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Abstract—There has been intense effort in the past decade to
developmultiuser receiver structures which mitigate interference
between users in spread-spectrum systems. While much of this
research is performed at the physical layer, the appropriate
power control and choice of signature sequences in conjunction
with multiuser receivers and the resulting network user capacity
is not well understood. In this paper we will focus on a single cell
and consider both the uplink and downlink scenarios and assume
a synchronous CDMA (S-CDMA) system. We characterize the
user capacity of a single cell with the optimal linear receiver
(MMSE receiver). The user capacityof the system is the maximum
number of users per unit processing gain admissible in the system
such that each user has its quality-of-service (QoS) requirement
(expressed in terms of its desired signal-to-interference ratio)
met. Our characterization allows us to describe the user capacity
through a simple effective bandwidthcharacterization: Users are
allowed in the system if and only if the sum of their effective
bandwidths is less than the processing gain of the system. The
effective bandwidth of each user is a simple monotonic function of
its QoS requirement. We identify theoptimal signature sequences
and power control strategies so that the users meet their QoS
requirement. The optimality is in the sense of minimizing the sum
of allocated powers. It turns out that with this optimal allocation
of signature sequences and powers, the linear MMSE receiver
is just the corresponding matched filter for each user. We also
characterize the effect of transmit power constraints on the user
capacity.

Index Terms—CDMA, linear MMSE receivers, power control,
user capacity, WBE sequences.

I. INTRODUCTION

A central problem in the design of wireless networks is how
to use the limited resources such as bandwidth and power

most efficiently in order to meet the quality-of-service require-
ments of applications in terms of bit rate and loss. To meet
these challenges, there have been intense effort to develop
more sophisticated physical layer communication techniques.

Manuscript received February 1, 1998; revised April 11, 1999. The work
of P. Viswanath and V. Anantharam was supported by the National Science
Foundation under Grants NCR 94-22513 and IRI 95-05561. The work of
D. N. C. Tse was supported by the Air Force Office of Scientific Research
under Grant F49620-96-1-0199, and by an NSF CAREER Award under
Grant NCR-9734090. The material in this paper was presented in part at
the IEEE International Symposium on Information Theory, MIT, Cambridge,
MA, August 16–21, 1998.

The authors are with the Electrical Engineering and Computer Science
Department, University of California at Berkeley, Berkeley, CA 94720 USA
(e-mail: {pvi, ananth, dtse}@eecs.berkeley.edu).

Communicated by M. L. Honig, Associate Editor for Communications.
Publisher Item Identifier S 0018-9448(99)05880-0.

A significant thrust of work has been on developingmultiuser
receiver structures which mitigate the interference between
users in spread-spectrum systems. (See, for example, [21], [8],
[9], [26], [10], [14], and [15].)

In this paper, we focus on a synchronous power-controlled
CDMA system with multiuser receivers. The processing gain
represents thedegrees of freedomin the system. We assume
that at the receiver, each user is demodulated using a linear
receiver structure; in particular, we shall focus on the “linear
minimum mean-square error (MMSE) receiver” (formally de-
fined in Section II; also see [10]). We are interested in the
user capacityof both the uplink (mobiles to base station)
and the downlink (base station to mobiles) of this system
equipped with linear MMSE multiuser receiver. We say that a
set of users isadmissiblein the uplink system with processing
gain if one can allot signature sequences to the users and
control their received power such that the achieved signal-
to-interference (SIR) of each user is greater than its SIR
requirement. We are interested in the problem of characterizing
the maximum number of users per degree of freedom, called
the user capacityof the uplink system. Analogous definitions
of admissibility and user capacity can be made for the down-
link. For the most part, in this paper we shall focus on the
uplink (the downlink scenario turns out to be very similar and
we briefly summarize the results) and our main results are as
follows.

1) users with SIR requirements are admis-
sible in the system with processing gain if and only
if

This allows us to characterize the admissibility of users
via a notion of effective bandwidth. If we consider

as the effective bandwidth of a user with SIR
requirement , then users are admissible if and only
if the sum of their effective bandwidths is less than the
processing gain of the system.

2) Our proof of the admissibility of users with SIR re-
quirements is constructive in nature, i.e., we
explicitly allocate powers and signature sequences so
that users’ SIR requirements are met (such allocations
are calledvalid). Among the class of valid allocations,
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we identify theoptimal allocation, optimal in the sense
of minimizing the sum of allocated powers. The optimal
allocation has the following structure.

a) A user is said to beoversized if the user’s ef-
fective bandwidth is largerelative to the effective
bandwidths of the other users. Oversized users are
allocated orthogonal signature sequences (hence in-
dependent channels) and powers proportional to their
SIR requirements.

b) Nonoversized users are allocated sequences that
we denotegeneralized Welch-bound-equality (WBE)
sequences. These users are allocated powers propor-
tional to their effective bandwidth.

3) With this allocation of signature sequences and powers,
the MMSE linear receiver simplifies (somewhat unex-
pectedly) to the matched filter for each user. Thus the
user capacity of a system using thea priori inferior
matched filter receiver is thesameas that of the system
using MMSE linear receiver.

4) In the special case when the SIR requirements of all the
users are equal (to, say,), our main result simplifies
to the following: users are admissible in the system
with processing gain if and only if

Using the optimality (in the sense of minimizing sum of
allocated powers) of the allocation scheme, we identify
the precise loss in the admissibility of number of users
as a function of the background noise power and the
average received power constraint.

In [17], the authors consider the scenario when the signature
sequences of the users are independent and randomly chosen.
They show that the SIR of the users of a large system (with
a large number of users and large processing gain) converges
(in probability) and analyze the user capacity of the system
based on the value to which the SIR converges. It is interesting
to compare the performance of that system with the one
considered here when the sequences are optimally chosen.

