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A simple randomized algorithm for sequential prediction

of ergodic time series
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László Györfi Gábor Lugosi Gusztáv Morvai

Abstract

We present a simple randomized procedure for the prediction of a binary sequence.
The algorithm uses ideas from recent developments of the theory of the prediction of
individual sequences. We show that if the sequence is a realization of a stationary and
ergodic random process then the average number of mistakes converges, almost surely,
to that of the optimum, given by the Bayes predictor. The desirable finite-sample
properties of the predictor are illustrated by its performance for Markov processes. In
such cases the predictor exhibits near optimal behavior even without knowing the order
of the Markov process. Prediction with side information is also considered.
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1 Introduction

We address the problem of sequential prediction of a binary sequence. A sequence of bits
y1, y2, . . . ∈ {0, 1} is hidden from the predictor. At each time instant i = 1, 2, . . ., the
predictor is asked to guess the value of the next outcome yi with knowledge of the past
yi−1
1 = (y1, . . . , yi−1) (where y01 denotes the empty string). Thus, the predictor’s decision,
at time i, is based on the value of yi−1

1 . We also assume that the predictor has access
to a sequence of independent, identically distributed (i.i.d.) random variables U1, U2, . . .,
uniformly distributed on [0, 1], so that the predictor can use Ui in forming a randomized
decision for yi. Formally, the strategy of the predictor is a sequence g = {gi}∞i=1 of decision
functions

gi : {0, 1}i−1 × [0, 1] → {0, 1}
and the randomized prediction formed at time i is gi(y

i−1
1 , Ui). The predictor pays a unit

penalty each time a mistake is made. After n rounds of play, the normalized cumulative loss
on the string yn1 is

Ln
1 (g, U

n
1 ) =

1

n

n∑

i=1

I{gi(yi−1
1 ,Ui)6=yi}

,

where I denotes the indicator function. When no confusion is caused, or when the predictor
does not randomize, we will simply write Ln

1 (g) = Ln
1 (g, U

n
1 ). In general, we denote the

average number of mistakes between times m and n by

Ln
m(g, U

n
m) =

1

n−m+ 1

n∑

i=m

I{gi(yi−1
1 ,Ui)6=yi}

.

We also write
L̂n
1 (g) = ELn

1 (g, U
n
1 ) and L̂n

m(g) = ELn
m(g, U

n
m)

for the expected loss of the randomized strategy g. (Here the expectation is taken with
respect to the randomization Un

1 .)
In this paper we assume that y1, y2, . . . are realizations of the random variables Y1, Y2, . . .

drawn from the binary-valued stationary and ergodic process {Yn}∞−∞. We assume that the
randomizing variables U1, U2, . . . are independent of the process {Yn}∞−∞.

In this case there is a fundamental limit for the predictability of the sequence. This is
stated in the next theorem whose proof may be found in Algoet [2].

Theorem 1 (Algoet [2]) For any prediction strategy g and stationary ergodic process {Yn}∞−∞,

lim inf
n→∞

Ln
1 (g) ≥ L∗ almost surely,

where
L∗ = E

[
min

(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)]

is the minimal (Bayes) probability of error of any decision for the value of Y0 based on the
infinite past Y −1

−∞ = (. . . , Y−3, Y−2, Y−1).
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Based on Theorem 1, the following definition is meaningful:

Definition 1 A prediction strategy g is called universal if for all stationary and ergodic
processes {Yn}∞−∞,

lim
n→∞

Ln
1 (g) = L∗ almost surely.

Therefore, universal strategies asymptotically achieve the best possible loss for all ergodic
processes. The first question is, of course, if such a strategy exists. The affirmative answer
follows from a more general result of Algoet [2]. Here we give an alternative proof which is
based on earlier results of Ornstein and Bailey.

Theorem 2 (Algoet [2]) There exists a universal prediction scheme.

Proof. Ornstein [19] proved that there exists a sequence of functions fi : {0, 1}i → [0, 1],
i = 1, 2, . . . such that for all ergodic processes {Yn}∞−∞,

lim
n→∞

fn(Y
−1
−n ) = P{Y0 = 1|Y −1

−∞} almost surely. (1)

Bailey [4] observed that for such estimators, for all ergodic processes

lim
n→∞

1

n

n∑

i=1

|(fi−1(Y
i−1
1 )−P{Yi = 1|Y i−1

−∞}| = 0 almost surely. (2)

Indeed, (1) and Breiman’s generalized ergodic theorem (see Lemma 4 in the Appendix) yield
(2).

Once such a sequence {fi} of estimators is available, we may define a (non-randomized)
prediction scheme by the plug-in predictor

gn(y
n−1
1 ) =

{
1 if fn−1(y

n−1
1 ) ≥ 1

2

0 otherwise.

It is well-known that the probability of error of such a plug-in predictor may be bounded by
the L1 error of the estimator it is based on. In particular, by a simple inequality appearing
in the proof of [9, Theorem 2.2],

P
{
gn(Y

n−1
1 ) 6= Yn|Y n−1

−∞

}
−P

{
g∗(Y n−1

−∞ ) 6= Yn|Y n−1
−∞

}
≤ 2

∣∣∣fn−1(Y
n−1
1 )−P

{
Yn = 1|Y n−1

−∞

}∣∣∣ .

