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Optimal and Near-Optimal Encoders for
Short and Moderate-Length Tail-Biting Trellises

Per St̊ahl, Student Member, IEEE, John B. Anderson,Fellow, IEEE,
and Rolf Johannesson,Fellow, IEEE

Abstract—The results of an extensive search for short and moderate-
length polynomial convolutional encoders for time-invariant tail-biting
representations of block codes at ratesR = 1=4; 1=3; 1=2; and 2=3 are
reported. The tail-biting representations found are typically as good as
the best known block codes.

Index Terms—Convolutional codes, error-correction coding, tail-biting
encoders, trellis codes.

I. INTRODUCTION

There exist two main principles to terminate convolutional codes
into block codes. Assume for simplicity that the generator matrix for
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Fig. 1. Circular trellis of lengthL = 6 for a four-state convolutional
encoder.

a rateR = b=c convolutional code of memorym is polynomial and
realized in controller canonical form.

In the first method we start in the zero state and encode theK
information symbols followed bym b-tuples of zeros. Hence, we
reach the zero state and the convolutional code has beenterminated
into a block code by the so-calledzero-tail (ZT) method at the cost
of a rate loss by a factorK=(K+mb): If the trellis is short this rate
loss might not be acceptable.

A termination method that does not suffer from any rate loss istail-
biting, which can be used to construct very powerful regular trellis
representations of block codes. Assuming a trellis ofL sections (for
simplicity we assume here thatm � L), the tail-biting condition is
the restriction that the convolutional encoder state��� at time t = 0
is equal to the encoder state at timeL, i.e., ���0 = ���L: A tail-biting
trellis of lengthL corresponds to a total ofK = bL information
symbols,c symbols per branch, block lengthN = Lc, 2b branches
per trellis node; the number of codewords is

M = 2K = 2bL (1)

and its rate is

R = K=N = b=c: (2)

Let uuu[0;L) = uuu0uuu1 � � �uuuL�1 denote the input (information) sequence,
vvv[0;L) = vvv0vvv1 � � � vvvL�1 the output sequence (codeword), and

G(D) = G0 +G1D + � � � +GmD
m (3)

the generator matrix. The codewords of the tail-biting representation
of the block codeBtb that is obtained from the convolutional codeC
encoded by the generator matrixG(D) can be compactly written as

vvv[0;L) = uuu[0;L)GGG
tb
L (4)

where

GGG
tb
L =

G0 G1 � � � Gm

G0 G1 � � � Gm

. . .
. . .

. . .
G0 G1 � � � Gm

Gm G0 G1 � � � Gm�1

Gm�1 Gm
. . .

. . .
...

...
. . .

. . . G1

G1 G2 � � � Gm G0

(5)
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Fig. 2. Polynomial rateR = 1=2 and R = 2=3 convolutional encoders.

is theL�L generator matrix for the tail-biting representation of the
block codeBtb: The initial state is uniquely determined by the last
m input b-tuples.

Since we require that we have the same state at the beginning as at
the end we can use acircular trellis for the tail-biting representation
of a block code. In Fig. 1 we show as an example a circular trellis
of L = 6 sections for a four-state tail-biting representation.

The block code is the union of2bm subsets corresponding to the
paths that go through each of the2bm states at time0. In fact, these
are2bm cosets of the(N;K�bm) zero-tail terminated convolutional
code corresponding to the paths that go through the all-zero state at
time 0.

Tail-biting is particularly valuable in applications such as packet
transmission, where codewords are apt to be short. Being trellis meth-

ods, tail-biting decoders easily accept soft-channel output. Finally, as
we show here, time-invariant tail-biting encoders can generate many
of the most powerful binary block codes.

Tail-biting (TB) representations of block codes were introduced
by Solomon and van Tilborg [1]. An early paper that explains tail-
biting in detail is [2]. In [3], a two-way decoding algorithm for
exact a posteriori probability (APP) decoding of TB trellises is
presented. The complexity of this algorithm is of the order22bm,
and performance is governed by the true minimum distanced of the
code.

