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Abstract—There has been intense effort in the past decade to A significant thrust of work has been on developmgltiuser
developmultiuser receiver structures which mitigate interference receiver structures which mitigate the interference between

between users in spread-spectrum systems. While much of this e jn spread-spectrum systems. (See, for example, [21], [8]
research is performed at the physical layer, the appropriate [9], [26], [10], [14], and [15]) ’ ’ B

power control and choice of signature sequences in conjunction :
with multiuser receivers and the resulting network user capacity In this paper, we focus on a synchronous power-controlled
is not well understood. In this paper we will focus on a single cell CDMA system with multiuser receivers. The processing gain
and consider both the uplink and downlink scenarios and assume represents thelegrees of freedorin the system. We assume

a synchronous CDMA (S-CDMA) system. We characterize the hat gt the receiver, each user is demodulated using a linear

user capacity of a single cell with the optimal linear receiver . O .
(MMSE receiver). The user capacityof the system is the maximum '€C€IVer structure; in particular, we shall focus on the “linear

number of users per unit processing gain admissible in the system MiNimum mean-square error (MMSE) receiver” (formally de-
such that each user has its quality-of-service (QoS) requirement fined in Section II; also see [10]). We are interested in the
(expressed in terms of its desired signal-to-interference ratio) yser capacityof both the uplink (mobiles to base station)

met. Our characterization allows us to describe the user capacity and the downlink (base station to mobiles) of this system

through a simple effective bandwidthcharacterization: Users are . s . .
allowed in the system if and only if the sum of their effective equipped with linear MMSE multiuser receiver. We say that a

bandwidths is less than the processing gain of the system. TheS€t of users isdmissiblein the uplink system with processing

effective bandwidth of each user is a simple monotonic function of gain /V if one can allot signature sequences to the users and
its QoS requirement. We identify theoptimal signature sequences control their received power such that the achieved signal-
and power control strategies so that the users meet their QoS to-interference (SIR) of each user is greater than its SIR

requirement. The optimality is in the sense of minimizing the sum . £ Wi int ted in th bl fch terizi
of allocated powers. It turns out that with this optimal allocation ~ 'edquirement. e are interested in the problem or characterizing

of signature sequences and powers, the linear MMSE receiver the maximum number of users per degree of freedom, called
is just the corresponding matched filter for each user. We also the user capacityof the uplink system. Analogous definitions

characterize the effect of transmit power constraints on the user of admissibility and user capacity can be made for the down-

capacity. link. For the most part, in this paper we shall focus on the
Index Terms—CDMA, linear MMSE receivers, power control,  uplink (the downlink scenario turns out to be very similar and
user capacity, WBE sequences. we briefly summarize the results) and our main results are as
follows.
l. INTRODUCTION 1) K users with SIR requirements; , - - -, 55 are admis-

Acentral problem in the design of wireless networks is how  Sible in the system with processing ga\if and only
to use the limited resources such as bandwidth and power  if

most efficiently in order to meet the quality-of-service require- K 3
ments of applications in terms of bit rate and loss. To meet Z ' _ < N.
these challenges, there have been intense effort to develop Pl

more sophisticated physical layer communication techniques. . . C
P PRy y 9 This allows us to characterize the admissibility of users
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we identify theoptimal allocation, optimal in the sense corresponding systems with optimal sequences. We
of minimizing the sum of allocated powers. The optimal quantify precisely the gap in performance.

I ion h he followin r re.
allocation has the following structure In related work, there has been a great deal of research

a) A user is said to beversizedif the users ef- g qving the problem of power control of the users for con-
fective bandwidth is largeelative to the effective ,qniional CDMA systems. Distributed iterative algorithms
bandwidths of the oth_er users. Oversized users 4Hat achieve power control of the users are discussed in, for
allocated orthogonal signature sequences (hence g}(’ample, [4] and [6]. These ideas were extended subsequently
depender_n channels) and powers proportional to th%r systems with MMSE receivers [18], [7], but they focused
SIR reqwrements. on deriving convergent power control algorithms rather than

b) Nonoversized users are allocated sequences thaby7ing the achievable user capacity. The problem of iden-
we denotegeneralized Welch-bound-equality (WBEjitying good signature sequences has been studied in [12] in
sequencesThese users are allocated powers propdfe context of a spread-spectrum system with conventional
tional to their effective bandwidth. matched filter receiver and equal received power for all users.

3) With this allocation of signature sequences and powers, [13], for equal received powers, the problem addressed
the MMSE linear receiver simplifies (somewhat unexn an information-theoretic setting is to identify signature
pectedly) to the matched filter for each user. Thus thequences for which thsum capacity the sum of rates of
user capacity of a system using tlepriori inferior all the users at which reliable communication can take place,
matched filter receiver is theameas that of the system js maximized. To achieve sum capacity joint processing of
using MMSE linear receiver. the users is required (for example, MMSE receivers with

4) In the special case when the SIR requirements of all teeccessive cancellation; see [20]) while in this paper we
users are equal (to, sag), our main result simplifies restrict ourselves to single-user demodulators. Though the
to the following: K users are admissible in the systenproblem addressed in [13] is thus different from the problem
with processing gainV if and only if addressed in this paper, the optimal sequences turn out to

be identical. This statement is true even for the situation of
K <14 l. unequal received powers, as shown in recent work [23].
N I5] An important special case subsumed by our framework is
when the signature sequences are constrained to be chosen

Using the optimality (in the sense of minimizing sum ofrom an orthogonal sequence set. This corresponds to dividing

allocated powers) of the allocation scheme, we identiffie entire bandwidth into frequency slots (or channels), i.e.,

the precise loss in the admissibility of number of user$ joint FDMA/CDMA system. In this case, the receiver is
as a function of the background noise power and thRvial and both MMSE and matched-filter receiver structures
average received power constraint. coincide. Our main result in this framework is as follows:

In [17], the authors consider the scenario when the signatdie USers each with SIR requiremedtare admissible in the
sequences of the users are independent and randomly choS¥HeM with processing gaiN if and only if K < N[1+5].
They show that the SIR of the users of a large system (witMe observe that the maximum number of users admissible
a large number of users and large processing gain) conver§g5 Unit processing gain differs from the earlier results by an
(in probability) and analyze the user capacity of the systeff€ger part. Thus we identify the gain by using nonorthogonal
based on the value to which the SIR converges. It is interestif@des and multiuser linear receivers; the difference depends on
to compare the performance of that system with the offé€ factorj and the processing gaii. In the scenario when
considered here when the sequences are optimally chosenusers are differentiated by their SIR requirement, we identify

) ] the user capacity of the system.

