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Adaptive Blind Source Separation and Equalization
for Multiple-Input/Multiple-Output Systems

Ye (Geoffrey) Li, Senior Member, IEEEand K. J. Ray Liu,Senior Member, IEEE

Abstract—In this paper, we investigate adaptive blind source shown [6], [26] that, for double infinite-length equalizers, the
separation and equalization for multiple-input/multiple-output  CMA will always converge to a global minimum regardless

(MIMO) systems. We first analyze the convergence of the constant e ; ;
modulus algorithm (CMA) used in MIMO systems (MIMO- of initial settings. The local convergence properties of the

CMA). Our analysis reveals that the MIMO-CMA equalizer is CMA, when implemented with finite impulse response (FIR)
able to recover one of the input signals, remove the intersymbol €qualizers, have been observed and analyzed in the literature,
interference (ISI), and suppress the other input signals. Fur- such as [4], [13], [28] and the references therein.

thermore, for the MIMO finite impulse response (FIR) systems  gingle-input/multiple-outpSIMO) systems can be viewed
satisfying certain conditions, the MIMO-CMA FIR equalizers o a tionally sampled communication systems or antenna
are able to perfectly recover one of the system inputs regardless L . . . .
of the initial settings. We then propose a novel algorithm for arrays receiving multiple distorted versions of the same input
blind source separation and equalization for MIMO systems. Our Signal. The fractionally spaced equalizer [7], [36] was origi-
theoretical analysis proves that the new blind algorithm is able to nally proposed to suppress the timing sensitivity of communi-
reitc_)ver alllz_sys”tem i”pUtS{ Simglta?et?”sw regarldless of the inittia(lj cation systems. The convergence performance of the fraction-
settings. Finally, computer simulation examples are presente - . . .

to cor?firm our);nalysig and illustrate the effgctivenesspof blind ?"y spaced decision-feedback equalizer has been investigated
source separation and equalization for MIMO systems. in [19]. If the parameters of SIMO systems are unknown,
then the Godard algorithm, or the CMA, can also be used for
adaptive blind system equalization. The convergence of the
fractionally spaced CMA (FS-CMA) adaptive blind equalizer
has been studied in [11] and [14]. Recently, the fractionally

[. INTRODUCTION spaced CMA adaptive blind equalizer under symbol timing

N many systems, the received or observed signals #&#sets has also been considered in [34].

superpositions of several linearly distorted signals from The optimum MIMO equalization is studied in [24] and
different sources. The systems in these scenarios can[$& when the parameters of MIMO systems are known.
modeled asmultiple-input multiple-outpu{MIMO) systems. When the parameters of MIMO systems are not available,
Examples of MIMO systems include spatial division multipléiowever, blind techniques have to be used to identify MIMO
access (SDMA) in wireless communications, speech procesgstems explicitly or implicitly in order to separate sources
ing, seismic exploration, and some of biological system&nd equalize system distortion. Blind parameter estimation
One of the most crucial problems for MIMO systems is ndiased on second-order statistics has been investigated in [1],
only to separate these signals, but also to compensate [ [15], [17], [18], and [27] for FIR systems and in [9]
the system distortion. In this paper, we will investigate blinénd [27] for ARMA systems. Blind parameter estimation can
source separation and equalization for MIMO systems, whiéliso exploit higher order statistics [40], [41], [43], or the
is especially useful when the parameters of MIMO systerfigite-alphabet property of system inputs [32], [38], [37].
are not available. The CMA blind equalizer can also be used in MIMO

For single-input/single-outputSISO) systems, many blind systems. The capture properties of the CMA algorithm for
identification algorithms [5], [22], [33] and equalization algoMIMO systems with constant modulus input signals have been
rithms [3], [8], [25], [26], [29], [30], [39] have been proposednvestigated in [16], [18], [21], [30], [31], and [35]. In [16] and
by exploiting statistics of the system output. Tkodard [18] we also proposed a novel algorithm for simultaneous blind
algorithm (GA) [8], also known as theconstant modulus source separation and equalization. Recently, a CMA-based
algorithm (CMA) [29], [30], is perhaps the best known and thelgorithm has been presented in [23], however, its convergence
simplest among various adaptive blind algorithms. It has beproperties are not clear.

In this paper, we will introduce our research results on
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MIMO Channel

MIMO Equalizer

Fig. 1. Multiple-input and multiple-output system and equalizer.

equalizers, regardless of initial settings, can perfectly recowehere
one of the input signals. Our analysis has extended the results 99 A RN
in [21], [30], and [31]. Then, we develop a novel algorithm Eflailn]"y = mz E{lai[n]|"} = my. (3)

for adaptive blind equalization of MIMO systems. Theoretic@quaﬂOn (2) requires that the distributions of the system
analysis and computer simulation demonstrate that the NB¥ut sequences have small tails, which is true for sub-
algorithm is able to recover all the input signals simultaneoustyayssian random variables [3] and almost all signals in digital
while at the same time, removing ISI. communication systems. If we define thgstem output vector

The remaining part of this paper is organized as followgy,] the system impulse response matkn], and thesystem
In Section I, we formulate the problem of blind sourcgnpyt vectorafn] as

separation and equalization for MIMO systems and introduce

a necessary and sufficient condition for an MIMO system a1[n] hufe] o haaln]
to have a bounded-input and bounded-output (BIBO) stable[n] = : Hn] & : : :
equalizer that can achieve distortionless reception. Then in avad hari[n] - hasaln)

