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The Geometry of Turbo-Decoding Dynamics

Tom Richardson

Abstract—The spectacular performance offered by turbo codes corresponding graphis notatree. Fromthis perspective, the work
sparked intense interest in them. A considerable amount of re- in this paper can be said to be directed toward obtaining a global
search has simplified, formalized, and extended the ideas inherent ¢, \3itative understanding of the effect of loops in the graph.
in the original turbo code construction. Nevertheless, the nature It that the turbo-d di lqorith ¢ | t
of the relatively simple ad hocturbo-decoding algorithm has re- appears tha . e ur_ O'_ ecoding ago_” m per Orms_a mos
mained something of a mystery. as well as maximum-likelihood decoding when applied to

We present a geometric interpretation of the turbo-decoding al- turbo codes. (Throughout the paper we use the terms “max-
gorithm. The geometric perspective clearly indicates the relation- jmum-likelihood decoding” and “turbo decoding” to refer to the
ship between turbo-decoding and maximum-likelihood decoding. gyt gecoding process which outputs (estimates of) posterior
Analysis of the geometry leads to new results concerning eX|stence|.k lihoods f h bit. Wh ish t fer to the imolied
of fixed points, conditions for uniqueness, conditions for stability, '_e' oods for e_ac It. en we wis ] ore er_f? e implie
and proximity to maximum-likelinood decoding. bit value we will speak of the decoding “decision.”) There
are known codes where turbo-decoding is markedly inferior
to maximume-likelihood decoding [9]. The largest gap in the
theory of turbo codes is the lack of understanding of turbo
decoding in general and its relationship to maximume-likelihood

. INTRODUCTION decoding in particular.

INCE their appearance in 1993 [3], turbo codes have beenin this paper we interpret turbo decoding in a geometric set-
idely lauded as one of the most significant recent advandéid as & dynamical system. The goal is to obtain general in-

in coding. Turbo codes offer near-optimal performance whife@rmation concerning the convergence and stability of turbo de-
requiring only moderate complexity. The structure of the cod€8ding and it_s felationshi_p to maximum-likelihood de_coding_.
presented in [3] and the reasons for their performance lie outsitlée geometric interpretation is a natural one. In particular, it
the conventional wisdom of coding theory. Nevertheless, tHgmediately indicates how turbo decoding is related to max-
structure of the codes is now fairly well understood [2] and it i§hum-likelihood decoding, at least when the two are close. The
fairly well understood why the codes would perform well unddpterpretation applies to the decoding algorithm generally, i.e.,
maximum-likelinood decoding. Maximum-likelihood decodingt iS not limited to turbo codes. Analysis of the geometry leads to
of turbo codes is, however, prohibitively complex and the mod@rious new results concerning turbo decoding. For simplicity
erate complexity of turbo codes is due to tdhocdecoding We concentrate on the case of two parallel concatenated codes,
algorithm presented in [3]. Although “turbo codes” is by now aAlthough these need not be recursive convolutional codes. Many
entrenched term, itis really a misnomer since “turbo” refers onf)f the results generalize in various ways: to multiple parallel
to the ad hocturbo-decoding algorithm. The turbo-decodingodes, for example, and, with some effort, to serially concate-
algorithm also appeared in [5] although, as applied to differepgted codes. Most of the results are qualitative and concern fixed
codes, with less spectacular results than those presented infgjnts of turbo decoding. In particular, we establish the exis-
The performance results in [3] arise from a synergy betweé§ce of fixed points to the turbo-decoding algorithm. We also
the decoding algorithm and the codes used there. These redfifécate conditions for uniqueness of fixed points and condi-
sparked intense interest in turbo codes and in turbo-decodHgfS for stability of fixed points. Furthermore, we consider the
generally. A considerable amount of research has simplifigfOXimity of fixed-point solutions to maximum-likelihood de-
formalized, and extended the ideas inherent in the original tur6@ding.
code construction. Nevertheless, the nature of the reIativerThe geometric interpretation indicates another interpretation
simple turbo-decoding algorithm has remained something offaWhich the turbo-decoding algorithm appears as an iterative
mystery. The turbo-decoding algorithm has been recognized®@erithm aimed at solving a systemi equations irzn un-
an instance of a general algorithm for propagating informati¢fiowns, wheren is the number of bits in the data sequence.
on graphs known as “belief propagation” [7]. In the case &k the turbo-decoding algorithm converges, then the limit point
low-density parity-check codes, the algorithm was proposedgﬁ’es rise to a solution to these equations. Conversely, solutions
1961 [4]. Belief propagation is known to be correct on trees [P these equations provide fixed points of turbo decoding.

For both turbo codes and low-density parity-check codes the he system of equations which turbo decoding attempts to
solve captures the underlying geometry in analytical form. By
considering the algorithm as a purely geometric one, abstracting
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after it has been passed through a channel. The geometry wA certain picture emerges concerning the following ques-
focus on is the geometry of densities finthe n-dimensional tion: when will turbo decoding perform nearly as well as max-
hypercube. Within the space of densities, a special role will llaum-likelihood (bit-wise) decoding? Simply put, the posterior
played by the subset of “product densities” and sets of densit@ensities of the constituent codes of the turbo encoder should,
sharing common bit-wise marginal distributions. The geometily some sense, be “close to” product densities. Furthermore, itis
of these subsets within the larger space is the dominant thepneferable that the deviation of the respective constituent poste-
of this paper. rior densities from product measures be, in some sense, disjoint.
In Section I, we outline a turbo encoder and decoder in an dlbthe deviations are strictly disjoint (in a manner which will be
stract manner, loosely following the original construction in [3lapparent later), then the turbo code and the maximume-likelihood
In Section I, we lay the foundation for the geometric analysisit likelihoods coincide.
that will be applied to turbo decoding. We define an equivalenceln Section VII, we summarize the results and indicate some
relation on densities where two densities are equivalent if thdirections for further study.
normalize to the same probability density. We select a repre-
sentative from each equivalence class (not the probability den- 1. A TURBO ENCODERDECODER
ity), identifying th f equivalence cl \Rith—! .
sity), identifying the space o equivalence classes ¥ t The standard turbo encoder has the following form. A
such that the space of corresponding product densities forms an o
. . . . . . sequencer = (xy, ---, 2,) Of n bits is passed through two
n-dimensional linear subspatk Given a density equivalence™. . . .
, n : : distinct encoders to produce sequences of parity-checksbits
classP, we definep( P) to be the2™ — 1 — n-dimensional man- : : ;
. . . . . dy2 which may be of different lengths than According
ifold of density equivalence classes having the same single- it - . .
. o ; . 0 the original implementation [3], both encoders are short
marginal distributions as the density equivalence cldssVe : . . .
memory systematic recursive convolutional encoders. In addi-

