interpretation of these facts the
outputs associated with nonzero cells in the region. “expected distance” of a nonzero coefficient belfais O(1).

This coder allows the exact same reconstruction that wagNow obviously, in forming the hereditary cover of the
employed using the much cruder coder of Section XV. weositions of nonzero quantizer outputs, we will not obtain a
now turn to estimates of the number of bits required. set larger than the set we would get by including all positions

A stopping-time region can be easily coded by recording th@rough leveljo, and also including all “tendrils” reaching
bits of the individual refine/don’t refine decisions; we shoulOWn to positions of the nonzeros at finer scales than this.
record also the presence/absence of a “big” coefficient at eddhe expected number of cells in a tendril (1) and the
nonterminal cell in the region, which involves a second arrdj#mber of tendrils ig)(2”2). Therefore, the maximal number
of bits. of cells in theg-big region is not more thaw2/(?), The

The number of bits required to code for a stopping-tim@&aximal number of nonzeros is of size2/o(®).
region is, of course, proportional to the number of cells in the These bounds imply the required estimates on the number
region itself. We will use in a moment the inequality (17.19f bits to code for positional information.
to argue that in a certain maximal sense the number of cellsOne needs to spend a little care also on the encoding of
in a hereditary cover is not essentially larger than the origindie coefficients themselves. A naive procedure would spend
number of entries generating the cover. It will follow from thig? (log (¢™")) on each ofO (¢=/™) coefficients, leading to a
that the number of bits required to code the positions of ti§gude estimate requirintpg (<=*)e~/™ bits, now to encode
nonzero quantizer outputs is in a maximal sense proportiof§ coefficient information. By making use of the nested sets
to the number of nonzero quantizer outputs. This, in turn, idn the hereditary cover described earlier, one can structure the
the desired estimate; the cruder approach of Section XV gaigefficients to be retained into layers, in which the label of
only the estimate, log (n), wheren is the number of quantizer the layer indicates how many (or few) bits need to be spent
outputs. For a careful spelling-out of the kind of argument w@? coefficients in that layer. One can estimate, similarly to
are about to give, see [33, Lemma 10.3]. what was done above, that the layers with large coefficients,

We now estimate the maximal number of cells in th&r which more bits are required, contain few elements; layers
stopping-time region, making some remarks about the kind &@rresponding to much smaller coefficients have many more
control exerted by (17.1) on the arrangement and sizes of g¢lements, but because their label already restricted their size,
wavelet coefficients; compare Fig. 7. The wavelet coefficientée spend fewer bits on them to specify them with the same
of functions in anL?-Sobolev ball associated tf, have a precision. Accounting for the cost in bits of this procedure, one
“Last Full Level” Jy: this is the finest levej for which one finds that encoding the coefficients also requieg.—*/™)
can find somef in the ball such that for alf C I, of length bits only.

2-4, the associated wavelet coefficient exceedn absolute ~ This encoding strategy can be modified so as to be pro-
value. By (17.1), any suchi obeysj < jo, wherej, is the gressive and universal. By adding one bit for each existing

1/p
<Z|9j,k|f’> < Const - 2770m+1/2=1/p) - (17.1)
k

n}/Pq <C. 9—i(a+1/2-1/p)

Lo) < 270 we get

real solution of cogfﬁcieqt_ anq new bits to specify the new coefficients and
their position, it becomes progressive. Each additional stream
200/Pg = ¢ . g dolat1/2-1/p) of bits serves to add new detail to the existing approximation

in a nonredundant way. The encoding is also universal in the
The wavelet coefficients also have a “First Empty LevelSense that the encoder does not need to know the character-
J1, i.e., a coarsest level beyond which all wavelet coefficienistics of the classF: the encoder is defined once and for all
are bounded above in absolute value pyBy (17.1), any and enjoys the property that each claSswhich has® as
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an unconditional basis will be optimally encoded with respecertain respects analogous I&-Sobolev and related Besov
to Kolmogorov entropy. It is interesting to note that practicalnd Triebel scales; in this brief survey, we are unable to
wavelet-based encoders, such as those introduced for imadescribe them in detail.
in [86] and [82], carry out a similar procedure.

B. Continuous Gabor Transform

XVIIl. B EYOND TIME SCALE: TIME FREQUENCY Even older than the wavelet transform is the continuous
r—wavelets or treed3abor transform (CGT). The Gabor transform can be written

The analysis methods described so fal
in a form analogous to (12.8) and (12.10)

were Time-Scalemethods. These methods associate, to

simple function of time only, an object extending over both (G, w) ={f: Guw) (18.1)
time and scale, and they extract analytic information from that
two-variable object. f(t) = // (G W) Guw dudw.  (18.2)

An important complement to this is the family dime-Fre- . . .
quencymethods. Broadly speaking, these methods try to ideH€r€9u. Can be a Gabor function as introduced above; it can
tify the different frequencies present in an object at time aI;o be a Gapor—llke function generated from a non-Gaussian

In a sense, time-scale methods are useful for compressffgdow function g. _ X ) i
objects which display punctuated smoothness—e.g., whichf Poth g (_amd_ its Fourier transfor_r@; are “concentrated
are typically smooth away from singularities. Time-frequencg"ound0 (which is true for the Gaussian), then (18.1) captures
methods work for oscillatory objects where the frequendjformation in f that is localized in time (around) and
content changes gradually in time. frequengy (arouqdu); (18.2) wrlte.sf as a superposition of

One thinks of time-scale methods as more naturally adapf@the different time-frequency pieces. , _
to image data, while time-frequency methods seem more suited atemity of this transform is not uniquely assignable; it may

for acoustic phenomena. For some viewpoints on mathematif§l Viewed as a special case in the theory of square-integrable
time-frequency analysis, see [21], [23], and [39] group representations, a branch of abstract harmonic analysis

In this section we very briefly cover time-frequency ideas?}: it may be viewed as a special case of decomposition into

to illustrate some of the potential of harmonic analysis in thgnonical coherent states, a branch of mathematical physics
setting. [59]. In the signal analysis literature it is generally called the

CGT to honor Gabor [44], and that appellation is very fitting on

this occasion. Gabor proposed a “theory of communication”

in 1946, two years before Shannon’s work, that introduced
Let g(t) = V2 - 7/2 . ¢ **/2 be a Gaussian window. Letthe concept of logons—information carrying “cells—highly

Guw(t) = exp{—iwt}g(t — «) denote theGabor function relevant to the present occasion, and to Shannon’s sampling

localized near time: and frequency. The family of all Gabor theory.

functions provides a range of oscillatory behavior associatedThe information inG is highly redundant. For instance,

with a range of different intervals in time. These could eithef f (v, w) captures what happens jinot only at timet = «,

be called “time-frequency atoms” or, more provocativeljsut alsot nearw and similarly in frequency. The degree to

A. Modulation Spaces

“musical notes.” which this “spreading” occurs is determined by the choice of
Let S denote the collection of all functiong(t) which can the window functiong: if ¢ is very narrowly concentrated
be decomposed as aroundt = 0, then the sensitivity of7 f (., w) to the behavior
oo of f(¢) is concentrated to the vicinity ef= «. The Heisenberg
f= Z BiGu, o, (£) Uncertainty Principle links the concentration givith that of
= the Fourier transforng. If we define

whereY; |a;| < oc. Let || f||s denote the smallest valdg; |a;| A(g) = / t2]g)?(t) dt
occurring in any such decomposition. This provides a normed
linear space of functions, which Feichtinger calls tBegal L
algebra [40]. For a given amplitude4, the norm constraint A(g) = / W29} (w) dw
[|f]ls <~ controls the number of “musical notes” of strength
A which f can containzn - A < . So such a norm controls thenA;-A,, > /7 ||g||7., so that ag becomes more concen-
in a way the complexity of the harmonic structure fof trated, g becomes less so, implying that the frequency sen-
A special feature of the above class is that there is sitivity of Gf(u,w) becomes more diffuse when we improve
unique way to obtain a decomposition of the desired typte time localization of. Formalizing this, lep,(«, w) denote
and no procedure is specified for doing so. As with our earlidre rectangle of dimensions,;(g) x A, (¢) centered afu,w).
analyses, it would seem natural to seek a basis for this claSbg choice ofg influences the shape of the region (more
one could even ask for an unconditional basis. narrow in time, but elongated in frequency if we chogse
This Segal algebra is an instance of Feichtinger's generadry concentrated aroun@); the area of the cell is bounded
family modulation spaced/;’ (R) and we could more gen- below by the Uncertainty Principle. We think of each point
erally ask for unconditional bases for any of these spac&sf(u,w) as measuring properties of a “cell” in the time-
The modulation spaces offer an interesting scale of spacedreaquency domain, indicating the region that is “captured” in
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Gf(u,w). For example, ifpy(u,w) andpy(w’,w’) are disjoint, D. Orthobasis
we think of the corresponding f values as measuring disjoint

