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Strong Converse to

the Quantum Channel Coding Theorem

Tomohiro Ogawa and Hiroshi Nagaoka ∗†

Abstract

A lower bound on the probability of decoding error of quantum com-

munication channel is presented. The strong converse to the quantum

channel coding theorem is shown immediately from the lower bound. It

is the same as Arimoto’s method except for the difficulty due to non-

commutativity.
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1 Introduction

Recently, the quantum channel coding theorem was established by Holevo [9] and
by Schumacher and Westmoreland [15], after the breakthrough of Hausladen et
al. [7]. Furthermore, a upper bound on the probability of decoding error, in
case rate below capacity, was derived by Burnashev and Holevo [2]. It is limited
in pure signal state. They conjectured on a upper bound in general signal state,
which corresponds to Gallager’s bound [5] in classical information theory. We
will show a lower bound on the probability of decoding error, in case rate above
capacity, which corresponds to Arimoto’s bound [1]. The strong converse to the
quantum channel coding theorem is shown immediately from the lower bound.

Let H be Hilbert space which represents a physical system of information
carrier. We suppose dimH < ∞ for simplicity. Quantum channel [11] is defined
as mapping i ∈ X 7→ ρi (i = 1, · · · , a), where X = {1, · · · , a} is the set of input
alphabet and ρi (i = 1, · · · , a) is a density operator in H, i.e., non-negative op-
erator with trace one. For a more general treatment, see Fujiwara and Nagaoka
[4].
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To describe asymptotic property, we use n-th extension of the channel. The
messages {1, · · · ,Mn} is encoded to a codebook C(n) = {u1, · · · , uMn}, where
each uk = ik1 · · · ikn ∈ Xn (k = 1, · · · ,Mn) is a codeword, and is mapped to
ρuk = ρik

1
⊗ · · · ⊗ ρikn , which is a density operator in H⊗n. Decoding process

X(n) = {X0, X1, · · · , XMn
} is a quantum measurement [11], that is a resolution

of identity in H⊗n, i.e., Xk ≥ 0 (k = 0, · · · ,Mn) and
∑Mn

k=0 Xk = I. We think of
X0 as evasion of decoder. A pair of encoding and decoding process (C(n), X(n))
is called a code with cardinality Mn. Rn = logMn/n is called transmission rate
for a code (C(n), X(n)). In the sequel, we will omit the subscript n when no
confusion is likely to arise.

The conditional probability of output k, when message l was sent, is given by
P (k|l) = Tr ρulXk. If all messages arise with uniform probability, the average
error probability of code (C, X) is

Pe(C, X) = 1− 1

M

M∑

k=1

Tr ρukXk

Let us denote the minimum of the average error probability as

Pe(Mn, n) = min
C,X

Pe(C, X)

The (operational) capacity [10] is defined as the number C such that Pe(enR, n)
tends to zero as n → ∞ for any 0 ≤ R < C and does not tend to zero if R > C.

Let π = {πi}ai=1 be a probability distribution on X , and define (formal)
quantum mutual information [11] as

I(π) = H(ρπ)−
a∑

i=1

πiH(ρi)

where ρπ =
∑a

i=1 πiρi and H(ρ) = −Tr ρ log ρ, which is Von Neumann entropy.
The quantum coding theorem states that maxπ I(π) is equal to the operational
capacity C. The aim of this correspondence is to show the strong converse to
the quantum channel coding theorem, i.e., Pe(enR, n) tends to one exponentially
as n → ∞ if R > C.

2 lower bound on the average error probability

To begin with, we will show the following Lemma.