definer (P) := fp(P) nilas t_he unmque pro_duct density equlV_tion, however, the second encoder permutes the data sequence
alence class with the same single-bit marginalB®a& member

of the density equivalence clasgP) can be represented byx accordmg to a (sampled) random per_mutatlon prior to the
Lo : - . convolution step. The random permutation results in a com-
bit-wise likelihood ratios. These are the quantities that typical[y. ) .
L ) . . ined encoder — x, y1, 2 that, while easy to implement,
appear in implementations of turbo decoding. In Section IV we . . !
. ) . . . cannot be practically optimally decoded. The turbo-decoding
fully describe turbo decoding from the geometric point of view : . . "
ST . ; . dlgorithm is a practical suboptimal decoder.
i.e., in terms of the objects introduced above. In Section V, th . o L
: . . . Consider transmitting each bit in the codewatdy; , - over
turbo-decoding algorithm is temporarily abstracted to a purely, >~ A IS
bit-wise memoryless channel yielding observatidong; , v-.

geometric algorithm. In this generalized setting, we obtain SeXésume that each input sequencs, a priori, equally likely

eral results that we will subsequently show to be germaneﬁgle posterior likelihood of an input sequencgiven the obser-

turbo decoding. Section VI contains an analysis of turbo de- """~ " :
: . . vationz, 41, 72 is then defined as
coding as a special case of the abstract geometric algorithm.

This last section is comprised of the following:

i) We study the “projection” operatar when restricted to
P + 11. We show that this map is a homeomorphism afhere p(v|~) is the probability density of the observatian
P+I1lontoll, i.e., we show thatitis continuously invert-given the input sequence Under the assumption that each
ible. In terms of the constituent decoders, this is equivéhput bit is independent and uniform ovéd, 1}, an assump-
lent to saying that the input prior is uniquely determineglon that holds throughout this paper, the posterior likelihood is
by the output and the parity check information. proportional to the posterior distribution. As densities, the pos-

The invertibility of 7| p1 11 allows us to characterize terior likelihood and the posterior distribution are equivalent.
turbo decoder fixed points as the solutiomtequations The product form appearing in (2.1) is a consequence of the in-
in n unknowns. It also suggests an alternative implemegiependence of the channels over which the bits constituting
tation of turbo decoding as the iteration of a certain map , andy, are, respectively, transmitted.
©. The fixed points o are identical to the fixed points  Maximum-likelihood sequencedecoding chooses the se-
of turbo decoding. quencez that maximizes(z, 71, #2|z). Maximum-likelihood

ii) We establish the existence of fixed points of the mapit-wise(hard) decoding decodes tkth bit according to
0, thereby proving the existence of fixed points to turbo
decoding. > (T, G, Pl2)

P(Z, 01, ya|z) = p(Z]2)p(41|2)p(v2]7) (2.1)

— . e — 1
iif) We consider the issue of local convergence of turbo de- sefiz=l 21
coding, indicating conditions under which the fixed point ZEHZZ_:Op(x’ g1, 9al2) 0

is stable.

iv) By studying the Jacobian of the m&p we obtain con- Maximume-likelihood (bit-wise or sequence) decoding of the
ditions under which turbo decoding possesses a unigoedex +— x, y1, y2 is prohibitively complex. The idea of turbo
fixed point. decoding is the following. The constituent codes,;; and

v) We address the question of proximity of the turbo-dee, y-, can be efficiently decoded optimally. Information can be
coder fixed point to the corresponding maximume-likeliexchanged between the constituent decoders so as to allow each
hood decoder point, obtaining approximate formulas fatecoder to incorporate information coming exclusively from
the difference of the likelihood values. the other code. The form of the exchanged information is such
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that no increase in the complexity of the constituent decoders lz, lyy, lys, o =1
is required. An iterative process of decoding and exchange is
repeated until, ideally, a consensus is reached as to the “true” I
likelihood values. V { .
To work well, turbo decoding requires soft information on Iz &y
the bits, hence bit-wise (soft) maximum-likelihood decoding
is preferred to sequence decoding. There is an efficient algo- I
rithm [1] for computing posterior bit-wise likelihood values as- Sl
sociated with convolutional constituent codes— =z, y; and - L/
2 — 2, y. Although other (nonmaximum-likelihood) bit-wise b= he/(st)
decoding algorithms have been applied to turbo codes, we will
focus exclusively on bit-wise maximum-likelihood constituent v v lye
decoding.
We assume that each constituent code can be efficiently de- lz& Decoder 2
coded in the following manner (see [8]). Decoder 1 accepts as
input Loz

Decoder 1

\

p(Z|x) § = Loz [(lz &)

lx; =

> p(ulr) . Fig. 1. Turbo decoding.
_ Azy=1} - p(ylj|ylj = 1)

ly1; = — —
> plz)  p(ylm; =0)
{=:y1;=0} from the first code into the prior for the second codlez*) =

Dg(lxg‘}fk), ly2). As above, we defineék) via

fori=1,---,nandj =1, ---, my, and computes

o Lya™ = 12, 6Pe®
> p(le)p(ile) 2 = i
Lyg; = Z2=l 2.2 ) s i -

15 = S pGle)ple) (22) The factoré;,” is interpreted as the extrinsic information con-

{@:z;=0} cerning the value of bit obtained fromyj.. This completes an
iteration, to continue one returns to decoder 1.