! Naturally, one expects to obtain not just an atomic decom-
properties of f.

position, but actually an orthobasis. In fact, Gabor believed
that one could do so. One approach is to search for a window

C. Atomic Decomposition g, not necessarily the Gaussian, and a precise choicg, of
Together, (18.1) and (18.2) can be written as and 6., so that the sampleé?f(uk,wl) at eqwspaced points
ur = kéwy = £6,, provide an exact norm equivalence
// <'ag'ur,w>g'ur,w dudw = 1d, (18.3) Z |Gf(uk,wl)|2 = / |f(t)|2 dt.
k€
another resolution of the identity operator. While this is indeed possible, a famous result due to Balian

For parameters,, ¢, to be chosen, define equispaced timand Low shows that it is not possible to achieve orthogonality
points w;, = k6; and frequency points), = ¢6,,. Consider using a g which is nicely concentrated in both time and

now a family of time-frequency rectangles frequency; to get an orthogonal basis from Gabor functions
requires to havel.(g) - A, (g) = +o0. Hence the geometric
Rio = {(u,w): Ju—up| < 6:/2; |w—we| < 6./2} picture of localized contributions from rectangular regions is

not compatible with an orthogonal decomposition. A related

Evidently, these rectangles are disjoint and tile the tim&ffect is that the resulting Gabor orthogonal basis would not
frequency plane. provide an unconditional bases for a wide range of modulation
Proceeding purely formally, we can partition the integraiPaces. In fact, for certain modulation spaces, nonlinear ap-
in the resolution of the identity to get a decompositibh= Proximation in such a basis would not behave optimally; e.g.,

Y1.¢ Ar¢ with individual operators we have examples of function balls in modulation spaces
T whered? (F) < d,(F, GABOR ORTHOBASIS).
A way out was discovered with the construction of so-called
Ape = //(-,grz,,,m-)gu,w du dw. Wilson orthobases forl.? [22]. These are Gabor-like bases,
Ry ¢ built using a special smooth windoy(t) of rapid decay, and
consist of basis elements, , wherek is a position index
This provides formally an atomic decomposition and/ is a frequency indext runs through the integers, aid
runs through the nonnegative integers; the two parameters vary
f= ZA’“/f' (18.4) independently, except thdt = 0 is allowed in conjunction
" only with evenk. In detail
In order to justify this approach, we would have to justify V2g(t — k2r) cos <§t>7 k=0,42,44,- -
treating a rectanglé?, , as a single coherent region of the £=1,23 -
time-frequency plane. Heuristically, this coherence will app%k (8) = g(t — k27), k=042 44,
if &; is smaller than the spread,(g) and if 4, is smaller ' /=0
than the spread,(g) gf §. In short, if the rectanglé?; ; has V3g(t — k2) sin <£t>, k= 41,43,
the geometry of a Heisenberg cell, or smaller, then the above
approach makes logical sense. \ £=1,2,3,---.

One application for atomic decomposition would be t@wing to the presence of the cosine and sine terms, as
characterize membership in the Segal AlgeBra-eichtinger opposed to complex exponentials, thtg  are not truly
has proved that, witly a sufficiently nice window, like the Gabor functions; but they can be viewed as superpositions
Gaussian, if we pické; and é., sufficiently small, atomic of certain pairs of Gabor functions. The Gabor functions
decomposition allows to measure the normsfLet sx; = uysed in those pairs do not fill out the vertices of a single
g, . |G(u,w)| measure the size of the atory..f; then a rectangular lattice, but instead they use a subset of the vertices
function f is in S if and only if X sx; <oo. Moreover, of two distinct lattices. Hence the information in the Wilson
|[Ak,ef|ls < Const - s, so the seriesf = Y Awef coefficients derives indeed from sampling of the CGT with

represents a decomposition ffinto elements of5, and special generating window(t), only the samples must be
taken on two interleaved Cartesian grids; and the samples must
1flls =< Z Skl be combined in pairs in order to create the Wilson coefficients,
k.l as shown in Fig. 8.

The resulting orthobasis has good analytic properties.
So we have an equivalent norm for tBenorm. This in some Grochenig and Walnut [51] have proved that it offers an
sense justifies the Gabor “logon” picture, as it shows that amconditional basis for all the modulation spaces; in particular,
object can really be represented in terms of elementary pieciéss an unconditional basis fof. As a result, Wilson bases
those pieces being associated with rectangular time-frequeeg best orthobases for nonlinear approximation; for function
cells, and each piece uniformly ifi. balls F arising from a wide range of modulation spaces
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Frequency

Fig. 8. The sampling set associated with the Wilson basis. Sampling points linked by solid lines are combined by addition. Sampling points linked by
dashed lines are combined by subtraction.

di (F) =< d,(F, WILSON ORTHOBASIS). See also [50]. There pieces at different scales; one cannot from the monoscale
are related data compression implications, although to statealysis infer the size of the minimdl' appearing in such

them requires some technicalities, for example, imposing andecomposition. Moreover, we are unaware of any effective
the objects to be compressed some additional decay conditiomsans of decomposing members of this class in a way which

in both the time and frequency domains. achieves a near-optimal representation, i.e., a representation
(18.5) with near-minimalC.
E. Adaptive Time-Frequency Decompositions One might imagine performing a kind of “multiscale Gabor

)ansform”—with parameters time, scale, and frequency, and

Wilson bases merely scratch the surface of what one hope %IEIOE'ng ;n atom'c Idecomposlltlon or even a ?aﬁ.'s pased
achieve in the time-frequency domain. The essential limitati@y @ three- Imensiona rectang_u ar partitioning o this time-
of these tools is that they aneonoresolutionThey derive from Scale-frequency domain, but this cannot work without exira

a uniform rectangular sampling of time and frequency whidifecautions [95]. The kind of sampling theorem and norm

is suitable for some phenomena: but it is easy to come up wiftivalence result one might hope for has been proven im-
possible in that setting.

models requiring highly nonuniform approaches. - A . ) )
Define the multiscale Gabor dictionary, consisting of Gabor AN Important organizational tool in getting an understanding
functions with an additional scale parameter of the situation is to consider dyadic Heisenberg cells only,
and to understand the decompositions of time and frequency
Giuwo)(t) = exp {iw(t — u)}exp {(t — u)?/67}. which can be based upon them. These dyadic Heisenberg cells
H(j, k1, ko) are of side277 x 27 and volumel, with lower
For 0<p < 1, consider the class/5” of objectsf having a |eft corner atk; /27, k,27 in the time-frequency plane. The