Therefore,

|Ln
1 (g)− L∗| ≤

∣∣∣∣∣L
n
1 (g)−

1

n

n∑

i=1

P
{
gi(Y

i−1
1 ) 6= Yi|Y i−1

1

}∣∣∣∣∣

+
1

n

n∑

i=1

∣∣∣P
{
gi(Y

i−1
1 ) 6= Yi|Y i−1

1

}
−P

{
g∗(Y i−1

−∞ ) 6= Yi|Y i−1
−∞

}∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

P
{
g∗(Y i−1

−∞ ) 6= Yi|Y i−1
−∞

}
− L∗

∣∣∣∣∣
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≤
∣∣∣∣∣L

n
1 (g)−

1

n

n∑

i=1

P
{
gi(Y

i−1
1 ) 6= Yi|Y i−1

1

}∣∣∣∣∣

+
2

n

n∑

i=1

∣∣∣fi−1(Y
i−1
1 )−P

{
Yi = 1|Y i−1

−∞

}∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

P
{
g∗(Y i−1

−∞ ) 6= Yi|Y i−1
−∞

}
− L∗

∣∣∣∣∣ .

The first term of the right-hand side tends to zero almost surely by the Hoeffding-Azuma
inequality (Lemma 5 in the Appendix) and the Borel-Cantelli lemma. The second one
converges to zero almost surely by (2) and the third term tends to zero almost surely by the
ergodic theorem. ✷

It was Ornstein [19] who first proved the existence of estimators satisfying (1). This was
later generalized by Algoet [1]. A simpler estimator with the same convergence property was
introduced by Morvai, Yakowitz, and Györfi [17]. Unfortunately, even the simpler estimator
needs so large amounts of data that its practical use is unrealistic. By this we mean that
even for “simple” i.i.d. or Markov processes the rate of convergence of the estimator is very
slow. Motivated by the need of a practical estimator, Morvai, Yakowitz, and Algoet [18]
introduced an even simpler algorithm. However, it is not known whether their estimator
satisfies (1), and we do not even know whether the corresponding predictor is universal. The
purpose of this paper is to introduce a new simple universal predictor whose finite-sample
performance for Markov processes promise practical applicability.
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2 A simple universal algorithm

In this section we present a simple prediction strategy, and prove its universality. It is
motivated by some recent developments from the theory of the prediction of individual
sequences (see, e.g., Vovk [22], Feder, Merhav, and Gutman [10], Littlestone and Warmuth
[12], Cesa-Bianchi et al. [7]). These methods predict according to a combination of several
predictors, the so-called experts.

The main idea in this paper is that if the sequence to predict is drawn from a stationary
and ergodic process, combining the predictions of a small and simple set of appropriately
chosen predictors (the so-called experts) suffices to achieve universality.

First we define an infinite sequence of experts h(1), h(2), . . . as follows: Fix a positive
integer k, and for each n ≥ 1, s ∈ {0, 1}k and y ∈ {0, 1} define the function P̂ k

n : {0, 1} ×
{0, 1}n−1 × {0, 1}k → [0, 1] by

P̂ k
n (y, y

n−1
1 , s) =

∣∣∣{k < i < n : yi−1
i−k = s, yi = y}

∣∣∣
∣∣∣{k < i < n : yi−1

i−k = s}
∣∣∣

for n > k + 1, (3)

where 0/0 is defined to be 1/2. Also, for n ≤ k + 1 we define P̂ k
n (y, y

n−1
1 , s) = 1/2. In other

words, P̂ k
n (y, y

n−1
1 , s) is the proportion of the appearances of the bit y following the string s

among all appearances of s in the sequence yn−1
1 .

The expert h(k) is a sequence of functions h(k)
n : {0, 1}n−1 → {0, 1}, n = 1, 2, . . . defined by

h(k)
n (yn−1

1 ) =

{
0 if P̂ k

n (0, y
n−1
1 , yn−1

n−k) >
1
2

1 otherwise,
n = 1, 2, . . . .

That is, expert h(k) is a (nonrandomized) prediction strategy, which looks for all appearances
of the last seen string yn−1

n−k of length k in the past and predicts according to the larger of
the relative frequencies of 0’s and 1’s following the string. We may call h(k) a k-th order
empirical Markov strategy.

The proposed prediction algorithm proceeds as follows: Let m = 0, 1, 2, . . . be a non-
negative integer. For 2m ≤ n < 2m+1, the prediction is based upon a weighted majority of
predictions of the experts h(1), . . . , h(2m+1) as follows:

gn(y
n−1
1 , u) =





0 if u >

∑2m+1

k=1 h(k)
n (yn−1

1 )wn(k)
∑2m+1

k=1 wn(k)
1 otherwise,

n = 1, 2, . . . ,

where wn(k) is the weight of expert h(k) defined by the past performance of h(k) as

w2m(k) = 1 and wn(k) = e−ηm(n−2m)Ln−1
2m

(h(k)) for 2m < n < 2m+1,

where ηm =
√
8 ln(2m+1)/2m. Recall that

Ln−1
2m (h(k)) =

1

n− 2m

n−1∑

i=2m
I{

h
(k)
i

(yi−1
1 )6=yi

}

4



is the average number of mistakes made by expert h(k) between times 2m and n − 1. The
weight of each expert is therefore exponentially decreasing with the number of its mistakes
on this part of the data.