Let us write this ad.,x = D1(lx, ly;1). Decoder 2 is similar,  The entire procedure iterates until, ideally; converges, i.e.,
we merely replacg;, y; with 72, y» above. Thusthe secondde-f,; ¥ = [,2(®) = [ z*+D) = [pk+1),
coder calculated.x = Ds(lx, ly2). The turbo-decoding algo-
rithm is an iterative algorithm and can be described as follows,
seeFig. 1. Lek = 1, 2, - - - denote an iteration counter. We will o _ _ _ _
define scalarsyf) and&éf) fori=1,---, ntorepresentthein- A densityisanonnegative function on thedimensional hy-

formation passed between decoders. For completeness, weRRiCube/ (the set o, 1 vectors of length). To simplify the -
tializegéq) —1fori = 1, ---, n. These quantities represent th@resentation, we will assume that densities are strictly positive.

so-called “extrinsic information” obtained from the decoders. ThUS a density is an element ™)™, For descriptive pur-
The first step of thekth iteration of turbo decoding POSeS, it is often convenient to think & as a subset dR™.

is to decode the first constituent code vigz® = Given a density there is a positive constaitsuch that\p is a

Dy (lz Sék_l), ly1), where the productz Sék_l) is meant probe_lbility density overi. We say densit?g;s andg _areequiv—

component-wise. Heré'* ™" is carrying information from the alentif they determine the same probability density.

second code, see below. (Note thatfox 0 this step is simply By taking logarithms, we can identify densities with the space

decoding the first constituent code with no information frorﬁf rel?l-valued functhqs O Thus_, alog—d_ensnyls an element
the second code.) Next we defiég) via of R*. Two log-densities are equivalent if they differ by a con-

I1l. THE GEOMETRY OF DENSITIES PRELIMINARIES

stant.
* ) o (h-1) Maximum-likelihood decoding and turbo decoding, when
Lz, =1x,8,°6, . viewed as operations or functions on densities, are invariant

under equivalence. Itis appropriate, therefore, to view decoding
The factoré’;) is interpreted as the “extrinsic information” inas an algorithm operating in the space of equivalence classes
iteration (k) obtained fromg, concerning the value of bit  of densities. The analysis is often simplified by choosing a
(If y1 were just a repetition of, for example, then thefact@ﬂ“) particular representative from each equivalence class. One nat-
would be precisely the bit-wise likelihood value associated witlral representative is the probability density. For our purposes,
the second observation of bij One now proceeds to decode thénowever, this representative is often not the most convenient
second constituent code incorporating the extrinsic informatiome.
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Let & denote the set of real-valued functiof’son the hy- Given a log-density? € ¢, we definep(P) C ¢ to be the
percube such tha®(0) = 0. The functione” is a density with set of all log-densities which induce the same bit-wise marginal
e’’(0) = 1. Each density is equivalent to exactly one such dedistributions as”. By this we mean
sity. Thus®(=R?"~1) can represent the space of equivalence

r Q
classes of log-densities. This representation turns out to be a par- _ bg{_ 0 bg{_ c?(b) .
ticularly useful one largely because it is invariant under point- @ € ¢(£) iff S P00 forallz. (3.1)
wise addition. We usexp ¢ to denote those functions od veH veH

whose logarithms are i, i.e.,exp ¢ denotes the set of densi-

ties taking the valué at0. As suchexp ¢ represents the space,. By ex_tensmn, the S@(p.w(P) de.notes_ th? Se.t of all densi-
ttﬁg having the same bitwise marginal distributions as the den-
ty e’

of equivalence classes of densities and this representation isSI
variant under pointwise multiplication. . . i
Regardless of the normalization, representative densities w{j”Frg;n_(S.l) itis l(_:lefta;thaeb_q}w(PC; ISa I(}():ally aﬁm”e _sr:ace.
be viewed as functions o#f the n-dimensional hypercube. do 0 a;)n an prﬂ']C' escnpfuc)jn .)i.p #( )’hwi \.';”. intro- I
Thus ifp andq are densities, thepy is their pointwise product, cgg\?eiieifltso roerpreigg?r?nea(r)ginZIn(jilslter;sb:Jnti\(;vnslc 1S especially
i.e., foran H we havepq(b) = p(b)q(b). We will generall \ : . : .
W € a(b) = p(b)a(b) 9 y Yge first define twa2™ x 2™ matrices/ andV'. The following

use upper case to denote log-densities and lower case to deno
bp 9 example show$/ andV for n = 3:

densities.
To avoid cumbersome language, we will say “a log-density ri 1 1 1 1 1 1 17
P € &" or “adensityp € exp ®,” it being understood that 01 0 01 1 01
these objects are actually representatives of a (log)-density 0 0 «1 01 0 1 1
equivalence class. We ugdé€, b*, ---, v*"~! to denote the v_|00 0 10111
elements ofH, i.e., the binary sequences of length as |00 0 01 001
column vectors. For convenience we enumerate the sequences 00 0 001 01
as follows: 00 0 00O 11
=000 _(1) O101O O101O 11_ 1 -1
b =(1,0,---,0)" 0 1 0 0 -1 -1 o0 1
»>=(0,1,0,---,07, -, " = (0, ---,0,1)" 0O 0 1 0 -1 0 -1 1
= (1, 1, ()’...’())T’...’bQ”—lz(l’...’1)T. U= o o0 o0 1 0 -1 -1 1
0 0 0 0 1 0 0 -1
Note, in particular, that foi € 1, - - -, n the binary sequendé o o o o o0 1 0 -1
is the sequence with in theith position and) in all other po- o o0 o o0 0 0 1 -1
sitions. It will often be convenient to view densities as vectors; Lo o0 o0 o0 o0 0 0 1]

we use the notatiofy] to explicitly indicate this, i.e., A subset of columns of/ will serve as a basis farxp ¢(P).

F(10) We explicitly constructi”, and show that/V' = I to establish
) that the columns ot/ are linearly independent. The equation
[f]1= : . UV = I captures the inclusion/exclusion principle in matrix
21 form. It is more convenient to defing first.