In a sense, CGT analysis/Gabor Atomic Decompositio

multiscale decomposition difficulty of the time-frequency-scale decomposition problem
B 18.5 is expressed by the fact that each Heisenberg cell overlaps
f= Z @i G(u,w:,6) (18.5) with infinitely many others, corresponding to different aspect

ratios at the same location. This means that even in a natural
with 3 |a;[? < CP. In a sense, this class is obtained by condiscretization of the underlying parameter space, there are a
bining features of the Bump Algebra—multiscale decomposivide range of multiscale Gabor functions interacting with each
tion—and the Segal Algebra—time-frequency decompositiopther at each pointu, w) of the time-frequency domain.
This innocent-looking combination of features responds to This kind of dyadic structuring has been basic to the
a simple urge for common-sense generalization, but it getechitecture of some key results in classical analysis, namely,
us immediately into mathematical hot water. Indeed, orgarleson’s proof of the a.e. convergence of Fourier series,
cannot use a simple monoscale atomic decomposition based also Fefferman’s alternate proof of the Carleson theorem.
on the CGT to effectively decompose such #ninto its Both of those proofs were based on dyadic decomposition
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of time and frequency, and the driving idea in those proofee broader situation of adaptively chosen orthobases, the de-
is to find ingenious ways to effectively combine estimatesompositions one could obtain would rival an optimal decom-
from all different Heisenberg cells despite the rather massipesition of the form (18.5), i.e., a decomposition with minimal
degree of overlap present in the family of all these cell§!. A corollary to this is that we really know of no effective
For example, Fefferman introduced a tree-ordering of dyaditethod for data compression for this clatbgre is no effective
Heisenberg cells, and was able to get effective estimates ttgnsform coding for multiscale time-frequency classes
constructing many partitions of the time-frequency domain
according to the properties of the Fourier partial sums he was ~ XIX. COMPUTATIONAL HARMONIC ANALYSIS
studying, obtaining a decomposition of the sums into operatorsThe theoretical constructions of harmonic analysts corre-
associated with special time-frequency regions called tregpond with practical signal-processing tools to a remarkable
and combining estimates across trees into forests. degree. The ideas which are so useful in the functional view-
Inspired by their success, one might imagine that thepgint, where one is analyzing functiorf§¢) of a continuous
is some way to untangle all the overlap in the dyadigrgument, correspond to completely analogous tools for the
Heisenberg cells and develop an effective multiscalghalysis of discrete-time signail$n). Moreover, the tools can
time-frequency analysis. The goal would be to somehoe realized as fast algorithms, so that on signals of lefgth
organize the information coming from dyadic Heisenbengey take ordetV or N log (V) operations to complete. Thus
cells to iteratively extract from this time-scale-frequencgorresponding to the theoretical developments traced above,
space various “layers” of information. As we have put ifve have today fast wavelet transforms, fast Gabor transforms,
this program is, of course, rather vague. fast tree approximation algorithms, and even fast algorithms
More concrete is the idea afonuniform tiling of the time- for adapted multiscale time-frequency analysis.
frequency plane Instead of decomposing the plane by a The correspondence between theoretical harmonic analysis
sequence of disjoint congruent rectangles, one uses rectanglg$ effective signal processing algorithms has its roots in two
of various shapes and sizes, where the cells have been chaggistific facts which imply a rather exact connection between

specially to adapt to the underlying features of the object beifige functional viewpoint of this paper and the digital viewpoint

considered.

The idea of adaptive tiling is quite natural in connection
with the problem of multiscale time-frequency decomposition,
though it originally arose in other areas of analysis. Feffer-
man’s survey [41] gives examples of this idea in action in the
study of partial differential equations, where an adaptive time-
frequency tiling is used to decompose operator kernels for the
purpose of estimating eigenvalues.

Here is how one might expect adaptive tiling to work in a
multiscale time-frequency setting. Suppose that an object had
a representation (18.5) where the fine-scale atoms occurred
at particular time locations well separated from the coarse-
scale atoms. Then one could imagine constructing a time-
frequency tiling that had homologous structure: rectangles
with finer time scales where the underlying atoms in the
optimal decomposition needed to be fine-scale; rectangles
with coarser time-scale elsewhere. The idea requires more
thought than it might at first seem, since the rectangles cannot
be chosen freely; they must obey the Heisenberg constraint.
The dyadic Heisenberg system provides a constrained set of
building blocks which often can be fit together quite easily
to create rather inhomogeneous tilings. Also, the rectangles
must correspond rigorously to an analyzing tool: there must
be an underlying time-frequency analysis with a width that is
changing with spatial location. It would be especially nice if
one could do this in a way providing true orthogonality.

In any event, it is clear that an appropriate multiscale time-
frequency analysis in the setting @f5? or related classes
cannot be constructed within a single orthobasis. At the very
least, one would expect to consider large families of or-

thobases, and select from such a family an individual basis befclo

adapted for each individual object of interest. However, even

there it is quite unlikely that one could obtain true characteri- ¢
zation of a space likd/S?; i.e., it is unlikely that even within

common in signal processing.

« Fast Fourier TransformThe finite Fourier transform pro-

vides an orthogonal transform for discrete-time sequences
which, in a certain sense, matches perfectly with the
classical Fourier series for functions on the circle. For
example, on appropriate trigonometric polynomials, the
first N Fourier series coefficients are (after normaliza-
tion) precisely theN finite Fourier coefficients of the
digital signal obtained by sampling the trigonometric
polynomial. This fact provides a powerful tool to connect
concepts from the functional setting with the discrete-time
signal setting. The availability of fast algorithms has made
this correspondence a computationally effective matter. It
is an eerie coincidence that the most popular form of the
FFT algorithm prefers to operate on signals of dyadic
length; for connecting theoretical harmonic analysis with
the digital signal processing domain, the dyadic length is
also the most natural.

Sampling TheoreniThe classical Shannon sampling the-
orem for bandlimited functions on the line has a perfect
analog for digital signals obeying discrete-time bandlim-
iting relations. This is usually interpreted as saying that
one can simply subsample a data series and extract the
minimal nonredundant subset. A different way to put it
is that there is an orthonormal basis for the bandlimited
signals and that sampling provides a fast algorithm for
obtaining the coefficients of a signal in that basis.

There are, in addition, two particular tools for partitioning
signal domains which allow effective digital implementation
reaking a signal into time-scale or time-frequency pieces.

Smooth Orthonormal LocalizatiorSuppose one takes a
discrete-time signal of length/N and breaks it into two
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subsignals of lengtlV, corresponding to the first half and A key point is that one can cascade the above operations.
the second half. Now subject those two halves to furth€or example, if one can split a signal domain into two
processing, expanding each half into an orthonormal bagigces, then one can split it into four pieces, by applying

for digital signals of lengthV. In effect, one is expand- the

same type of operation again to each piece. In this

ing the original length2N signal into an orthonormal way, the dyadic structuring ideas that were so useful in
basis for length2N. The implicit basis functions may harmonic analysis—dyadic partitioning of time-scale and time-
not be well-behaved near the midpoint. For example, ffequency—correspond directly to dyadic structuring in the
the length NV basis is the finite Fourier basis, then theligital setting.

length 2V basis functions will be discontinuous at the We give a few examples of this, stressing the role of
segmentation point. This discontinuity can be avoided lypmbining elementary dyadic operations.

changing the original “splitting into two pieces” into a
more sophisticated partitioning operator based on a kind
of smooth orthonormal windowing. This involves treating
the data near the segmentation point specially, taking pairs
of values located equal distances from the segmentation
point and on opposite sides and, instead of simply putting
one value in one segment and the other value in the other
segment, one puts special pairs of linear combinations of
the two values in the two halves; see for example [71],
[72], and [3].
Subband Partitioning:Suppose we take a discrete-time
signal, transform it into the frequency domain, and break
the Fourier transform into two pieces, the high and low
frequencies. Now transform the pieces back into the time
domain. As the pieces are now bandlimited/bandpass,
they can be subsampled, creating two new vectors con-
sisting of the ‘high frequency’ and ‘low frequency’ op-
erations. The two new vectors are related to the original
signal by orthogonal transformation, so the process is in
some sense exact. Unfortunately, the brutal separation
into high and low frequencies has many undesirable
effects. One solution to this problem would have been to
apply smooth orthonormal localization in the frequency
domain. A different approach, with many advantages, is
based on the time domain method aifnjugate quadra-
ture filters

In this approach, one applies a special pair of digital
filters, high- and lowpass, to a digital signal of length
2N, and then subsamples each of the two results by a
factor two [88], [76], [97], [99]. The result is two signals
of length N, so that the original cardinality o2V is
preserved, and the filters are very specially chosetihe
transform can be made orthogonal. The key point is that
the filters can be short. The most elementary example is
to use a highpass filter with coefficients/v/2, —1/v/2)
and a lowpass filter with coefficients/v/2,1/+/2). The
shortness of this filter means that the operator does not
have the time-localization problems of the frequency-
domain algorithm, but unfortunately this filter pair will
not have very good frequency-domain selectivity. More
sophisticated filter pairs, with lengths2, have been de-
veloped; these are designed to maintain the orthogonality
and to impose additional conditions which ensure both
time- and frequency-domain localization.

This set of tools can lead to fast algorithms for digital
implementation of the central ideas in theoretical harmonic

analysis.