Remarks. 1. The above-mentioned estimator of Morvai, Yakowitz, and Algoet [18] selects
a value of k in a certain data-dependent manner, and uses the corresponding estimate P̂ k

n .
The new estimate, however, takes a mixture (weighted average) of all possible values of k,
with exponential weights depending on the past performance of each component estimator.
As Lemma 1 below suggests, this technique guarantees a number of errors almost as small
as that of the best expert (i.e., best value of k).

2. Ryabko [21] proposed an estimator somewhat similar in spirit to the predictor defined
here. Ryabko used a mixture of empirical Markov predictors, and proved its universality for
all stationary and ergodic processes in a sense related to the Kullback-Leibler divergence.
The idea of diversifying Markov strategies also appears in Algoet [1].

3. Each time n equals a power of two, all weights are reset to 1, and a simple majority vote
is taken among the experts. This is necessary to make the algorithm sequential and to be
able to incorporate more and more experts in the decision. If the total length of the sequence
to be predicted was finite (say n) and known in advance, then no such resetting would be
necessary, one could just use the first n experts as Lemma 1 below describes. However, to
achieve universality, an infinite class of experts is necessary. As the first part of the proof of
Theorem 3 below shows, we do not loose much by such a resetting of the weights.

4. Related prediction schemes have been proposed by Feder, Merhav, and Gutman [10]
for individual sequences. Their computationally quite simple methods are shown to predict
asymptotically as well as any finite-state predictor.

The main result of this section is the universality of this simple prediction scheme:

Theorem 3 The prediction scheme g defined above is universal.

In the proof we use a beautiful result of Cesa-Bianchi et al. [7]. It states that, given a set ofK
experts, and a sequence of fixed length n, there exists a randomized predictor whose number

of mistakes is not more than that of the best predictor plus
√
(n/2) lnK for all possible

sequences yn1 . The simpler algorithm and statement cited below is due to Cesa-Bianchi [6]:

Lemma 1 Let h̃(1), . . . , h̃(K) be a finite collection of prediction strategies (experts), and let
η > 0. Then if the prediction strategy g̃ is defined by

g̃i(y
i−1
1 , u) =





0 if u >

∑K
k=1P

{
h̃(k)(yi−1

1 , Ui) = 1
}
w̃i(k)

∑K
k=1 w̃i(k)

1 otherwise,

i = 1, 2, . . ., where for all k = 1, . . . , K

w̃1(k) = 1 and w̃i(k) = e−η(i−1)L̂i−1
1 (h̃(k)), i > 1

5



then for every n ≥ 1 and yn1 ∈ {0, 1}n,

L̂n
1 (g̃) ≤ min

k=1,...,K
L̂n
1 (h̃

(k)) +
lnK

ηn
+

η

8
.

In particular, if N is a positive integer, and η =
√
8N−1 lnK, then

L̂n
1 (g̃) ≤ min

k=1,...,K
L̂n
1 (h̃

(k)) +

√
N

n

√
lnK

2
, n ≤ N.

Proof of Theorem 3. Taking K = 2m+1 and N = 2m in Lemma 1, we have that the
expected number of errors committed by g on a segment 2m, . . . , 2m+1 − 1 is bounded, for
any y2

m+1−1
2m ∈ {0, 1}2m, as

L̂2m+1−1
2m (g) = E


 1

2m

2m+1−1∑

i=2m
I{gi(yi−1

1 ,Ui)6=yi}




≤ min
k≤2m+1

L2m+1−1
2m (h(k)) +

√
ln(2m+1)

2 · 2m

= min
k=1,2,...

L2m+1−1
2m (h(k)) +

√
ln(2m+1)

2 · 2m ,

where the last equality follows from the fact that for all i < 2m+1, all experts h(k) with
k ≥ 2m+1 predict identically to h(2m+1). (Note that since the predictors h(k) are deterministic,

for every m, L̂2m+1−1
2m (h(k)) = L2m+1−1

2m (h(k)).)
Similarly, denoting n = 2⌊log2 n⌋+1, and invoking Lemma 1 with K = n and N = n/2,

Ln
n/2(g) ≤


 min

k=1,2,...
Ln
n/2(h

(k)) +

√
n/2

n− n/2 + 1

√
ln(n)

2


 .

Therefore, for any sequence y1, y2, . . .,

nL̂n
1 (g) =

⌊log2 n⌋−1∑

m=0

2mL2m+1−1
2m (g) + (n− n/2 + 1)Ln

n/2(g)

≤
⌊log2 n⌋−1∑

m=0

2m


 min

k=1,2,...
L2m+1−1
2m (h(k)) +

√
ln(2m+1)

2 · 2m




+(n− n/2 + 1)


 min

k=1,2,...
Ln
n/2(h

(k)) +

√
n/2

n− n/2 + 1

√
ln(n)

2




≤ n min
k=1,2,...

Ln
1 (h

(k)) +
⌊log2 n⌋−1∑

m=0

√
2m ln(2m+1)

2
+

√
n/2 lnn

2

= n min
k=1,2,...

Ln
1 (h

(k)) +
⌊log2 n⌋∑

m=0

√
2m ln(2m+1)

2
.
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Denoting µ = ⌊log2 n⌋, we may write

µ∑

m=0

√
2m ln(2m+1)

2
≤

√
ln(2µ+1)

2

µ∑

m=0

2m/2

<

√
ln(2µ+1)

2
· 2(µ+1)/2

√
2− 1

= c

√
n log2 n

2
,

where

c =

√
ln 2√
2− 1

≈ 2.01.