1) Under the MMSE receiver, the user capacity of & systeMpis paper is organized as follows: In Section 11, we give a
using random sequences is asymptoticadigntical 0 recise definition of the uplink model and of the admissibility
that of a system with optimally chosen sequences. THi$ he ysers. User capacity of the uplink system with linear
holds when there are no transmit power constraints, Qi receivers for the situation of equal SIR requirements
equivalently, when the background noise power is 10V the sers is identified in Section Ill. In a physical system, the
We will provide an explanation for this phenomenon. power transmitted by a user is constrained naturally. In Section

2) Under the conventional matched-filter receiver, a system, we demonstrate the optimality of a particular allocation
using random sequences admits one user per degégReme (developed in Section Ill) in the sense of minimizing
of freedom less than when the sequences are optie sum of allocated powers. This allows us to precisely
mally chosen. This shows that while the MMSE anguantify the loss in user capacity of the system with a received
the matched-filter receivers have the same performanggwer constraint. Section V completely generalizes the results
when the sequences are optimally chosen, the MM&Jt Sections Il and IV to the situation when users have
receiver is much more robust to the choice of spreadiggfferent SIR requirements. In Section VI, we will focus on
sequences. the downlink. We can ask our admissibility and user capacity

3) Under transmit power constraints, systems employimggion questions in this setup too. As can be expected, there is
random sequences admit strictly fewer users than thdot of connection between the downlink and uplink scenarios
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and we summarize the results. Section VIl focuses on tlransmitted symbols. Henceforth, we consider the allocation
joint FDMA/CDMA setup that corresponds to the restriction 0bf signature sequencdsr the users. By a suitable choice of
signature sequences to be chosen from an orthogonal sequeheeorthonormal waveform sef(v;(¢).t € [0,T])}j=1...n

set and identifies the user capacity of the system under varitis signature waveforms for the users can be constructed
settings. Section VIII contains our conclusions and discusgésllowing (1)).

directions toward future work. Suppose the symbol of useéris decoded using a linear
receiver, denoted by; (a vector inRY), then the signal-to-
Il. MODEL AND DEFINITIONS interference ratio of user (SIR;) is
SIR, = (Czw Si)Qpi )
A. Standard Synchronous CDMA Model 02(ciri) + 35 2i(cir57)7p;

We consider a symbol-synchronous code-division mUItipl%Ve say thatK’ users areadmissiblan the system if there is an
access (CDMA) system and focus on the uplink. FollowingII

the standard notation (see [22, Sec. 2.1]), the received signa?catIon of p(])\;s_ltlwe powers,, - --, px, Signature sequences
. . ; . S1,-,8Kk €8] and linear receiver structures,-- -, cx
in one symbol interval (off” time units) can be expressed as
such that
K
y(t)zZXisi(t)—i-n(t), te[0,7T] SIR; = 3, Vi=1---K.
=1

Here 5 > 0 is some fixed SIR requirement of each user that
Here T is the inverse of the data ratd{ is the number has to be met for satisfactory performance. Such a choice of
of users, and(s;(t),¢ € [0,7]) is the signature waveform powers and signature sequences is calledla allocation.
of user, and is thought of as an element 6f[0, 77, the
Hilbert space of square integrable functions [@n7"]. The B. Structure of Optimum Linear Receiver

waveform(s; (), ¢ € [0,71) is assumed to have unitnorm. The y; i5 \well known that the MMSE receiver is the optimum
information transmitted by each user is modeled as zero-meglaar receiver optimum in the sense of maximizing the SIR

independent random variablé§,, X», - -, Xyc. The variance o oach yser. While there are many derivations of the structure

o . > :
E[X7] is the power at Whlch user is received. We denotg of the MMSE receiver (see [10], [17], [18] for example and
the received power of usérasyp;, the product of the transmit [22, Sec. 6.2])c1,- -, cxc, we give an elementary derivation

power of gseri and the path gain from userto the receiver of the same as the argument of a problem of minimizing a
(base station). By the assumption mrfect power controbr  .,yey function over a convex set below (this will also aid

equivalently perfect channel estimation, we shall assume thatiy jeveloping notation to be used in the characterization of
we can allocataeceivedpowers for the users. The Processna ser capacity regions).

n(t) is additive white Gaussian noise independent of the userg;, the user powers,, - - -, px, and the signature sequences
? ? Sl

symboIle,---,X_K. ) ) s1,---,8K. The optimum receiver; is one that maximizes
Let the processing gain of the system &e Following the SIR,. Now, let

usual notation (as in [22, Sec. 2.3.6]), the signature waveforms

can then be written as S =[s1,82,",5K]
N D :diag(plv"'vplf)
si(t) =Y si(wi(t),  teloT] (1)
o and
where {(¢;(¢),t € [0,T])}j=..;y is an orthonormal Si=[s1-orsicas sipr oo, i
set in L?[0,7] and s;(j) is the inner product between D; = diag(p1, -, pi—1,Pit1 ", PKc)-

the waveform of useri, namely, (s;(¢),t € [0.T]) and Let
(v;(t),t € [0,T]). With some abuse of notation, let us
represent the vector of inner products;(1),---,s;(N)) Z; zsipisf+02]
as s; the signature sequencef user: (s; is a vector in
S{'~1, the unit sphere iRY). It is well known that the P
projections{y; };=1..n of (y(t),t € [0,T]) on {(;(t),t € Z=5D5 +o7l

[0, T])}j=1..v are sufficient statistics (see [22, Sec. 2.9.2 anghq we note that they are positive definite. et=U; A, U}

Ch. 3]) for the problem of demodulating the user symbolgyr 5 positive diagonal matrixy; and unitaryl;. Also, let
Writing Y = (y1,---,yn) as a vector inR", the received SDSt = UAUt. Then

signal can be written as

2
Ciy $i) Di
K max SIR; = max (;7)
. ;520 N VAT
Y = E $;X; + W P S 1
P zi\, P UlsisiU AN, P oy
= p; max : ,
a:z-;éO $Z$7

whereW is an independent and identically distributed (i.i.d.) L
Gaussian vector with covariance®/, independent of the wherez; = A?Ulc;.
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Thus thearg max is given byz; = A;%Ufsi and the optimal There is a simple one-to-one relationship between the normal-
receiver structure is ized minimum mean-square error MMSEBf useri and the
SIR achieved by that user, namely, SiRee (2)). LetX; be

L 7l
=% .SZ' (3) the Iipear estimate ok; from Y using the linear receiver;,
Hence, under the MMSE receiver e, Xi = ctY. We assume that; is appropriately normalized
SIR; = sgzi—lsipi (4) so that the error in the estimate MMJE) = El(aX;—X;)?]

is minimized atoe = 1 (the corresponding (minimum) error in

— 7 st Lt
= si(Z —pisisi) " sipi the estimate denoted by MM$EThen, it can be verified that

Z L s;8t 2 p;
—st{z! i5i i Yo, 1
= s <Z + 1= 8§Z181p1>31pz MMSE,; = TSR (11)
_ SiZ " 'sip; ) In particular, this relation holds when the receiver is the linear
1 —stZ7ts;p; MMSE one, that isc; is chosen according to (3). Using (9)
where we used the following formula in the second step: and (11), we have
A lgyta—t K SR -

A—agy)y t=A"t 4+ ——2 O g MMSE.;

( : 1—y' At ; 1+ SIR; v ‘
whenever the terms exist. HespZ ~Ls;p; is strictly less than N
1 and thus all the terms are well defined. — Z Ai (12)

iU a?
lll. CHARACTERIZATION OF USER CAPACITY < N. (13)

We begin with an elementary calculation of the error of"€ upper bound in (13) provides an upper bound to the
estimation using the MMSE linear receiver in terms of theerformance of the users regardless of the signature sequences

signature sequences and powers of the users and derivéSgd and powers allocated—we view this as a conservation
“conservation law” for the estimation errors. law. We can now derive the first main result of this paper: the

identification of the user capacity of a single-cell S-CDMA
system equipped with linear MMSE receiver. We assume that
each user has the same SIR requirem@nObserve that if
Recall the channel model in matrix form the number of users is less than or equal to the processing
Y =SX+W gain, the trivial choice of orthogonal signature sequences for

where S is the matrix the columns of which are the signaturtetJe users ensures arbitrary SIR requirements to be met if we

o . can scale up the power of the users. Hence, without loss of
sequences of the users and is the vector of transmitted enerality, we henceforth assume that the number of users is
symbols from the users. IX is the vector MMSE estimate of 9 Y

X, a direct application of the orthogonality principle yields greater than the processing gain.

A. Conservation Law for the MMSE Receiver

X = DS'[SDS' +o°I7'Y B. User Capacity Characterization
and the covariance matrix of the erro= X — X is given by The following is a complete characterization of the admissi-
K.=D - DS'[SDS"' 4 o?I|"*SD (6) bility of the users with equal SIR requirements and equipped

. . . . with MMSE receivers:
whereD = diag (p1,- -+, pk) IS the covariance matrix ak.