More commonly, an approximate APP decoding algorithm such
as that given in [4] is used (the one in [4] applies the BCJR
recursions to the TB trellis). Such algorithms dramatically reduce
the complexity to the order of2bm; moreover, they achieve near-
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TABLE I
THE BEST RATE R = 1=4 CODES FOUND FOR GIVEN K; 2 � K � 50; EXHAUSTIVE SEARCH

TABLE II
THE BEST RATE R = 1=3 CODES FOUND FOR GIVEN K; 2 � K � 50; EXHAUSTIVE SEARCH

optimal performance provided that there are no “pseudocodewords”
(multicycle paths through the trellis that are not codewords) whose
“effective weight” is less thand: We have not investigated whether
low effective weight pseudocodewords exist for the TB trellises
presented in this correspondence.

II. SEARCHING FOR GOOD ENCODERS

Since the encoder is used for tail-biting trellis representations of
block codes, the codeword set is limited to those register output
sequences which end in the same register states at which they began.
The full set of codewords comprises a linear block code andd, the
weight of the least weight codeword in the set, is the minimum
distance of the code. We search for the polynomial encoders of
memorym that produce the largestd for each pair(N;K): In keeping
with the usual notation, the code is called an(N;K; d) code.

For rates of the form1=c, c an integer,c sets of(m + 1) taps,
called thegeneratorsggg

1
; ggg2; � � � ; gggc; perform the encoding, as shown

at the top of Fig. 2 for the casec = 2 (rateR = 1=2); m is the

memory of the encoder and it is assumed that at least one generator
has g(m)

j = 1: Generatorgggj describes the effect of the input on
the jth bit of each group ofc outputs. Similarly, the rateR = 2=3
encoder at the bottom in the figure is defined by the six generators
gggij ; i = 1; 2; j = 1; 2; 3; where gggij describes the effect of input
streami on output streamj:

An effective strategy for finding good generators for TB trellis
representations is to search exhaustively for the best noncatastrophic
generators. (For TB lengths equal to a multiple of the length of the
nontrivial all-zero cycle in the state transition graph of a catastrophic
generator we have two all-zero trellis paths and, hence, the cata-
strophic generator cannot generate a TB trellis.) An early such study
is [5]; we search to much higherm than they do and correct some
apparent errors. For TB trellises out toK = 50 information bits,
we have found the optimal generators by exhaustive search out to
memory5 at rateR = 1=4, m = 6 at rateR = 1=3, m = 8 at rate
R = 1=2, and overall constraint length� = 7 at rateR = 2=3:

Although these codes suffice for many applications, good codes
with longer memory are sometimes needed, and an exhaustive search
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TABLE III
THE BEST RATE R = 1=2 CODES FOUND FOR GIVEN K; 2 � K � 50; EXHAUSTIVE SEARCH

is now too time consuming. There are several other ways to gain
an idea of the capabilities of long-memory TB encoders. One is to
search for good TB generators among those similar to the best known
generators for convolutional codes. Another is to choose longer
generators at random and keep the best found after, say, several days
of computer search. We found this second method quite effective. It
probably works because most long random codes are good.

For a given set of generators and TB lengthL, it remains to find
the minimum Hamming distanced for the code. Since the code is
linear, it is enough to find the minimum weight of any codeword
other than the all-zero one. The nonzero block code trellis paths fall
into two cases, which are illustrated in Fig. 3.

Case (i): (Distance within one code subset,dintra:) The neighbor
path touches the all-zero path at least once; all paths considered are
within the subset of paths leaving state0. Finding the minimum
weight among such paths is the same as finding the minimum weight
path in a convolutional code. By the symmetry of the circular trellis,
the behavior of paths out of one trellis stage is the same as out of all
the others, so we can place the touch point at the left of the trellis.
We start the usual dynamic program from this point and solve for the
minimum-weight descendant in the trellis that splits from this point

Fig. 3. Two different types of paths.

and merges again later to the all-zero path. Note that this can happen
beforeL stages, but must happen at least by theLth stage, by the
tail-biting condition. We call this theintra minimum distanceof the
TB trellis representation and denote itdintra:

Case (ii): (Distance between code subsets,dinter:) The neighbor
path never touches the all-zero path. This case is unique to tail-biting.
The worst case is found by executing a dynamic program starting
from some state���0 not equal to state0: The usual dynamic program in
case (i) may be used, but with some modified search conditions. The
program must delete any paths merging to the all-zero path; second,
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TABLE IV
THE BEST RATE R = 2=3 CODES FOUND FOR GIVEN K; 4 � K � 50; EXHAUSTIVE SEARCH

at theLth stage only paths entering state���0 count. The procedure
must be repeated for each nonzero starting state, and the minimum
taken over all the outcomes. We call this theinter minimum distance
of the TB trellis representation and denote itdinter:

The minimum distance for the tail-biting representation isd =

minfdintra; dinterg: If the tail-biting trellis is long enough, case (i)
paths lead to the minimum distance but for short trellises case (ii)
codewords may lead to the minimum weight path, i.e.,dinter might
be less thandintra: Hence, short TB trellis representations of block
codes could have quite different optimal generators than terminated
convolutional codes.

The minimum distance discussed above is the principal determinant
of the merit of the resulting code when maximum-likelihood decoding
or APP decoding is used. However, for certain suboptimal decoding
algorithms it has recently been observed by Frey, Kötter, and Vardy
[6] and Forney, Kschischang, and Marcus [7] that the decoding
performance may be affected by so-called “pseudocodewords.” A
pseudocodeword is a trellis path of one or more cycles that starts and

ends in the same state at some integer multiple of the cycle length.
The codewords are precisely the length-L pseudocodewords. See also
[8], [9]. We have not checked whether our tail-biting representations
have pseudocodewords with low effective weight.

III. RESULTS AND OBSERVATIONS

Tables I–IV list the best encoders found by exhaustive search for
ratesR = 1=4; 1=3; 1=2; and 2=3; respectively. For each number
of information bitsK up to 50, the best time-invariant generators
are listed at each encoder memorym or overall constraint length�:
Among the generators leading to the same distanced, the set shown
leads to the fewest codeword neighbors atd, denotednd: The gener-
ator notation is octal, with each octal symbol representing groups of
three generator bits beginning at the left; e.g.,g

(0)
j ; � � � ; g

(3)
j = 1101

base2 = 64 base8.
Encoders of fixed memorym achieve higher distances as the tail-

biting trellis lengthens. At a given distance, a longer trellis reduces
the number of nearest neighbors atd: Eventually, neitherd nor nd
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Fig. 4. Best minimum distance found forR = 1=2:

Fig. 5. Best minimum distance found forR = 1=3:

improves further with tail-biting length; in fact, the best generators
are now those of the memorym convolutional code with best free
distance and bestnd : When the columns of a table reach this point,

no further entries are shown. The neighbor number continues to grow
with K, according to the linear rate indicated. An explanation of the
K at which distance saturation occurs is given in the next section.
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Fig. 6. Best minimum distance found forR = 1=4:

Fig. 7. Best minimum distance found forR = 2=3:
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TABLE V
THE BEST RATE R = 1=4 CODES FOUND FOR GIVEN K; 2 � K � 50: THE

NONSYSTEMATIC ENCODERSARE FOUND BY EXHAUSTIVE SEARCH FOR

1 � m � 5 AND BY RANDOM SEARCH FORm � 6: THE SYSTEMATIC ENCODERS

ARE ALL FOUND BY EXHAUSTIVE SEARCH. THE BESTK = 23 NONSYSTEMATIC

ENCODERIS BEST ALSO FOR24 � K � 50 WITH nd = K: THE BESTK = 15

SYSTEMATIC ENCODER IS BEST ALSO FOR16 � K � 50 WITH nd = K

For a fixedK, there is also an encoder memorym or overall
constraint length�, going across a table row, at which no further
distance growth occurs, although sometimes a largerm or � allow
an encoder with fewer nearest neighbors. There is thus a saturation
asm or � grow for a givenK, as well asvice versa. As a rule, a
code with a givend should be as short as possible, in order to obtain
a good decoded data error rate.

Tables V–VIII show the best time-invariant tail-biting generators
found at eachK, regardless of encoder memory or overall constraint
length. These tables also list the best feedforward systematic encoders
found by exhaustive searching.

Figs. 4–7 compared andK for the best TB encoders to the best
bounds given in Brouwer and Verhoeff [10], for all four rates. Note
that the TB encoders in the right half of the figure were found by
random search and are not optimal; wherever the TB encoders are
known to be optimal, they essentially match the B-V table. It is likely
that better TB encoders exist whereL is large.