1) Under the MMSE receiver, the user capacity of a system
using random sequences is asymptoticallyidentical to
that of a system with optimally chosen sequences. This
holds when there are no transmit power constraints, or
equivalently, when the background noise power is low.
We will provide an explanation for this phenomenon.

2) Under the conventional matched-filter receiver, a system
using random sequences admits one user per degree
of freedom less than when the sequences are opti-
mally chosen. This shows that while the MMSE and
the matched-filter receivers have the same performance
when the sequences are optimally chosen, the MMSE
receiver is much more robust to the choice of spreading
sequences.

3) Under transmit power constraints, systems employing
random sequences admit strictly fewer users than the

corresponding systems with optimal sequences. We
quantify precisely the gap in performance.

In related work, there has been a great deal of research
studying the problem of power control of the users for con-
ventional CDMA systems. Distributed iterative algorithms
that achieve power control of the users are discussed in, for
example, [4] and [6]. These ideas were extended subsequently
to systems with MMSE receivers [18], [7], but they focused
on deriving convergent power control algorithms rather than
analyzing the achievable user capacity. The problem of iden-
tifying good signature sequences has been studied in [12] in
the context of a spread-spectrum system with conventional
matched filter receiver and equal received power for all users.
In [13], for equal received powers, the problem addressed
in an information-theoretic setting is to identify signature
sequences for which thesum capacity, the sum of rates of
all the users at which reliable communication can take place,
is maximized. To achieve sum capacity joint processing of
the users is required (for example, MMSE receivers with
successive cancellation; see [20]) while in this paper we
restrict ourselves to single-user demodulators. Though the
problem addressed in [13] is thus different from the problem
addressed in this paper, the optimal sequences turn out to
be identical. This statement is true even for the situation of
unequal received powers, as shown in recent work [23].

An important special case subsumed by our framework is
when the signature sequences are constrained to be chosen
from an orthogonal sequence set. This corresponds to dividing
the entire bandwidth into frequency slots (or channels), i.e.,
a joint FDMA/CDMA system. In this case, the receiver is
trivial and both MMSE and matched-filter receiver structures
coincide. Our main result in this framework is as follows:

users each with SIR requirementare admissible in the
system with processing gain if and only if .
We observe that the maximum number of users admissible
per unit processing gain differs from the earlier results by an
integer part. Thus we identify the gain by using nonorthogonal
codes and multiuser linear receivers; the difference depends on
the factor and the processing gain . In the scenario when
users are differentiated by their SIR requirement, we identify
the user capacity of the system.

This paper is organized as follows: In Section II, we give a
precise definition of the uplink model and of the admissibility
of the users. User capacity of the uplink system with linear
MMSE receivers for the situation of equal SIR requirements
of the users is identified in Section III. In a physical system, the
power transmitted by a user is constrained naturally. In Section
IV, we demonstrate the optimality of a particular allocation
scheme (developed in Section III) in the sense of minimizing
the sum of allocated powers. This allows us to precisely
quantify the loss in user capacity of the system with a received
power constraint. Section V completely generalizes the results
of Sections III and IV to the situation when users have
different SIR requirements. In Section VI, we will focus on
the downlink. We can ask our admissibility and user capacity
region questions in this setup too. As can be expected, there is
a lot of connection between the downlink and uplink scenarios
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and we summarize the results. Section VII focuses on the
joint FDMA/CDMA setup that corresponds to the restriction of
signature sequences to be chosen from an orthogonal sequence
set and identifies the user capacity of the system under various
settings. Section VIII contains our conclusions and discusses
directions toward future work.

II. M ODEL AND DEFINITIONS

A. Standard Synchronous CDMA Model

We consider a symbol-synchronous code-division multiple-
access (CDMA) system and focus on the uplink. Following
the standard notation (see [22, Sec. 2.1]), the received signal
in one symbol interval (of time units) can be expressed as

Here is the inverse of the data rate, is the number
of users, and is the signature waveform
of user , and is thought of as an element of , the
Hilbert space of square integrable functions on . The
waveform is assumed to have unit norm. The
information transmitted by each user is modeled as zero-mean,
independent random variables . The variance

is the power at which user is received. We denote
the received power of useras , the product of the transmit
power of user and the path gain from userto the receiver
(base station). By the assumption ofperfect power controlor
equivalently perfect channel estimation, we shall assume that
we can allocatereceivedpowers for the users. The process

is additive white Gaussian noise independent of the user
symbols .

Let the processing gain of the system be. Following the
usual notation (as in [22, Sec. 2.3.6]), the signature waveforms
can then be written as

(1)

where is an orthonormal
set in and is the inner product between
the waveform of user , namely, and

. With some abuse of notation, let us
represent the vector of inner products
as the signature sequenceof user ( is a vector in

, the unit sphere in ). It is well known that the
projections of on

are sufficient statistics (see [22, Sec. 2.9.2 and
Ch. 3]) for the problem of demodulating the user symbols.
Writing as a vector in , the received
signal can be written as

where is an independent and identically distributed (i.i.d.)
Gaussian vector with covariance , independent of the

transmitted symbols. Henceforth, we consider the allocation
of signature sequencesfor the users. By a suitable choice of
the orthonormal waveform set ,
the signature waveforms for the users can be constructed
(following (1)).

Suppose the symbol of user is decoded using a linear
receiver, denoted by (a vector in ), then the signal-to-
interference ratio of user SIR is

SIR (2)

We say that users areadmissiblein the system if there is an
allocation of positive powers , signature sequences

and linear receiver structures
such that

SIR

Here is some fixed SIR requirement of each user that
has to be met for satisfactory performance. Such a choice of
powers and signature sequences is called avalid allocation.

B. Structure of Optimum Linear Receiver

It is well known that the MMSE receiver is the optimum
linear receiver, optimum in the sense of maximizing the SIR
of each user. While there are many derivations of the structure
of the MMSE receiver (see [10], [17], [18] for example and
[22, Sec. 6.2]) we give an elementary derivation
of the same as the argument of a problem of minimizing a
convex function over a convex set below (this will also aid
us in developing notation to be used in the characterization of
the user capacity regions).