Thus, we obtain

L̂n
1 (g) ≤ min

k=1,2,...
Ln
1 (h

(k)) +
c

n

√
n log2 n

2

≤ min
k=1,2,...

Ln
1 (h

(k)) + c

√
log2 n+ 1

n
.

Noting that for any fixed sequence yn1 , L
n
1 (g, U

n
1 ) is a sum of [0, 1]-valued independent

random variables whose expectation is L̂n
1 (g), we may use Hoeffding’s inequality [11] to see

that for any sequence yn1 , and ǫ > 0,

P
{∣∣∣Ln

1 (g, U
n
1 )− L̂n

1 (g)
∣∣∣ > ǫ

}
≤ 2e−2nǫ2. (4)

Therefore, if L is now evaluated on the random sequence Y1, Y2, . . ., we obtain

lim sup
n→∞

Ln
1 (g, U

n
1 ) ≤ lim sup

n→∞


 min

k=1,2,...
Ln
1 (h

(k)) + c

√
log2 n+ 1

n


 .

= lim sup
n→∞

min
k=1,2,...

Ln
1 (h

(k)) almost surely.

Thus, it remains to show that for any ergodic process Y1, Y2, . . .,

lim sup
n→∞

min
k=1,2,...

Ln
1 (h

(k)) ≤ L∗ almost surely. (5)

This will follow easily from the following lemma:

Lemma 2 For any k ≥ 1,

lim sup
n→∞

Ln
1 (h

(k)) ≤ L∗ + ǫk almost surely,

where ǫk > 0 is such that limk→∞ ǫk = 0.

7



Remark. If the process {Yn} happens to be m-th order Markov, then it is easy to see that
ǫk = 0 for all k ≥ m. The performance of the predictor for such processes is investigated in
the next section.

Proof. Introduce

L̃n
1 (h

(k)) =
1

n

n∑

i=1

P{Yi 6= h
(k)
i (Y i−1

1 )|Y i−1
−∞}.

By Lemma 5 in the Appendix we immediately obtain

lim
n→∞

∣∣∣Ln
1 (h

(k))− L̃n
1 (h

(k))
∣∣∣ = 0 almost surely.

Therefore, it suffices to show that lim supn→∞ L̃n
1 (h

(k)) ≤ L∗ + ǫk almost surely. To this end,
first we study the asymptotic behavior of the quantity P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞}. Notice
that

P{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞} ≤ IAP{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞}
+IBk

P{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞}

+ICk
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞}
+IDc

k
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞} (6)

where

A =
{
P{Y0 = 1|Y −1

−∞} =
1

2

}
,

Bk =
{
P{Y0 = 1|Y −1

−∞} <
1

2
and P{Y0 = 1|Y −1

−k } <
1

2

}
,

Ck =
{
P{Y0 = 0|Y −1

−∞} <
1

2
and P(Y0 = 0|Y −1

−k ) <
1

2

}
,

and Dk = A ∪Bk ∪ Ck. Notice that

P{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞}

= P{Y0 = 1|Y −1
−∞}I

{P̂ k
n (1,Y −1

−n+1|Y
−1
−k

)≤ 1
2
}
+P{Y0 = 0|Y −1

−∞}I
{P̂ k

n (1,Y
−1
−n+1|Y

−1
−k

)> 1
2
}
. (7)

Now we examine the four terms on the right-hand side of (6). For the first term (7) yields

IAP{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞} = IA

1

2

= IA min
(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)
.

For the second term observe that under Bk, for sufficiently large n,

P̂ k
n (1, Y

−1
−n+1, Y

−1
−k ) <

1

2
almost surely,

and therefore by (7) we have

lim
n→∞

IBk
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞) = IBk
min

(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)
a.s.

8



For the third term we obtain similarly

lim
n→∞

ICk
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞) = ICk
min

(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)
a.s.

The last term is simply bounded by

IDc
k
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞} ≤ IDc
k
.

Combining all these bounds, we obtain

P{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞} ≤ IDk

P{Y0 6= h(k)
n (Y −1

−n+1)|Y −1
−∞}+ IDc

k
(8)

and

lim
n→∞

IDk
P{Y0 6= h(k)

n (Y −1
−n+1)|Y −1

−∞} = IDk
min

(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)
a.s. (9)

From (8) it is immediate that

lim sup
n→∞

L̃n
1 (h

(k)) ≤ lim
n→∞

1

n

n∑

i=1

IDk
(T iY ∞

−∞)P{Yi 6= h
(k)
i (Y i−1

1 )|Y i−1
−∞}+ lim

n→∞

1

n

n∑

i=1

IDc
k
(T iY ∞

−∞),

where T denotes the left shift operator defined on doubly infinite binary sequences y∞−∞ ∈
{0, 1}∞−∞. By this inequality and (9), Breiman’s generalized ergodic theorem (see Lemma 4
in the Appendix) implies

lim sup
n→∞

L̃n
1 (h

(k)) ≤ E
[
min

(
P{Y0 = 1|Y −1

−∞},P{Y0 = 0|Y −1
−∞}

)]
+P{Dc

k}
= L∗ +P{Dc

k} almost surely.

Since by the martingale convergence theorem

lim
k→∞

P{Y0 = 1|Y −1
−k } = P{Y0 = 1|Y −1

−∞} almost surely,

we have
lim
k→∞

P(Dc
k) = 0.