Fast Meyer Wavelet Transfornthe Meyer wavelet basis
for L2(R) was originally defined by its frequency-domain
properties, and so it is most natural to construct a digital
variant using the Fourier domain. The forward transform
algorithm goes as follows. Transform into the frequency
domain. Apply smooth orthonormal windowing, break-
ing up the frequency domain into subbands of pairs of
intervals of width2/—1 samples, located symmetrically
about zero frequency. Apply to each subband a Fourier
analysis (actually either a sine or cosine transform) of
length adapted to the length of the subband. The cost of
applying this algorithm is dominated by the initial passage
to the Frequency domain, which is ord@r N log (N)).

The inverse transform systematically reverses these op-
erations.

The point of the fast algorithm is, of course, that one
does not literally construct the basis functions, and one
does not literally take the inner product of the digital
signal with the basis function. This is all done implicitly.
However, it is easy enough to use the algorithm to display
the basis functions. When one does so, one sees that they
are trigonometric polynomials which are periodic and
effectively localized near the dyadic interval they should
be associated with.

« Mallat Algorithm: Improving in several respects on the

frequency-domain digital Meyer wavelet basis is a family
of orthonormal wavelet bases based on time-domain filter-
ing [69]. The central idea here is by now very well known:

it involves taking the signal, applying subband partition-
ing with specially chosen digital highpass and lowpass
filters, subsampling the two pieces by dyadic decimation,
and then recursively applying the same procedure on the
lowpass piece only. When the filters are appropriately
specified, the result is an orthonormal transform /én
space.

The resulting transform on digital signals takes only
order NV arithmetic operations, so it has a speed advantage
over the fast Meyer wavelet transform, which requires
order N log (V) operations. Although we do not describe
it here, there is an important modification of the filtering
operators at the ends of the sequence which allows the
wavelet basis functions to adapt to the boundary of the
signal, i.e., we avoid the periodization of the fast Meyer
transform [13]. Finally, the wavelet basis functions are
compactly supported, with basis elemeft; vanishing
in the time domain outside an interval homothetidjq.

This means that they have the correct structure to be
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called a wavelet transform. The support property aldéor the constructed transforms, if one views tivedigital
means that a small number of wavelet coefficients aamples as occurring at points/ N for 0 < n <N, and

a given scale are affected by singularities, or to put idkes individual digital basis elements corresponding to the
another way, the effect of a singularity is compresseédame” location and scale at different dyadVc appropriately
into a small number of coefficients. normalized and interpolated to create functions of a continuous
Fast Wilson Basis Transforris a digital version of the Variable, one obtains a sequence of functions which tends to
Wilson basis; the fast transform works as follows. Firs@. limit. Moreover, the limit must be a translate and dilate of a

one applies a smooth orthonormal partitioning to break §ngle smooth function of compact support. In short, the digital
the time domain into equal-length segments. (It is mo%tavelet transform is truly a digital realization of the theoretical
convenient if the segments have dyadic lengths.) Thé@velet transform. The norm equivalence statement of the
one applies Fourier analysis, in the form of a sine direvious paragraph is a way of mathematically completing this
cosine transform, to each segment. The whole algorithiwhdamental insight. In the last ten years, a large number of
is order N log (M), whereM is the length of a segment.interesting constructions of “appropriate finite-length filters”
The implicitly defined basis functions look like windowedhave appeared, which we cannot summarize here. For more
sinusoids with the same arrangement of sine and cos@gmplete information on the properties of wavelet transforms
terms as in the continuum Wilson basis. and the associated filters, see for example, [100] and [23].
The success in developing ways to translate theoretical

We should now stress that for the correspondence betw%
a theoretical harmonic analysis concept and a computatio
harmonic analysis tool, dyadic structuring operators should nsoa{
be performed in a cavalier fashion. For example, if one
going to cascade subband partitioning operations many timﬁﬁn
as in the Mallat algorithm, it is important that the underlyingilar
filters be rather specially chosen to be compatible with thés
repetitive cascade.

When this is done appropriately, one can arrive at digita
implementations that are not vague analogies of the corre
sponding theoretical concepts, but can actually be viewede
as “correct” digital realizations. As the reader expects by
now, the mathematical expression that one has a “correct”
realization is achieved by establishing a norm equivalence
result. For example, if in the Mallat algorithm one cascades the
subband partitioning operator using appropriate finite-length
digital filters, one can construct a discrete wavelet transform
for digital signals. This discrete transform is “correctly re-
lated” to a corresponding theoretical wavelet transform on
the continuum because of a norm equivalenceif(f) is
a function on the interval0,1], and if (f;) is a set of
digital wavelet coefficients for the digitally sampled object
(f(n/N)), then the appropriate Triebel and Besov norms of
the digital wavelet coefficients behave quite precisely like ,
the same norms of the corresponding initial segments of the
theoretical wavelet coefficien{®;) of the continuumy. This
is again a form of sampling theorem, showing that &n
equality of norms (which follows simply from orthogonality)
is accompanied by an equivalence in many other norms (which
follows from much more delicate facts about the construction).
A consequence, and of particular relevance for this paper, is
that under simple assumptions, one can use the digital wavelet
transform coefficients for nonlinear approximation and expect
the same bounds on approximation measures to applyce
digital wavelet-based transform coding of function classes
obeys the same types of estimates as theoretical wavelet-based
transform coding

m

elet transforms and Gabor transforms into computationally
Bffective methods naturally breeds the ambition to do the

e in other cases. Consider the dyadic Heisenberg cells

5t Section XVIII-E, and the resulting concept of nonuniform

g of the time-frequency plane. It turns out that for a

ge collection of nonuniform tilings, one can realize—in
computationally effective manner—a corresponding

orthonormal basis [18]; see Fig. 9.

Here are two examples:

Cosine PacketsTake a recursive dyadic partition of
the time interval into dyadic segments. Apply smooth
orthonormal partitioning to separate out the original sig-
nal into a collection of corresponding segments. Take
appropriate finite Fourier transforms of each segment.
The result is an orthogonal transform which is associated
with a specific tiling of the time-frequency domain. That
tiling has, for its projection on the time axis, simply the
original partition of the time domain; over the whole time-
frequency domain, it consists of columns whose widths
are defined by intervals of the time-partition; within
a column, the tiling simply involves congruent dyadic
Heisenberg cells with specified width.

Wavelet PacketsTake a recursive dyadic partition of the
frequency interval into dyadic segments. Apply subband
partitioning to separate out the original signal into a
collection of corresponding frequency bands. The result
is an orthogonal transform which costs at mes{N)
operations. It is associated with a specific tiling of the
time-frequency domain. That tiling has, for its projection
on the frequency axis, simply the original partition of
the frequency domain; over the whole time-frequency
domain, it consists of rows whose widths are defined
by intervals of the frequency-partition; within a row, the
tiling simply involves congruent dyadic Heisenberg cells
with specified height.

The “appropriate finite-length filters” referred to in the Do these bases correspond to “correct” digital implementa-
last paragraph are in fact arrived at by a delicate procdssn of the theoretical partitioning? While they are orthogonal,
of design. In [20], a collection of finite-length filters waswe are not aware of results showing that they obey a wide
constructed that gave orthonormal digital wavelet transformange of other norm equivalences. It would be interesting to



DONOHO et al. DATA COMPRESSION AND HARMONIC ANALYSIS 2471

(a) Cosine Packet Tiling: t =23/64 (b) Wavelet Packet Tiling: f =3/64

—
—_

Frequency
Frequency

0 Time 1 0 Time 1

(c) Cosine Packet Tiling: t =19/64 (d) Wavelet Packet Tiling: f =1/64

Frequency
Frequency

0 Time 1 0 Time 1

Fig. 9. Some time-frequency tilings corresponding to orthonormal bases.