Fix the user powers , and the signature sequences
. The optimum receiver is one that maximizes

SIR . Now, let

and

Let

and

and we note that they are positive definite. Let
for a positive diagonal matrix and unitary . Also, let

. Then

SIR

where
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Thus the is given by and the optimal
receiver structure is

(3)

Hence, under the MMSE receiver

(4)

(5)

where we used the following formula in the second step:

whenever the terms exist. Here is strictly less than
and thus all the terms are well defined.

III. CHARACTERIZATION OF USER CAPACITY

We begin with an elementary calculation of the error of
estimation using the MMSE linear receiver in terms of the
signature sequences and powers of the users and derive a
“conservation law” for the estimation errors.

A. Conservation Law for the MMSE Receiver

Recall the channel model in matrix form

where is the matrix the columns of which are the signature
sequences of the users and is the vector of transmitted
symbols from the users. If is the vector MMSE estimate of

, a direct application of the orthogonality principle yields

and the covariance matrix of the error is given by

(6)

where is the covariance matrix of .
It follows that

(7)

(8)

where ’s are the eigenvalues of the matrix . If we let

MMSE

be the (normalized) minimum mean-square error for user,
then (8) becomes

MMSE (9)

(10)

There is a simple one-to-one relationship between the normal-
ized minimum mean-square error MMSEof user and the
SIR achieved by that user, namely, SIR(see (2)). Let be
the linear estimate of from using the linear receiver ,
i.e., . We assume that is appropriately normalized
so that the error in the estimate MMSE
is minimized at (the corresponding (minimum) error in
the estimate denoted by MMSE). Then, it can be verified that

MMSE
SIR

(11)

In particular, this relation holds when the receiver is the linear
MMSE one, that is, is chosen according to (3). Using (9)
and (11), we have

SIR
SIR

MMSE

(12)

(13)

The upper bound in (13) provides an upper bound to the
performance of the users regardless of the signature sequences
used and powers allocated—we view this as a conservation
law. We can now derive the first main result of this paper: the
identification of the user capacity of a single-cell S-CDMA
system equipped with linear MMSE receiver. We assume that
each user has the same SIR requirement. Observe that if
the number of users is less than or equal to the processing
gain, the trivial choice of orthogonal signature sequences for
the users ensures arbitrary SIR requirements to be met if we
can scale up the power of the users. Hence, without loss of
generality, we henceforth assume that the number of users is
greater than the processing gain.

B. User Capacity Characterization

The following is a complete characterization of the admissi-
bility of the users with equal SIR requirements and equipped
with MMSE receivers:

Theorem 3.1: users are admissible in the system with
processing gain if and only if

Proof: Suppose users are admissible in the system
with processing gain . Then, by definition, there exist
sequences , positive powers such
that for every user, we have SIR , where the receiver
structure is as in (3). Appealing now to (13), we have the
upper bound

To see that this sufficient also, we provide an explicit valid
allocation scheme:

Suppose . Choose the powers to be

(14)
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and sequences such that . Then, using (5),

SIR
SIR

Hence for each user, we have SIR and the users
are admissible in the system with processing gain. We need
to show the existence of sequences such that . We
begin with some definitions.

Definition 3.1: For any , let

denote the components of in decreasing order, called the
order statisticsof .

Majorization makes precise the vague notion that the com-
ponents of a vector are “less spread out” or “more nearly
equal” than are the components of a vectorby the statement

is majorized by .

Definition 3.2: For , say that is majorized by
(or majorizes ) if

A comprehensive reference on majorization and its appli-
cations is [11]. A simple (trivial, but important) example of
majorization between two vectors is the following:

Example 3.1:For every such that

majorizes

It is well known that the sum of diagonal elements of a
matrix is equal to the sum of its eigenvalues. When the matrix
is symmetric theprecise relationship between the diagonal
elements and the eigenvalues is that of majorization.

Lemma 3.1 ([11, Theorems 9.B.1 and 9.B.2]):Let be a
symmetric matrix with diagonal elements and
eigenvalues we have

majorizes

That and cannot be
compared by an ordering stronger than majorization is the
consequence of the following converse: If
and are numbers such that majorizes , then
there exists a real symmetric matrix with diagonal elements

and eigenvalues .

We use these notions and results to construct sequences such
that . The vector in is majorized by
the vector with entries equal to and the remaining
entries equal to (this is a simple application of Example
3.1). Now, appealing to Lemma 3.1, there exists a symmetric
matrix, say , with unit diagonal entries and eigenvalues

and with multiplicities (both algebraic and geometric)
equal to and , respectively. Let

be orthonormal eigenvectors of corresponding to
the eigenvalue . Denoting the matrix , we
allocate sequences for the users as follows:

...

Then, note that . These sequences were first
identified in [12] (but in their context the sequences were
in ) and the authors referred to such
as WBE sequences, sequences that meet the so-calledWelch-
bound equality(see [25]). We shall henceforth assume that the
WBE sequences are in .

C. Observations on Valid Allocations

Below, we observe some properties of valid allocations
in general and in particular the specific valid allocation we
demonstrated in the proof of Theorem 3.1.

1) Suppose users are admissible in the system with
processing gain . Let be a valid allocation
of sequences. Then, with these sequences fixed, among
all valid allocations of powers (i.e., with this power
allocation SIR ) there exists a component-wise
minimal power allocation (see [18]) and with this power
allocation, SIR . Hence, when the sequences are
WBE sequences, it follows that the power allocation

is the component-wise minimal power solution.

2) We shall now focus on this specific allocation scheme
of WBE sequences and corresponding component-wise
minimal powers. This scheme allocates the smallest sum
of powers among all valid allocations. We shall show
this property in Section IV when we revisit user capacity
with power constraints.