Lemma 1 For an arbitrary measurement X = {Xk}Mk=0

Pe(C, X) ≥ 1− 1

M
Tr

(
M∑

k=1

ρ
1
β

uk

)β

(0 < β ≤ 1) (1)

holds.
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Proof: ρ
1
β

ul ≤
∑M

k=1 ρ
1
β

uk (l = 1, · · · ,M) is obvious. Since xβ (0 < β ≤ 1) is
a operator monotone function (see ex. [6]),

ρul =

(

ρ
1
β

ul

)β

≤
(

M∑

k=1

ρ
1
β

uk

)β

(l = 1, · · · ,M) (2)

holds. Hence,

Pe(C, X) = 1− 1

M

M∑

l=1

Tr ρulXl

≥ 1− 1

M

M∑

l=1

Tr

(
M∑

k=1

ρ
1
β

uk

)β

Xl

≥ 1− 1

M
Tr

(
M∑

k=1

ρ
1
β

uk

)β

where we used
∑M

l=1 Xl ≤ I in the last inequality.
Following Arimoto [1], let us apply random coding technic to Lemma 1 with

a probability distribution

P (u1, · · · , uM ) = Prob{C = (u1, · · · , uM )}

For this purpose, we shall need next two conditions.

1. EP

[

min
X

Pe(C, X)
]

= min
C

min
X

Pe(C, X)

2. P (u1, · · · , uM ) is invariant under a permutation of u1, · · · , uM .

Actually, such a probability distribution on the set of all codebook exists. Sup-
pose that Ĉ = (û1, · · · , ûM ) attains the minimum of condition 1, then from
symmetry of average error probability, a permutation of (û1, · · · , ûM ) also at-
tains the minimum. Therefore

P̂ (u1, · · · , uM ) =







1
M ! (u1, · · · , uM ) is

a permutation of (û1, · · · , ûM )
0 otherwise

is the probability distribution which satisfies above two conditions. Further-
more, the marginal probability distributions of P̂ (u1, · · · , uM ) does not depend
on u1, · · · , uM by condition 2, i.e.,

P̂ (u1) = · · · = P̂ (uM )

=
∑

u2∈Xn

· · ·
∑

uM∈Xn

P̂ (u1, u2, · · · , uM )
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By taking average of (1) with P̂ , we obtain

min
C,X

Pe(C, X) = E
P̂

[

min
X

Pe(C, X)
]

≥ 1− 1

M
E
P̂



Tr

(
M∑

k=1

ρ
1
β

uk

)β


 (3)

Using Jensen type inequality, which is derived from operator concavity of xβ (0 <
β ≤ 1) (see [6]), (3) is bounded as

≥ 1− 1

M
Tr

(
M∑

k=1

E
P̂

[

ρ
1
β

uk

])β

(4)

= 1−Mβ−1Tr

(
∑

u∈Xn

P̂ (u)ρ
1
β
u

)β

(5)

≥ 1−Mβ−1 max
P∈PXn

Tr

(
∑

u∈Xn

P (u)ρ
1
β
u

)β

(6)

where we used the notation PXn , which represents the set of all the probability
distributions on Xn.

The following Lemma is the same as classical information theory (see [5][1])
except for one point that derivative of a function is not easy due to non-
commutativity. We will give the proof for convenience.

Lemma 2 Let PX be the set of all the probability distributions on X . Then

max
P∈PXn

Tr

(
∑

u∈Xn

P (u)ρ
1
β
u

)β

=



max
π∈PX

Tr

(
a∑

i=1

πiρ
1
β

i

)β




n

Proof: Let us define a function of π ∈ PX as

f(π) = Tr

(
a∑

i=1

πiρ
1
β

i

)β

We note that f is a concave function. First, we show that necessary and sufficient
condition on the probability distribution π∗ ∈ PX , which attains the maximum
of f(π), is

TrSβ−1ρ
1
β

i ≤ TrSβ (equality if π∗
i > 0) (7)

where S =

a∑

i=1

π∗
i ρ

1
β

i (8)
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To show this, introduce Lagrange multiplier si (si ≥ 0, i = 1, · · · , a) and λ,
define another function of π as

g(π) = −f(π)−
a∑

i=1

πisi − λ(

a∑

i=1

πi − 1)

differentiate g(π) by πi and make it to 0. From general theory of Lagrange
multiplier method (see ex. [13]), we assert that necessary and sufficient condition
on π∗ ∈ PX , which attains maximum of f(π) (i.e. minimum of g(π)), is that
there exist si ≥ 0 (i = 0, · · · , a) and λ which satisfies next conditions.