Taking ǫk = P{Dc
k}, the proof of the lemma is complete. ✷

Now we return to the proof of Theoren 3. By Lemma 2, for arbitrary K,

lim sup
n→∞

min
k=1,2,...

Ln
1 (h

(k)) ≤ lim sup
n→∞

Ln
1 (h

(K))

≤ L∗ + ǫK .

Since K is arbitrary and ǫK → 0, (5) is established, and the proof of the theorem is finished.
✷

Remarks. 1. The proposed estimate is clearly easy to compute. One merely has to keep
track of the expected cumulative losses Ln−1

2m (h(k)) for k = 1, 2, . . . , n. However, for large n,

9



storing the entire data history may be problematic. In such cases, more efficient tree-based
data structures, such as the ones described by Feder, Merhav, and Gutman [10], may be
applied. We do not investigate this issue further here.

2. We see from the analysis that for any sequence y1, y2, . . . and for all n,

L̂n
1 (g) ≤ min

k=1,2,...
Ln
1

(
h(k)

)
+ 2.01

√
log2 n + 1

n
,

and that the difference |Ln
1 (g, U

n
1 )− L̂n

1 (g) | between the actual loss and the expected loss is
Op(n

−1/2). (For a sequence of random variables {Xn} and sequence of nonnegative numbers
{an} we say that Xn = Op(an) if for every ǫ > 0 there exists a constant c > 0 such that
lim supn→∞P{|Xn| ≥ can} < ǫ.) The rate of convergence to L∗ depends on the behavior
of the best expert for the time segment up to n. For example, in the next section we show
that for m-th order Markov processes the m-th expert predicts very well, and this fact will
suffice to derive performance bounds for the proposed predictor.

3. The proposed predictor is by no means the only possibility. Different sets of experts
may be combined in a similar fashion, and universality only depends on the behavior of the
best expert. If some additional information is known (or suspected) about the process to
be predicted, this information may be built in the definition of the experts. We chose the
empirical Markov strategies as experts for convenience, and as we’ll see it in the next section,
this choice pays off whenever the process happens to be finite order Markov.

10



3 Markov processes

In this section we assume that the process to predict {Yn}∞−∞ is (in addition to being station-
ary and ergodic) m-th order Markov, that is, for any binary sequence y−1

−∞ = (. . . , y−2, y−1),

P{Y0 = 1|Y −1
−∞ = y−1

−∞} = P{Y0 = 1|Y −1
−m = y−1

−m},

where m is a positive integer. We show that the proposed predictor achieves a nearly optimal
performance for any m and for any such process, even though the predictor does not use the
knowledge that the process is m-th order Markov. The intuitive reason for such a behavior
is the following: we have seen it in the previous section that for any sequence,

Ln
1 (g, U

n
1 ) ≤ min

k=1,2,...
Ln
1

(
h(k)

)
+ 3

√
log2 n + 1

n
+Op



√
1

n


 .

On the other hand, if the sequence is m-th order Markov, then there exists an expert, namely
h(m) with very good performance.

In order to simplify our analysis, we modify the experts somewhat. They are defined as
before but the probability estimates of (3) are now replaced by

P̄ k
n (y, y

n−1
1 , s) =

∣∣∣{k < i < n : yi−1
i−k = s, yi = y}

∣∣∣+ 1
∣∣∣{k < i < n : yi−1

i−k = s}
∣∣∣+ 2

. (10)

In other words, the simple empirical frequency counts are now replaced by the corresponding
Laplace estimates. It is easy to see that all results of Section 2 remain valid for the modified
predictor.

Remark. The reason for this modification is that this way we can appeal to a result of
Rissanen [20] which simplifies our analysis. We believe that similar performance bounds are
true for the original predictor of Section 2.

In the next theorem we compare the performance of our predictor to the universal lower
bound L∗. The statement only gives information about the expected loss, but we believe this
result already illustrates the good behavior of the proposed predictor for Markov processes.

Theorem 4 If the process to be predicted is a stationary and ergodic m-th order Markov
process, then the cumulative loss Ln

1 (g) = Ln
1 (g, U

n
1 ) of the prediction strategy of Section 2

(with the modified estimates of (10)) satisfies

ELn
1 (g) ≤ L∗ + 2

√
2m−1 logn

n
+ 3

√
log2 n + 1

n
+

√
c

n
,

where c > 0 is a universal constant.

11



Proof. First note that (4) implies

E
[
|Ln

1 (g, U
n
1 )− L̂n

1 (g)||Y∞
−∞

]
≤

∫ ∞

0
2e−2nǫ2dǫ ≤

√
ln(2e)

2n

(see, e.g., [9, page 208]), and therefore it suffices to investigate L̂n
1 (g). Recall also from the

proof of Theorem 3 that for any input sequence,

L̂n
1 (g) ≤ min

k=1,2,...
Ln
1 (h

(k)) + 3

√
log2 n+ 1

n
,

and, in particular,

L̂n
1 (g) ≤ Ln

1 (h
(m)) + 3

√
log2 n + 1

n
.