It follows that Theorem 3.1: K users are admissible in the system with
trace (D*%KED*%) processing gainV if and only if
1 1 1
= K — trace (D2 S'[SDS"' + o°I] 1 SD?) K< N<1+ 5)'
. . N (7) Proof: SupposeK users are admissible in the system
= K — trace (SDS'[SDS* + o7 1]77) with processing gain¥. Then, by definition, there exist
N, sequences,,---,sx € S, positive powerg; ,- - -, px such
=K - Z N+ o2 (8) that for every usei, we have SIR > 3, where the receiver
=1 structure is as in (3). Appealing now to (13), we have the
where \;’s are the eigenvalues of the mati$DS*. If we let upper bound
E[(X; — X;)?
MMSEZ‘EM K<N<1+l>.
Di I
be the (normalized) minimum mean-square error for Userty see that this sufficient also, we provide an explicit valid
then (8) becomes allocation scheme:
K N 1
i SupposeX’ < N(1+ =). Choose the powers to be
> MMSE; =K - — (9) e
. L )\; + 02 o2
=1 1=1 pi:pzil I'a Vi=1---K (14)
> K — rank (S). (10) I+5-%
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and sequences such thétt = f\—‘I Then, using (5)¥i =
1-.-K

We use these notions and results to construct sequences such
that 55t = £1. The vector(1, - -, 1) in RX is majorized by
the vector withV entries equal tdA‘— and the remainindd — vV
entries equal t@ (this is a simple application of Example
3.1). Now, appealing to Lemma 3.1, there exists a symmetric
matrix, say P, with unit diagonal entries and eigenvalues
K and 0 with multiplicities (both algebraic and geometric)

SIR;

——ao = s (pSSt + 07 I) s

K -1
= st <pr+ 02I> $iD

= LQ é\qual toN and K — N, respectively. Letvy,---,on €
Kp+No R bpe orthonormal eigenvectors dP corresponding to
— L the eigenvaluel. Denoting the matrixS = [sq, - -, sk], we
1+p allocate sequences for the users as follows:
Hence for each user, we have SIR = 3 and theK users vy
are admissible in the system with processing gﬁir\/\{e need K | v
to show the existence of sequences such it = f\—‘I We S =4/=
begin with some definitions. N
UN
Definition 3.1: For anyz = (w1, -+, za) € R", let Then, note thatSS* = L. These sequences were first
identified in [12] (but in their context the sequences were
Z[) 2 2 Ty in {1,-1}") and the authors referred to sueh, - -, sg

as WBE sequencesequences that meet the so-caNgdich-

denote the components of in decreasing order, called thebound equalitysee [25])}1/\1/8 shall henceforth assume that the
order statisticsof . WBE sequences are ' ~*. O

Majorization makes precise the vague notion that the coma- qpservations on Valid Allocations
ponents of a vectox are “less spread out” or “more nearly

equal” than are the components of a veajdry the statement Below, we observe some properties of valid allocations
z is majorized byy. in general and in particular the specific valid allocation we

demonstrated in the proof of Theorem 3.1.
Definition 3.2: For =,y € R™, say thatx is majorized by

y (or y majorizesz) if

k k
Zx[ﬂSZyM, k=1.---n—1
i=1 i=1
Zx[i] = Zy[i],
i=1 i=1

A comprehensive reference on majorization and its appli-

1) SupposeK users are admissible in the system with
processing gainV. Let sq,---, sy be a valid allocation
of sequences. Then, with these sequences fixed, among
all valid allocations of powers (i.e., with this power
allocation SIR > f3;) there exists a component-wise
minimal power allocation (see [18]) and with this power
allocation, SIR = ;. Hence, when the sequences are

WBE sequences, it follows that the power allocation
2

cations is [11]. A simple (trivial, but important) example of pi=p= %
majorization between two vectors is the following: I+5-%

is the component-wise minimal power solution.

We shall now focus on this specific allocation scheme
of WBE sequences and corresponding component-wise
minimal powers. This scheme allocates the smallest sum

Example 3.1:For everya € R such that)";_ a; =1
- 11 1 2)
(a1,---,a,) majorizes( =, =, ---, = ].
n n n

It is well known that the sum of diagonal elements of a
matrix is equal to the sum of its eigenvalues. When the matrix
is symmetric theprecise relationship between the diagonal
elements and the eigenvalues is that of majorization.

Lemma 3.1 ([11, Theorems 9.B.1 and 9.B.2]et H be a

3)

symmetric matrix with diagonal elements,,---,A, and
eigenvalues\y,---, A\, we have
(A1, -+, Ay) majorizes(hy, -, hy).

That h = (hi,--,h,) and A = (A1,---,A,) cannot be
compared by an ordering stronger than majorization is the
consequence of the following converse:ff > ... > i,
andX; > --- A, are2n numbers such that majorizesh, then
there exists a real symmetric matik with diagonal elements
hi,---,h, and eigenvalued,---, A,.

of powers among all valid allocations. We shall show
this property in Section IV when we revisit user capacity
with power constraints.

With this allocation, the MMSE receiver for useérns
given by, following (3),

C; = Z;lsi
-1

o2 + ijsjsz
JF#

(021 — ps; st —i—pSSt)_lsi

K \“!
<021 — psisé + %I) 8;

= as;

Si

(15)
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whereaq is a constant (which can be shown to be equal to IV. POWER CONSTRAINT AND USER CAPACITY

8 . . . K . . . L ) .
p)- Thus the optimal linear filter in this situation is just  or model has not included any constraints on the allocated
a scaled version of the matched filter. This observatiQ@ .iyed power of the users; we now include a received
allows us to conclude that the user capacity of a Syst&fyer constraint in our model. In this section we precisely
equipped with the priori inferior matched filter FECEIVET quantify the loss in the user capacity due to the received power
is the same as that of the linear MMSE receiver:  ongiraint; this loss will be a function of both the constraint

Corollary 3.2: K users are admissible in the system wit@nd the power of the background Gaussian noise. One way

processing gairV and equipped with matched filter receivero justify the constraint on the received power of the users is
if and only if by consideringaverage transmit poweronstraint of the users.

If one is able to adopt a model of fading for the users that
is ergodic (with the same mean fading) and independent, an

K<N <1 + /_3> average transmit power constraint on the users translates into
a received power constraint.

D. Comparison with Random Sequences A. User Capacity with Power Constraints

It is interesting to compare this result with the corresponding
characterization of user capacity of a system with random
signature sequences carried out in [17]. The results in [1r
are asymptotic and are valid for a large system (i.e., a systg
with a large processing gain and large number of users).
focus on the system where each user has SIR requirem
53, the number of users &, and the processing gain i¥
and consider the regim& — co, N — oo, and f\—‘ — «
Appealing to the results in [17] we conclude as follows:

We define admissibility of K users (each having SIR
quirements) in the system with processing gaiN and
wer constrainf as being able to allat signature sequence
. and powerp; < P for every user such that the achieved
; (given in (4)) is at least the target valye If the system
nt’. . .
has just one user, then the minimum power required by that
single user to meet its SIR requirement/ds?. To prevent
a degenerate situation, we shall assume fRar So?. As
before, we assume that the number of users is greater than the
1) Suppose MMSE linear receivers are used. Then, ([Igtocessing gain. Our main result in this section is to precisely
Sec. 5]) the SIR of each user converges (in probabilitigentify the loss in user capacity by including such a power
to a constant and (with appropriate power control) thisonstraint:

constant is at least the target requiremgnt and only ) . .
if o< 14 % Thus for a large system, this suggests that Theorem 4.1: K users (each having SIR requireméitare

using random sequences is as good as using the optirﬁ%@:szgleéc\/ge‘:gﬁ?g n%v Iitfharr)]?(;islswi}g gairand average
WBE sequences (in the context of user capacity) for tHe P y

signature sequences of the users. K < N<1 4 1 0_2>

From (10), note that the total normalized MMSE errors B P

of the users is a constant, independent of the relative proof: We first show the necessity. Suppdseusers are
powers of the users and depends very weakly on th@missible. Then there exist signature sequerges - , s €
signature sequences. Tq minimize the maximum MMS@ positive powerg - - -, px < P, such that for every user
among all users (or equivalently, to maximize the miniz we have SIR> 3. From (12), we have the conservation law

mum SIR’s), it is, therefore, optimal to have symmetry % N
among the users such that they have the same MMSE. Z SIR; _ Z Ai (16)
This was achieved using equal received power and the ~1+SIRi = Ai+0?