Several especially interesting codes were found during the
searches. A number of rateR = 1=3 (15; 5; 7) TB trellis
representations with memory3 were found which are equivalent
to the (15; 5; 7) Bose–Chaudhuri–Hocquenghem (BCH) code (i.e.,
by permuting codeword bit positions, the TB codeword set can be
made identical to the BCH code). This eight-state TB trellis is the
trellis description of this BCH code with the fewest known states (cf.
[11]). The square-root lower bound combined with Schuurman’s 16-
state conventional trellis for the(15; 5; 7) BCH code [12] suggests
that there might be a four-state time-varying TB trellis for this code.
By computer search we showed that, somewhat surprisingly, no such
generator exists.

Among the optimal rateR = 1=2 codes, a(24; 12; 8) code with
memory6 was found. Since the extended Golay code has the same
(N;K; d) and it can be shown that there is only one such code, we

TABLE VI
THE BEST RATE R = 1=3 CODES FOUND FOR GIVEN K; 2 � K � 50: THE

NONSYSTEMATIC ENCODERSARE FOUND BY EXHAUSTIVE SEARCH FOR

1 � m � 6 AND BY RANDOM SEARCH FORm � 7: THE SYSTEMATIC ENCODERS

ARE ALL FOUND BY EXHAUSTIVE SEARCH. THE BESTK = 28 NONSYSTEMATIC

ENCODERIS BESTALSO FOR29 � K � 50 WITH nd = 4K: THE BESTK = 21

SYSTEMATIC ENCODER IS BEST ALSO FOR22 � K � 50 WITH nd = 3K

have found a64-state TB trellis representation for the extended Golay
code, i.e., a TB trellis representation with the same number of states
as the trellis given in [13]; such a trellis was previously reported in [1]
and [5]. (These three are nonequivalent as convolutional encoders.)
Recently, Calderbank, Forney, and Vardy [14] reported a16-state
TB trellis for this code, but the trellis is time-varying with period
4, whereas our64-state TB trellis is time-invariant. The existence of
the16-state, rateR = 1=2 TB trellis for the(24; 12; 8) Golay code
shows that nonnegligible savings in complexity might be obtained by
considering time-varying generators.

Some of our TB trellis representations beat those given in [5].
For example, our64-state, rateR = 1=4 (48; 12; 17) trellis beats
the (48; 12; 16) code given there; this code ties the shortening of
the (49; 13; 17) code in [10]. Since a16-state TB trellis for a
(48; 12; 16) code can be obtained just by doubling the bits in the
Golay code, it seems probable that there is a simpler time-varying
TB trellis for the (48; 12; 17) code as well.

Three of our interesting encoders are given in Table IX.

IV. DISTANCE BEHAVIOR AS THE TAIL -BITING TRELLIS GROWS

As noted in Section II, optimal generators for short TB trellises
are very different from those of convolutional codes. Consider a
fixed memorym: Long TB trellis representations have both the same
generators and the same distance as the best memorym convolutional
codes. For TB lengthsL in between (about4m in the rateR = 1=2
case), the generators become the same as or at least roughly similar to
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TABLE VII
THE BEST RATE R = 1=2 CODES FOUND FOR GIVEN K; 2 � K � 50: THE

NONSYSTEMATIC ENCODERSARE FOUND BY EXHAUSTIVE SEARCH FOR

1 � m � 8 AND BY RANDOM SEARCH FORm � 9: THE SYSTEMATIC

ENCODERSARE ALL FOUND BY EXHAUSTIVE SEARCH. THE BEST K = 33

SYSTEMATIC ENCODER IS BEST ALSO FOR34 � K � 50 WITH nd = 2K

the best free-distance generators of memorym convolutional codes,
but the achieved distance falls short.

Thinking conversely, we can fix the TB sections atL and ask
what is the best distance obtainable by any code found at any
memory. These distances can be seen in Fig. 4. They are obtained
from generators whosem is considerably shorter than the tail-biting
trellis. The relationship ofK to d andm seems to be similar to that
of the decision depth parameter for convolutional codes tod andm:
We now discuss this relationship.