know if they obeysufficiently strong equivalences to imply This is an example of a curious phenomenon commented
that transform coding in an adaptively constructed basis cam by Yves Meyer [73]: some of the really important ideas
provide near-optimal codinépr an interesting class of objects.of harmonic analysis have been discovered, in some cognate
At the very least, results of this kind would require detailedr approximate form, in a wide range of practical settings,
assumptions, allowing the partitioning to be inhomogeneotanging from signal processing to mathematical physics, to
in interesting ways and yet not very wild, and also supposimgpmputer-aided design. Often the basic tools are the same, but
that the details of window lengths in the smooth orthonormbhrmonic analysis imposes a different set of requirements on
windowing or the filter choice in the subband partitioning arthose tools.
chosen appropriately. To emphasize the relationship of the theory of this paper to
The time-frequency tiling ideas raise interesting possibilpractical coders, we briefly comment on some developments.
ties. In effect, the wavelet packet and cosine packet librariesDCT coding of the type used in JPEG is based on a
create large libraries of orthogonal bases, all of which hapartitioning of the image domain into blocks, followed by
fast algorithms. The Fourier and Wavelet bases are just th&T transform coding. The partitioning is done brutally, with
examples in this library; Gabor/Wilson-like bases providéhe obvious drawback of DCT coding, which is the blocking
other examples. These two collections have been studefiect at high compression ratios. Subband coding of images
by Coifman and Wickerhauser [17], who have shown thatas proposed in the early 1980’'s [98], [102]. Instead of
for certain “additive” objective functions the search throughsing rectangular windows as the DCT does, the subband
the library of all cosine packet or wavelet packet bases capproach effectively uses longer, smooth windows, and thus
be performed inO (N log(N)) operations. This search isachieves a smooth reconstruction even at low bit rates. Note
dependent on the function to be analyzed, so it is an instancgldt early subband coding schemes were trying to approximate
nonlinear approximation. In the case when this search is da#correlating transforms like the KLT, while avoiding some of

for compression purposes, an operational rate-distortion-bageg pitfalls of the DCT. Coding gains of filter banks were used
version was presented in [80]. as a performance measure. Underlying such investigations was
a Gaussian model for signals, or a Markov random field (MRF)

XX. PRACTICAL CODING model for images.
How do the ideas from harmonic analysis work mal ~ Among possible subband coding schemes for images, a
data? specific structure enjoyed particular popularity, namely, the

Actually, many of these ideas have been in use for sorigheme where the decomposition of the lower frequency band
time in the practical data compression community, thoudh iterated. This was due to several factors:
discovered independently and studied under other names. 1) lIts relationship with pyramid coding.
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2) The fact that most of the energy remains concentratgdyy
in the lowpass version.
3) Its computational efficiency and simplicity.

Of course, this computational structure is equivalent to th
discrete wavelet transform, and, as we have described, with I >
appropriately designed digital filters, it can be related to the
continuous wavelet series expansion. |

Because of the concentrated efforts on subband coding
schemes related to discrete wavelet transforms, interesting ad= |
vances were achieved leading to improved image compressian i
The key insight derived from thinking in scale-location terms, N
and realizing that edges caused an interesting clustering effect
across scales: the positions of “big” coefficients would remain I
localized in the various frequency bands, and could therefore -
be efficiently indexed using a linking across frequencies [68].

This idea was perfected by J. Shapiro into a data structure
called an embedded zero tree [86]. Together with a successive e

approximation quantization, this coder achieves high-quality,
successive approximation compression over a large range
of bit rates, outperforming JPEG at any given bit rate by
several decibels in signal-to-noise ratio. Many generalizations
of Shapiro’s algorithm have been proposed, and we will briefly
outline the basic scheme to indicate its relation to nonlinear
approximation in wavelet decompositions. / .
A key idea is that the significant wavelet coefficients are se
well-localized around points of discontinuity at small scales
(or high frequency), see Fig. 10(a). This is unlike local cosine
or DCT bases. Therefore, an edge of a given orientation

¥

will appear roughly as an edge in the respective orientation suee
subband, and this at all scales. Conversely, smooth areas will N g F
be nulled out in passbands, since the wavelet has typically (b)

several zero moments. Therefore, a conditional entropy COQ—%{. 10. Localization of the wavelet transform. (a) One-dimensional signal
can take advantage of this “dependence across scales.'wif discontinuity. (b) Two-dimensional signal and linking of scale-space
particular, the zero tree structure gathers regions of low eneRgjnts used in wavelet image coding (EZW and SPIHT).
across scales, by simply predicting that if a passband is zero
at a given scale, its four children at the next finer scale (and
similar orientation) are most likely to be zero as well (see Figddressing these largest coefficients is kept down by a smart
10(b)). This scheme can be iterated across scales. In sarnaditional entropy code. That is, the localization property of
sense, it is a generalization of the end of block symbol usedtire wavelet transform is used to perform efficient addressing
DCT coding. (Note that such a prediction across scales woultisingularities, while the polynomial reproduction property of
be fruitless in a Gaussian setting, because of independescaling functions allows a compact representation of smooth
of different bands.) Also, note that the actual values of ttsurfaces.
coefficients arenot predicted, but only the “insignificance” or How about the performance of this coder and its related
absence of energy; i.e., the idea is one of positional codirmpusins? In Fig. 3, we see that a substantial improvement is
Usually, the method is combined with successive approximashieved over JPEG (the actual coder is from [82]). However,
tion quantization, leading to an embedded bit stream, whdte basic behavior is the same, that is, at fine quantization,
successive approximation decoding is possible. An improvae find again the typicaD(R) ~ 272 slope predicted by
version, where larger blocks of samples are used together inlassical high rate-distortion theory. Instead, we would hope
technique called set partitioning, lead to the SPIHT algorithfor a decay related to the smoothness class. At low bit rate, a
[82] with improved performance and lower computationakecent analysis by Mallat and Falzon [70] shal#éR) ~ R~!
complexity. Other variations include context modeling in thby modeling the nonlinear approximation features of such a
various bands [65]. Comparing these ideas with the presevdvelet coder.
paper, we see a great commonality of approach to the use oThe next generation image coding standard, JPEG-2000, is
trees for positional coding of the “big” wavelet coefficients asonsidering schemes similar to what was outlined above. That
we have discussed in Section XVII-B. is, it has been proposed to exploit properties of the wavelet
At a more abstract level, such an approach to wavelet imaigansform and of the structure of wavelet coefficients across
coding consists in picking a subset of the largest coefficierdsales, together with state-of-the-art quantization (using, for
of the wavelet transform, and making sure that the cost ekample, trellis-coded quantizers) and adaptive entropy coders.
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In short, there are a variety of interesting parallels betwe& Stochastic versus Deterministic Viewpoints

practical coding work and the work in harmonic analysis. gyen if one accepts that pure mathematics can have unex-
We are aware of other areas where interesting comparisgisted outcomes of relevance to practical problems, it may
can be made, for example, in speech coding, but omit a fdlbey ynusual that analysier se—which concerns determin-

comparison of literatures for reasons of space. istic objects—could be connected with the compression of real
data, which concerns random objects. To symbolize this pos-
XXI. SUMMARY AND PROGNOSIS sibility, we make recourse to one of the great mathematicians

In composing this survey, we have been inspired by an & this century, A. N. Kolmogorov. V. M. Tikhomirov, in an
tractive mixture of ideas. To help the reader, we find it helpf@PPreciation of Kolmogorov, said [93]
to summarize these ideas, and to make them memorable by .. “our vast mathematical world” is itself divided

associating them with prominent figures of this century. into two parts, as into two kingdoms. Deterministic
phenomena are investigated in one part, and random
A. Pure Mathematics Disdaining Usefulness phenomena in the other.