WBE sequences described earlier. However, this “syMere A,---, Ay are the eigenvalues of the matrDs".
metrization” can also be achieved asymptotically whejj,s note7tha£

random sequences are used, since it is shown in [17] that .
(with appropriate power control) the SIR’s of all users tr (A) = tr (SDS")
will converge to the same number. But maximizing the =tr (D) a7

minimum SIR’s is equivalent to maximizing the numbe{yhere the second equality follows by some algebra and noting
of users in a system with given equal SIR requirement$,at the columns ofS have unitZ, norm. Now, if we let

Hence, random sequences and the WBE sequences yjeld L S pi, then the vectotp®, p*, - -, p*) is majorized
the same user capacity asymptotically. by the vector(As,---,Ay) (see Example 3.1). We need the

2) For the scenario of matched filters, following [17, Sedollowing definition.
5], the SIR of each user converges (in probability) to Eefinition 4.1: A real-valued functionp : R* — R is said

a constant and this constant is at least the requirem cr)1 e Schur-concave if for alf, y ¢ R" such thay majorizes

g if and only if o < % Thus one user per degree o . )
. 8" > . -
freedom is lost asymptotically when random sequencgsW? have¢(z) > ¢(y). We say thatp is Schur-convex if
is Schur-concave.

are used. A conservation law similar to the one for
MMSE receivers (as in (12)) is lacking for the matched An important class of Schur-convex functions is the fol-
filter receivers. lowing ([11, Theorem 3.C.1]).
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Example 4.1:1f g : R — R is convex then the symmetric For the allocation in the proofs of Theorems 3.1 and 4.1,

convex function
px) = g(z:)
=1

is Schur-convex. By definition, if : R — R is concave then
the symmetric concave function

LOEDIES

is Schur-concave.

Observe that the map— _-* is concave inz and hence
the symmetric concave map

N s
Ousesdw) = 305
i=1""

is Schur-concave (see Example 4.1). Then we have

N N
i=1

Ai p*
A +o? = ;p* 4 o2
_
- p+ + 0—2 )
By hypothesis, SIR> 3 and hence
& Np*
1+8 = pr+o?

(18)
which implies that
" Kp@o?
P2 A
N(1+8)— Kgj
Since eacty; < P it follows thatp* < =&

We then conclude

the lower bound in (19) is met with equality. We draw the
following conclusions.

1) The allocation of WBE sequences and powers all equal

to
0_2
P=—T &
ok

gives the smallessum of received poweramong all
valid allocations. In this sense, this allocation is optimal.

2) Since with this allocation the MMSE linear receiver
for each user is just the corresponding scaled matched
filter receiver (as seen in (15)), we have the following
corollary.

Corollary 4.2: K users (each having SIR requiremesit
are admissible in the system with processing gainand
received power constrait® and equipped with matched filter
receivers if and only if

1 o2
K<N(1+>-2).
< <+/3 P)

B. Comparison with Random Sequences

We saw from the comparison in Section lll that asymptot-
ically (in a large system, where number of uséfs— oo,
processing gaitN — oo, and% — «) there is no loss in user
capacity with MMSE receivers while using random sequences.
It is interesting to compare the results when there is a received
power constraint. From the results in [17], we summarize.

1) From [17, Sec. 5] we conclude that with a received

p = NP
that K < N(1 +
1 o

5o %)
To see this is sufficient as well, suppdse< N(1+5—%).
We shall use the same allocation scheme as in the proof
of Theorem 3.1, namely, signature sequences to be WBE
sequences and powers

o2

1 K-
1+4-%5

We have, as in the proof of Theorem 3.1, the achieved SIR of
each user is equal {8. We only need to verify that our choice
of powers does not exceed the constratUsing the prior

pi=p=

K<N(1+1%- %—2) we have for each user power
2
o —
pi=—1 <P
1+ g~ N

Thus theK users are admissible in the system. O

The proof of the characterization of user capacity allows us
to conclude aroptimality property of the specific allocation
scheme used above: suppaseusers are admissible in the
system with processing gaiN. Then for any valid allocation
(signature sequences and powerspy, - - -, p3-), from (18),
we have that

2)

Ko?

1 K-
1+ 3 F‘r

(19)

K
Sonz
=1

power constraint’, users have their SIR requirement
[ achieved (using MMSE receiver) if and only if

0_2
~(1+B) 5

1
38
The user capacity is thustrictly lessthan that with
optimal sequences, when the power constraint is finite.
To understand why, we can appeal to (9)

K N
E:MMSE:J(—E:
=1 =1

where )\;'s are the eigenvalues of the matrixDsS*.
When the background noise power is small compared to
the received powers, any set of sequences which sym-
metrizes the MMSE for all users are optimal. Wheh

is nonnegligible, good sequences should also minimize
the right-hand side as well. The WBE sequences achieve
that by making the eigenvalues least “spread out,” i.e.,
all the same. Using random sequences, the eigenvalues
are more spread out, resulting in a user capacity penalty

when o2 is nonnegligible.

When matched filters are used, following [17, Sec.
5], we conclude that users can meet their target SIR
requirementg if and only if o < % % when the

received power constraint i8. Thus there is a loss in

a<l+

Ad
Ai + o2

(20)
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user capacity strictly more than one user per degree ©bserve that oversized users have effective bandwidth large
freedom when using random sequences when comparelhtiveto the effective bandwidths of the other users. A simple
with the user capacity achieved with optimal sequencea®gcursive scheme to enumerate the oversized users follows
directly from the definition in (21).
V. MULTIPLE CLASSES USER Let ¢; € RN be the vector(0,0,---,0,1,0,---,0) with
CAPACITY, AND OPTIMAL ALLOCATIONS the entryl being in theith position. Thenel,---,eN form

In this section we consider the situation when the use?d orthonormal basis fdR™. Recall that users, -- -, k are
have different SIR requirements and completely generalize % ersized, and we know that < V. Consider the foIIowmg
results of the previous two sections. This level of generali ocation of powers and sequences:
of allowing users to have different SIR requirements caters1) For oversized users, we allocate independent channels,
to data and voice users, sharing the common system and i.e., for users inl,---,k, we allocate the signature
having different SIR requirements. As earlier, we shall assume, sequences,---, ¢, and powersy; = o24;.
without loss of generality, that the number of users is biggerz) For nonoversized users we allocate sequences from
than the processing gain. the subspacepan {es41, - - -, ex } which has dimension

N — k. From (21), it follows that

We first define admissibility of{ users (with SIR require- zk: e(Bi) > (N = k)e(Bras)
mentsf3, s, - - -, Bic) in the system with processing gaiv
as being able to allot signature sequences and powers for
the users such that for each usethe SIR achieved by and hence the vector with with' — IV entries equal to
the MMSE receiver for that user (as in (4)) is greater than 0 and the othetV — £ entries equal to
or equal to3; (such allocations are calledalid). Our main )
result of this section is an analog of Theorem 3.1; a complete Z e(3;)
j=k+1