3) With this allocation, the MMSE receiver for useris
given by, following (3),

(15)
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where is a constant (which can be shown to be equal to
). Thus the optimal linear filter in this situation is just

a scaled version of the matched filter. This observation
allows us to conclude that the user capacity of a system
equipped with thea priori inferior matched filter receiver
is the same as that of the linear MMSE receiver:

Corollary 3.2: users are admissible in the system with
processing gain and equipped with matched filter receivers
if and only if

D. Comparison with Random Sequences

It is interesting to compare this result with the corresponding
characterization of user capacity of a system with random
signature sequences carried out in [17]. The results in [17]
are asymptotic and are valid for a large system (i.e., a system
with a large processing gain and large number of users). We
focus on the system where each user has SIR requirement

, the number of users is , and the processing gain is
and consider the regime , , and .
Appealing to the results in [17] we conclude as follows:

1) Suppose MMSE linear receivers are used. Then, ([17,
Sec. 5]) the SIR of each user converges (in probability)
to a constant and (with appropriate power control) this
constant is at least the target requirementif and only
if . Thus for a large system, this suggests that
using random sequences is as good as using the optimal
WBE sequences (in the context of user capacity) for the
signature sequences of the users.

From (10), note that the total normalized MMSE errors
of the users is a constant, independent of the relative
powers of the users and depends very weakly on the
signature sequences. To minimize the maximum MMSE
among all users (or equivalently, to maximize the mini-
mum SIR’s), it is, therefore, optimal to have symmetry
among the users such that they have the same MMSE.
This was achieved using equal received power and the
WBE sequences described earlier. However, this “sym-
metrization” can also be achieved asymptotically when
random sequences are used, since it is shown in [17] that
(with appropriate power control) the SIR’s of all users
will converge to the same number. But maximizing the
minimum SIR’s is equivalent to maximizing the number
of users in a system with given equal SIR requirements.
Hence, random sequences and the WBE sequences yield
the same user capacity asymptotically.

2) For the scenario of matched filters, following [17, Sec.
5], the SIR of each user converges (in probability) to
a constant and this constant is at least the requirement

if and only if . Thus one user per degree of
freedom is lost asymptotically when random sequences
are used. A conservation law similar to the one for
MMSE receivers (as in (12)) is lacking for the matched
filter receivers.

IV. POWER CONSTRAINT AND USER CAPACITY

Our model has not included any constraints on the allocated
received power of the users; we now include a received
power constraint in our model. In this section we precisely
quantify the loss in the user capacity due to the received power
constraint; this loss will be a function of both the constraint
and the power of the background Gaussian noise. One way
to justify the constraint on the received power of the users is
by consideringaverage transmit powerconstraint of the users.
If one is able to adopt a model of fading for the users that
is ergodic (with the same mean fading) and independent, an
average transmit power constraint on the users translates into
a received power constraint.

A. User Capacity with Power Constraints

We define admissibility of users (each having SIR
requirement ) in the system with processing gain and
power constraint as being able to allot signature sequence

and power for every user such that the achieved
SIR (given in (4)) is at least the target value. If the system
has just one user, then the minimum power required by that
single user to meet its SIR requirement is . To prevent
a degenerate situation, we shall assume that . As
before, we assume that the number of users is greater than the
processing gain. Our main result in this section is to precisely
identify the loss in user capacity by including such a power
constraint:

Theorem 4.1: users (each having SIR requirement) are
admissible in the system with processing gainand average
received power constraint if and only if

Proof: We first show the necessity. Supposeusers are
admissible. Then there exist signature sequences

, positive powers , such that for every user
, we have SIR . From (12), we have the conservation law

SIR
SIR

(16)

where are the eigenvalues of the matrix .
We note that

(17)

where the second equality follows by some algebra and noting
that the columns of have unit norm. Now, if we let

, then the vector is majorized
by the vector (see Example 3.1). We need the
following definition.

Definition 4.1: A real-valued function is said
to be Schur-concave if for all such that majorizes

we have . We say that is Schur-convex if
is Schur-concave.

An important class of Schur-convex functions is the fol-
lowing ([11, Theorem 3.C.1]).
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Example 4.1: If is convex then the symmetric
convex function

is Schur-convex. By definition, if is concave then
the symmetric concave function

is Schur-concave.

Observe that the map is concave in and hence
the symmetric concave map

is Schur-concave (see Example 4.1). Then we have

By hypothesis, SIR and hence

(18)

which implies that

Since each it follows that . We then conclude

that .

To see this is sufficient as well, suppose .
We shall use the same allocation scheme as in the proof
of Theorem 3.1, namely, signature sequences to be WBE
sequences and powers

We have, as in the proof of Theorem 3.1, the achieved SIR of
each user is equal to. We only need to verify that our choice
of powers does not exceed the constraint. Using the prior

we have for each user power

Thus the users are admissible in the system.

The proof of the characterization of user capacity allows us
to conclude anoptimality property of the specific allocation
scheme used above: supposeusers are admissible in the
system with processing gain. Then for any valid allocation
(signature sequences and powers ), from (18),
we have that

(19)

For the allocation in the proofs of Theorems 3.1 and 4.1,
the lower bound in (19) is met with equality. We draw the
following conclusions.

1) The allocation of WBE sequences and powers all equal
to

gives the smallestsum of received powersamong all
valid allocations. In this sense, this allocation is optimal.

2) Since with this allocation the MMSE linear receiver
for each user is just the corresponding scaled matched
filter receiver (as seen in (15)), we have the following
corollary.

Corollary 4.2: users (each having SIR requirement)
are admissible in the system with processing gainand
received power constraint and equipped with matched filter
receivers if and only if

B. Comparison with Random Sequences

We saw from the comparison in Section III that asymptot-
ically (in a large system, where number of users ,
processing gain , and ) there is no loss in user
capacity with MMSE receivers while using random sequences.
It is interesting to compare the results when there is a received
power constraint. From the results in [17], we summarize.