Thus, it suffices to show that for m-th order Markov processes the performance of the m-th
expert h(m) satisfies

ELn
1 (h

(m)) ≤ L∗ + 2

√
2m−1 log n

n
+

√
c

n

for some constant c. To this end, observe that, on the one hand,

ELn
1(h

(m)) = E

[
1

n

n∑

i=1

I
{h

(m)
i

(Y i−1
1 )6=Yi}

]

= E

[
1

n

n∑

i=1

P{h(m)
i (Y i−1

1 ) 6= Yi|Y i−1
−∞}

]
,

and on the other hand, by the Markov property,

L∗ = E

[
1

n

n∑

i=1

min
(
P

{
Yi = 1|Y i−1

i−m

}
,P

{
Yi = 1|Y i−1

i−m

})]

= E

[
1

n

n∑

i=1

P
{
h(m,∗)(Y i−1

i−m) 6= Yi|Y i−1
−∞

}]
,

where h(m,∗) is the Bayes decision, given, for any s ∈ {0, 1}m, by

h(m,∗)(s) =

{
1 if P{Y0 = 1|Y −1

−m = s} ≥ 1/2
0 otherwise.

(Note that the optimal predictor, that is, the one which minimizes the probability of error
at every step predicts according to h(m,∗).)

The above equalities imply that

ELn
1 (h

(m))− L∗ ≤ 1

n

n∑

i=1

E
∣∣∣P

{
h
(m)
i (Y i−1

1 ) 6= Yi|Y i−1
−∞

}
−P

{
h(m,∗)(Y i−1

i−m) 6= Yi|Y i−1
−∞

}∣∣∣

≤ 2

n

n∑

i=1

E
∣∣∣P̄m

i (1, Y i−1
1 , Y i−1

i−m)−P
{
Yi = 1|Y i−1

1

}∣∣∣ ,

12



where the second inequality follows by [9, Theorem 2.2]. In the rest of the proof we simply
apply some known results from the theory of universal prediction. First, by applications of
Jensen’s and Pinsker’s inequalities (see Merhav and Feder [15, eq. (20)]) we obtain

2

n

n∑

i=1

E
∣∣∣P̄m

i (1, Y i−1
1 , Y i−1

i−m)−P
{
Yi = 1|Y i−1

1

}∣∣∣

≤ 2

√√√√√
1

n

n∑

i=1

∑

yi−1
1 ∈{0,1}i−1

P{Y i−1
1 = yi−1

1 }
1∑

j=0

P{Yi = j|Y i−1
1 = yi−1

1 } log P{Yi = j|Y i−1
1 = yi−1

1 }
P̄m
i (j, yi−1

1 , yi−1
i−m)

.

Observe that on the right-hand side, under the square root sign, we have the normalized
Kullback-Leibler divergence between the probability measure of Y n

1 and its estimate con-
structed as a product of the Laplace estimates (10). But this divergence, for m-th order
Markov sources, is well-known to be bounded by

2m

2n
log n+O

(
1

n

)
,

see Rissanen [20]. This concludes the proof. ✷

Remarks. 1. As Theorem 4 shows, by exponential weighting of the empirical Markov
strategies, the predictor automatically adapts to the unknown Markov order. Similar re-
sults, though in different setup, are achieved by Modha and Masry [13],[14] by complexity
regularization.

2. Merhav, Feder, and Gutman, [16] showed that if the process is m-th order Markov, then
the randomized predictor h̃(m) defined by

h̃
(m)
i (yi−1

1 , U) =





0 if P̂m
n (0, yn−1

1 , yn−1
n−m) >

1
2

1 if P̂m
n (0, yn−1

1 , yn−1
n−m) <

1
2

I{U≥1/2} otherwise

achieves ELn
1 (h̃

(m))− L∗ ≤ C/n, where C is a constant depending of the distribution of the
process. However, in an interesting contrast, the best distribution-free upper bound for all
m-th order Markov processes is of the order of n−1/2. To illustrate this, consider the case
m = 0, that is, when {Yn} is an i.i.d. process with P{Y1 = 1} = 1/2 + θ, and the predictor
h̃(0) is based on a majority vote of the bits appeared in the past. In this case, for every n,

sup
θ∈[−1/2,1/2]

(
ELn

1 (h̃
(0))− L∗

)
≥ c1n

−1/2,

where c1 is a universal constant. (This is straightforward to see by considering θ = cn−1/2
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for some small constant c, and writing

ELn
1 (h̃

(0))− L∗ =
1

n

n∑

i=1

[
P{h̃(0)(Y i−1

1 , Ui) 6= Yi} −
(
1

2
− θ

)]

=
1

n

n∑

i=1

2θP{h̃(0)(Y i−1
1 , Ui) = 0}

≥ 1

n

n∑

i=1

2θP





i−1∑

j=1

Yj <
i− 1

2





=
1

n

n∑

i=1

2θP





i−1∑

j=1

(Yj − EYj) < −(i− 1)θ



 .

Finally, invoke the Berry-Esséen theorem (see, e.g., [8]) to deduce that there exists a universal

constant c2 such that P
{∑i−1

j=1(Yj − EYj) < −(i− 1)θ
}
≥ c2 for every 2 ≤ i ≤ n.) Thus,

even though for every single value of θ, ELn
1 (h̃

(m))−L∗ converges to zero at a rate of O(1/n),
the minimax rate of convergence is, in fact, O(1/

√
n). Since the upper bound in Theorem 4

is independent of the distribution, we see that, in this sense, (ignoring logarithmic factors)
the order of magnitude of the bound is the best possible.
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4 Prediction with side information

In this section we apply the same ideas to the seemingly more difficult classification (or
pattern recognition) problem. The setup is the following: let {(Xn, Yn)}∞−∞ be a stationary
and ergodic sequence of pairs taking values in Rd × {0, 1}. The problem is to predict the
value of Yn given the data (Xn,Dn−1), where we denoteDn−1 = (Xn−1

1 , Y n−1
1 ). The prediction

problem is similar to the one studied in Section 2 with the exception that the sequence of
Xi’s is also available to the predictor. One may think about the Xi’s as side information.