A. User Capacity Characterization

characterization of admissibilit:. N -k

Theorem 5.1: K users (with SIR requirement$, 32, - - -,
k) are admissible in the system with processing gairif
and only if

majorizes the vectofe(3;),7 = k +1,---,K) (see
Example 3.1). Now, appealing to Lemma 3.1, there
exists a symmetric matrix, sal, with diagonal entries

K /3
i , 3it), Vi =k +1,--, K
2 <N QEDRY )

. . . . and eigenvalues
Proof This result motivates the consideration of the 9

quantity 1+—a as theeffective bandwidtiof a user with SIR
requiremeni3. Then the criterion of admissibility has a simple N_Fk Z e(B5)
interpretation: Users are admissible if and only if the sum J=k+1
of their effective bandwidths is less than the processing gain
of the system. Let us denote the effective bandwidth by
e(f) =
We first show the necessity: sinégusers are admissible, by
definition, there exists a valid allocation of signature sequences

and 0 with multiplicities (both algebraic and geomet-
ric) equal to N — k and K — N, respectively. Let
v, un—k € RPE=F pe orthonormal eigenvectors
of P corresponding to the eigenvalue

s; and powerg;. Since SIR > j3;, and the effective bandwidth 1 K
is a monotonic function of the SIR requirement, from (12) we N_& Z e(f3;)-
have j=k+1
Now, for every userj = £+ 1,---,K choose power
Z 1+ /3 proportional to its effective bandwidth, namely,
We show that this is also sufficient by explicitly demonstrating ;, _ ..c(3,), where constant = (N — K)o
a valid allocation. Restricted to the context of this proof, we — k=Y g1 €(B1)
assume for notational simplicity that the SIR requirements of (22)
the users are ordered, i.6l, > (G > --- > (k.
We look for the unique: € {0,---, N — 1} such that Observe that is positive by the hypothesis
K K K B
N —Ek)e(Fr) > e(3;) > (N — k)e(Bry1). 21 ) = ¢
(N = k)e(Br) j;};l (B) = (N = B)e(Brn).  (21) ;em ;Hﬁi <N.

Say thatthe users - - -, k areoversizedif k = 0, ti}?n no user Let D be the diagonal matrix with entrigs;, j = k +
is oversized (and this happens whd®(81) < > °_; e(53;)). 1,---,K.Forj=k+1, K, define sequences e
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R (K=*) and the matrixS = [5;j = k+1,---, K] as

K U1
cEj=k+l e(B))
N -k

v2

D:.

U

UN—k

Since the diagonal entries 6FS are unity,3; have unit
norm for everyj = k 4+ 1,---, K. Also, note that

CZ j=k+1 e(B5)
N -k

We shall denote such sequencesgaseralized WBE
sequencesNote that whenD is a scaled identity, the
sequences reduce to the WBE sequences. The Ap-
pendix discusses the construction of generalized WBE
sequences.

SDSt = I. (23)

3)

Now allocate signature sequences for users not oversized
as follows:
Sj:(ov"'vovgj)egiv_lv V1:k+177K

With this allocation of sequences and powers we now have

Z=SDS' + %1
ordiag{l+B;,,i=1,---,k} 0
- c ¥ e(3; .
0 PR S ICY
(24)
Substituting in (5)
SIR; = f3i, Vi=1,---,k
stZVsip;
SIRj = —2— "7 Vj=fk+1,- K
T 1=z sy !
_ (V= F)p; 4)
(N = B)o? + X e(B) — (N = B)p;
=Bi- (25)

Thus each user has its SIR requirement met which completes

the proof.

O

This characterization of admissibility along with the valid
allocation scheme above allows us to make the following
remarks.

1)

2)

It is interesting to observe that the linearity of the
boundary of the user capacity is a consequence of
(10), that the total minimum mean-square errors of the
users is a constant independent of the received powers
and dependent very weakly on the signature sequences.
This also explains why here, as in the single class
case, random sequences achieve asymptotically (as the
processing gain gets large) the same performance as
optimal sequences.

In practice, one can imagine a small number of different
SIR requirements of the users (say two or three). We g
introduce the notion of different “classes” of users; all
users of the same class have a common SIR requirement.

[ have SIR requirement;. We know (from Section 1)
that N degrees of freedom can suppditl + %)V ]
users each with SIR requiremefit This suggests that
we could “channelize” the system such that users of
different classes do not interfere with each other and
asymptotically achievey; users of clasd per degree

of freedom WheneveElL=1 fjr‘f;l < 1. This is indeed
true and the following statement can be verified: We
can admit at least; = [oqN — 1 — —J users of clasg

in a system with processmg gaM whereal, S an

positive such tha ", f42 < 1.

We can identify two important situations when there are
no oversized users:

a) When all the SIR requirements are identical, then
no user is oversized. This is the result contained in
Theorem 3.1.

When there are at least as many users in each
class as the processing gain of the system then
it is straightforward to see that that there are no
oversized users. Suppose cladsas K; > N users
andy" | £ < N. Then, we can make a familiar
valid aIIocatlon signature sequences for figusers

of classl to be WBE sequences (this can be done by
the hypothesis thak(; > ~N) and powers the same
for every useri of class! to be

_ /3[ ]VO'2
1+/N -0

b)

r__ 1
;=P = K;3;

Jj= 11+8

The SIR of usei of classl, as in (5), can be verified
to be exactly3. This ensures that for every class
K users of that class are admissible in the system.

In the proof of Theorem 5.1, the assumption that the
SIR requirements of the users be ordered was for nota-
tional simplicity. Equivalently, the notion of oversized
users could be introduced (with no assumption on the
ordering) as below:User: is defined to be oversized if

Y
N — Z, 11 e(8)ze(8)}

3,
() > 1 €Bi) e(o>e(s; )

(26)

Denote the set of oversized userskasThen, (21) can
be written in this notation as

(N = | min e(5:) > > e()
ik

> (N — K1) max ()
We observe that there can be at mast- 1 oversized
users and that if useris oversized then every user with
SIR requirement at leagt; is also oversized. In the rest
of the paper we shall adhere to this notation.

For the specific valid allocation demonstrated in the
proof of Theorem 5.1, we can calculate the MMSE

We assume there ate classes (fixed) and users of class *We would like to thank Prof. Sergio Vefidor suggesting this terminology.
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receiver for the users (from (3)) to be and the remaining’ — N eigenvalues equal t6. Hence,
referring to Lemma 3.1
ci:si_IVZEK N A -
cj:Zj Sj V}g’C 0—2+)\1’ ’0'2+)\N’ )
—1
o Jont Br
majorizes . (27
= O'QI‘FZkakSZ S; joriz <1—i—[317 ’ 1+ 8k 27)
) e . Observe that the conservation law mentioned in (9) follows
= (0’1 —p;s;s+ SDS*) s directly from (27) above. The statement that (27) isphecise
_ (0,2_, _ pﬁﬁé + S«DS«t) —1§j from (24) relationship between the eigenvaluessdd st and the attained

. SIR’s of the users is made clear by the following observation.
<O’2_[ _ pj§j§§ + MO s; from (23) Suppose we are given,- -+, yn € [0,1) andpy, -+, Bx >

N 0 such that
= aij

o Pk )
1+60 "1+48k)’
28)