Theith row of V' is the indicator function of the set of binary
From the coding perspective the transmitted sequenise strings component-wise larger thaiT*. ThusV;; = 1 if and
distinguished from all others. As a matter of convenience, vemly if 5~ < &~ component-wise. It follows that i is a
may identify the transmitted sequencevith ° and denote se- density, then
quences by z + z(mod 2). Thust® represents the transmitted

sequence, and other vectors can be interpreted as “error” vec- Vipll = Z pj-
tors. Alternatively, we may assume thidtis the decoded se- {gbi—tzbim1}
quence. Let us denotd’[p] by ¢. By the principle of inclusion/exclusion

] we have
A. Constant Marginals

Foranyi € 1, ---, n we useH; C H to denote the set of P=%- Z _ %
binary stringsh whosesth bit is 1 FHITISUTL, wi(BI T b ) =1
‘ + Z g— -
H; .= {b ceH:b> bz} Gibi=1>bi=1 wwt(bi=1—bi=1)=2
_ n—wt(bi_l) .

where> is meant component-wise. We uBk to denote those +(=1) - (3-2)
stringsb whoseith bit is0 Define U by

" . j—1_3i—1
Hy:={bc H:b <V ' -V} = H\H,. Uy = (=)™ =7y
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It follows that (3.2) represents the equatipn = [U/[g]]; or, that each bit in: is independent according (o A densityp €
more generally[p] = Ulq] = UV[p]. We have shown that exp ¢ is a product density if and only if
UV = I, hence the columns &f are linearly independent.

If b = b7 then letu, denote the +1th column of/ multiplied p(b) = 11 p(b").
by (—1)"*®), Let us vieww, as a function o, i.e.,u; € RY. {iel, -, n: b1 <b}
Thus Equivalently, a log-density’ € @ is a product log-density if
wi(b’ and only if
u(b') = {(()_1) o gthsefwise ’
’ ' P(b) = > P(bY). (3.3)
If p is a probability density, thefi/[p]]; = Pr,{b > b'~1} (iC1, -, s b7 <b}

wherePr, denotes probability as induced by the dengpityt Let IT denote the set of product log-densitieslinNote that
follows that two probability densitiep and g have the same it 1> ¢ 11 then p(}) is the log-likelihood that bit is 1 for i =
br']t'Wr'Lse marglrégls if and ?Fly ip _g € Mﬂéﬁwhere/\/tdlz 1,---, n. Itis apparent from (3.3) thdl is ann-dimensional
the2” — 1 —n-dimensional linear subspacelét spanned by |inear supspace @b : 11 can be identified with the set dfear

{wbwipy>2, i€, functions onH.
For each log-density’ € & there is a unique product log-
p—aq= Z Tt densityn(P) € II having the same bit-wise marginals Bs
beH, wt(b)>2 i_e_,
for some uniquely determineq. Since}_,, - ; us (V') = 0 for 7(P) := {IINp(P)}.
all suchb, we see thatdensityy € (R*)# has the same bit-wise
marginals as thdensityp € (RT)# ifand only if g € Rp M, Let us define the followin@™ x n matrix
where @ denotes direct sum arldp denotes the one-dimen- T
sional subspace spannedyit now follows that a normalized b
densityg € exp ¢ has the same bit-wise marginals as the nor- ptt
malized density € exp @ if and only if B:=
b2n_1T

g=p+ Y. up—w)

bCH, wi(b)22 Note that the matrixB? is ann x 2" submatrix ofV (rows2

for some uniquely determinel,. Note that ton +1). The columns of3 form a basis foll. If P € 11, then
we define
doa)y=> pmA+ Y N P
beH bcH wt(b)>2 - .
P = :
We now obtain P(b")
p q so that[P] = BP. Occasionally, we will abuse this notation
No=1>a)) v ST > ad) | w slightly by treatingBz as an element df.
beH o H beld For each log-density® € ¢ we have
wherev,: denotes thé + 1th row of V', and wherey, is deter- S el(b)
mined by APV = log 26 i=1 ...
- g 7 t = 7 7 n.
p q o bZI:{ ep(b)
CH7
= = = Uy
2P 2 2w . . . o
H o veH wt(b)=2 Thus#(P), which is the vectotr (P)(b1), - - -, m(P)(H™)T,is

the vector of bit-wiséog-likelihood values associated with.
Let B denote the complement &f

p(P) = {log (ep + Z Ay(el — ub)> } B=1lgy,—B

bEH, w(b)>2 wherel,» ,, denotes the&™ x n matrix all of whose entries

Thus givenP € ¢ we have

) o ) arel. For any vector: let diag («) denote the square diagonal
where the), are reaI,_W|th the only res'trlct|on being that they atrix such thatliag ();; = ;. We will use this notation for
argument of the logarithm must be positive. vectors of lengtt and for vectors of length™. (Forz € R¥
» we will abbreviatediag ([x]) to diag («).) Using this notation,
B. Product Densities we have
A densityp € (RT)# is aproduct densityf the equivalent

probability density defines a product measuredbriThis means @ € ¢(P) < (BT - diag(e[%(m}) ET) [e?] =0.
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A more succinct description of turbo decoding is obtained by
eliminatingY” from the description. According to this descrip-
tion, the algorithm consists of the following two update equa-

o(QmL) : . o .
QmL tions (with @, = 0 initially) which are alternately and repeat-
P() —+ P1 <+ P2 Edly invoked

\\y* T Qr — m(Po+ PL+ Q2) — (Fo + Q2) (4.1)
RN Qr = 1P+ Qi+ P)— (R+Q).  (42)
S If the pair(@, Q») converges, thel™ = P+ Q1 + Q- repre-
® = R*"! N / sents the algorithm’s determination of the posterior likelihood
: product log-density, i.e., its estimate @fy..

We may interpretr(-) as the intersection @f(-) andlLl. From
Y*=F+Q:+Q: this perspectiveY ™ is a fixed point of the turbo decoder when
P, B+ P+ Q€Y )andFy + Q1 + P> € p(Y™), where
P, A P Y* = By + Q1 + Q2. Similarly, maximume-likelihood bit-wise
decoding is identified with determinin@y;, € Il such that
Py € o(Qur).