−β TrSβ−1ρ
1
β

i − si − λ = 0 (9)
a∑

i=1

π∗
i si = 0 (10)

where we used derivative of f(π) (see Appendix Lemma 5)

∂f

∂πi

= Tr

(
a∑

i=1

πiρ
1
β

i

)β−1

ρ
1
β

i

By multiplying π∗
i to the both sides of (9) and summing over, we obtain

−λ = β TrSβ

Meanwhile, si = 0 if π∗
i > 0 by (10). Hence (9)(10) is equivalent to

∃si ≥ 0 s.t. TrSβ−1ρ
1
β

i = −si
β

+TrSβ

(si = 0 if π∗
i > 0)

Moreover, this is equivalent to (7)(8). Now, Suppose π∗ satisfies (7)(8), and put

P ∗(u) = P ∗(i1, · · · , in) = π∗
i1
· · ·π∗

in

which is i.i.d. extension of π∗. Then it is clear P ∗ satisfies

Tr S̃β−1ρ
1
β
u ≤ Tr S̃β (equality if P ∗(u) > 0)

where S̃ =
∑

u∈Xn

P ∗(u)ρ
1
β
u

Hence

max
P∈PXn

Tr

(
∑

u∈Xn

P (u)ρ
1
β
u

)β
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= Tr

(
∑

i1

· · ·
∑

in

π∗
i1
· · ·π∗

in
(ρi1 ⊗ · · · ⊗ ρin)

1
β

)β

=



Tr

(
a∑

i=1

π∗
i ρ

1
β

i

)β




n

=



max
π∈PX

Tr

(
a∑

i=1

πiρ
1
β

i

)β




n

Now, from (6) and Lemma 2 we obtain

min
C,X

Pe(C, X)

≥ 1−Mβ−1



max
π∈PX

Tr

(
a∑

i=1

πiρ
1
β

i

)β




n

Let us put s = β − 1, recall R = logM/n and define

E0(s, π) = − log



Tr

(
a∑

i=1

πiρ
1

s+1

i

)s+1


 (11)

then we have proved the following theorem.

Theorem 1 For all code (C, X)

Pe(C, X)

≥ 1− exp

[

−n

[

−sR+ min
π∈PX

E0(s, π)

]]

(12)

(−1 < s ≤ 0)

Remark 1 (11) has appeared in [2] as a conjecture on the upper bound on the
average error probability, which forms dual with (12). They proved it in case
that all ρi (i = 1, · · · , a) are pure.

3 Strong converse to the quantum channel cod-

ing theorem

To understand the graph of E0(s, π), we show the following lemma.
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Lemma 3

E0(0, π) = 0 (13)

E0(s, π) ≤ 0, (−1 < s ≤ 0) (14)

∂E0(s, π)

∂s
≥ 0, (−1 < s ≤ 0) (15)

∂E0(s, π)

∂s

∣
∣
∣
∣
s=0

= I(π) (16)

Proof: (13) is obvious. From the following Lemma, E0(s, π) is shown to be
non-decreasing in (−1, 0 ]. That is why (14)(15) holds. Using Appendix Lemma
5, we can calculate directly the derivative of E0(s, π) to obtain (16), or using

∂

∂s
Tr

(
a∑

i=1

πiρ
1

s+1

i

)s+1
∣
∣
∣
∣
∣
∣
s=0

=
∂

∂s
f(s, t)

∣
∣
∣
∣
s=0
t=0

+
∂

∂t
f(s, t)

∣
∣
∣
∣
s=0
t=0

=

a∑

i=1

πiH(ρi)−H(ρπ)

where we put f(s, t) = Tr

(
∑a

i=1 πiρ
1

s+1

i

)t+1

, we obtain

∂E0(s, π)