1
(L + )L = 5y Lagx ©(Fr)))- Thus the MMSE  1hen the claim is that there exists an allocation of signature
receiver is just the scaled matched filter receiver for ea‘é@quencess and user power® such that

user. This allows us to conclude, exactly as in Section

(y1,,un,0,---0) majorizes<
where q; is a constant (which is easily seen to be

I, that there is no loss in user capacity when we restrict SDS has eigenvalues(f?yl o o*yn ' (29)
the system to use theepriori inferior matched filter. To 1-y” "1-un

emphasize

, ) The attained SIR'’s of the users gfe, - - -, Ok (30)
Corollary 5.2: K users (with SIR requirements

B, -+, Bk) are admissible in the system with processing gaifo see this, consider the following construction$%fand D.
N and equipped with matched filter receivers if and only if Givenyi,---,yny € [0,1) andfy, - - -, Sk > 0 satisfying (28),

by an appeal to Lemma 3.1, there exist&ax K symmetric
B; matrix H with diagonal entries

< N.
; 1+ 6 B Br
14+p7 "1+4pk

B. Optimal Allocation of Powers and Sequences . o
and eigenvalueg.,---,yn,0,---,0. Denote\; = - for

We proved Theorem 5.1 by explicitly demonstrating a Va"gachi — 1..-N and letA = diag {Ar,---, Ax ). Let U be

allocation scheme. We now identify the nature of optimali%eK « N matrix with columns the normalized eigenvectors
of this allocation scheme. This is a generalization of the ideﬁ?‘H corresponding to the eigenvalugs - - -, y. Then

in Section IV to the situation when users have different Si
requirements. H = U(A+ o2I) 'AUY, (31)
The key observation used in Section IV to characterize _ ) )
the optimality of WBE sequences was (9) which related tHa€fine s, P to be the diagonal entries of the x K
eigenvalues 0§ DS* and the MMSE'’s of the users (and hencénatr'x UAU* and D to be t_he d|ago_nal matrix with dlagonal_
the attained SIR’s of the users; using (11)). We now strengthBft"€spL, - px. Now define the signature sequence matrix
(9) to obtain thepreciserelationship between the eigenvaluess by
of SDS* and the attained SIR’s of the users using the MMSE S=QA:0'D™ 3
receiver structure.
Fix K > N, the signature sequence matri and the for some orthonormalV x N matrix Q. Then observe the
diagonal matrix of user power®. Suppose the MMSE re- following.
ceiver structure is used and the attained SIR’s of the users ar&) The columns ofS have unit norm.
B, Br. Then appealing to (6) and (11) we have that the 2) SDS! = QAzU'UAzQ' = QAQ! has eigenvalues

diagonal entries of the matrilz S{[SDS +02I]"1SD? are A1, ., An be definition.
3) The SIR’s attained by the users &g ---, 8. To see
A P this, note that

T+8 148k . L A
A P D3SHSDSt + 021 1SD? = UAR(A + 021) 1At

Now, if we denote the eigenvalues 6fDS! by A1, -+, Anx = H using (31)
it is straightforward to verify that theK x K matrix o ) )
D3 SY[SDS! + 021 "1SD? hasN eigenvalues equal to and by definition the diagonal entries &f are
\ \ 51 B
1 N

1—1—37.“714—3'.
P VSRR b=y v e Bk
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Hence by construction we have demonstrated the existencerofV. Let the set of oversized users be denotedkhyLet
signature sequences$ and powersD so that both (29) and y* = (yi,---,vy%) € RY be

(30) are met.
We shall now use the observation in (27) and (28) to .~ — 2 i) Ei@f’ce(ﬁj) e(B); ie K.
characterize the optimality of our signature sequence and N—IK * 7 N-|K] T ’
power allocation. Now suppose we are given that the necessary (35)
condition 32, o < N in Theorem 5.1 is true. Then Consider the following claims:
by Theorem 5.1, there exist sonteand someD such that v EN (36)
the achieved SIR’s of the users afg, - - -, Bk. If we denote
AL, -+, Ay as the eigenvalues 6fD_St andy; = ﬁ, Vi = » majorizesy”, VyeN 37)
1---N then (28) shows the relationship betwegn- - -, yn
and 31, -, Bx. Now Suppose these are true. Théfy*) is the minimum value of
X the minimization problem in (33) and the claim in Lemma 5.1
Zpi — i [SDSY] see (17) :ngog%trzgxfgmard to verify. We only need to prove (36)
=t N It is straightforward to verify from the
— 52 Yi 32) definiton of y* and by properties of oversized
—~1-y users thaty* € N. Let ¥y = (y1,---,yn) € N
and yp,---yvy denote the order statistics of (see
The lemma below identifies a lower bound Bif- , p;. Recall Definition 3.1 for the notation). Lefy),---, 5k be the
that the set of oversized users is denotedkby order statistics of3y, - - -, Bx. By the definition ofy* in (35)

: , and properties of oversized users, it can be verified that the
Lemma 5.1:Let K be the set of oversized users. Given thﬁ)llowing relation is true among the elements yof

constraint (28)

: . Yl )
S W | g WK g elB)) = max) SEE () (38)
P e G LS S ST ,
=t iek (33) N >im1 e(Bi) =i yrﬂ
Y1) =Mmax N—Fk ) 6(/3[k+1])

Suppose that this is true. Then for any allocation of se-
guences and powers so that the SIR requirements of the users K .
are met, (33) can be used in conjunction with (32) to obtain a + Z (e(Brr) — i) }7 Vk=1---N-1.
lower bound on the sum of allocated received powers =1
Hencevk = 1.--N — 1 we can write

K N — K)o e(B; ‘

s oS B D@
It is now straightforward to verify that the sum of powers k+1 Z{il eB)) N-k-—1 k
allocated in the sufficiency proof of Theorem 5.1 (in (22)) = max Ze(ﬁm), J__ 3 t = 3 Ui (-
meets this lower bound. Thus our specific valid allocation i=1 i=1
of sequences and powers éptimal in the above sense of (39)
minimizing the sum of allocated powers. We now prove thﬁow sincey € A" we have
lemma. , N K

Proof of Lemma 5.1:Let us develop some notation by Zyz = Ze(ﬁi)
defining the set over whiclyy, - - -, yx vary. Rewriting (28), i=1 i=1
let and hence

T . K
N = {(ylv"'vyN) € Rfl\— : (ylv"'vy]\"vov"'vo) majorizes o > M

(e(Br), -+ e(Bic))}- (34) N
Furthermoreyp; > e(f). Hence
Observe that the map — *— is convex and hence the

- K
tri i=1C ﬁz *
symmetric convex map ) > Inm{%,e(ﬁm)} =y
N
Jw =) 1= 7 We complete the proof of the claim thgtmajorizesy™ by
i=1 ¢

induction. Suppose

is Schur-convex (see Definition 4.1 and Example 4.1). Hence k k
if » majorizesy then f(y) > f(#). We now complete the Sz > i
proof of Lemma 5.1 by identifying a “Schur-minimal” element i=1 i=1
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for somel < k£ < N. Since where Z; = ‘,’%I+ >, Pis;s; and the corresponding SiR
N—k K & with the optimal receiver is
Dy = elB) = D wp SIR; = st Z7  sip;. (43)
=1 = =1
It is clear that we can make a similar definition of admissibility
andypp41] = Yry2) 2 - 2 Yv), We have of the users when the receiver structure is fixed to be the
K 3 — k ‘ matched filter. The similarity of the achieved SIR equation
Y1) > Zi:l elB) = Xiz ym' (41) to the corresponding one in the uplink in (2) is apparent.
N—k Only the noise variance? in (2) is replaced now by"— If
Hence we have no constraints on the allocated power we can “null
k1 . out” the additive noise and the admissibility characterization
- i () N k —1 is identical to that of the uplink
Zym > Tk + Zy[z :
=1
5 f; () N k 1 B. User Capacity Characterization
2 & + Z?J[z Theorem 6.1: K users with path gains, , - - -, h from the
base station and each having the same SIR requiretharg
by induction hypotheS|s. (40) admissible in the downlink of the system with processing gain
Sincezé‘:’f(ym —e(By))) 2 0, from (40), we have N if and only if
k+1 k41 K I3 K< N 1
S 3 ZJ —1eB) N—-k-1 N /3
Zy[i]_max ZG(/ i) N_r T Nk Yri) _ _
i=1 i=1 i=1 Proof: We first show the necessity, on the same lines of
k+1 the uplink situation. Suppose thi€ users are admissible in the
= Z y;] from (39). downlink. Then, for each usérthere exists signature sequence
i=1 s; and transmit power at the base statign(as a function of

the path gaing, - - -, hx) such that the achieved SIR of user
¢ (as in (41)) is greater than or equal fio Using (43)

35Z~i_137;p7; > p. (44)

This is true for allk = 1--- N — 1. Hencey majorizesy* and
y* is a Schur-minimal element of/.