1) From [17, Sec. 5] we conclude that with a received
power constraint , users have their SIR requirement

achieved (using MMSE receiver) if and only if

The user capacity is thusstrictly less than that with
optimal sequences, when the power constraint is finite.
To understand why, we can appeal to (9)

MMSE (20)

where ’s are the eigenvalues of the matrix .
When the background noise power is small compared to
the received powers, any set of sequences which sym-
metrizes the MMSE for all users are optimal. When
is nonnegligible, good sequences should also minimize
the right-hand side as well. The WBE sequences achieve
that by making the eigenvalues least “spread out,” i.e.,
all the same. Using random sequences, the eigenvalues
are more spread out, resulting in a user capacity penalty
when is nonnegligible.

2) When matched filters are used, following [17, Sec.
5], we conclude that users can meet their target SIR
requirement if and only if when the
received power constraint is. Thus there is a loss in
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user capacity strictly more than one user per degree of
freedom when using random sequences when compared
with the user capacity achieved with optimal sequences.

V. MULTIPLE CLASSES, USER

CAPACITY, AND OPTIMAL ALLOCATIONS

In this section we consider the situation when the users
have different SIR requirements and completely generalize the
results of the previous two sections. This level of generality
of allowing users to have different SIR requirements caters
to data and voice users, sharing the common system and
having different SIR requirements. As earlier, we shall assume,
without loss of generality, that the number of users is bigger
than the processing gain.

A. User Capacity Characterization

We first define admissibility of users (with SIR require-
ments ) in the system with processing gain
as being able to allot signature sequences and powers for
the users such that for each userthe SIR achieved by
the MMSE receiver for that user (as in (4)) is greater than
or equal to (such allocations are calledvalid). Our main
result of this section is an analog of Theorem 3.1; a complete
characterization of admissibilit:.

Theorem 5.1: users (with SIR requirements
) are admissible in the system with processing gainif

and only if

Proof: This result motivates the consideration of the
quantity as theeffective bandwidthof a user with SIR
requirement . Then the criterion of admissibility has a simple
interpretation: Users are admissible if and only if the sum
of their effective bandwidths is less than the processing gain
of the system. Let us denote the effective bandwidth by

.
We first show the necessity: sinceusers are admissible, by

definition, there exists a valid allocation of signature sequences
and powers . Since SIR , and the effective bandwidth

is a monotonic function of the SIR requirement, from (12) we
have

We show that this is also sufficient by explicitly demonstrating
a valid allocation. Restricted to the context of this proof, we
assume for notational simplicity that the SIR requirements of
the users are ordered, i.e., .

We look for the unique such that

(21)

Say that the users areoversized. If , then no user
is oversized (and this happens when ).

Observe that oversized users have effective bandwidth large
relativeto the effective bandwidths of the other users. A simple
recursive scheme to enumerate the oversized users follows
directly from the definition in (21).

Let be the vector with
the entry being in the th position. Then form
an orthonormal basis for . Recall that users are
oversized, and we know that . Consider the following
allocation of powers and sequences:

1) For oversized users, we allocate independent channels,
i.e., for users in we allocate the signature
sequences and powers .

2) For nonoversized users we allocate sequences from
the subspace which has dimension

. From (21), it follows that

and hence the vector with with entries equal to
and the other entries equal to

majorizes the vector (see
Example 3.1). Now, appealing to Lemma 3.1, there
exists a symmetric matrix, say, with diagonal entries

and eigenvalues

and with multiplicities (both algebraic and geomet-
ric) equal to and , respectively. Let

be orthonormal eigenvectors
of corresponding to the eigenvalue

Now, for every user choose power
proportional to its effective bandwidth, namely,

where constant

(22)

Observe that is positive by the hypothesis

Let be the diagonal matrix with entries
. For define sequences
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and the matrix as

...

Since the diagonal entries of are unity, have unit
norm for every . Also, note that

(23)

We shall denote such sequences asgeneralized WBE
sequences. Note that when is a scaled identity, the
sequences reduce to the WBE sequences. The Ap-
pendix discusses the construction of generalized WBE
sequences.

Now allocate signature sequences for users not oversized
as follows:

With this allocation of sequences and powers we now have

(24)

Substituting in (5)

SIR

SIR

(25)

Thus each user has its SIR requirement met which completes
the proof.

This characterization of admissibility along with the valid
allocation scheme above allows us to make the following
remarks.

1) It is interesting to observe that the linearity of the
boundary of the user capacity is a consequence of
(10), that the total minimum mean-square errors of the
users is a constant independent of the received powers
and dependent very weakly on the signature sequences.
This also explains why here, as in the single class
case, random sequences achieve asymptotically (as the
processing gain gets large) the same performance as
optimal sequences.

2) In practice, one can imagine a small number of different
SIR requirements of the users (say two or three). We
introduce the notion of different “classes” of users; all
users of the same class have a common SIR requirement.
We assume there areclasses (fixed) and users of class

have SIR requirement . We know (from Section III)
that degrees of freedom can support
users each with SIR requirement. This suggests that
we could “channelize” the system such that users of
different classes do not interfere with each other and
asymptotically achieve users of class per degree
of freedom whenever This is indeed
true and the following statement can be verified: We
can admit at least users of class
in a system with processing gain where
positive such that

3) We can identify two important situations when there are
no oversized users:

a) When all the SIR requirements are identical, then
no user is oversized. This is the result contained in
Theorem 3.1.

b) When there are at least as many users in each
class as the processing gain of the system then
it is straightforward to see that that there are no
oversized users. Suppose classhas users
and . Then, we can make a familiar
valid allocation: signature sequences for theusers
of class to be WBE sequences (this can be done by
the hypothesis that ) and powers the same
for every user of class to be

The SIR of user of class , as in (5), can be verified
to be exactly . This ensures that for every class,

users of that class are admissible in the system.