V. A GEOMETRIC ALGORITHM

Fig. 2. Fixed points of turbo decoding. The posterior bit-wise marginals, | this section, we shall abstract the turbo-decoding algo-
;?P rezser?tﬁ? fécf“r%)_ Wher}(egl ;;)pilxir:,ratf})l ;dg)ffg‘miﬁjatg rithm. The notation will be consistent with nonabstract turbo
P, according to the surace(Y™*). Assuminge(Qw) is nearly a translate decoding. The purpose of this section is to develop some geo-
¢(Y), the gapQ . — Y depends on the shape of the surfaced at metric insight into the behavior of turbo decoding and to present
) ) some ideas that will be used later. We relax the dimensional rela-
Given ani-vectorz, we will henceforth lef/ () denoteB” —  {ionships and we suppose only that the surfagesare smooth
diag (¢*)BT. and meet certain general assumptions. We are particularly in-
terested in how the behavior of the turbo-decoding algorithm
IV. TURBO DECODING depends on the geometry of the surfag€s
Both maximum-likelihood decoding and turbo decoding de- Let ® = R"™ and letll C ¢ be ak-dimensional subspace of
pend only on the equivalence classe@f.|x), p(i1]z), and ®. To correspond with turbo decoding, we make the following
p(Z|z). Let P, P, and P, represent these equivalence class@ssumptions.
in ¢. Maximume-likelihood bit-wise decoding decodes béc- Al) For eachP € @ there is a unique surfagg(P) such
cording to that P € ¢(P).
1 A2) Each surfacep(P) intersectdll in exactly one point
(F(PyL))i <0 w(P).
0 Thus we have defined a (nonlinear) map® +— II.
where The abstract turbo-decoding algorithm will be as described
above, i.e., an iterative invocation of (4.1) and (4.2). This
P =FRh+PA+PR algorithm, in principle, attempts to find an approximation to
Qmr = 7(Pyr) givenPy € Il and Py, P» € . We say the
algorithm converges if¢},, J2) converges (for both (4.1) and
(4.2)), and the limit point is then a fixed point of the algorithm.
ote that the algorithm converges if and only# + Q1 + Q2
nverges.

the representative q¥(g.|z)p(71|z)p(Z|z) in ®. In practice,
7(Py.) cannot be efficiently computed, wherea&? + F;)
and 7 (@ + P») can be efficiently computed for an € II
(using decoders 1 and 2, respectively). Turbo decoding, WhiE,
exploits this fact, can be described as follows (Fig. 2).

Let @, € Il and@; € Il denote the product log-densitiesa. Stapility of Turbo Decoding
(these quantities represent the extrinsic information from COdeﬁ_et the matrix be anm x k: matrix whose columns form a
1 and 2, respectively) and &t € 11 (Y represents the output
of a constituent decoder). Initially we ha@ = 0. Decoder 1
computes” « 7 (Fo+ P +Q2), and the extrinsic information
is then extracted vi&; — Y — (P, 4+ Q). Decoder 2 then
computes” — 7w (Pp+ Q1 + P»), and the extrinsic information
is extracted viad; — Y — (Fb + @1). The process iterates
until, ideally, Y converges. Note that(-), @1, )2, andY are mp(q) == #(P + Bq).
product densities; in practice they are each represented by their
bit-wise marginals. We useJp to denote the Jacobian of> atg = 0.

basis forll. (In the case of nonabstract turbo decodihwill be
as defined in Section I11-B.) For an¥ ¢ II let P € R* denote
the representation d? according toB, i.e., P = BP. Given a
P ¢ &, we definerp : R* — R* to represent the restriction of
7 to P + 11 centered aP, i.e., forq € R¥
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The turbo-decoding update (4.1) and (4.2) can be represenite thaty™, Y* 4+ D, , andY™ + D, all lie in o(Y*). Further-

usingnp, andxp,, respectively, as follows: more, we have
Q1 — mp (Po+Q2) — (Po + Q2) (5.1) Py =Y* 4+ D1 + Ds.
Hence, we immediately obtain
Q2 —7p, (Po+ Q1) — (Fo + Qu). (5-2)  Theorem 5.2:If p(Y*) is anm — k-dimensional affine space

thenY™ = QML-
Assume thaf@), 2) is a fixed point of these iterations. We N ) ) ) .
can linearize the update maps to obtain conditions for stability The condition thatp(Y™) is anm — k dimensional affine
of turbo decoding. Thus suppose we pert@ito O, +-¢, prior  SPace is not necessary. It is sufficient, for example, ¢at)
to invoking (5.1) and we obtai); + ¢, as a result. It follows contains the affine space

that, to first order, we have By := {Y* + $.D1 + $2Ds: A1, 2 € R}.
e1 = (Jp,4pr4+q, — Deo. Suppose that there exists a smooth (partial) map
If we then invoke (5.2) to obtaif), + €, then, to first order, we F:d; - oY)
have such that
¢ =(Ip+q+r — Da FOY) =Y
=({ptqu+r — DUr+ritq. — Dez. F(Y* +D1) =Y* + D,
A straightforward calculation thus shows that the stability of the F(Y* +Dy) =Y*+D,.
fixed point under the turbo-decoding iteration is determined bg ] . )
the stability of the matrix (Such a map arises naturally when there is homeomorphism
1 :® — &' such that)(x(Y ™)) is a (locally) affine set ind’.
(Jr4qu+r. —D(Irtri+q. — 1) (5.3)  For nonabstract turbo decodirigs the exponential map arif

i.e., the turbo-decoding fixed point will be stable if the eigerS thf spacexp .) Givenr’, one can také'(Y*+ D1+ D) €
values of the above matrix lie inside the unit disc. The first factgi(Y ) s an estimate dfy in ¢(Y™). If £”is smooth, then this
of (5.3) linearizes (5.2) and the second factor linearizes (5.1)¢Stimate is second-order i, | and|| Da||, i.e.,

| Pvir. = F(Y* + D1 + Do) = O(|| D1 | + [|1D2])*.
B. Translation Systems Another sufficient condition fo™* = Q. is that ' be

. . additivewith respect taD; andD-, i.e.,
We say that the system of surfades} is atranslation system

if each ¢ is obtained by translating some fixed surface by &(Y™ + B1.D1 + B2D-)
vector fromI, i.e., =F(Y* 4+ p1D1)+ F(Y* + B2Dy) — F(Y™).