∂s

∣
∣
∣
∣
s=0

= −
∂
∂s
Tr

(
∑a

i=1 πiρ
1

s+1

i

)s+1

Tr

(
∑a

i=1 πiρ
1

s+1

i

)s+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
s=0

= I(π)

Remark 2 Burnashev and Holevo [2] showed, in case that all ρi (i = 1, · · · , a)
are pure and 0 ≤ s ≤ 1, (13)–(16) and

∂2E0(s, π)

∂s2
≤ 0, (0 ≤ s ≤ 1)

Lemma 4 1 Let Ai (i = 1, · · · , a) be non-negative bounded operators in H. If
0 < α ≤ β ≤ 1 then

(
a∑

i=1

πiA
1
α

i

)α

≥
(

a∑

i=1

πiA
1
β

i

)β

(17)

1We don’t know where to refer about this lemma, but it is in [8] as a exercise.
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Proof: First, we will show

a∑

i=1

πiAi ≤
(

a∑

i=1

πiA
1
γ

i

)γ

(18)

for 0 < γ ≤ 1 and Ai ≥ 0 (i = 1, · · · , a). Let us put unitary operator U in
H⊕ · · · ⊕ H as

U =






√
π1I
... ∗√
πaI




 (19)

and projection P as

P = diag [I, 0, · · · , 0] (20)

Generally, for 0 < γ ≤ 1 and operator A, C (||C|| ≤ 1), C∗AγC ≤ (C∗AC)γ

holds. (see [6], or [14], p.18) Using this property, we obtain

diag

[
a∑

i=1

πiAi , 0, · · · , 0
]

= PU∗diag [A1, · · · , Aa]UP

= PU∗

(

diag

[

A
1
γ

1 , · · · , A
1
γ
a

])γ

UP

= P

(

U∗diag

[

A
1
γ

1 , · · · , A
1
γ

1

]

U

)γ

P

≤
(

PU∗diag

[

A
1
γ

1 , · · · , A
1
γ

1

]

UP

)γ

= diag

[(
a∑

i=1

πiA
1
γ

i

)γ

, 0, · · · , 0
]

which shows (18). Now, change γ into α
β
and Ai into A

1
β

i in (18), then

a∑

i=1

πiA
1
β

i ≤
(

a∑

i=1

πiA
1
α

i

)α
β

Since xβ is a operator monotone function,

(
a∑

i=1

πiA
1
β

i

)β

≤
(

a∑

i=1

πiA
1
α

i

)α
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Now, from Lemma 3 if R > C there exist −1 < t < 0 such that for all
s ∈ (t, 0), −sR + minπ E0(s, π) > 0. Thus, we state the following strong
converse theorem.

Theorem 2 If R > C, then for all code (C, X), Pe(C, X) goes to 1 exponentially
as n → ∞.
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Appendix

Lemma 5 Let f : (a, b) → R be an analytic function and X(t) a Hermitian
with real parameter t, the spectrum of which is in (a, b). Then,

∂

∂t
Tr f(X(t)) = Tr f ′(X(t))

∂X(t)

∂t

where f ′ is the derivative of f .

Proof: Leu us expand f around x0 ∈ (a, b) as f(x) =
∑∞

n=0 an(x − x0)
n

and put X̂(t) = X(t)− x0I. We can calculate as follows.

∂

∂t
Tr f(X(t)) =

∞∑

n=0

anTr
∂

∂t
X̂(t)n

=
∞∑

n=1

an

n∑

i=1

Tr

(

X̂(t) · · · X̂(t)
∂X̂(t)

∂t
︸ ︷︷ ︸

i-th

X̂(t) · · · X̂(t)

)

=

∞∑

n=1

nanTr

(

X̂(t)n−1 ∂

∂t
X̂(t)

)

= Tr f ′(X(t))
∂X(t)

∂t
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