We may formalize the prediction problem as follows. A (randomized) prediction strategy
is a sequence g = {gi}∞i=1 of decision functions

gi : {0, 1}i−1 ×
(
Rd

)i × [0, 1] → {0, 1}

so that the prediction formed at time i is gi(y
i−1
1 , xi

1, Ui). The normalized cumulative loss for
any fixed pair of sequences xn

1 , y
n
1 is now

Rn
1 (g, U

n
1 ) =

1

n

n∑

i=1

I{gi(yi−1
1 ,xi

1,Ui)6=yi}
,

We also use the short notation Rn
1 (g) = Rn

1 (g, U
n
1 ). Denote the expected loss of the random-

ized strategy g by
R̂n

1 (g) = ERn
1 (g, U

n
1 ).

We assume that the randomizing variables U1, U2, . . . are independent of the process {(Xn, Yn)}.
Just like in the case of prediction without side information, the fundamental limit is given

by the Bayes probability of error:

Theorem 5 For any prediction strategy g and stationary ergodic process {(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn
1 (g) ≥ R∗ almost surely,

where
R∗ = E

[
min

(
P{Y0 = 1|Y −1

−∞, X0
−∞},P{Y0 = 0|Y −1

−∞, X0
−∞}

)]
.

The proof of this lower bound is similar to that of Theorem 1, the details are omitted.
It follows from results of Morvai, Yakowitz, and Györfi [17] that there exists a prediction
strategy g such that for all ergodic processes, Rn

1 (g) → R∗ almost surely. (We omit the
details here.) The algorithm of Morvai, Yakowitz, and Györfi, however, has a very slow
rate of convergence even for i.i.d. processes. The main message of this section is a simple
universal procedure with a practical appeal. The idea, again, is to combine the decisions of
a small number of simple experts in an appropriate way.

We define an infinite array of experts h(k,ℓ), k, ℓ = 1, 2, . . . as follows. Let Pℓ = {Aℓ,j, j =
1, 2, . . . , mℓ} be a sequence of finite partitions of the feature space Rd, and let Gℓ be the
corresponding quantizer:

Gℓ(x) = j, if x ∈ Aℓ,j.
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With some abuse of notation, for any n and xn
1 ∈

(
Rd

)n
, we write Gℓ(x

n
1 ) for the sequence

Gℓ(x1), . . . , Gℓ(xn). Fix positive integers k, ℓ, and for each s ∈ {0, 1}k, z ∈ {1, 2, . . . , mℓ}k+1,
and y ∈ {0, 1} define

P̂ (k,ℓ)
n (y, yn−1

1 , xn
1 , s, z) =

∣∣∣{k < i < n : yi−1
i−k = s,Gℓ(x

i
i−k) = z, yi = y}

∣∣∣
∣∣∣{k < i < n : yi−1

i−k = s,Gℓ(xi
i−k) = z, }

∣∣∣
, n > k + 1. (11)

0/0 is defined to be 1/2. Also, for n ≤ k + 1 we define P̂ (k,ℓ)
n (y, yn−1

1 , xn
1 , s, z) = 1/2.

The expert h(k,ℓ) is now defined by

h(k,ℓ)
n (yn−1

1 , xn
1 ) =

{
0 if P̂ (k,ℓ)

n (0, yn−1
1 , xn

1 , y
n−1
n−k, Gℓ(x

n
n−k)) <

1
2

1 otherwise,
n = 1, 2, . . .

That is, expert h(k,ℓ) quantizes the sequence xn
1 according to the partition Pℓ, and looks for

all appearances of the last seen quantized strings yn−1
n−k, Gℓ(x

n
n−k) of length k in the past.

Then it predicts according to the larger of the relative frequencies of 0’s and 1’s following
the string.

The proposed algorithm combines the predictions of these experts similarly to that of
Section 2. This way both the length of the string to be matched and the resolution of the
quantizer are adjusted depending on the data. The formal definition is as follows: For any
m = 0, 1, 2, . . ., if 2m ≤ n < 2m+1, the prediction is based upon a weighted majority of
predictions of the (2m+1)2 experts h(k,ℓ), k, l ≤ 2m+1 as follows:

gn(y
n−1
1 , xn

1 , u) =





0 if u >

∑
k,ℓ≤2m+1 h(k,ℓ)

n (yn−1
1 , xn

1 )wn(k, ℓ)∑
k,ℓ≤2m+1 wn(k, ℓ)

1 otherwise,

where wn(k, ℓ) is the weight of expert h(k,ℓ) defined by the past performance of h(k,ℓ) as

w2m(k, ℓ) = 1 and wn(k, ℓ) = e−ηm(n−2m)Rn−1
2m

(h(k,ℓ)) for 2m < n < 2m+1,

where ηm =
√
8 ln(2m+1)2/2m.