@(P) =x(P) +¢(0)
for all P. One can easily prove the following. VI. THE GEOMETRY OF TURBO DECODING. RESULTS

Theorem 5.1:1f {¢} is a translation system, then the abstract We now return to turbo decoding. Thyg-) is no longer an
turbo-decoding algorithm converges to a fixed point after orabstract surface, but rather a surface of log-densities sharing

iteration. common bit-wise marginals. In Section IlI-A, we developed an
explicit representation @f( ). Itis convenient here to first focus
Note that in a translation system we hake = I for all P. on implicit representations.

A surfacep(0) that generates a translation system requires Recall that, given a log-densitly € @, we have € ¢(P)
certain properties. In particular, the sgi0) N P + 1T must be if and only if
a singleton for everyP. If |¢(0) N (P + II)| = 0, theny(P) is
not defined, violating Assumption Al. |&-(0) N (P + 1I)| > M(#(P))[e®] =0
1, then(P) would not be uniquely defined, again violating
Assumption Al. One of the key properties we will prove abouyhere the exponential is taken component-wise. The turbo-de-
(nonabstract) turbo decoding is that, for e @, the surface coding algorithm can, therefore, be viewed as an iterative at-
©(P) can serve as the basis of a translation system. tempt to solve the following system of equations:

M(po + Ql + QQ)[CPO+P1+Q2] =0 (61)
C. Proximity of Maximum Likelihood

Assume(Q;, Q-) is a fixed point of turbo decoding. Let M(Py+ Q1 + Qo)[F 2] =0, (6.2)

Y= Py 4+ Q1 + Q2 be afixed point and let us define ) ) )
The algorithm proceeds by solving (6.1) f@; with @2 = 0

Dy =P - initially, then solving (6.2) forQ)., then iterating. Altogether,
Dy := Py — (s. this is a system ofn equations ir2n unknowns.
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The first issue that arises in connection with these equatiofise equation above gives us an expressiowfarSubstituting
is existence of solutions. We will prove the following.

o YUY — e Tr P (L P11
Theorem 6.1:The turbo-decoding algorithm always pos- diag (¢¥) = diag (B” [¢" ])diag (B” [¢"])

sesses a fixed point, i.e., a soluti@d;, J2) exists to (6.1) and

(6.2). into M (y), we can expresgp as

The second issue, uniqueness of solutions, does not have such
a simple resolution; neither does the issue of stability. All of Jp =diag (BT [e"]) "' BT diag (¢")B
these issues hinge on properties of the maphen restricted — diag (BT ["]) ' BT diag (") B.

to translates ofl. In turbo decoding, a constituent decoder is

invoked repeatedly with only the prior being varied. This corre- Thus

sponds to computing( P+@Q) for various(y € Il while holding

P fixed. Our analysis uses calculus to study locally the depen- 5 IS0 5 10

dence ofr(P + Q) on Q. veibm, seim
For any log-density? € & let 7p: R™ — R™ represent the (Jp)ij = 5 NN Z )

restriction ofr to P + 11 centered af’, i.e., forg € R™ bEIn b

mp(q) == 7(P + Bq).

(Jp)i; fori # j, which is given by

measures the dependence of the likelihood value of bit bit

The following is a key technical result. i If P ellthendp = I.
Proposition 6.1: For any log-density” € & the maprp is It is convenient at this point to introduce the following nota-
a homeomorphism. tion: for any < 11 we denote byD the diagonakh x n matrix
below

This implies that in the equation
M(y)[e®" TP =0 Dg = diag (1 + GQ) diag (1 + e*Q) .

we may viewy as a function ofz or vice versa. The proof,
which can be found at the end of the next section, will show t
transversality ofp(P) and P + II at P. Intuitively, this means 2
thate () andll+ P cross each other &t. Formally, this means _ r (BT PN=11: . o (BT, Py —1
that for each” € ¢ the tangent space to( ) at P and the tan- Dr(ry = <2H: ¢ ) diag (B7[c"]) " diag (BT[]
gent space tbl + P at P are linearly independent as subspaces

of the tangent space ®. Furthermore, in our case, the direc{ et ys write

sum of the two tangent spaces yields the full tangent space to

® at P. It then follows thaty(P) can serve as the basis for a Jp =Dy »Sp

translation system.

rg\éote that

thereby definingSp.

Lemma 6.1: For any log-densityP the matrixSp is sym-
metric and positive definite, hendet (Jp) > 0.
Proof: It is convenient to consider the matrix

A. The Jacobian ofp

We will now determine/, the Jacobian ofp atO0. Ap = (X, ¢©)? Sp. We will show thatd is symmetric
Lety = 7np(x), then and positive-definite and it follows that the same is tru& pf
M(y)[eBa;-l—P] =0. We have

S LR Tr P s T P
Perturbingy — y + 8, andz — z + 6, for infinitesimal §,. and Ap = diag (B [c"])diag (B~ [e"])Jp-

6y, and settinge = 0, we obtain Calculating a single entry ol p we obtain
—diag (¢¥)diag (6,) B” [¢"] + M (y)diag (¢")Bs, = 0 (Ap)ij = Z RO Z RO
be H beH;NH;
where, herey = n5(0). Rearranging terms
B _ <Z eP(b)) Z oP®)
diag (¢¥)diag (B"[¢"])8, = M(y)diag (¢”)B6, bEH, be HonH,

and substitutingliag (c¥)diag (BT [e"]) = diag (BT [e"]), we Z el®) Z el ®
now obtain bC HoH b,