To Kolmogorov fell the lot of being a trailblazer in
both kingdoms, a discoverer in their many unexplored
regions... he put forth a grandiose programme for a

G. H. Hardy is a good example for this position.
Mathematician’s Apologyhe gave a famous evaluation of his

life’s work: X !
simultaneous and parallel study of the complexity of
“I have never done anything ‘useful.” No discovery  deterministic phenomena and the uncertainty of random
of mine has made, or is likely to make, directly or phenomena, and the experience of practically all his
indirectly, for gOOd or for ill, the least difference to the creative b|ography was concentrated in this programme.
world.” From the beginning of this programme, the illusory

glature of setting limits between the world of order and

In the same essay, he argued strenuously against the prop s
the world of chance revealed itself.

sition that pure mathematics could ever have “utility.”
The irony is, of course, that, as discussed above, the purelyrhe scholarly record makes the same point. In his paper
mathematical impulse to understand HarHy spaces gave at the 1956 IRE Conference on Information Theory, held at
rise to the first orthonormal basis of smooth wavelets. MIT, Kolmogorov [60] published the “reverse water-filling
In this century, harmonic analysis has followed its owfprmula” giving R(D) for Gaussian processes (2.5), (2.6),
agenda of research, involving among other things the und@mich as we have seen is the formal basis for transform
standing of equivalent norms in functional spaces. It has devebding. He also described work with Gel'fand and Yaglom
oped its own structures and techniques for addressing problefgsrously extending the sense of the mutual information
of its own devising; and if one studies the literature oformula (2.4) from finite-dimensional vector¥ and Y to
harmonic analysis one is struck by the way the problems—e fiynctional data. These indicate that the functional viewpoint
finding equivalent norms folf” spaces—seem unrelated tayas very much on his mind in connection with the Shannon
any practical needs in science or engineering—e{§.spaces theory. In that same paper he also chose to mentionethe
do not consist of “objects” which could be understood as mogntropy concept which he had recently defined [61], and he
eling a collection of “naturally occurring objects” of “practicalchose a notation which allowed him to make the point that
interest.” Nor should this be surprising; David Hilbert once-entropy is formally similar to Shannon’8(D). One gets
said that “the essence of mathematics is its freedom” affk sense that Kolmogorov thought the two theories might
we suspect he means “freedom from any demands of the closely related at some level, even though one concerns
outside world to be other than what its own internal logigeterministic objects and the other concerns random objects;
demands.” see also his return to this theme in more depth in the appendix
Despite the freedom and in some sense “unreality” @§ the monograph [62].
its orientation, the structures and techniques that harmonic
analysis has developed in pursuing its agenda have turned
out to be significant for practical purposes—in particulafc: Analysts Return to Concrete Arguments
as mentioned above, discrete wavelet transforms are beinghannon’s key discoveries in lossy data compression are
considered for inclusion in future standards like JPEG-200Gummarized in (2.2)—-(2.4). These are highly abstract and
In this paper we have attempted to “explain” how ain fact can be proved in an abstract setting; compare the
abstractly oriented endeavor could end up interacting wittbstract alphabet source coding theorem and converse in
practical developments in this way. In a sense, harmorBerger (1971). In this sense, Shannon was a man of his time.
analysts, by carrying out their discipline’s internal agend®uring the 1930’s—1950’s, abstraction in mathematical science
discovered a way to “diagonalize” the structure of certaiwas in full bloom; it was the era that produced the formalist
functional classes outside of tHe? cases where this conceptmathematical school of Bourbaki and fields like “abstract
arose. This “diagonalization” carries a data compression inarmonic analysis.”
terpretation, and leads to algorithmic ideas for dealing with Kolmogorov’'s work in lossy data compression also was
other kinds of data than traditional Gaussian data compressammroduct of this era; the concept efentropy is, to many
theory allows. newcomers’ tastes, abstraction itself.
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Eventually the pendulum swung back, in a return to mote understand the underlying “combinatorics” of time and
concrete arguments and constructions, as illustrated by fhequency bases, a “combinatorics” potentially also useful
work of the Swedish mathematician Lennart Carleson. In(say) for “time-frequency-based signal compression.”
very distinguished research career spanning the entire perioth another direction, consider the work of P. Jones [56]
from 1950 to the present, Carleson obtained definitive resulihio established a beautiful result showing that one can ap-
of lasting value in harmonic analysis, the best known of whigbroximately measure the length of the traveling salesman
is the almost everywhere convergence of Fourier series, tanr of a set of points in the plane by a kind of nonlinear
issue essentially open since the 19th century, and requirinitflewood—Paley analysis. (This has far-reaching extensions
a proof which has been described by P. Jones as “onebyfDavid and Semmes [24].) Others may see here the begin-
the most complicated to be found in modern analysis” [57fings of a theory of quantitative geometric measure theory.
Throughout his career, Carleson created new concepts &umifman apparently sees a serious effort to understand the
techniques as part of resolving very hard problems; includingnderlying combinatorics of curves in the plane (and in
a variety of dyadic decomposition ideas and the concept Bavid—Semmes, hypersurfaces in higher dimensional spaces),
Carleson measures. It is interesting to read Carleson’s owrfcombinatorics” which is potentially also useful (say) for
words [11]. compressing two- and higher dimensional data containing

curvilinear structure.

The position underlying these interpretations is exactly the
pposite of Hardy: Hardy believed that his research would not
o o be “useful” because he did nattendit to be; yet, it turns
the abstract branches, specializing in generalization. As out that research in harmonic analysis has been and may well

is now apparent, the death of classical analysis Was ., qiinye 1o be “useful” even when researchers, like Hardy,
greatly exaggerated and during the 1960's and 1970's | .« 1,0 conscious desire to be useful

the field has been one of the most successful in all of
mathematics. . . the reasons for this.. [include]. .. the

realization that in many problems complications cannot
be avoided, and that intricate combinatorial arguments
rather than polished theories are in the center. ACKNOWLEDGMENT

Carleson “grew up” as a young mathematician in the early The author_s WOUI|d I|I_<e to thank R. R.thr:fman for exposing
1950's, and so it is natural that he would react againd® to many iconoclastic statements which were provocative,

the prevailing belief system at the time of his intellectudf'tially mysterious, and ultimately very fruitful. They would

formation. That system placed great weight on abstracti oI|ke.to thank the ed|t9rs of_th|s special issue. Sergml&/erd
and generality; Carleson’s work, in contrast, placed hea d the idea for assempllng this team for thIS.pI’OjeCt;'bOIh he
emphasis on creating useful tools for certain problems whié‘ﬁ]d Stephen McLaughlin displayed great patience with us in

by the standards of abstract analysts of the day, were decidetg% stages near completip n. .
concrete. . L. Donoho would like to thank Miriam Donoho for

Carleson can be taken as symbolic of the position thatvggorously supporting the effort to make this paper appear. He

concrete problem, though limited in scope, can be very fertiI\Q’.OUId glso like to tr_\ank X|aom|qg Huo for extensive effort in
preparing several figures for this paper.

D. The Future? M. Vetterli would like to thank Robert M. Gray, Vivek
Goyal, Jelena Kowavic, Eréme Lebrun, Claudio Weidmann,

There was a period, in the 1940’s and 1950's, when
classical analysis was considered dead and the hope0
for the future of analysis was considered to be in

How far can the connection of Harmonic Analysis and Data
Compression go? We are sure it will be fun to find out.

So far, we have used important personalities to symboli ] _ _
progress to date. What about the future? and Bin Yu for interactions and help. ,

One of the themes of this paper is that harmonic analysts,- P2ubechies would like to thank Nela Rybowicz for her
while knowingly working on hard problems in analysis, an§Xtraordinary helpfulness in correcting the page proofs.

discovering tools to prove fundamental results, have actually

been developing tools with a broad range of applications, REFERENCES

'nCII_"(_jmg_ data compressmn. Among I_”narmonlc_ analysts, th'ﬁ] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
position is championed by R. R. Coifman. His early work ~ |EEE Trans. Computvol. C-23, pp. 88-93, Jan. 1974.

included the development of atomic decompositions bt [2] E. W. Aslaksen and J. R. Klauder, “Unitary representations of the affine
. . . . . group,” J. Math. Phys.vol. 9, pp. 206-211, 1968.
spacesp < 1. Today, his focus is in another direction entirely, (3 p. Auscher, G. Weiss, and G. Wickerhauser, “Local sine and cosine

as he develops ways to accelerate fundamental mathematical bases of Coifman and Meyer and the construction of smooth wavelets,”

algorithms and to implement new types of image compression. Kl‘e:/“v’a\‘(’gr'ss/&&}:rﬁgallg‘ggheory and Application€. K. Chui, Ed.
This leads him to reinterpret standard harmonic analysis result§§ H. B. Barlow, “Possible principles underlying the transformation of

in a different light. sensory messages,” Bensory CommunicatiphV. A. Rosenbluth, Ed.

; ; ; ; Cambrige, MA: MIT Press, 1961, pp. 217-234.
For example, consider his attitude toward a mileston T. Berger, Rate Distortion Theory: A Mathematical Basis for Data

of classical analysis: L. Carleson’s proof of the almost-  CompressionEnglewood Cliffs, NJ: Prentice Hall, 1971.
everywhere convergence of Fourier series, which is generallg] L. Birgé, "Approximation dans les espacesetmques et thorie de
th ht of b tiful d ext | | lvsi I'estimation,” (in French), (“Approximation in metric spaces and the

ougnt or as a beautitul an ?X remely compiex purg analysis theory of estimation”)Z. Wahrsch. Verw. Gebieteol. 65, no. 2, pp.
argument. But apparently Coifman sees here a serious effort 181-237, 1983.