VI. DOWNLINK AND USER CAPACITY Proceeding as in (5), we have, for each user

Until now, we have been considering the uplink of the

tr—1
cellular system. In the downlink of this system there is a sEZi_lsipi = Lsipz (45)
single transmitter (the base station) and there are multiple 1—siZ; sip;
receivers (the users). We first formally define our model a'\WhereZ = 7+ pisis t. Recalling the notation developed in
then consider the user capacity of the downlink. Section 11,5 = [sq, - - 3[\] andD = dlag {p1, - ,px} and
o SDS' = UAU. Then we can rewriteZ; = " -1+ SDS*. We
A. Definitions and Model have, from (44), that for each usér
Suppose there ar& users in the downlink of the system. . A B
Let the path gain from the base station (interchangeably siZ sipi > 1+73

referred to as transmitter) to usebe h;. We suppose that the

noise at the receivers is additive white Gaussian with the sam

variances? per degree of freedom for each user (there is no . -t i
L . . . . (USZ) —I“r A (USz)pz =z

loss of generality in this assumption since we can incorporate h; 1+43

this into the path gain parametér). We say thatK users

(with path gains from the base station beihg -- -, hx and Denoting/ = max/<, hi, we have for each user

%uwalently, we have for each user

each having the same SIR requirement@fare admissible 8 o -1
in the downlink of the system with processing gaihif we T/ < (Usi) <z—7+1\> (Usi)pi
can allot transmit powep; and signature sequeneg at the ) 1
transmitter corresponding to user = st <0—I + 5D5t> SiPs.
SIR, = pihi(si,c:)* >3 (41) Summi the t L h
= ) + > o phie ) o umming up the terms, we have 1
Kp 2 -

where ¢; is the MMSE linear receiver given the signature 1 —l—[ﬁ <tr [St<UTI+SDSt> SD]
sequences and the powers. Proceeding as in Section IlI-A, it h
is easy to verify that the optimal (in the sense of maximizing {02 . -1
SIR for each user) linear receivey for users: is =tr | SDS <TI+ SDS )

c; = Z<_187j (42) < N.

T
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To show this is sufficient as well, suppo&e < N(1 + ) of a large enough system if
andhy,-- -, hx be arbitrary positive real numbers. Allot WBE N 3
signature sequences for the users and powers Z ufh
, <1+
pi=p= J—, Vi=1---K (46)
h(l +5- —,) VIl. JOINT FDMA/CDMA CASE AND USER CAPACITY
whereh = min/, &;. Then,$5* = £1 and hence for every Traditional multiple-access schemes divide the channel into
useri we have slots and it is important to note that we can incorporate
> g a slotted system into our framework. We achieve this by
7 = ("_ + _p)_r_ forcing the signature sequences to be chosen only from an
hi N orthogonal sequence set. Then users that have the same
Using (45),Vi = 1---, K signature sequence are in the same “slot” or “channel” and do
, . not cause any interference to users in different “channels” due
p(E +52) to the orthogonality of the signature sequences. In this case, the
SIR; = 1 o Kpy -1 receiver is trivial and the MMSE and matched-filter receivers
AT ) coincide. It is interesting to identify the user capacity in this
= ﬁ (47) situation and this exercise will enable us to explicitly identify
W TN TP the gain in user capacity by using nonorthogonal signature
_ 151 sequences. In this section, we identify the user capacity of
= i( M) L K8 _ 5 the slotted system in a variety of settings. The conclusion we
b N draw from the results is that the user capacity in this case
> (48)  differs from the earlier one by an integer part of a function

of the SIR requirement. The assumption below is that the

where we used the fact that . .
signature sequences are now constrained to be chosen from

E(l LA K_ﬁ) " K_ﬁ _g<1 an orthogonal sequence set (whose linear span has dimension
h; N equal to the processing gain of the system). We first focus on
) ) . the uplink.
since by hypothesis we have tht< N(1+ %) andh < h;.
Hence thek users are admissible. ’ n Proposition 7.1: K users each with SIR requiremefitare
) admissible in the system having processing gainif and
Some comments are in order now: only if
1) A (simple) closed-form expression of the allocation that K < N(l + %)7 if L%J = %

is optimal (in the sense of the previous sections) seems L
unattainable. But it is worth emphasizing that our alloca- K< Nb T EJ’ else.

tion above has the property that the signature sequences Proof: Since the sequences are chosen from an orthogo-
are allocated (to be WBE sequences) independent of thal set, only users having the same sequence (we shall refer to
path gains and only the powers are chosen as a functibilem as users in the same channel) cause interference to each
of the path gain. other. We hence focus on the user capacity for a single channel.

2) With matched-filter receivers, the admissibility g/ Users are admissible into a channel with SIR requirentent
unchanged and we havé& users with path gains if there exist positive powersg,, - - -, pj such that, analogous
hi,--+,hi from the base station and each having thte (2)
same SIR requiremerit are admissible in the downlink SIR,

Pi . -
of the system with processing gai if and only if =y Vi=1--K. (49)

0%+ 4iPi

K< N< /3) The existence of such powers can be seen to be equivalent to

16, Th 2.1
3) When users have different SIR requirements, a simple ee [16, Theorem 2.1])

calculation shows thak™ users with path gains from the
) . . Ay <1+ =
base statiom:,---,hx and having SIR requirements n(4) < + (50)

Jé;
B1,---, By are adm|SS|bIe in the downlink of the system . _
with processing gaer if and only if wherer(-) is the Perron—Frobenius eigenvalue of the argument

(which is a nonnegative irreducible matrix; for notation and
Z definition see [16, Ch. 1]) and is a K x K matrix with all
1 +/3 entries being equal tdé. Sincer(A) = K, the existence of
wers satisfying (49) is equivalent to the number of users
<14+ 8 Since we haveN channels available, this is
1;equwalent to the total number of usef§ < N(1 + ) if
LandK < N|[1+ BJ else. a

The same statement is true when using matched-fil
receivers instead of MMSE receivers.

4) For every class, «; users per unit processing gain o B
that class are admissible by “channelizing” the downlmi«?J 8
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In the general situation when users have arbitrary SIFhe proofs can be obtained by an argument similar to the
requirements, we summarize our results without detailing tb@es made above.

proofs. . , ) 1) K users (with path gains from the base station being
1) We focus on a single channel firdk users with SIR ha,---, hi) each with SIR requirement are admissible
requirementsly, - - -, B are admissible in ainglechan-

in the downlink of the system having processing g&in
if and only if

ZlJrﬁ K<N(1+%), if L%J:%

KSNL1+%J, else.

nel if and only if

2) When there aré/ channels, a sufficient condition for ad-

missibility of K users with SIR requirement, - - - . 2) K users (with path gains from the base station being

hi,--+,hg) with SIR requirementgl,, - -, 3k are ad-

is AR . : e
missible in a single channel in the downlink if and only
> '
14+ /3 zls: ) .
A necessary and sufficient condition for admissibility is —~1+p
that there be a way to allot every user to one (among
N) channel such that users within each channel are VIIl. CONCLUSIONS AND FUTURE WORK
admissible.