6, = diag(BT[e"]) Tt M (y)diag(c")Bé,, T o S
=Jpb,. bCH;NH5 bCH-NH;
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so we see directly that p is symmetric. Now
APy = 3 (b, 0)e"OHD
{b,07}: 0,0 eH
where~;;(b, ') € {-1, 0, 1}. It is not difficult to verify that
Yij (b, ') = (bi — b;)(b; — ;). We now have
AP —_ Z eP(b)—l—P(b’)(b _ b/)(b _ b/)T
{b,b'}: b, b/ CH

so we see thatl > is positive-semidefinite. Positive definiteness

is apparent by consideririg=#*, ¥ =’ fori =1, ..., n. O
Remark: We have

D;(lléf JijTg,) - D}ﬁ,) SPD;(;{) (6.3)

so.Jp is similar to a symmetric positive definite matrix.
We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1:We claim that for anyP there
exists a constant such that
[rp(z) =zl < e
for all z € R™. To prove this first note that
) PO+
beH;
DIEACEE
bCHy
) P )40
beH;
E eP(b)—l—bTrn
bCH~
) P+ 40Tz
v, VEHT
E eP(b)—l—bTrn
beH;

P (@)

=e

Now, assume thatp(z); — z; > 0 and write

) Pb)+bTx
emP@)i—zi _ Z Lr)—rey | ¢ T
S PO
bEHy =
< max (o) =r ()
bCHy

We readily obtain
0 < 7p(x); —x; < max P(b+b') — P(b).
bCcH-

Similarly, if we assume thatp(z); — 2; < 0 and write

PO+ T

Z ePb+b)+bTx
bEH;

C.’L‘i—ﬁp(.’L‘)i _ Z CP(b)—P(b—l—bi)

bCH

< max eP®=PE+Y)
be H-

then we obtain

T ;< d - i.
0<z —wp(z) < max Pb)—Pb+b)

Thus in general, we have
; 7 < d i - .
[mp(@)i = il < pax |P(b+1) ~ P()

17

B @(Y)

B(y — =5, (v))
P
®=R"" Y =By

Brp, (y)

Fig. 3. Defining the ma®: If Q = Bn;ll(y), thenw(P + Q) = By.

Sincedet Jpip, > 0 for all z € R", it follows thatwp is
locally invertible and that it has a continuous inverse. The claim
above further implies thatp is onto and one-to-one, hence the
proof is complete. O

B. Existence of Fixed Points

We are now ready to prove Theorem 6.1. Givgne 11, P, €
$, andP;, € ¢, we define a ma@ : R™ — R™ by

OW)=Po+ (y—mp W)+ (y—7p ).  (6.4)

(See Fig. 3 for a depiction 06;1.) If Q1, @2 solves (6.1) and
(6.2), theny = Py + Q1 + Q- is a fixed point of©. Conversely,
if  is a fixed point of©, then@, = B(y — 75 (y)) andQ; =
B(y — 75} (y)) solves (6.1) and (6.2).

Practically speaking, we can interpréi(y) as follows.
Proposition 6.1 implies that, given the output log-likelihoods
of a constituent decodey (say) and the parity-check log-like-
lihoods of the constituent codeP{, say), the input (prior)
log-likelihoods are uniquely determined (ag:ll(y)). Thus
one could attempt to find a fixed point of turbo decoding by
proceeding in reverse. First, guess the fixed pgiaind com-
putew;f(y), interpreted as the corresponding pridy + Q-,
thereby defining), =y — =" (). Similarly, determing); as
Yy — 7r;21(y). In principle, one can update the gugsaccording
to (6.4), i.e., by replacing; with 6(y), as an alternative to
turbo decoding.

Proof of Theorem 6.1:As in the proof of Proposition 6.1,
there exists a constant= ¢( Py, Py, P») suchthaf|©(y)|| < c.
It follows from the Brouwer fixed point theorem that the map
y — O(y) possesses a fixed point. O

C. Stability of Fixed Points

As in abstract turbo decoding (Section V-A), the stability
of the fixed point((2;, Q)2) under the turbo-decoding iteration
((4.1) and (4.2)) is determined by the stability of the matrix

A= (’]P0+Q1+P2 - l)(’]P0+P1+Q2 - l) (65)
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where the first factor of (6.5) reflects the stability of (4.2) anthe probability that bitg and;j are bothl according taP, and

the second factor reflects the stability of (4.1). pip; 1s the probability that bitg and; are bothl according to
Let Y* denoteF, + Q1 + Q. By (6.3) we see that both #(P). Furthermorep; is the probability that bit is 1according
—1/2 1/2 to P and/orr(P). The stability criterion can also be expressed
Dy (Irri+q. — DDy in the following form:
and 172 12 0 m2 ms - Yin
DY* (JP0+Q1+P2 _I)DY* Y12 0 .

are symmetric matrices so it follows that the product (6.5) i %_‘3 723

0 Tn—1n

stable if both of its factors are stable. It is difficult to study th

stability of A even though both factors can be made symmetric%" Tn—1n 0

in an appropriate basis. Nevertheless, itis instructive to consider pil—p1)

stability conditions for each factor separately since this indicates p2(1 = p2)
conditions which will affect the stability ofl. Thus we will look

for conditions onP under whichJp — I is stable.

In this section, probability densities appear frequently. For Pa(l = pn)
log-densitiesP, Q, n(P) € @ we will use Pp, Pg, Pr(p) Assume that? is the decoded sequence. Note that the matrix
to denote the corresponding probability densities. TRgs=  on the left depends on probabilities of two or more errors while
)3yl the matrix on the right depends only on probabilities of single

Let P € @, letq = 7p(0), and letQ) = Bq = =(P). biterrors.Inthe case of high signal-to-noise decoding, a typical
SinceD ?J1,DY? isa positive-definite symmetric matrix, term on the left will be exponentially smaller than the diagonal

we havg(P) =(P) terms on the right. This will be the case, for example, whenever
ana priori bound of the fornp;; — p;p; < const p;p; holds.
D;(l,ﬁf(Jp - I)D}ﬁ,) > -1 For recursive systematic convolutional codes, i.e., the con-
stituent codes of standard turbo codes, it is known that for cer-
and stability ofJp — I is, therefore, equivalent to tain special values df —i|, i, j € 1, -- -, n, an input error se-
D’l/Q(J . I)Dl/2 <1 quence’ + b gives rise to a.low-weight error sequence. Thu.s
(AP ~() one would expect the posterior density to deviate most from its
Noting that product density approximation on such sequences. In the case of
1 turbo codes, the permutation prior to the second code ensures
Tt Pl Pb) L —7(P) that, in most cases, the low-weight error sequences from the
diag (B7[e7]) = <EH: ¢ ) diag (1 +¢ ) first code are mapped into high-weight error sequences in the
second code. Thus in the turbo code case, although the log-den-
and that/g = |, we have

sity Po + P, might give rise to some relatively large values of
Jp—I=Jp—Jg g“ the log-density + 1 + Q2 will do so to a much lesser
T —q i egree.
_d?ag (1+ (i )MT(Q) d_lag (Pr _TTQ).B Using the results above, we can charactefitke set of those
=diag (1+e¢ *)(B" —diag(e")B" ) diag (Pr—Pg)B  p ¢ & giving rise to stable/p — I.