Roughly speaking, the decision depth parameter is the depth
needed in convolutional decoding so that distance properties are not
dominated by unmerged trellis paths. A precise definition of this
depth can be given with reference to the case (i) paths in Fig. 3.
Consider all trellis paths stemming from a root node as in the figure;

TABLE VIII
THE BEST RATE R = 2=3 CODES FOUND FOR GIVEN K; 4 � K � 50:
THE NONSYSTEMATIC ENCODERSARE FOUND BY EXHAUSTIVE SEARCH

FOR 1 � � � 6 AND BY RANDOM SEARCH FOR � � 7: THE

SYSTEMATIC ENCODERSARE ALL FOUND BY EXHAUSTIVE SEARCH

TABLE IX
THREE INTERESTING TB ENCODERS

without loss of generality, the all-zero path is one of these and was
transmitted. Then the decision depth functionLD(d) at distanced is
the first trellis depth at which every nonzero path, merged with the
all-zero path or not, isd away from the all-zero path. In ordinary
trellis decoding, the decision on the first branch cannot be made until
at leastLD(d) stages have been explored, if the code is to act as if
it had minimum distanced: The decoder observation window is thus
LD trellis stages. In a typical code, the paths merging to the all-zero
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path that leads to the free distance occurs well beforeLD(dfree),
since the many close unmerged paths are what dominateLD: The
LD function is tabulated in [15] for most convolutional codes. These
tabulations show thatLD(d) rapidly assumes the asymptotic rule

LD(d) � d=ch�1(1�R) (6)

as d grows, whereh�1( ) is the inverse binary entropy function.
That the right-hand side is an overbound can be shown for several
theoretical classes of codes, including time-invariant convolutional
codes forLD(d) � m+1 and random convolutional codes [16], [3].

Turning now to tail-biting trellis representations of block codes, we
modify the discussion, but not by much. Case (ii) path pairs, for which
merger to all-zero is forbidden, must be considered, and paths must
start and end in the same state. In addition, TB trellis representations
are block codes, so the Gilbert–Varshamov bound applies; it states
that a linear(N;K; d) block code exists whenever

d�2

i=0

N � 1
i

< 2N�K : (7)

As N;K; d grow, (7) takes the asymptotic formd=N
�
�h�1(1�R),

which may be rewritten for our code parameters as

L = K=b
�
� d=ch�1(1�R) (8)

or, equivalently,

K
�
� dR=h�1(1�R): (9)

If we assume that the Gilbert–Varshamov bound is tight, then (8)
is the same as (6). The precise trends here for block codes are
shown in Figs. 4–7. None of this guarantees that an(N;K; d) TB
representation exists with sizeL as small as (8). But if the TB trellis
representations have performance equal to that of the best block
codes, then their lengthL and distanced will be related as in (8).
Figs. 4–7 show that this is apparently the case.

To summarize these remarks, consider a TB trellis representation
with growing length, derived from generators of fixed memorym:
At smallL, case (ii) unmerged path pairs determine which generators
have the best distance. AsL grows, the best selection changes
unpredictably, but our results show that the codes are excellent and
that (9) approximately holds. At largeL, the case (i)dintra must
eventually dominated, since the minimum distance among case (ii)
path pairs clearly grows linearly withL and exceeds any limit. This
statement applies even though the TB condition applies: If a given
distanced0 is reached byL0, descendants can reach any specified state
by L0+m, and their distance cannot be smaller. This being the case,
the entire distance structure must come from case (i). The best TB
generators of memorym become identical to the best convolutional
code generators. So also must all the distance properties, and thus
(6) and (7) apply to tail-biting trellis representations of block codes
as they do to convolutional codes.

V. CONCLUSION

We have constructed a new list of optimal short and moderate-
length encoders for tail-biting trellis representations of block codes.
These are as good as the best known block codes at their rate and
block length, and at the same time they have important advantages

over block and convolutional codes. Soft channel outputs yield a
2–3-dB signal-to-noise ratio (SNR) improvement, and are easily
obtained by trellis decoders. The trellis structure itself seems to
lead to simpler decoding, compared to block decoders with the
same(N;K; d): Finally, the rate loss from the terminating bits in
a convolutional encoder, which can be significant at moderate block
lengths, is eliminated by tail-biting representations. The advantages
summarized here are particularly important in packet and other short-
block transmission systems.
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