To prove the universality of the method, we need some natural conditions on the sequence
of partitions. We assume the following:

(a) the sequence of partitions is nested, that is, any cell of Pℓ+1 is a subset of a cell of Pℓ,
ℓ = 1, 2, . . .;
(b) each partition Pℓ is finite;
(c) if diam(A) = supx,y∈A ‖x − y‖ denotes the diameter of a set, then for each sphere S
centered at the origin

lim
ℓ→∞

max
j:Aℓ,j∩S 6=∅

diam(Aℓ,j) = 0.

Remark. The next theorem states the universality of the proposed pattern recognition
scheme. The definition of the algorithm is somewhat arbitrary, we just chose one of the
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many possibilities. In this version, at time n, only partitions with indices at most n are taken
into account. It is easy to see that the universality property remains valid if the number of
partitions considered at time n is an arbitrary, polynomially increasing function of n. The
conditions for the sequence of partitions again give a lot of liberty to the user. In applications,
the partitions may be chosen to incorporate some prior knowledge about the process. In this
paper we merely prove universality of the scheme. Performance bounds in the style of Section
3 for special types of proceses may be derived, thanks to the powerful individual sequence
bounds. Here, however, the analysis may be substantially more complicated.

Theorem 6 Assume that the sequence of partitions Pℓ satisfies the three conditions above.
Then the pattern recognition scheme g defined above satisfies

lim
n→∞

Rn
1 (g) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

Proof. As in the proof of Theorem 3, we obtain that for any stationary and ergodic process
{(Xn, Yn)}∞n=−∞,

lim sup
n→∞

Rn
1 (g, U

n
1 ) ≤ lim sup

n→∞


 min

k = 1, 2, . . .
ℓ = 1, 2, . . . , n− 1

Rn
1 (h

(k,ℓ)) + 2c

√
log2 n+ 1

n




= lim sup
n→∞

min
k = 1, 2, . . .

ℓ = 1, 2, . . . , n− 1

Rn
1 (h

(k,ℓ)) almost surely.

Thus, it remains to show that

lim sup
n→∞

min
k = 1, 2, . . .

ℓ = 1, 2, . . . , n− 1

Rn
1 (h

(k,ℓ)) ≤ R∗ almost surely.

To prove this, we use the following lemma, whose proof is easily obtained by copying that
of Lemma 2:

Lemma 3 For each k, ℓ ≥ 1, there exists a positive number ǫk,ℓ such that for any fixed ℓ,
limk→∞ ǫk,ℓ = 0 and

lim sup
n→∞

Rn
1 (h

(k,ℓ)) ≤ R∗
(ℓ) + ǫk,ℓ,

where

R∗
(ℓ) = E

[
min

(
P{Y0 = 1|Y −1

−∞, Gℓ(X
0
−∞)},P{Y0 = 0|Y −1

−∞, Gℓ(X
0
−∞)}

)]
.

Now we return to the proof of Theorem 6. Since the sequence of partitions Pℓ is nested, and
by (c), the sequences

P{Y0 = 1|Y −1
−∞, Gℓ(X

0
−∞)} and P{Y0 = 0|Y −1

−∞, Gℓ(X
0
−∞)} l = 1, 2, . . .
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are martingales and they converge almost surely to

P{Y0 = 1|Y −1
−∞, X0

−∞} and P{Y0 = 0|Y −1
−∞, X0

−∞}.

Thus, it follows from Lebesgue’s dominated convergence theorem that

lim
l→∞

R∗
(ℓ) = E

[
min

(
P{Y0 = 1|Y −1

−∞, X0
−∞},P{Y0 = 0|Y −1

−∞, X0
−∞}

)]
= R∗.

Now it follows easily that

lim sup
n→∞

min
k = 1, 2, . . .

ℓ = 1, 2, . . . , n− 1

Rn
1 (h

(k,ℓ)) ≤ R∗ almost surely,

and the proof of the theorem is finished. ✷
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5 Appendix

Here we describe two results which are used in the analysis. The first is due to Breiman [5],
and its proof may also be found in Algoet [2].

Lemma 4 Breiman’s generalized ergodic theorem [5]. Let Z = {Zi}∞−∞ be a sta-
tionary and ergodic time series. Let T denote the left shift operator. Let fi be a sequence of
real-valued functions such that for some function f , fi(Z) → f(Z) almost surely. Assume
that E supi |fi(Z)| < ∞. Then

lim
t→∞

1

n

n∑

i=1

fi(T
iZ) = Ef(Z)

almost surely.

The second is the Hoeffding-Azuma inequality for sums of bounded martingale differences:

Lemma 5 Hoeffding [11], Azuma [3]. Let X1, X2, . . . be a sequence of random vari-
ables, and assume that V1, V2, . . . is a martingale difference sequence with respect to X1, X2, . . ..
Assume furthermore that there exist random variables Z1, Z2, . . . and nonnegative constants
c1, c2, . . . such that for every i > 0 Zi is a function of X1, . . . , Xi−1, and

Zi ≤ Vi ≤ Zi + ci with probability one.

Then for any ǫ > 0 and n

P

{
n∑

i=1

Vi ≥ ǫ

}
≤ e−2ǫ2/

∑n

i=1
c2
i

and

P

{
n∑

i=1

Vi ≤ −ǫ

}
≤ e−2ǫ2/

∑n

i=1
c2i .
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