4) In the proof of Theorem 5.1, the assumption that the
SIR requirements of the users be ordered was for nota-
tional simplicity. Equivalently, the notion of oversized
users could be introduced (with no assumption on the
ordering) as below:1 User is defined to be oversized if

(26)

Denote the set of oversized users as. Then, (21) can
be written in this notation as

We observe that there can be at most oversized
users and that if useris oversized then every user with
SIR requirement at least is also oversized. In the rest
of the paper we shall adhere to this notation.

5) For the specific valid allocation demonstrated in the
proof of Theorem 5.1, we can calculate the MMSE

1We would like to thank Prof. Sergio Verdú for suggesting this terminology.
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receiver for the users (from (3)) to be

from (24)

from (23)

where is a constant (which is easily seen to be
). Thus the MMSE

receiver is just the scaled matched filter receiver for each
user. This allows us to conclude, exactly as in Section
III, that there is no loss in user capacity when we restrict
the system to use thea priori inferior matched filter. To
emphasize

Corollary 5.2: users (with SIR requirements
) are admissible in the system with processing gain

and equipped with matched filter receivers if and only if

B. Optimal Allocation of Powers and Sequences

We proved Theorem 5.1 by explicitly demonstrating a valid
allocation scheme. We now identify the nature of optimality
of this allocation scheme. This is a generalization of the ideas
in Section IV to the situation when users have different SIR
requirements.

The key observation used in Section IV to characterize
the optimality of WBE sequences was (9) which related the
eigenvalues of and the MMSE’s of the users (and hence
the attained SIR’s of the users; using (11)). We now strengthen
(9) to obtain thepreciserelationship between the eigenvalues
of and the attained SIR’s of the users using the MMSE
receiver structure.

Fix , the signature sequence matrix, and the
diagonal matrix of user powers . Suppose the MMSE re-
ceiver structure is used and the attained SIR’s of the users are

. Then appealing to (6) and (11) we have that the
diagonal entries of the matrix are

Now, if we denote the eigenvalues of by
it is straightforward to verify that the matrix

has eigenvalues equal to

and the remaining eigenvalues equal to. Hence,
referring to Lemma 3.1

majorizes (27)

Observe that the conservation law mentioned in (9) follows
directly from (27) above. The statement that (27) is theprecise
relationship between the eigenvalues of and the attained
SIR’s of the users is made clear by the following observation.

Suppose we are given and
such that

majorizes

(28)
Then the claim is that there exists an allocation of signature
sequences and user powers such that

has eigenvalues (29)

The attained SIR’s of the users are (30)

To see this, consider the following construction ofand .
Given and satisfying (28),
by an appeal to Lemma 3.1, there exists a symmetric
matrix with diagonal entries

and eigenvalues . Denote for

each and let . Let be
the matrix with columns the normalized eigenvectors
of corresponding to the eigenvalues . Then

(31)

Define to be the diagonal entries of the
matrix and to be the diagonal matrix with diagonal
entries . Now define the signature sequence matrix

by

for some orthonormal matrix . Then observe the
following.

1) The columns of have unit norm.
2) has eigenvalues

be definition.
3) The SIR’s attained by the users are . To see

this, note that

using (31)

and by definition the diagonal entries of are
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Hence by construction we have demonstrated the existence of
signature sequences and powers so that both (29) and
(30) are met.

We shall now use the observation in (27) and (28) to
characterize the optimality of our signature sequence and
power allocation. Now suppose we are given that the necessary
condition in Theorem 5.1 is true. Then
by Theorem 5.1, there exist someand some such that
the achieved SIR’s of the users are . If we denote

as the eigenvalues of and
then (28) shows the relationship between

and . Now

see (17)

(32)

The lemma below identifies a lower bound on . Recall
that the set of oversized users is denoted by.

Lemma 5.1:Let be the set of oversized users. Given the
constraint (28)

(33)

Suppose that this is true. Then for any allocation of se-
quences and powers so that the SIR requirements of the users
are met, (33) can be used in conjunction with (32) to obtain a
lower bound on the sum of allocated received powers

It is now straightforward to verify that the sum of powers
allocated in the sufficiency proof of Theorem 5.1 (in (22))
meets this lower bound. Thus our specific valid allocation
of sequences and powers isoptimal in the above sense of
minimizing the sum of allocated powers. We now prove the
lemma.

Proof of Lemma 5.1:Let us develop some notation by
defining the set over which vary. Rewriting (28),
let

majorizes

(34)

Observe that the map is convex and hence the
symmetric convex map

is Schur-convex (see Definition 4.1 and Example 4.1). Hence
if majorizes then . We now complete the
proof of Lemma 5.1 by identifying a “Schur-minimal” element

in . Let the set of oversized users be denoted by. Let
be

(35)
Consider the following claims:

(36)

majorizes (37)

Suppose these are true. Then is the minimum value of
the minimization problem in (33) and the claim in Lemma 5.1
is now straightforward to verify. We only need to prove (36)
and (37) above.

It is straightforward to verify from the
definition of and by properties of oversized
users that . Let
and denote the order statistics of (see
Definition 3.1 for the notation). Let be the
order statistics of . By the definition of in (35)
and properties of oversized users, it can be verified that the
following relation is true among the elements of:

(38)

Hence we can write

(39)

Now, since we have

and hence

Furthermore, . Hence

We complete the proof of the claim thatmajorizes by
induction. Suppose
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for some . Since

and , we have

Hence

by induction hypothesis. (40)

Since , from (40), we have

from (39)

This is true for all . Hence majorizes and
is a Schur-minimal element of .

VI. DOWNLINK AND USER CAPACITY

Until now, we have been considering the uplink of the
cellular system. In the downlink of this system there is a
single transmitter (the base station) and there are multiple
receivers (the users). We first formally define our model and
then consider the user capacity of the downlink.