Most previous studies of multiuser receivers (see [22] for
Proposition 7.2: K users each with SIR requiremefitare a comprehensive study) atser-centric Specifically, typical
admissible in the system having processing g¥iand power measures such agar—far resistancéocus on the performance

constraintP if and only if of a single user in the face of worst case interference. Different
1 o2 from these works, here, we considematwork-centricfor-

K< NP + = — _J, mulation where the users have to simultaneously satisfy their

por performance requirements and network-level user capacity

Let us consider the single channel fitkt.users are admissibleis the ultimate performance measure. Despite the simplistic
in the single channel if there exist positive powgrs- - -, py  Setting of symbol synchronism and no fading (equivalently,

each upper-bounded b§ such that for each usér perfect channel estimation and power control) this formulation
i allows us to study the fundamental tradeoffs between the per-
SIR; = FE N > p. formance of different users through the allocation of signature
i#i Pi sequences and power control. Though our model does not
We can rewrite this in matrix notation as make any restrictions on the users’ symbdls, we have a
Bee Bo? heavily coded _system (such as that of IS—9_5) in mind and that
< 1 +[3> = +/3 the MMSE estimates are used feoft decodingof the users’

raw bits. The desweGE— for 1S-95 system is about 3—7 dB
where ¢ is a K x 1 vectors of all ones. As in (50), the(see [24, p. 183]) and ‘this corresponds to an SIR requirement
existence of such posmve powers is seen to be equivalgftabout/s = 3.

to r(ec’) = K < 1+ 8 Furthermore, under this condition, The huge literature on design of signature sequences for
there is a component-wise minimal power solution, (see [1@arious communication models is comprehensively covered

Theorem 2.1]) given by in [3]. The assumption of perfect power control made in this
302 Bect \ ~t paper is relaxed and results here are extended in [1]. Motivated
p= po <_r _ Pee ) e by the optimal nature of WBE sequences, in [19], the authors
1+p ) 1+p provide an iterative interference suppression algorithm that
3 :
_ po ¢ after some elementary algebra updates the signature sequences allocated to the users and
1+8-Kp demonstrate that the allocations converge to WBE sequences.
Thus K users are admissible in the smgle channel with power
constraintP if and only if K < 1+ % and m < P. APPENDIX
This is equivalent to EXISTENCE AND CONSTRUCTION OF
) GENERALIZED WBE SEQUENCES
1 . . .
K< 1+/—3 - % We have identified generalized WBE sequences as the

optimal sequence allocation in Section V. In the proof of
Since there arév channels, we conclude that this is equivaleritheorem 5.1, we also illustrated a procedure to construct these
to the total number of users (in all th% channels)K' < sequences. In this appendix we discuss some characteriza-
N|1+ E — FZ tions of these sequences and mention some open problems.
As was done earlier, we state the user capacity for tides a reprise, we repeat the definition of generalized WBE
downlink system in this situation without detailing the proofssequences: Fixk’ > N henceforth. FixD, the diagonal
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entries. Though we have characterized all generalized WBE

say thatsy,---,sx € S{“_l (the unit sphere iMR™) are matrices through the eigenvectors of certain positive-definite

generalized WBE sequencasd the matrixS = [s;,---,sx| matrices with fixed diagonal entries and fixed eigenvalues,

as ageneralized WBE matriit the following three conditions this characterization does not seem to aid, in a straightforward

are satisfied: way, the answering of the design questions mentioned above.
1) The rows ofS have the samé norm, equal to\/p]t\j Nevertheless, this has afforded us some intuition on construct-
2) The columns ofS have unitl2 norm. Ing generalized WBE matrices; in [23], we demonstrate a
3) The rows of$D? are orthogonal to each other. constructive (iterative, with at mogk™ iterations) algorithm

Properties 1) and 3) can also be succinctly expressed fggonstruct the eigenvectors, - -, vy of the matrix”> € 7.
SDSt = Pt When K = N and D is scaled identity, For the special case whell is the identity, the matrixS

orthonormal matrices are the only matrices satisfying tﬁgduces to a WBE matrix and simple construction schemes
above three properties. Whéfi = N and D is not the scaled &€ known.

identity, then there is no generalized WBE matrix. We now 1) WBE matrix goes by the name d¢ight framé in the

matrix of user powers,, - -, px. Let pioy = >, p;. Then,

generalize this observation to arbitraly > N.

The matrixDz S*SD? has the same eigenvalues $BS*
along with N additional zero eigenvalues. Since the diagonal
entries of D> S*SD? arepy,---,py, @ necessary condition
for the existence of a generalized WBE matfixs, referring
to Lemma 3.1

(p;\?t7...7]m707...70) majorizes(pb...?pl()

N
Dot

i implifi >
which simplifies to ~

Z Dis

Vi=1,-,K (51)

Observe that wheri = N, (51) reduces to the condition
thatp; = po = -+ = px. As suggested by Lemma 3.1, this
condition is also sufficient for the existence of a generalized
WBE matrix S. To see this, suppose (51) holds. Then, by
Lemma 3.1, there exists a real symmetric matrix, day
with diagonal entriesp,---,px and eigenvalues’st and

0 with multiplicities (both geometric and algebrai¢y and

K — N, respectively. Let us denote the set of such matrices
by P and P as an element of this set. Also, let,- -, vy,

be the normalized eigenvectors &f corresponding to the
eigenvaluest (written as elements dk***). We claim that
the definition

U1

Ptot | V2 _1
S = . |D
Vv | ’

UN

satisfies the three properties of generalized WBE matrix.
Properties 1) and 3) are satisfied by definition. It is trivial to

verify that S*S has unit diagonal entries and hence property 4)

2) is satisfied also. The important observation is thaet¢ry
generalized WBE matrix is generated in this way:Slfis a

generalized WBE matrix, then thé rows of vV 2 ,/ X §D3

Ptot
serves as the eigenvectors corresponding to the eigen¥alue

of some matrixP € P. Also, it is a trivial observation that,

if S is a generalized WBE matrix, then so @S for any
orthonormal matrix(, i.e., rotating all the generalized WBE
sequences by the same rotation matrix does not alter their
properties.

2)

3)

context of over complete expansionsRA’ in Wavelets
literature (see [2, Ch. 3] for a detailed review of tight
frames). The following construction of tight frames is
well known: assumingV is odd, thekth sequence is
given by

2 1 2k . 2wk
— | —=,c08 —,sin —,---
Va\y2 ™ & ™ K

for 1 < k < K. When N is even, we construck’
sequences as above (replaciNgby N + 1) and ignore
the first element (namely&i) of each sequence and
scale the resulting sequence by

/N +1
N

to normalize it. It is easily verified that this constructs
WBE sequences for arbitraff > N.

In [12], the authors construct WBE sequences with
entries restricted t§+1, -1} whenK = 2! for I < N.

We remark that constructing WBE sequences for every
K > N with entries restricted t§+1, —1} is equivalent

to solving the long-standing open problem of construct-
ing Hadamard matrices for every dimension a multiple
of 4 (see [5] for details and further references on this
problem).

Recently, in [19], motivated by the demonstration of

the optimal nature of WBE sequences, the authors have
described a distributed algorithm that updates iteratively
the signature sequences of the users. Given an initial
set of signature sequences for the users (that has some
very weak properties) the authors show that the users’
signature sequences converge to WBE sequences using
this iterative algorithm.
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