DONOHO et al. DATA COMPRESSION AND HARMONIC ANALYSIS

(7]
(8]

(9]
[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

(31]

(32]
(33]
(34]

[35]

[36]

[37]
[38]
[39]
[40]

L. Birge and P. Massart, “An adaptive compression algorithm in Besd41]
spaces,”Constr. Approx.to be published.

M. S. Birman and M. Z. Solomjak, “Piecewise-polynomial approxi-[42]
mations of functions of the classé§*,” Mat. Shornik vol. 73, pp.
295-317, 1967.

A. P. Caldebn, “Intermediate spaces and interpolation, the complex
method,” Studia Math, vol. 24, pp. 113-190, 1964. [43]
B. Carl and |. StephanEntropy, Compactness, and the Approximation

of Operators Cambridge, U.K.: Cambridge Univ. Press, 1990.

L. Carleson, “The work of Charles Fefferman,” Proc. Int. Congr.
Mathematics(Helsinki, Finland, 1978). Helsinki, Finland: Acad. Sci.
Fennica, 1980, pp. 53-56. [45]
A. Cohen and J. P. D'Ales, “Non-linear approximation of randon{46]
functions,” SIAM J. Appl. Math.vol. 57, pp. 518-540, 1997.

A. Cohen, I. Daubechies, and P. Vial, “Orthonormal wavelets for thgd7]
interval,” Appl. Comput. Harmonic Analvol. 1, no. 1, 1993.

A. Cohen, I. Daubechies, O. Guleryuz, and M. Orchard, “On th§8]
importance of combining wavelet-based nonlinear approximation in
coding strategies,” unpublished manuscript, 1997. [49]
A. Cohen, W. Dahmen, |. Daubechies, and R. A. DeVore, “Tree,
Approximation and Encoding,” preprint, 1998..

R. R. Coifman, “A real-variable characterization 8%,” Studia Math,
vol. 51, pp. 269-274, 1974.

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms foi51]
best basis selection,” vol. 38, no. 2, pp. 713-718, Mar. 1992.

R. R. Coifman and Y. Meyer, “Remarques sur I'analyze de Fouiier [52]
fehetre,C. R. Acad Sci. Parjsvol. 312, pp. 259-261, 1991.

T. M. Cover and J. A. Thomaglements of Information Theary New

York: Wiley, 1991. [53]
|. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Mathvol. 41, pp. 909-996, 1988. [54]
__, “The wavelet transform, time-frequency localization, and signal
analysis,”IEEE Trans. Inform. Theoryol. 36, pp. 961-1005, 1990.  [55]
|. Daubechies, S. Jaffard, and J. L. JayrbA simple Wilson orthonor-
mal basis with exponential decay3IAM J. Math. Anal.vol. 24, pp.
520-527, 1990.

|. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
1992.

G. David and S. SemmeAnalysis of and on Uniformly Rectifiable Sets.
(Amer. Math. Soc., Mathematical Surveys and Monographs, vol. 38),
1993. (58]
K. DeLeeuw, J. P. Kahane, and Y. Katznelson, “Sur les coefficients de
Fourier des fonctions continuesC. R. Acad. Sci. Parjsvol. 285, pp. [59]
1001-1003, 1978.

R. A. DeVore, “Nonlinear approximation,Acta Numer, vol. 7, pp.
51-150, 1998.

R. A. DeVore, B. Jawerth, and B. Lucier, “Image compression through
wavelet transform coding,JEEE Trans. Inform. Theoryvol. 38, pp. [61]
719-746, 1992.

R. DeVore and X. M. Yu, “Degree of adaptive approximatioMath.
Comput, vol. 55, pp. 625-635, 1990.

R. DeVore, B. Jawerth, and V. A. Popov, “Compression of waveld62]
decompositions,’Amer. J. Math. vol. 114, pp. 737-785, 1992.

R. A. DeVore and G. G. LorentZConstructive ApproximationNew

York: Springer, 1993. [63]
D. L. Donoho, “Unconditional bases are optimal bases for data com-
pression and statistical estimatiodppl. Comput. Harmonic Analvol.
1, no. 1. pp. 100-105, 1993.

___,“Unconditional bases and bit-level compressiofygpl. Comput.
Harmonic Anal, vol. 3, no. 4, pp. 388-392, 1996. [65]
, “CART and best-ortho-basis: A connectiorhn. Statist. vol.

25, no. 5, pp. 1870-1911, 1997.

__, “Counting bits with Kolmogorov and Shannon,” manuscript,
1998. [66]
R. M. Dudley, “The sizes of compact subsets of Hilbert spaces and
continuity of Gaussian processed,’Funct. Anal, vol. 1, pp. 290-330, [67]
1967.

D. E. Edmunds and H. TriebeFunction Spaces, Entropy Numbers,[68]
and Differential Operators Cambridge, U.K.: Cambridge Univ. Press,
1996.

D. J. Field, “The analysis of natural images and the response propert[69]
of cortical cells,”J. Opt. Soc. Amer.1987.

, “What is the goal of sensory coding®eural Comput.vol. 6,
no. 4, pp. 559-601, 1994.

G. Folland,Harmonic Analysis in Phase SpacePrinceton, NJ: Prince-
ton Univ. Press, 1989.

H. G. Feichtinger, “Atomic characterizations of modulation spacef1]
through Gabor-type representation®bdcky Mount. J. Math.vol. 19,

pp. 113-126, 1989.

[44]

[50]

[56]
[57]

[60]

[64]

[70]

2475

C. Fefferman, “The uncertainty principleBull. Amer. Math. Soc¢vol.

9, pp. 129-206, 1983.

M. Frazier and B. Jawerth, “The-transform and applications to
distribution spaces,” iffrunction Spaces and Applicatiofisecture Notes

in Mathematics, vol. 1302), M. Cwikekt al., Eds. Berlin, Germany:
Springer-Verlag, 1988, pp. 223-246.

M. Frazier, B. Jawerth, and G. Weidsitlewood—Paley Theory and the
Study of Function Spacé€BMS Reg. Conf. Ser. in Mathematics, no.
79). Amer. Math. Soc., 1991.

D. Gabor, “Theory of communication,J. Inst. Elect. Eng.vol. 93, pp.
429-457, 1946.

J. GarnettBounded Analytic Functions New York: Academic, 1981.

A. Gersho and R. M. Graywector Quantization and Signal Compression
Boston, MA: Kluwer, 1992.

R. Godement, “Sur les relations d’orthogorfalile V. Bargmann,C.

R. Acad. Sci. Parisvol. 255, pp. 521-523, 657-659, 1947.

R. M. Gray and D. L. Neuhoff, “Quantization[EEE Trans. Inform.
Theory this issue, pp. 2325-2383.

V. Goyal and M. Vetterli “Computation-distortion characteristics of
block transform coding,” iIHCASSP-971Munich, Germay, Apr. 1997),
vol. 4, pp. 2729-2732.

K. Grochenig and S. Samarah, “Nonlinear approximation with local
Fourier bases,” unpublished manuscript, 1998.

K. Grochenig and D. Walnut, “Wilson bases are unconditional bases for
modulation spaces,” unpublished manuscript, 1998.

A. Grossmann and J. Morlet, “Decomposition of Hardy functions into
square-integrable wavelets of constant shaBé&M J. Appl. Math.vol.

15, pp. 723-736, 1984.

G. H. Hardy, A Mathematician's Apology Cambridge, U.K.: Cam-
bridge Univ. Press, 1940.

R. Howe, “On the role of the Heisenberg group in hramonic analysis.”
Bull Amer. Math. Sog.vol. 3, pp. 821-843, 1980.

J. J. Y. Huang and P. M. Schultheiss, “Block quantization of correlated
Gaussian random variabledPEE Trans. Communvol. CUM-11, pp.
289-296, Sept. 1963.

P. Jones, “Rectifiable sets and the travelling salesman problexgh-
tiones Mathematicaevol. 102, pp. 1-15, 1990.

, “Lennart Carleson’s work in analysis,” iRestschrift in Honor

of Lennart Carleson and Yngve Domé#Acta Universitatis Upsaliensis
vol. 58). Stockholm, Sweden: Almquist and Wiksell Int., 1994.