Section Ill, we analyze the convergence of the MIMO-CMA

blind equalizer, and reveal many good convergence proper

of the MIMO-CMA equalizers. Next, in Section IV, we ai[n]

develop a novel blind equalization algorithm to recover all a[n] £ : (4)
input signals simultaneously, and then, we prove the global
convergence of the new algorithm in Section V. Finally, we
present computer simulations to confirm our analysis afi@spectively, then, similar to SISO systems, the input—output
illustrate the performance of the new algorithm in Section Vvfelation for MIMO systems can be expressed as

z[n] = H[n] x a[n] (5)

aq[n]

Il. BLIND ADAPTIVE SOURCE SEPARATION ) .
AND EQUALIZATION FOR MIMO SYSTEMS where x denotes the convolution of the matrix (or vector)

. : — .F | matri d(b;;[n]),
An MIMO linear system is shown in Fig. 1, where thefr?ecwecr:)(r:ﬁ/;ut(i)orngiesnzrea}irzgz rg;sequerﬁaeﬁn]) and(bi;[n])

additive noise has been ignored. THecomplex sequences

ai[n],-- -, aq[n] are sent through different linear systems with a
impulse responses;;[n] for i = 1,---,M andj = 1,---,d (asgnl) = (big[n]) = | D anln] + bugln |- ©)
(d < M). The system input sequences here are assumed to »
satisfy Equation (5) can also be written ii-domain as

E{a[n]} = E{a?[n]} =0 (1) z(z) = H(z)a(z) @)
and wherez(z), a(z), and H(z) are theZ-transform ofz[n], a[n],

and H{n], respectively. For MIMO FIR systemd](z) is a
2m3 —my > 0 (2) polynomial matrix.
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As in Fig. 1, to recover the system inpafr], a linear /
equalizer is applied to the system outpzitz] to achieve z1[n]
distortionless receptianThat is, the impulse response matrix —=1 gq1[n]

sequence of the linear equalizé#[n], satisfies
z2[n] /

ga[n] y[n]

G[n] * H[n] = 8[n]ly (8)

or, in the Z-domain,

G(2)H(z) = I, ©)

zpr[n] E /

wherel; is ad x d identity matrix. G[n] is defined as ]
gumln
guln] - gim([n]
I : (10)
galn] -+ gamln] CMA

and G(z) is the Z-transform ofG[n]. Initially, we may take _ : .

) : : Fig. 2. The MIMO-CMA bl lizer.

the filters for equalization in Fig. 1 as being bounded-input and € O-CMA blind equalizer

bounded-output (BIBO) stable, however, potentially noncausal

(double infinite length) so as to deal with the MIMO systems Conversely, ifH (e )H(e’0) is singular for somev, €

with noncausal inverses. [—7, 7], then H(e*®) will not be of full-rank. If there is a
In blind source separation and equalization, the originé(e’~) satisfying (11), then

sequencesy;[n|'s for ¢ = 1,---,d are unknown to the ) ) :
Ny 1] L PD(e™) = G(e?0) H () (14)

receivers except for their statistical properties. Usually, the

statistics of the systems are the same. Thus the recoveped 4 pe singular. This is a contradiction SinEED (™) is

signals fr.om b”nd, equalization will be subject to phase arWonsingular from its definition. Therefore, there is no BIBO
permutation ambiguity. Therefore, a desirable property @f,pie ‘linear, and distortionless equalizer in this case.O
MIMO blind equalizers should be

From Theorem 1, a necessary and sufficient condition for

G(z)H(z) = PD(z) (11) an MIMO system to have a distortionless reception equalizer
is that H(e?) is of full rank for allw € [—7,#], andM > d,

that is, the number of system outputs is no less than the number
of system inputs. In what follows, we will always assume that
D(z) = diag{e!®z ™, ... ey} (12) the discussed MIMO systems satisfy this condition.

whereP is ad x d permutation matrix and(z) is a diagonal
matrix defined as

whered; € [-m,n] andn; is an integer fori = 1,---,d. The |
equalizers with@(z) satisfying (11) are called théistortion-

less reception equalizéor systemH (2). It is obvious that the ) ] g
distortionless reception equalizer for a given MIMO system Raualizer used in MIMO systems. The MIMO-CMA blind

not necessarily unique because of the multiple choice®,of equalizer discussed in this section is shown in Fig. 2. After
8;, andn; in (11) and (12). each system output, a linear BIBO stable filter is used. The

An MIMO system is said to satisfy thelistortionless filter coefficientsg,,[n] are adjusted to minimize the Godard

reception conditiorif there exists a BIBO stable distortionles<S0St function [8], [29], [30]
reception equalizer for this system. Not all systems have a 1 2 2
BIBO stable distortionless reception equalizer. It is well known Clyln) = ZE{(|9[”]| -7} (15)

that an SISO system satisfies the distortionless receptio s , , .
condition if and only if theZ-transform of the system impulseWRera Is the dispersion constaraf the MIMO system inputs,

response has no zero on the unit circle. For MIMO systems, t %ﬂned as
mq

following theorem gives a necessary and sufficient condition. e (16)
ma

. CAPTURE PROPERTIES OF THEMIMO-CMA E QUALIZER
In this section, we will investigate convergence of the CMA

Theorem 1: There exists a BIBO stable, linear, and distor-
tionless reception equalizer for an MIMO system if and onlj. General Convergence of MIMO-CMA Blind Equalizer
if HT(e?)H (™) is nonsingular for alky € [—, 7.

Proof: If Hf(e)H(e™) is nonsingular for allw €
[—m, 7], then it is invertible and

G(e’) = (H'(e™)H(c™)) T H (%) (13)

From Fig. 2, the equalizer output can be expressed as

d 00
ulnl =Y > ailn— Ksi(A] (17)
1=1 k=—o0

is the Fourier transform of a BIBO stable equalizer satisfyinghere s;[] is the impulse response of the equalized system
(12). corresponding to théh input signal that is related th,,;[]
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and g,,[n] by The unique global minimum set cort ,, is defined as
M oo
sif] =" > hmilklgm[n — K. (18) Sin =< 8:|si[n]] > |s;[k]| foralli#jorn#k
m=1k=—oco
With (17), the Godard cost function defined in (15) can be
expressed, in terms of;[n]'s, as and > _ |s;[k]| < o0 ¢, (24)
ik

Clyln]) ) and theboundary ofS; ,,, B; ., is defined as

1 2 o114 2 112

T4 = (2m3 —ma) Z [l + 2ma Z il B; . = { 8:|si[n]| = |s;[k]| for somei # j or n # k

— 2my Z |si[n]|* +m3/m3|. (19) and Z |s; k]| < 00 p. (25)
in 4.k

With the above definitions, we can state the general conver-
gence properties of the finite-length MIMO-CMA equalizers
82 (oo sal~1],1[0], -+, sal0], sa[1], ) (20) @S follows.
) ) ) Theorem 2: Let S, be the attainable set of a given finite-
then the Godard cost function (19) is a functional ff length MIMO-CMA equalizer.
which has a similar form to that of the CMA equalizer for
SISO systems [6], [13]. Hence, if the MIMO system satisfies
the distortionless reception condition, and the length of the
equalizer in Fig. 2 is double-infinite, following Foschini's

If we denote

i) If the initial equalizer parameters settings are such that
the initial equalized system impulse response vector
s € S, NS, and its output satisfies the kurtosis

arguments [6], it can be easily shown that the only minimum condition
points of the MIMO-CMA equalizer in Fig. 2 are kurt (y[n]) > 0.5 (26)
kurt (a[n])
. 2 _ _ g4 g i 5
|si[n]|” = 6[n — na, i — o], for some integers.y andiy then for a sufficiently small step size, the equalizer will
(21) causes to converge to a minimum point insid&, NS, ..

) ) In the above expression
where §[n, ?] is defined as

kurt (z) = K(f)
(22) O
wheres? is the variance of andK (x) = E{|z|*} 202
This implies that the MIMO-CMA equalizer is able to recover s the kurtosis of complex random variahitesatisfying
one of the system inputs with a time delay and phase ambiguity E{z*} = 0.
and suppress the other input signals. i) Denoting
For the MIMO systems with constant modulus input signals,
the above capture property has been proved in [21], [30], and

1, ifn=0andi=0 (27)

1A
6fn, ] = {0, otherwise

Ein={s:5][n]=¢&% ¢ € [~r, 7] and

[31]. Our discussion here indicates that this capture property sjlk]=01if j #iork#n}

is preserved for the MIMO systems with any inputs satisfying a) if E;,, C S,NS;,, then there is only one minimum

the assumed condition in Section Il. Furthermore, the other setEn c s, A S;,, while there is no minimum

convergence properties are also preserved. Before stating these point on the boundary o8, ,,;

properties, we first give some relevant definitions. b) if E; . is nearS, N S; , then there must exist only
Theattainable setS, for a given (finite or infinite) equalizer one minimum set inS, N S;,, nearE,,, while all

is defined as other possible minima are near the béundarﬁzgt.

Theorem 2 is basically the generalization of [13, Theorems
Sa = {3 si[n] = Z Z humiln = Flgm|k], 6.2 and 6.3] for SISO systems, or [14, Theorem 3.2] for SIMO
m=L ok systems. Its proof is similar to that of [13, Theorems 6.2
Z lgm[K]| < OO}. 23) and 6.3], therefore, it is omitted here.
’ According to Theorem 2 i), if we want to use the MIMO-

CMA equalizer to capture théth input signal, compensate
In the above definition, the range bfrelies on the length of for the system distortion, and suppress other sources, it is
the equalizer. It is obvious th#, depends on the parametersufficient to select the initial setting of the equalizer such that
of the MIMO systems. s € S; ,, for somen and the initial system output satisfies the
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kurtosis condition, which is especially useful when we know Lemma 1: Let H[L — 1] be of full column-rank, therH

a rough estimation of the system parameters. is of full column-rank for all’ > dI — 1, if and only if H(z)
Theorem 2 ii) indicates the locations of the minima of thes irreducible.

MIMO-CMA equalizers. Based on this part of the theorem

the initialization strategy discussed in [6] and [13] can also bg:ggrctgr?vzlr);gr?ciaeEZ;’evr;efgrr?hzbcl:el\;z E:gvzqtgae”;oe”rzvﬂgg d
used for the MIMO-CMA blind equalizers.

in MIMO FIR systems.

B. Global Convergence of MIMO-CMA FIR Equalizer Theorem 3: For an MIMO FIR system of length, if H(z)

. . __Is, irreducible with H[L — 1] being of full rank, then any
In practice, most of the MIMO systems can be approximat IMO-CMA FIR blind equalizer with lengthi > dZ—1 can

as FIR systems. Without loss of generality, we can assume thay . o .
. . achieve global convergence regardless of its initial setting.
the FIR system impulse responses satisfy

Proof. Since Hy is of full rank for all K > dL — 1

Bomiln] = 0, forn<oorn>L (28) from Lemma 1, therefore?,—[}(HK is invertible, and for any
8141 € CHIHE-D) there exists

fori =1,---,dandm = 1,---, M, where L is the length ; it

of system impulse responses. The length of the impulse 9x = sr+x—1(HcHi)™ Hi (34)

responsess;[n]'s, of the equalized system 5 + K — 1 if

an MIMO-CMA FIR equalizer with lengthK is used for an

MIMO FIR system with lengthL. Let the parameters of the

FIR equalizer be

such thats;+ k1 = gxHk. Hence,E; ,'sfori =1,---,d
andn = 0,---,L + K — 2 are in attainable sef,. From
Theorem 2 ii) a), the only minimum set of the MIMO-CMA
FIR equalizer inS, ,, is E; ,,, and there is no minimum on the

gm[n] =0, form<Oorn>K (29) boundary ofS; .. SinceS, N S, is empty fori =1,---,d
andn < 0 orn > L+ K — 2, the MIMO-CMA FIR
for m = 1,---, M. The relationship between the equalizeequalizer has no other (local) minimum. Hence, all minima of
parameters;,,[n] and the impulse response of the equalizetie MIMO-CMA FIR equalizer in this case are global ones.
systems;[n] can be expressed as Therefore, regardless of the initial setting, the equalizer will
converge to one of its global minima. O
8+Kk-1 =9k HK (30) . :
The above theorem illustrates a very nice convergence
where property of the MIMO-CMA FIR equalizer. It indicates that
A the MIMO-CMA FIR equalizer can recover one of the sys-
= L_|_K_2]... . . .
8r4k-1 = (s1[0],- -+, 54[0],- -, 51 2T tem inputs, compensate for system distortion, and suppress

sq[L + K —2]) (31) the signals from the other sources if the MIMO-CMA FIR
equalizer is long enough and the system satisfies the condition

in Lemma 1.
9K 2 (91[0]7"'791\4[0]7"'791[K— 1]7"'79M[K_ 1])

(32) IV. A NEW BLIND ALGORITHM

and (33) at the bottom of this page. The singularity of We have revealed the capture properties of the MIMO-CMA
the generalized Sylvester matrik; plays a crucial role blind equalizer in the previous section. In this section, we will

in the convergence of the MIMO-CMA FIR equalizer. Thepropose a new blind algorithm for MIMO systems, based on
relationship between the rank @f, and the reducibility of the CMA, to recover all system inputs and compensate for the
H(z) has been studied in the multivariable control literaturgystem distortion. Without lost of generality, we will assume

such as in [10]. Before introducing the relationship, we first = 2 in this section. The algorithm developed in this section

give the definition of the irreducibility of a matrix polynomial.can be easily extended tb> 2 systems.

Definition: An M x d (M > d) polynomial matrixH (z)

is said to beirreducible [10] if there is nod x d polynomial A New Cost Function

matrix R(z) with nonconstantlet (R(z)), such thatd (z) = Consider the blind equalizer shown in Fig. 1. If we adjust the
H(z)R(z), where H(z) is anM x d polynomial matrix. equalizer parameters for each individual system to minimize
Using the results in [10], the following lemma can be provethe Godard cost function in (15), then according to the analysis
[1], [2], [35]. in Section 1ll, the equalizer outputs;[n] and yo[n] will
H[L-1] H[L-2] .- HI[0] 0
H[L-1] . H[0
o 2 [L—1] | | .[ ] (33)

0 H[L-1 . . H[|
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TABLE |
AN ADAPTIVE BLIND ALGORITHM FOR MIMO SYSTEMS
<ol P >e= (1) < Jgaln — 1~ OP >n1 telyaln 1]
<lyiln =P >n= (L =€) <|uln — 1 = {|* > +elyi[n — 1|2
<wyinlyn =1 >n=(1—-¢€) <yn—1yz[n—1=1] >n_1 +en[r]yi[n - 1]

<yanlyiln =1 >n= (1 —€) < yo[n —1]yj[n — 1 = 1] >,_1 +eynlyf[n — 1]
zln] = Y2(|yaln = O1P[n]— < |ya[n — UI* >n wilnl— < wilnlyzln — 1] >, ga[n = 1))
z[n] = L(Inln = Pyalnl— < |niln = 11* >n waln]= < galrlyiln — 1] >, piln — 1))

gk = g0 V] - Uy [n])? — 1)ysln] — cozgn))a[n — K]

be from one of the two sources. Note thafn] and y;[n] Even though the cost function in (35) is valid only fbe= 2,

may be from the same or different sources, depending on floe the d > 2 case, it can be extended to

equalizer’s initial settings. Hence, to develop a blind algorithm d d

that can recover all systems inputs, we only need to modify Cuymvio = ZC(yi[n]) — ¢, Z Ky, u;) (40)

the Godard cost function, such that the outputs of the MIMO i=1 ij=1%#£]

equalizer are from different sources. and the global convergence and local convergence properties

The proposed cost function for adaptive blind equalizatiafiscussed in the next section can be similarly generalized.
of MIMO systems is given by

Cvinvio 2 Clyi[n]) + Clya[n]) — co K (y1, y2) (35) B. Algorithm Development
. . Using the stochastic gradient method to search for minimum
wherec, > my/(2m3 — my4), and K (y1,y2) is a functional points of the new cost function, we can implement the new

of y1(k) andyz(k) for all &k < n defined as algorithm as
= . ) g5k = g5 VI = n(ls ]* = )y ln]
K(y1:92) = 5 > Cum(ufnl, vi[n], vl + K, w3 [0 + k) — cozjn))zl,[n — K] (41)
k=—occ
= forj=1,2andm =1,---, M, wherey is a small step size,
+5 > Cum (o — K.yiln - K. yaln]. y3[n]) g{MTk] is the kth parameter of thgimth filter after thenth
k=0 iteration, andz;[n]'s are given by
(36) oo
z[nl =Y (lualn — 1Pyl = Efjyan — 11 Y [n]
with Cum (y1, ¥5, v2, ¥3) being the cumulant of the random =0
complex variablesy, v}, y» andy3, defined as — E{yi[n]yi[n — Q}ye[n — 1)) (42)
Cum (y1, 41, 2, 42) z[n] =Y (luiln — )Pyaln] — E{lu[n - 1)*}ys[n]
A *
= E{lyi w2} — E{lua Y E{ly2"} — |E{ay3}? (37) 1=0

— E{p2[n]yi[n — oiln — 1)) (43)
If the ensemble average in the above expressions is substituted
(38) with the empirical average as in [26], the resulting algorithm
can be expressed as in Table I.
It can be seen from Lemma 2 of Section V thty; , y2) = The above developed algorithm is based on the stochastic
0 if and only if the outputs of the equalizer are independerfiradient approach to search for the minima(@finio. It is
Hence,—c, K (y1,2) in (35) makes the blind algorithm Con_possmle_ to develt_Jp_ an algorithm using I\!evvton’s algorithm
verge to distinct sources. However, the estimatiof6f,,y,) [20] t0 find the minima ofCyimvo, which will speed up the
usually requires more data than thai@fy;[n]), therefore, the convergence, however, this will increase the computational

for random variablegy; satisfying

E{y} = E{y}} =0, fori=1,2.

convergence speed of blind equalizer will be reduced. complexity.
In [23]
oo C. Compound Blind Algorithm
Ky, p2) = Z |E{y1[nlysln — K]} Based on the new blind algorithm, we can develop a com-
k=0 pound algorithm to speed up the convergence. The compound

algorithm contains the following three steps.
Step 1: Source SeparatiorSeparating different sources us-
ing K (y1,y2) defined in (46) as a cost function.
has been proposed in the cost function of a blind algorithm. Step 2: Rough EqualizationEqualizing systems and sepa-
However, in that case, the convergence properties of the blind rating sources usingvvo defined in (35) as a
algorithm are unknown. The MIMO blind equalizer may have cost function until the kurtosis condition (26) is
local minima besides the global ones. satisfied for all equalizer outputs.

+ ) [E{n[n - Klys ]} (39)

k=1



2870 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

Step 3: Fine Equalization Adjusting the parameters of However, f((yl,yQ) in (39) attains its minimum, if
equalizer by means of the Godard cost functioand only if the system outputy[n]} and {y:[n]} are
(15). uncorrelated rather thanindependent This is one of the
At the very beginning, the equalizer outputs contain signg#asons that we have choséi{y:,y2) in the cost function.
components from different sources; henég(y,, ) in Step Using Lemma 2 and (19), the new cost function for the
1 is used for source separation. Once signal components frBliftd equalizer can be expressed in termssgfr| as
different sources areoughly separatedCyimvio in Step 2 is .
used to further separate sources and at the same time remo _ 4 _ 2 a4
intersymbol interference, such that all outputs of the inndegl\m'IO 4 Z (21 = ma) ;'8” ]l
equalizer satisfy the kurtosis condition. From Theorem 2 i),
when all equalizer outputs satisfy the kurtosis condition, the

=12 by
2

blind equalizer using the Godard cost function will converge to +2m3 [ > sl | = 2ma Y sii[n])?
desired parameter sets. Hence, only the Godard cost function in i,n
is used in Step 3 to speed up the convergence. 1
+ 560 (2m§ — my) Z H <Z |8“[n]|2>
V. CONVERGENCE OF THENEW ALGORITHM i=1,2j=1,2 \ n
In the previous section, a new adaptive blind algorithm has + 1m2/m2 (47)
. . . . 9 4 2

been derived for source separation and equalization of MIMO

systems. In this section, we first prove the global convergenBg means of the above expression, we are able to prove the
of the new algorithm if the MIMO system and equalizer satisfglobal convergence of the new blind algorithm with the help
some mild conditions. And then, through an example, wef the following lemma that is proved in Appendix B.
demonstrate the ill-convergence of the new algorithm if certain

conditions are not satisfied. Lemma 3: Let

F(ti, tia, ta1, ta9)

A. Global Convergence 1
’ = (o - ma) (B 4 B+ B+ )

Let the impulse response of the equalized system corre-

sponding to theth source and thgth output of the equalizer +2m3[(tn 4 t21)% + (fr2 + t22)°]
be + 2¢, (2m§ — m4) (tlltlg + t21t22)

M - 2m4(t11 +t10 +to1 + tgg) + 2m4/m§}. (48)

si[)] £ D gim[n] # hniln]. (44)
m=1 For any
Then, the equalizer output can be written as co > my/(2m3 — my)
— the only minima off(t11,%12, t21, t22) on [0 4 are
y;[n] = Z Z aill]si;[n — ] (45) y f(ti1,t12, to1, t22) [0, +00)
=1,21=—00 (t11,t12,t21,t22) = (1,0,0,1) and

for j = 1,2. (t11,t12,t21,%22) = (0,1,1,0). (49)

From the direct calculation in Appendix A, we have the

following lemma. The global convergence of the new blind equalization

algorithm can be stated as follows.
Lemma 2: K (y1,42) defined in (36) can be expressed in

terms of s;;[k] as Theorem 4: The MIMO blind equalizer using the cost func-

tion defined in (35) will converge to one of its global minimum

1 ) ) points regardless of its initial setting, if the MIMO system and

Ky, 1) = §(m4 — 2m3) Z H <Z |si5 (]| ) (46)  the equalizer satisfy one of the following two conditions.
k

=hr=ne i) the MIMO system satisfies the distortionless reception

Hence,K (y1,v2) < 0 if 2m3 — my > 0. condition and an infinite-length MIMO filter is used as
From Lemma 2~ K (y1,y2) attains its minimump, if and the equalizer; or

only if either i) H(z), the Z-transform of the impulse response of the

MIMO FIR system with lengthL, is an irreducible
suln] =0 and sp[p] =0 ¥n polynomial matrix with H[L — 1] being nonsingular,
or and the length of the MIMO equalizet > dL — 1.
s12[n] =0 and sxn]=0 Vn. Proof: i) Assume the MIMO system and equalizer satisfy

_ ) condition i) in the theorem.
In either case, the equalizer outpytg [»]} and {y2[n]} are

. ) 3 To find minimum of Cymvo, set
independentHence, K (1, ¥2) in the cost function makes the
new blind equalizer capable of separating different sources, as 9Cvmvo

— =0 Vn (50)
demonstrated by Theorem 4. 9s11[n]



LI AND LIU: ADAPTIVE BLIND SOURCE SEPARATION AND EQUALIZATION FOR MIMO SYSTEMS 2871

1.0 T T 10

08 - h

0.6 - b

Is1[n]t

04 1

IT (dB)

0.0 2 e
2

08 b

30 L L L L
06 - — [} 2000 4000 6000 8000 10000

number of interations

Is2[n]l

04 1 i Fig. 4. Convergence of the MIMO-CMA blind equalizer.

or

|s11[n]]> = |s22[n][* =0 (57)
| | . - [s1a[n +n1a]|? = [saa[n + ]| = 6[n)
Fig. 3. The impulse responses of the equalized system after 10 000 iterations.
for some integers 1, n12, 721, andnge. Whens;; [n] satisfies
where (56) or (57), bothC(y1[n]) and C(y2[n]) reach their global
9 L1 9 1 9 minima, and—coK(ylzyQ)_also reachgs_ its global minimum,
o = 39R +j§al . (51) therefore,Cyivo attains its global minimum. Therefore, all
sufn] e{su[n]} misu[nl} minima of Cyivo are global ones, which implies that the
Direct calculation yields MIMO equalizer will converge to one of its global minima
regardless of its initial setting.
i) Assume the MIMO system and equalizer satisfy condi-

2m2 E112 E112 tion ii) in the theor.em. _
* { e zk:ﬂsll[ I+l K] Define the equalizer parameter matrix as

— (2m§ — m4) |s11[n]|?s11[n]

+c, (ng - m4) Z |s1a[k]|? + my

}S = 0 G = (G[0], G[1], - -+, G[K —1]) (58)
k

and the MIMO equalized system parameter matrix as

(52) Spon—1 2 (SO, S[,---,S[L+K—2]).  (59)
Therefore, at each stationary point 640, s11[n] must
; Then
satisfy
s ] = {tn, ifnel (53) Sp+r-1=9xHk. (60)
11 - .
0, otherwise According to Lemma 1,Hy for K > dL — 1 is of full

wheret,, is a nonnegative number, ardis a set consisting column rank. Hence, for an§r -1 € C2X2(L+f_l)’ there
of finite number integers. Following Foschini’s perturbatiofs an MIMO equalizer matrixgx = Spyrx—1(HH) ™ H,

argument [6], at the minima oo satisfying (60). Using similar arguments to the proof of the
5 first part, we are able to obtain that the possible minima of the
[sua[]l” = t18ln = nu (54)  cost functionCyno on C2*2(EL+K=1) are
for some integem,;. Since Cumio IS Symmetric ons;;[n], |s11[n 4+ n11]|? = |s22[n + nao]|* = 8[n]
the necessary condition f@ryvo to attain its minima is
y MIMO |s12[n]|* = [sa1[n][* = 0 (61)
2
|si;[n]l” = ti;6ln — nij] (55) |s11[n]|* = |s22[n]|* = 0
for i = 1,2, wheret;,’s, for i, j = 1,2, are some nonnegative |s12[n + n12]|? = |s21[n + n21]|* = 6[n]

e oo o TIPS 1 < LK —2an thy e a gobal nes. Honce
9 pPlyINg ' the MiMO equalizer in this case will converge to one of the

the only possible minima of’vnvo are global minima regardless of its initial condition. O
|s11[n 4 n11]1* = |s22[n 4 n22]|* = 6[n]

9 5 (56) From Theorem 4, the new blind algorithm is able to recover
|s12[n]|” = [s21[n][" =0

all input signals simultaneously. Furthermore, the MIMO FIR
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Fig. 5. The impulse responses of the equalized system after 20000 iterations.

system satisfying certain conditions can be perfectly equalized VI. COMPUTER SIMULATIONS
by MIMO FIR equalizers employing the new algorithm. |, order to confirm the analysis results and illustrate the
Hence_:, the_ new blind alg(_)nthm is ideal for source separatiQiactiveness of the proposed algorithm, we present two com-
and distortion compensation of MIMO systems. puter simulation examples.
In our simulations, the system inputgn|'s are independent

B. Local Convergence for different i's or n's, and they are uniformly distributed

Similar to the CMA for SISO systems, the new MIMO blindoVer {£1/v2, £3//2}. The system noise is complex white
algorithm also suffers from the local convergence problem @aussian with zero mean and variance determined by the
the MIMO system and equalizers does not satisfy either of tRignal-to-noise ratio (SNR) of systems.
two conditions in Theorem 4.

To construct an example demonstrating such a problem, let

us consider a 2-input/2-output AR system with the transf@. Convergence of the MIMO-CMA Blind Equalizer

functions In this simulation example, the impulse response of a

1 1 2-input/3-output FIR system is given by

hll(z) = hQQ(Z) = m, 0< |CY| < %, and
hi2(z) = ha1(z) = 0. (62) —-1.9522 —0.5706
H[0] = | —0.5666 0.4246 | and

Using Theorem 1, it is easy to check thd{z) satisfies the —1.1293  0.7666
distortionless reception condition. If an MIMO FIR equalizer 1.0691 —1.8841
with length K = 2 is used, then H[1] = [ -0.7926  0.0598 (65)

1 qat 0 0.3569 —0.2744

G(Z) = < 0 1— az—l) (63)

and SNR= 30 dB at the system outputs.
can perfectly equalize this MIMO system. However, as dis- An MIMO-CMA FIR equalizer is used for the MIMO FIR

cussed in [13], there is & # 0 such that system. The length of the equalizer i§ = 3 with initial
settingg,,[n] = 6[m —1,n — 1] and the step-size = 0.0005.
g11[n] = g22[n] = v6[n — 1] g12[n] = g21[n] =0 (64) Fig. 3 is the impulse responses of the equalized system after

10000 iterations (symbols). From this figure, the MIMO-CMA
is a local minimum of bothC(y;[n]) and C(y2[n]). Since FIR equalizer is able to recover the second system input,
—co K (y1,y2) = 0in this case that is also a minimum point ofmitigate the ISI, and suppress the first system input. Fig. 4
—c, K (y1,y2). Therefore, the,;[n] in (64) is a local minimum illustrates the variation of interference during iterations. The
point of Cyvo- interference, IT, here includes intersymbol interference and
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Fig. 6. 1000 inputsey [n], x2[n], x3[n], and x4[n] and outputsy; [n], y2[r] of the new blind equalizer after 20000 iterations.

interference from the other sources, and is defined as defined as

, , > Isig[nll? — maxi » [s:5[n][?
Z |si[n]]? — max; ,, |s;[n]| IT; = L > . (67)
i (66) max; , |si;[n]|

IT =

max; , |s;[n]|?

According to Fig. 5, the two sources are separated and the

distortions are compensated. The first equalizer output recovers

The simulation results in these two figures confirm Theoreme first source and the second output recovers the second
source.

B. Convergence of the New MIMO Blind Equalizer

In this simulation example, the impulse responses of a 2- VII. CONCLUSION
input/4-output FIR system is shown as in Table Il, and SNNR  This paper investigates blind source separation and equal-
30 dB. ization of multiple-input/multiple-output systems. We have

The equalizer length used in our simulatior2@swith initial  demonstrated that the MIMO-CMA equalizer is able to recover
settingsg11[n] = g¢22[n] = é[n — 10]. The other equalizer a signal from one source, compensate for system distortion,
parameters arg = 0.0001, ¢ = 0.01, and¢, = 1.2. and suppress the signals from other sources. To recover signals

Fig. 5 shows the impulse responsg[n] of the equalized from all sources simultaneously and compensate for system
system after 20000 iterations. Fig. 6 demonstrates the calistortion, a novel blind equalization algorithm for MIMO
stellations of 1000 system outputs and 1000 equalizer outpuggstems is proposed. Its global convergence is illustrated
Fig. 7 illustrates the interference of the equalizer outputtheoretically and by computer simulations. The proposed al-
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TABLE I
IMPULSE RESPONSES OF A2-INPUT/4-OUTPUT SYSTEM

{ i | n H hai[n] { hai[n] ] hai[n] l hai(n] ‘
0 J| -0.0000-30.0000 0.0000-70.0000 | -0.0000-30.0000 | -0.0000470.0000

1 -0.1700-41.0300 0.7100-71.0900 0.2100-76.1000 | -0.5700+70.8000
112 0.4700-70.6200 -0.5200-30.6500 1.0100-70.0300 | -0.2900+30.7000
34 0.0000470.0000 | -0.00004-70.00600 | 0.0000470.0000 | 0.0000470.0000

4 || -0.0000+430.0000 | 0.0000+30.0000 | -0.0000-30.0000 | 0.0000-50.0000

5 0.0000-30.0000 -0.0000-30.0000 | 0.0000-70.0000 | -0.0000+370.0000

0 0.0125-30.0681 | -0.0755430.2306 | -0.0000-;0.0000 | -0.0600+30.0000

1] -0.0590+50.5046 | 0.4355-31.6674 0.2100-70.1000 | -0.5700470.8000
2|2 0.0586470.1737 | -0.1390-70.4800 1.0100-70.0300 | -0.2900450.7000
3 || 0.29154-70.1841 | -0.9865-30.2353 | 0.00004-70.0000 | 0.0000+30.0000

41| -0.0418-70.0185 | 0.1448+70.0087 | -0.0000-0.0000 | 0.0000-70.0000

51 0.0144+4,0.0112 | -0.0479-30.0181 0.0000-70.06000 | -0.0000+70.0000

2 . 2 .

IT (dB)
IT (dB)

-18 1 L L -18 i L 1
0 5000 10000 15000 20000 [} 5000 10000 15000 20000
number of iterations number of iterations
(@ (b)

Fig. 7. Convergence of the new algorithm for the MIMO channel. (a) IT«pjn]. (b) IT for y2[n].

gorithm can be applied not only in multiple signal separatioBince we have assumeg[n|'s are independent for different
in array processing, but also in diverse fields of engineeririgor n, then
including speech processing, data communication, sonar array
processing, and in the analysis of biological systems. Cum(az, [, af, [Io], ai, [la], af, [1a])
m4—2m§, for 11 =1y =13 = 14

= andllzlgzlg=l4
APPENDIX A 0 otherwise

PROOF OF LEMMA 2

7

(A.2)
According to the definition in (36), we have

Therefore,
Cum (yl [n], i [n) y2[n + K], y3[n + k])
Cum (y1[n], ¥1 [n], ye[n + K], y3[n + k])

= Cum <Z Z a;[l]si[n —1], Z Z a;[llsii[n — 1], 0o
i=1 1 i i=1 1 = (ma4 — 2m3) Z Z |sit[n]]?]si2[n + E]|?. (A.3)
S ailllsialn + k=1, aflllshn+ k- 1]> i—T2n=oc

=1 ’2 =1 From (A.3), (36) can be expressed as
= ) > sl —llshiln— ] .
e amL il b K(y1,y2) = §(m4 —2m3) > ] <zk: |3z‘j[/f]|2>~

X siza[n +k —ls]si o[n+ k — 1] iSToj=i2
x Cum (a;, [l1], a, [I2]. ai, [I3], af, [L4])- (A1) (A.4)
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My 2m§ Co (2m% — m4) 0
2, 1 2m3 My 0 Co (ng — m4)
V= 21 ¢ (ng - m4) 0 un 2m3 ’ (B.1)
0 C, (ng — m4) 2m§ My

flear, 14+ €12, 1+ ea1,€22) — f(0,1,1,0)

1
= 2{2(1 + co)(2m§ — m4)(:11 + m46%1 + 2¢, (27773 — m4)(:11(:12 + 4m§(:11(:21 + m4(:§1

+ 2(1 + Co) (2m§ — m4)(:22 + m4(:§2 + 2¢, (27773 — m4)622621 + 4m§(:22(:12 + m46%2}

— 4 2my

S 1{ 2(1 4 ¢,) (2m3 — my) [2m3 + my + ¢, (2m3 — m4)] ,

€11

2 2 2 2
+ myei; + 2c, (2m2 — m4)611612 +4dmse1€21 + Mgy

2(1+¢,) (2m§ — m4) [2m§ +my +c, (2m§ — m4)] 5
+ €22

2m4

2 2 2 2
+ myes, + 2c, (2m2 - m4)€22€21 + dmiyeonern + m4€12}

2

1 2m3my 2m3 + ¢, (2m3 — my) N

_ 2 € €
4 2m3 +c, (2m§ - m4) My e

C, (ng — m4) My 2m§ +c, (ng — m4) n 2
2m3 + ¢, (2m3 — my) my s

2
2m§m4 2m§ + ¢, (2m§ — m4)

2 2 €22 + €12
2ms +c, (2m2 — m4) My

My

co(2m§ — m4)m4 <2m§ + co(2m§ — m4) e >2
coo + €21

2m§ +c, (2m§ — m4)

(B.2)

APPENDIX B
PROOF OF LEMMA 3

we have (B.2) at the top of this page. Hence,

(t11,t19,t01,%22) = (0,1,1,0)

Direct calculation yields (B.1) at the top of this page. Since
V2 f(t11,t19, ta1, t22) is Not nonnegative-definite, from [20,is a minimum of f(¢11, 12, t21, t22) On [0, +00)*.

Proposition 2, pp. 174]f (¢11, t12, t21,t22) has no minimum
inside [0, +0c)*. Therefore, its possible minima must be on

the boundary off0, +-oc)*.
Without loss of generality, assuntg, = 0 and let

Ji(tin, tie, tor) = f(ti1, ti2, t21,0).

The minimum Offl(tll,tlg,tgl) is (tll,tlg, tgl) = (0, 1,1)
whenc, > ma/(2m3 — ma4). Therefore,

(t11,t12,t21,%22) = (0,1,1,0)

may be a minimum off(t11,t12,t21,£22) 0on [0, +00)*. For
any e11,€12, €21,€22 satisfying

27’714

0<e11,622 <
2m% +mgq + ¢, (2m% — m4)

Because of the symmetry gf(¢11, 12, to1, t22)

(t11,t12,t01,820) = (1,0,0,1)

is another minimum Off(tu,tlg,tgl,tgg).
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