A. Definitions and Model

Suppose there are users in the downlink of the system.
Let the path gain from the base station (interchangeably
referred to as transmitter) to userbe . We suppose that the
noise at the receivers is additive white Gaussian with the same
variance per degree of freedom for each user (there is no
loss of generality in this assumption since we can incorporate
this into the path gain parameter). We say that users
(with path gains from the base station being and
each having the same SIR requirement of) are admissible
in the downlink of the system with processing gainif we
can allot transmit power and signature sequence at the
transmitter corresponding to user

SIR (41)

where is the MMSE linear receiver given the signature
sequences and the powers. Proceeding as in Section II-A, it
is easy to verify that the optimal (in the sense of maximizing
SIR for each user) linear receiver for user is

(42)

where and the corresponding SIR
with the optimal receiver is

SIR (43)

It is clear that we can make a similar definition of admissibility
of the users when the receiver structure is fixed to be the
matched filter. The similarity of the achieved SIR equation
(41) to the corresponding one in the uplink in (2) is apparent.
Only the noise variance in (2) is replaced now by . If
we have no constraints on the allocated power we can “null
out” the additive noise and the admissibility characterization
is identical to that of the uplink.

B. User Capacity Characterization

Theorem 6.1: users with path gains from the
base station and each having the same SIR requirementare
admissible in the downlink of the system with processing gain

if and only if

Proof: We first show the necessity, on the same lines of
the uplink situation. Suppose the users are admissible in the
downlink. Then, for each user, there exists signature sequence

and transmit power at the base station(as a function of
the path gains ) such that the achieved SIR of user

(as in (41)) is greater than or equal to. Using (43)

(44)

Proceeding as in (5), we have, for each user

(45)

where . Recalling the notation developed in
Section II, and and

. Then we can rewrite . We
have, from (44), that for each user

Equivalently, we have for each user

Denoting , we have for each user

Summing up the terms, we have
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To show this is sufficient as well, suppose
and be arbitrary positive real numbers. Allot WBE
signature sequences for the users and powers

(46)

where . Then, and hence for every
user we have

Using (45),

SIR

(47)

(48)

where we used the fact that

since by hypothesis we have that and .
Hence the users are admissible.

Some comments are in order now:

1) A (simple) closed-form expression of the allocation that
is optimal (in the sense of the previous sections) seems
unattainable. But it is worth emphasizing that our alloca-
tion above has the property that the signature sequences
are allocated (to be WBE sequences) independent of the
path gains and only the powers are chosen as a function
of the path gain.

2) With matched-filter receivers, the admissibility is
unchanged and we have users with path gains

from the base station and each having the
same SIR requirement are admissible in the downlink
of the system with processing gain if and only if

3) When users have different SIR requirements, a simple
calculation shows that users with path gains from the
base station and having SIR requirements

are admissible in the downlink of the system
with processing gain if and only if

The same statement is true when using matched-filter
receivers instead of MMSE receivers.

4) For every class, users per unit processing gain of
that class are admissible by “channelizing” the downlink

of a large enough system if

VII. JOINT FDMA/CDMA CASE AND USER CAPACITY

Traditional multiple-access schemes divide the channel into
slots and it is important to note that we can incorporate
a slotted system into our framework. We achieve this by
forcing the signature sequences to be chosen only from an
orthogonal sequence set. Then users that have the same
signature sequence are in the same “slot” or “channel” and do
not cause any interference to users in different “channels” due
to the orthogonality of the signature sequences. In this case, the
receiver is trivial and the MMSE and matched-filter receivers
coincide. It is interesting to identify the user capacity in this
situation and this exercise will enable us to explicitly identify
the gain in user capacity by using nonorthogonal signature
sequences. In this section, we identify the user capacity of
the slotted system in a variety of settings. The conclusion we
draw from the results is that the user capacity in this case
differs from the earlier one by an integer part of a function
of the SIR requirement. The assumption below is that the
signature sequences are now constrained to be chosen from
an orthogonal sequence set (whose linear span has dimension
equal to the processing gain of the system). We first focus on
the uplink.

Proposition 7.1: users each with SIR requirementare
admissible in the system having processing gainif and
only if

if

else.

Proof: Since the sequences are chosen from an orthogo-
nal set, only users having the same sequence (we shall refer to
them as users in the same channel) cause interference to each
other. We hence focus on the user capacity for a single channel.

users are admissible into a channel with SIR requirement
if there exist positive powers such that, analogous
to (2)

SIR (49)

The existence of such powers can be seen to be equivalent to
(see [16, Theorem 2.1])

(50)

where is the Perron–Frobenius eigenvalue of the argument
(which is a nonnegative irreducible matrix; for notation and
definition see [16, Ch. 1]) and is a matrix with all
entries being equal to. Since , the existence of
powers satisfying (49) is equivalent to the number of users

. Since we have channels available, this is
equivalent to the total number of users if

and else.
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In the general situation when users have arbitrary SIR
requirements, we summarize our results without detailing the
proofs.

1) We focus on a single channel first. users with SIR
requirements are admissible in asinglechan-
nel if and only if

2) When there are channels, a sufficient condition for ad-
missibility of users with SIR requirements
is

A necessary and sufficient condition for admissibility is
that there be a way to allot every user to one (among

) channel such that users within each channel are
admissible.

Proposition 7.2: users each with SIR requirementare
admissible in the system having processing gainand power
constraint if and only if

Let us consider the single channel first.users are admissible
in the single channel if there exist positive powers
each upper-bounded by such that for each user

SIR

We can rewrite this in matrix notation as

where is a vectors of all ones. As in (50), the
existence of such positive powers is seen to be equivalent
to . Furthermore, under this condition,
there is a component-wise minimal power solution, (see [16,
Theorem 2.1]) given by

after some elementary algebra

Thus users are admissible in the single channel with power
constraint if and only if and .
This is equivalent to

Since there are channels, we conclude that this is equivalent
to the total number of users (in all the channels)

.
As was done earlier, we state the user capacity for the

downlink system in this situation without detailing the proofs.