J. P. Kahane and P. G. LemaRieussetFourier Series and Wavelets
Luxemburg: Gordon and Breach, 1995.

J. Klauder and B. Skagersta@pherent States, Applications in Physics
and Mathematical Physics Singapore: World Scientific, 1985.

A. N. Kolmogorov, “On the Shannon theory of information transmission
in the case of continuous signal$RE Trans. Inform. Theorwol. IT-2,

pp. 102-108, 1956.

, “Some fundamental problems in the approximate and exact
representation of functions of one or several variables,Pinoc llI.
Math Congress USSRol. 2. Moscow, USSR: MCU Press, 1956, pp.
28-29. Reprinted in Komogorov'Selected Worksvol. I.

A. N. Kolmogorov and V. M. Tikhomirove-entropy ande-capacity.
Usp. Mat. Naukvol. 14, pp. 3-86, 1959. (English tranglmer. Math.
Soc. Trans|. ser. 2, vol 17, pp. 277-364.)

H. P. Kramer and M. V. Mathews, “A linear coding for transmitting
a set of correlated signalslRE Trans. Inform. Theoryol. IT-23, pp.
41-46, Sept. 1956.

P. G. Lemar” and Y. Meyer, “Ondelettes et Bases Hilbertiennes,”
Revista Mat. Iberomamericanaol. 2, pp. 1-18, 1986.

S. LoPresto, K. Ramchandran, and M. T. Orchard, “Image coding based
on mixture modeling of wavelet coefficients and a fast estimation-
quantization framework,” inData Compression Conf. '9{Snowbird,
UT, 1997), pp. 221-230.

G. G. Lorentz, “Metric entropy and approximatiorBull. Amer. Math.
Soc, vol. 72, pp. 903-937, Nov. 1966.

L. Le Cam, “Convergence of estimates under dimensionality restric-
tions,” Ann. Statist.vol. 1, pp. 38-53, 1973.

A. S. Lewis and G. Knowles, “Image compression using the 2-D wavelet
transform,” IEEE Trans. Image Processingol. 1, pp. 244-250, Apr.
1992.

S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation|EEE Trans. Pattern Anal. Machine Intellvol.

11, pp. 674-693, July 1989.

S. Mallat and F. Falzon, “Analysis of low bit rate image transform
coding,” IEEE Trans. Signal Processingol. 46, pp. 1027-1042, Apr.
1998.

H. S. Malvar and D. H. Staelin, “The LOT: Transform coding without
blocking effects,”IEEE Trans. Acoust., Speech, Signal Processuad

37, no. 4, pp. 553-559, 1989.




2476

[72]

(73]

[74]
[75]

[76]

[77]
[78]
[79]

(80]

(81]

(82]

(83]
(84]

(85]

(86]

(87]

(88]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

H. S. Malvar, “Extended lapped transforms: Properties, applications, and
fast algorithms,|IEEE Trans. Signal Processingol. 40, pp. 2703-2714, [89]
1992.

Y. Meyer, “Review of ‘An Introduction to Wavelets’ and ‘Ten Lectures[90]
on Wavelets’,”Bull. Amer. Math. Sog¢.vol. 28, pp. 350-359, 1993.

, Ondelettes et Operateurs Paris, France: Hermann, 1990.

, “Wavelets and applications” (Lecture at CIRM Luminy meeting,
Luminy, France, Mar. 1992). [
F. Mintzer, “Filters for distortion-free two-band multirate filter banks,”
IEEE Trans. Acoust., Speech, Signal Processutd. 33, pp. 626-630,
June 1985.

A. Pinkus, n-Widths in Approximation Theory New York: Springer, [93]
1983.

G. Pisier,The Volume of Convex Bodies and Banach Space Geametry
Cambridge, U.K.: Cambridge Univ.Press, 1989. [94]
J. O. Ramsay and B. W. SilvermaRunctional Data Analysis New
York: Springer, 1997.

K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a ratﬁ)—S]
distortion sense,lEEE Trans. Image Processingol. 2, pp. 160-175,
Apr. 1993.

D. L. Ruderman, “Origins of scaling in natural imagegISION RES.
vol. 37, no. 23, pp. 3385-3398, Dec. 1997. [96]
A. Said and W. A. Pearlman, “A new, fast, and efficient image code[%7
based on set partitioning in hierachical tredEEE Trans. Circuits Syst. 1
Video Techno).vol. 6, pp. 243-250, June 1996.

C. E. Shannon, “A mathematical theory of communicatiddéell Syst.
Tech. J, vol. 27, pp. 379-423, 623-656, 1948.

, “Communication in the presence of nois®foc. IRE vol. 37,
pp. 10-21, 1949.

, “The bandwagon” (1956 ), ifClaude Elwood Shannon: Col-
lected PapersN. J. A. Sloane and A. D. Wyner, Eds. Piscataway, N{:00]
IEEE Press, 1993.

J. M. Shapiro, “Embedded image coding using zerotrees of wavéldil]
coefficients,”IEEE Trans. Signal Processingol. 41, pp. 3445-3462,

Dec. 1993.

E. Simoncelli, “Statistical models for images: Compression, restorat{d02]
and synthesis,”presented at the IEEE 31st Asilomar Conf. Signals,
Systems, and Computers, Pacific Grove, CA, 1997.

M. J. T. Smith and T. P. Barnwell, lll, “Exact reconstruction fof103]
tree-structured subband coder$EZEE Trans. Acoust., Speech, Signal

[91]

(98]

[99]

Processing vol. 35, pp. 431-441, 1986.

E. Stein,Singular Integrals and Differentiability Properties of Functions
Princeton, NJ: Princeton Univ. Press, 1970.

, Harmonic Analysis: Real Variable Methods, Orthogonality, and
Oscillatory Integrals Princeton, NJ: Princeton Univ. Press, 1993.

J. O. StrombergFestschrift in Honor of Antoni Zygmund Monterey,

CA: Wadsworth, 1982.

, “Maximal functions, Hardy Spaces, BMO, and Wavelets, from
my point of view,” in Festschrift in Honor of Lennart Carleson and
Yngve Domar (Acta Universitatis Upsaliensisol. 58). Stockholm,
Sweden: Almquist and Wiksell Int., 1994.

V. M. Tikhomirov, “Widths and entropy,Usp. Mat. Naukvol. 38, pp.
91-99, 1983 (in Russian). English transl.Rassian Math Surveysol.

38, pp. 101-111.

, “Commentary:e-entropy and-capacity,” inA. N. Kolmogorov:
Selected Works. Ill. Information Theory and Theory of AlgorithAs

N. Shiryaev, Ed. Boston, MA: Kluwer, 1992.

B. Torrésani, “Time-frequency representations: Wavelet packets and
optimal decomposition,” Ann. I'Institut Henri Poincare (Physique
Théorique, vol. 56, no. 2, pp. 215-34, 1992.

H. Triebel, Theory of Function Spaces Basel, Switzerland: Birkhauser,
1983.

P. P. Vaidyanathan, “Quadrature mirror filter banks, M-band extensions
and perfect reconstruction techniquetfEE ASSP Mag.vol. 4, pp.
4-20, July 1987.

M. Vetterli, “Multi-dimensional subband coding: Some theory and
algorithms,” Signal Processingvol. 6, no. 2, pp. 97-112, Apr. 1984.

, “Filter banks allowing perfect reconstructiorSignal Process-
ing, vol. 10, no. 3, pp. 219-244, Apr. 1986.

M. Vetterli and J. Kovéevic, Wavelets and Subband CodingEngle-
wood Cliffs, NJ: Prentice-Hall, 1995.

P. H. Westerink, J. Biemond, D. E. Boekee, and J. W. Woods, “Subband
coding of images using vector quantizatiodPEE Trans. Commun.
vol. 36, pp. 713-719, June 1988.

J. W. Woods and S. D. O'Neil, “Sub-band coding of imagd&§EE
Trans. Acoust., Speech Siganl Processirg. 34, pp. 1278-1288, Oct.
1986.

A. Zygmund, Trigonometric Serigsvols. | & II.
Cambridge Univ. Press, 1959.

Cambridge, U.K.:



