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On the Error Exponent for Woven
Convolutional Codes with Outer Warp

Victor Zyablov, Associate Member, IEEE, Sergo Shavgulidze,
Oleg Skopintsev, Stefan Ḧost, and Rolf Johannesson,Fellow, IEEE

Abstract—In this correspondence the error exponent and the decoding
complexity of binary woven convolutional codes with outer warp and
with binary convolutional codes as outer and inner codes are studied. It
is shown that an error probability that is exponentially decreasing with
the product of the outer and inner code memories can be achieved with
a nonexponentially increasing decoding complexity.

Index Terms—Concatenated convolutional codes, decoding complexity,
woven convolutional codes, woven error exponents.

I. INTRODUCTION

Binary woven convolutional codes were introduced in [1], where
it was shown that such codes have large free distance and, therefore,
appear to be attractive for use in communication situations where low
error probabilities are needed. In this correspondence we investigate
the probabilistic characteristics (the behavior of the error exponent)
of woven convolutional codes with outer warp.

The same problem for similar constructions was considered in [2]
and [3]. In [2], we considered concatenated codes with many inner
binary block codes and many outer nonbinary convolutional codes
and in [3] concatenated codes with many inner binary unit-memory
convolutional codes and many outer Reed–Solomon codes.

A peculiarity of the codes discussed in this paper is that they are
completely based on binary convolutional codes which significantly
simplifies their decoding procedure.

The woven convolutional codes with outer warp are briefly de-
scribed in Section II. In Section III it is shown that the decoding
error probability decreases exponentially with the product of the outer
and inner code memories and that at the same time the decoding
complexity increases exponentially only with the square root of the
same product. We show that the value of the error exponent is nonzero

Manuscript received March 19, 1998; revised October 26, 1998. This
work was supported in part by the Royal Swedish Academy of Sciences
in cooperation with the Russian Academy of Sciences and in part by the
Swedish Research Council for Engineering Sciences under Grant 97-723. The
material in this correspondence was presented in part at the IEEE International
Symposium on Information Theory, Cambridge, MA, August 16–21, 1998.

V. Zyablov was with the Department of Information Technology,
Information Theory Group, Lund University, P.O. Box 118, S-22100
Lund, Sweden. He is now with the Institute for Problems of Information
Transmission, Russian Academy of Science, GSP-4, Moscow, 101447 Russia
(e-mail: zyablov@iitp.ru).

S. Shavgulidze was with the Department of Information Technology,
Information Theory Group, Lund University, P.O. Box 118, S-22100
Lund, Sweden. He is now with the Department of Digital Communication
Theory, Georgian Technical University, Tbilisi, 380075 Georgia (e-mail:
sergo_130@hotmail.com).

O. Skopintsev is with the Institute for Problems of Information
Transmission, Russian Academy of Science, GSP-4, Moscow, 101447 Russia
(e-mail: skopintsev@orc.ru).
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in the whole range of rates between zero and the channel capacity.
Viterbi decoding of convolutional codes yields a better error exponent
but does not allow a nonexponential growth (with memory) of the
decoding complexity.

II. WOVEN CONVOLUTIONAL CODES WITH OUTER WARP

Consider the block diagram of a communication system withwoven
convolutional codes with outer warp[1] given in Fig. 1.

The encoding structure is given in Fig. 2. It consists oflo rate
Ro = bo=co, outer, binary convolutional encoders, all of memory
mo and one rateRi = bi=ci, inner, binary convolutional encoder of
memorymi.

The information sequence is divided into subblocks oflobo infor-
mation symbols each. These subblocks are fed intolo parallel outer
encoders. Theco code sequences from each encoder are serialized
and written row-wise into a buffer consisting oflo rows—thewarp.
The binary code symbols are read column-wise and used as inputs
to the inner encoder—thewoof.

The woven convolutional code with outer warp has the overall rate
Rw = b=c, whereb = lobo andc = loco=Ri. Hence we have

Rw = RoRi: (1)

III. ERROR EXPONENT FOR WOVEN

CONVOLUTIONAL CODES WITH OUTER WARP

We focus on the case when the codewords of the woven con-
volutional codes with outer warp are transmitted over the binary
symmetric channel (BSC). Consider the decoding procedure where
we first carry out the hard-decisions Viterbi decoding of the inner
code. Then the estimated information symbols of the inner code are
fed into thelo parallel outer decoders (see Fig. 1), where we again use
hard-decisions Viterbi decoding. The estimated information symbols
from all outer decoders are delivered as the output of the woven
communication system.

Let Ur
[t �m;t +m] denote the set of information sequences

uuut �muuut �m+1 � � �uuut +m such that the firstm and the lastm
subblocks are zero and such that they do not containm + 1

consequtive zero subblocks, i.e.,

U
r
[t �m;t +m]

def
= uuu[t �m;t +m] uuu[t �m;t �1]=0;

uuu[t +1;t +m]=0; anduuu[i;i+m] 6=0; t1 �m � i � t2 : (2)

The decoder output error sequenceeee[t�m�1;t+j+m+1] is called an
error burst of lengthj + 1 starting at timet and ending at time
t + j + 1, if

eeet�m�1 = 0; eee[t�m;t+j+m] 2 U
r
[t�m;t+j+m]

and eeet+j+m+1 = 0.
Consider periodically time-varying, rateR = b=c convolutional

codes encoded by polynomial, periodically time-varying generator
matrices of memorym and periodT . Assume that the transmitted
sequence is the all-zero sequence. In order to upper-bound the
distribution of the length of an error burst starting at timet we
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Fig. 1. Block diagram of a woven coded system with outer warp.

Fig. 2. Encoding structure of woven convolutional codes with outer warp.

consider the block codeBt(j), where

Bt(j) = vvv[t;t+j+m] vvv[t;t+j+m] = 0 or

vvv[t;t+j+m] = uuu[t�m;t+j+m]GGG[t;t+j+m] (3)

where

uuu[t�m;t+j+m] 2 Ur
[t�m;t+j+m] and

GGG[t;t+j+m]

=

Gm(t)
Gm�1(t) Gm(t+ 1)

... Gm�1(t+ 1)
. . .

G0(t)
...

. . . Gm(t+ j +m)
G0(t+ 1) Gm�1(t+ j +m)

. . .
...

G0(t+ j +m)

(4)

is a (j + 2m+ 1)� (j +m+ 1) truncated, time-varying generator
matrix and whereGi(t); i = 0; 1; � � � ; are binaryb� c time-varying
matrices.

The rate of the block codeBt(j) is upper-bounded by

r(j) =
j + 1

j +m+ 1
R: (5)

(This is an upper boundsince we have imposed a restriction on
uuu[t�m;t+j+m].)

Let Lt(j) denote the event that an error burst starting at timet has
length j + 1. A necessary—but not sufficient—condition forLt(j)
to occur is that the block codeBt(j) will be erroneously decoded.
Thus we have

P (Lt(j)) � P Et(j) uuu[t�m;t+j+m] = 0 (6)

whereEt(j) denotes the event thatBt(j) is erroneously decoded.
In [4] we showed the existence of convolutional codes for which

the probability of an error burst of lengthj + 1 is upper-bounded

by the inequality

P (Lt(j)) � 2�(E (r(j))+o(1))(j+m+1)c (7)

whereEG(�) is the Gallager error exponent for block codes used
over the BSC [5]:

EG(r)=

�� log2(2 p(1� p)); 0 � r < Rexp

1�log2(1+2 p(1�p))� r=Rcomp � r; Rexp � r < Rcrit

� log2
�

p
+(1��) log2 1��

1�p ; Rcrit � r < C

(8)

where

� = h�1(1� r) (9)

is the Gilbert–Varshamov parameter,h(�) is the binary entropy
function, Rcomp is the computational cutoff rate, andp is the
crossover probability for the BSC. The critical rateRcrit and the
expurgation rateRexp are defined as

Rcrit = 1� h

p
pp

p+
p
1� p

(10)

and

Rexp = 1� h
2 p(1� p)

1 + 2 p(1� p)
(11)

respectively. For a detailed proof of (7) the reader is referred to [6].
It is well known that the Gallager error exponentEG(r) is a lower
bound on the reliability exponent for a block code of rater.

It is convenient to introduce the normalized error burst length
` = (j + 1)=m. Then, from (7) follows that [6]

P (Lt(j)) � 2�(L(`)�")mc; " > 0 (12)

where

L(`) = EG

`

`+ 1
R (`+ 1) (13)
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Fig. 3. Error burst length exponentL(`) for rate R = 1=2.

is the error burst length exponent. For each rateR there is a
normalized valuè crit = (jcrit + 1)=m that minimizes the exponent
L(`). Forney called the valuejcrit the critical length of the error
event [7].

Asymptotically(m!1) the contribution to the error probability
of a convolutional code will be dominated by the error bursts of the
most likely normalized length,̀crit. LetEC(R) be the error exponent
for convolutional codes used over the BSC [6], [8]

EC(R) =
R log2(2 p(1� p))

log2(2
1�R � 1)

; 0 < R < Rcomp (14)

and

EC(R) = E0(�); 0 � � � 1

R = (1� ")E (�)
�

; Rcomp � R < C; " > 0
(15)

where

E0(�) = �� (1 + �) log2 p + (1� p) (16)

andC is the channel capacity. Thus we conclude that

EC(R) = L(`crit): (17)

In Fig. 3 we give the error burst length exponentL(`) as a function of
the normalized error burst length̀for rateR = 1=2. HereEC(1=2)
is the value of the error exponent for convolutional codes of rate
R = 1=2.

We choose as our inner code a convolutional code for which the
probability of the normalized error burst length` satisfies (12). The
“channel” on which any outer decoder operates has memory due
to the fact that the inner decoder may produce a burst of errors of
arbitrary lengths(�mi + 1). We consider the conditions when this

outer channel can be estimated using the model of a channel with
independent errors where the probability of errors of any multiplicity
is greater than or equal to the probability of the same event for the
channel with memory. In order to satisfy this condition we have to
choose the number of outer encoderslo in such a manner that the
probability of error in a code symbol of the outer code (regardless of
the previous symbol) can be upper-bounded by the valuepo, where
the crossover probabilitypo for the outer channel is the first event
error probability in case of Viterbi decoding of the inner code. If two
consecutive symbols of an outer code are not located in the same
burst of error (caused by the inner decoder) then it is clear that these
errors are independent. But if these symbols are located in the same
burst then the probability of this event does not exceed the probability
of the event that the burst has length(lo + 1). Then we chooselo
such that for`o = (lo + 1)=m we have

L(`o) = 2EC(Ri) = 2L(`crit): (18)

From (12) and (18) it follows that

P (L(lo)) � p2o (19)

holds. If we consideri, i � 3, errors in an outer code, then it follows
from Fig. 3 that

P (L(j)) � pio; (20)

wherej = (i � 1)lo. If condition (18) is satisfied, then the channel
for each outer code can be regarded as a channel with independent
errors with crossover probabilitypo.

In Fig. 4 we show the parameter̀o as a function ofRi for
po = 0:01:

We are now prepared to estimate the error exponentEw(Rw)

for woven convolutional codes with outer warp. Our approach is
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Fig. 4. Behavior of̀ o as a function of the inner code rateRi.

to generalize the relation between the Gilbert–Varshamov bound for
binary block codes and the expurgated error exponent for randomly
selected block codes for the BSC [5]. Thus we consider the relation
between the Costello bound for binary convolutional codes [9],
[6] and the expurgated error exponent for randomly chosen binary
convolutional codes for the BSC (14). The latter can be expressed
as follows:

Eexp
C

(R) =
R

log2(2
1�R

� 1)
log2(2 p(1� p)); 0 < R < Rcomp:

(21)

Clearly, the expurgated error exponent for convolutional code can be
regarded as the product of two factors, viz., the normalized Costello
bound for the free distance

�C(R) =
R

� log2(2
1�R

� 1)
(22)

and the factor� log2(2 p(1� p)) which is related to the Bhat-
tacharyya bound on the first event error probabilityPB2 when two
codewords are used to communicate over the BSC, viz.,

PB2 < (2 p(1� p))d (23)

whered is the Hamming distance between the two codewords [6].
The first factor is determined by the outer code and the second by
the inner code by choosingp = po, the first event error probability
of the inner convolutional code, and, hence,

po = 2�(E (R )�")m c ; " > 0 (24)

whereEC(Ri) is a function of the crossover probability for the BSC.
Let Pw be the first event error probability for the woven convo-

lutional code, i.e.,

Pw = 2�(E (R )�")mc c (25)

whereEw(Rw) is the error exponent for the woven convolutional
code andm = momi. Then, Pw can be estimated by the error
probability for the outer code and we have

Pw = 2�(E (R )�")mc c = 2�(E (R )�")m c (26)

Fig. 5. Error exponents for block(EG(R)), convolutional(EC(R)), and
woven convolutional(Ew(R)) codes.

whereEo

C(Ro) is the error exponent for the outer convolutional code
using a BSC with crossover error probabilitypo.

For large inner memoriesmi all outer convolutional codes en-
counter very good channels(po ! 0), which means that the
computational cut-off rate is very close to the channel capacity and, as
a consequence, for practically all rates between zero and the channel
capacity we can use the expurgated error exponent as an estimate for
the error exponent for the woven convolutional code. Hence, we have

Ew(Rw) = ��C(Ro) log2(2 po(1� po))=mici

= ��C(Ro)(1=2)(2+ log2(po) + log2(1� po))=mici:

(27)

Sincepo decreases exponentially withmici (with the error exponent
EC(Ri)) the terms2 and log2(1 � po) have negligible influence
compared tolog2 po, and, thus we obtain

Ew(Rw) = (1=2)EC(Ri)�C(Ro): (28)

Maximizing (28) with respect toRi we obtain the following error
exponent for woven convolutional codes with outer warp:

Theorem 1: The error exponent for rateRw = RoRi woven
convolutional codes with outer warp is

Ew(Rw) = max
R

f(1=2)EC(Ri)�C(Rw=Ri)g (29)

whereEC(R) is the error exponent for convolutional codes.

The error exponentsEw(R), EG(R), andEC(R) are all given in
Fig. 5 for the BSC with crossover probabilityp = 0:01. The exponent
Ew(R) for the woven convolutional codes is seen to be essentially
smaller than the exponentEC(R) for convolutional codes, but in the
bound (25) it is multiplied bymcoci = momicoci which usually is
much larger than the corresponding factor for ordinary convolutional
codes.
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Finally, some comments about the decoding complexity. Suppose
that the decoder of woven convolutional codes with outer warp
consists of one Viterbi decoder for the inner code andlo Viterbi
decoders for the outer codes. The decoding complexity is proportional
to

� = 2m + lo2
m : (30)

Let us choosemi = mo =
p
m. Then, we have

Theorem 2: Suppose that a decoder for a woven convolutional
code with outer warp consists oflo Viterbi decoder for the outer con-
volutional codes and one Viterbi decoder for the inner convolutional
code. If both the outer and inner convolutional codes have memoryp
m, then the complexity of the decoder is proportional to

� = (1 + lo)2
p
m: (31)

From Theorems 1 and 2 it follows, somewhat surprisingly, that
for woven convolutional codes withmo = mi =

p
m the decoding

error probability decreases exponentially withm while the decoding
complexity increases exponentially only with

p
m.

REFERENCES
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New Rate , , and Binary Convolutional
Encoders with an Optimum Distance Profile

Rolf Johannesson,Fellow, IEEE, and Per St̊ahl, Student Member, IEEE

Abstract—Tabulations of binary systematic and nonsystematic poly-
nomial convolutional encoders with an optimum distance profile for
rate 1=2, 1=3, and 1=4 are given. The reported encoders are found
by computer searches that optimize over the weight spectra. The free
distances for rate1=3 and 1=4 are compared with Heller’s and Griesmer’s
upper bounds.

Index Terms—Convolutional encoders, free distance, optimum distance
profile.

The distance profile[1] ddd = [d0; d1; � � � ; dm]; where dj is the
jth-ordercolumn distance[2] andm is the memory of the convolu-
tional encoder, is an important distance parameter for convolutional
encoders. It is an encoder property but if we limit our interest to
consider only encoding matricesG(D) with G(0) having full rank
we can regard the distance profile as a code property [3]. When
comparing codes with the same rate and memory, we say that a
distance profileddd is superior to a distance profileddd0 if di>d0i for the
smallesti; 0 � i � m; wheredi 6= d0i: The code with the superior
ddd will generally require less computation with sequential decoding
than the other code [1], [4].

In [5], extensive tables of rate1=2 convolutional encoders were
given. In Tables I and II we give rate1=2 polynomial systematic and
nonsystematic convolutional encoders, respectively, with anoptimum
distance profile(ODP encoders), i.e., with a distance profile equal to
or superior to that of any other encoder. The generators are written
in an octal form according to the convention introduced in [1]. For
each value of the memory, we give the encoder with the largest
free distancedfree among ODP encoders. (The free distance is the
minimum Hamming distance between any two differing codewords.)
Ties were resolved by comparing their weight spectra, i.e., by
successively using the number of low-weight pathsnd +i for
i = 0; 1; � � � ; 9 as a further optimality criterion. The generators
marked with “*” have better spectra than those given in [5].

In an earlier paper [6], systematic convolutional encoders of rate
1=3 and1=4 were published together with a few short nonsystematic
encoders of rate1=3. Only one spectral component, viz., the number
of paths of weightdfree, was given. Here we give ten spectral
components as well as extensive lists of nonsystematic encoders. We
list rate1=3 and1=4 systematic as well as nonsystematic polynomial
convolutional ODP encoders. The free distances are compared with
Heller’s and Griesmer’s upper bounds on the free distances for
nonlinear trellis and linear convolutional codes, respectively.

The free distance for any binary, rateR = b=c convolutional code
encoded by a polynomial, nonsystematic encoding matrix of memory
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