The proofs can be obtained by an argument similar to the
ones made above.

1) users (with path gains from the base station being
) each with SIR requirement are admissible

in the downlink of the system having processing gain
if and only if

if

else.

2) users (with path gains from the base station being
) with SIR requirements are ad-

missible in a single channel in the downlink if and only
if

VIII. C ONCLUSIONS AND FUTURE WORK

Most previous studies of multiuser receivers (see [22] for
a comprehensive study) areuser-centric. Specifically, typical
measures such asnear–far resistancefocus on the performance
of a single user in the face of worst case interference. Different
from these works, here, we consider anetwork-centricfor-
mulation where the users have to simultaneously satisfy their
performance requirements and network-level user capacity
is the ultimate performance measure. Despite the simplistic
setting of symbol synchronism and no fading (equivalently,
perfect channel estimation and power control) this formulation
allows us to study the fundamental tradeoffs between the per-
formance of different users through the allocation of signature
sequences and power control. Though our model does not
make any restrictions on the users’ symbols, we have a
heavily coded system (such as that of IS-95) in mind and that
the MMSE estimates are used forsoft decodingof the users’
raw bits. The desired for IS-95 system is about 3–7 dB
(see [24, p. 183]) and this corresponds to an SIR requirement
of about .

The huge literature on design of signature sequences for
various communication models is comprehensively covered
in [3]. The assumption of perfect power control made in this
paper is relaxed and results here are extended in [1]. Motivated
by the optimal nature of WBE sequences, in [19], the authors
provide an iterative interference suppression algorithm that
updates the signature sequences allocated to the users and
demonstrate that the allocations converge to WBE sequences.

APPENDIX

EXISTENCE AND CONSTRUCTION OF

GENERALIZED WBE SEQUENCES

We have identified generalized WBE sequences as the
optimal sequence allocation in Section V. In the proof of
Theorem 5.1, we also illustrated a procedure to construct these
sequences. In this appendix we discuss some characteriza-
tions of these sequences and mention some open problems.
As a reprise, we repeat the definition of generalized WBE
sequences: Fix henceforth. Fix , the diagonal
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matrix of user powers . Let . Then,
say that (the unit sphere in ) are
generalized WBE sequencesand the matrix
as ageneralized WBE matrixif the following three conditions
are satisfied:

1) The rows of have the same norm, equal to .
2) The columns of have unit norm.
3) The rows of are orthogonal to each other.

Properties 1) and 3) can also be succinctly expressed as
. When and is scaled identity,

orthonormal matrices are the only matrices satisfying the
above three properties. When and is not the scaled
identity, then there is no generalized WBE matrix. We now
generalize this observation to arbitrary .

The matrix has the same eigenvalues as
along with additional zero eigenvalues. Since the diagonal
entries of are a necessary condition
for the existence of a generalized WBE matrixis, referring
to Lemma 3.1

majorizes

which simplifies to (51)

Observe that when , (51) reduces to the condition
that . As suggested by Lemma 3.1, this
condition is also sufficient for the existence of a generalized
WBE matrix . To see this, suppose (51) holds. Then, by
Lemma 3.1, there exists a real symmetric matrix, say,
with diagonal entries and eigenvalues and

with multiplicities (both geometric and algebraic) and
, respectively. Let us denote the set of such matrices

by and as an element of this set. Also, let
be the normalized eigenvectors of corresponding to the
eigenvalue (written as elements of ). We claim that
the definition

...

satisfies the three properties of generalized WBE matrix.
Properties 1) and 3) are satisfied by definition. It is trivial to
verify that has unit diagonal entries and hence property
2) is satisfied also. The important observation is thatevery
generalized WBE matrix is generated in this way: Ifis a

generalized WBE matrix, then the rows of

serves as the eigenvectors corresponding to the eigenvalue
of some matrix . Also, it is a trivial observation that,
if is a generalized WBE matrix, then so is for any
orthonormal matrix , i.e., rotating all the generalized WBE
sequences by the same rotation matrix does not alter their
properties.

Given their optimality, it is important to characterize gener-
alized WBE matrices up to an equivalence class of orthonor-
mal rotations. Such a characterization will aid design questions
such as constructing sequences with entries constrained to
be in or with a peak power constraint on the

entries. Though we have characterized all generalized WBE
matrices through the eigenvectors of certain positive-definite
matrices with fixed diagonal entries and fixed eigenvalues,
this characterization does not seem to aid, in a straightforward
way, the answering of the design questions mentioned above.
Nevertheless, this has afforded us some intuition on construct-
ing generalized WBE matrices; in [23], we demonstrate a
constructive (iterative, with at most iterations) algorithm
to construct the eigenvectors of the matrix .

For the special case when is the identity, the matrix
reduces to a WBE matrix and simple construction schemes
are known.

1) WBE matrix goes by the name oftight frame2 in the
context of over complete expansions in in Wavelets
literature (see [2, Ch. 3] for a detailed review of tight
frames). The following construction of tight frames is
well known: assuming is odd, the th sequence is
given by

for . When is even, we construct
sequences as above (replacingby ) and ignore
the first element (namely, ) of each sequence and
scale the resulting sequence by

to normalize it. It is easily verified that this constructs
WBE sequences for arbitrary .

2) In [12], the authors construct WBE sequences with
entries restricted to when for .

3) We remark that constructing WBE sequences for every
with entries restricted to is equivalent

to solving the long-standing open problem of construct-
ing Hadamard matrices for every dimension a multiple
of (see [5] for details and further references on this
problem).

4) Recently, in [19], motivated by the demonstration of
the optimal nature of WBE sequences, the authors have
described a distributed algorithm that updates iteratively
the signature sequences of the users. Given an initial
set of signature sequences for the users (that has some
very weak properties) the authors show that the users’
signature sequences converge to WBE sequences using
this iterative algorithm.
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