_ T _Jiaoe —qy—1 ») diag — .
=Do(B" —diag (1+e™) ™ Lnxa ) diag (Pr = PQ)B q0600m 6.2:The sets (the set ofP such that/p — I is

= DB diag (Pr—Pq)B. strictly stable) is a pathwise connected open set contaifing
Thus stability of/,» — I is equivalent to the following (sym- Furthermore, the set N exp o(P) is star-shaped with center
metric) matrix inequality: exp m(P). _ .
/2 12 Proof: The fact thatS is open and thall € S is clear.
Dy~ B diag(Pp — Po)BDg~ <1 Note thatP € S if and only if
which reduces to
BYdiag (Pp — Pg)B < D' BTdiag (Pp — Px(p))B
ExpressingD,! explicitly in terms of P and noting that
Q ) o o = Bldiag B
BY[Pp] = BY[Px(p)], we write the stability condition as =BTdiag | > ww
wt (b)>2

B'diag (Pp)B < BTdiag (Px(p)) B + diag (B! [Px(p)])

Recall that Let P € S and defineP(t) € @, fort € [0, 1], by
Pp = Prry = Z Tolp
wt (b)>2
for some uniquely determineg,. Let ~;; abbreviatey,: ;s Pp(t) = Prpy + (1 - 1) Z ToUb-

wherei, j € 1, ---, n. Note thaty,; = p;; — pip;, Wherep;; is we ()22



RICHARDSON: THE GEOMETRY OF TURBO-DECODING DYNAMICS 19

ThenP(t) € ¢(P), P(0) = P, andP(1) = =(P). It follows Substitutinge = 7 5*(¢ -+ 2), where is a parameter, we obtain
that

|z — 75t (g + 2)i]

B diag(Pp(t) — Pr(r)) B = (1 — t) BY diag (Pp — Pr(r)) B < max |log (Prp(b + V|H;)) — log (Prp(b|H))| -
€H:
and sincer(P(t)) = =(P), we conclude thaP(¢ S for . . . .
eachtl (P®) (L), w . (t) € 0O Using the above inequality with = y; — y* andg = y*, we
. have

* *Y, —1 *Y
D. Uniqueness of Fixed Points (e =) =7 (w)il ‘
< Imax |10g (Prp(b+bZ|Hi)) — log(Prp(b|H;))|

€Hz

It is known that turbo decoding may possess multiple
fixed points [6]. Ideally, we would like to find those triplesfor P = P, := Py+Q,+ P, andforP = P, := Py+ P, + Q5.
(Po, Pi, P») € II x & x @ such that the fixed point is unique.smceﬁ;l(y;) + ”;bl(yéf) =y; —y*, we have
Finding practical conditions under which the fixed point is ‘
unigue appears to be a daunting problem. We can use the map ‘
® to construct sufficient conditions for uniqueness, as we wilf " (5 )i <max |log (Prp, (b+b°|H;)) — log (Prp, (b|Hy))|
show in this section, but they are probably very conservative. <

We will prove the following.
and the corresponding expression with and P, reversing

Theorem 6.3:There exists an open sét C 11 x ¢ x & roles. Defining

containingll x 11 x Il such tha{ Py, P;, P») € U implies the
following.

) _ ) ) Qy; := max | log (Prp, (b+ b7|HZ)) — log (Prp, (b|H;))|

i) Turbo decoding possesses a unique fixed paifit = bCHz ‘

Po+ Q1+ Q2. + max |log (Prp, (b+ b'|H;)) — log (Prp, (b H))|
ii) Both By + P + Qo andPy + Q, + P liein S. bely

Furthermore)™ is a continuous function afy, Py, P2 inl.  we now have(y; — y*)i| < ;.

LetY™ = By* be a fixed point of turbo decoding with data | et ys defineC; = l|]|. We have proved the bounjd; —
Fo, P, P,. We will show that there is a continuous function || < ¢;. Note thatC; is yet another measure of the deviation
C1 = Ci(y", Fo, P1, P»), satisfyingC, = 01if P, € Il and  of the constituent posterior densities from product densities.
P, € 11, such that ifBy; is another fixed point theffy* — ;|| < Now, let us defineZ, = Cs(y*, Py, Py, P;) to be the radius
C1. We can do this by refining the argument used in the progf the largest open bal centered ay* such that ify € 53 then
of Proposition 6.1. Po+ P+ Qs(y) € SandPy + Q1(y) + P, € S, where

Let P € ¢ and letrp(0) = g, then Q2(y) = Bl p (y) andQ:(y) = Brp,', p, (). Note that,
by Theorem 6.2(5 is a continuous function of its arguments
5 () — g5 — 1] and thatCy, = +oc if P, € Il and P, € I1.

Lo ; Consider the map : R* — R™ defined by (y) = y—O(y).
S }fé},)f | log (Prp(b + ' Hy)) — log (Prp(blH:)| it y* is a fixed point of®, thenv(y*) = 0 and uniqueness
of fixed points is identified with uniqueness of the solution to

b(y) = 0. The Jacobian of aty is given b
wherePr p denotes probability according to the log-dendity YW of 9 y

We prove this inequality, as in the proof of Proposition 6.1, from

_— =1 -1
the following: Jply) = Jpirira.ey T I rraiaer — 1
T
DI If PeSthenD 1 JpDX7, <21 Therefore, if|y*—y|| < Cs,
emr(e) = EZ IO thenD;\/* J,(y)D}, > 0 and we havel,,(y) D, > 0.
bCHs Now, consider the solutions to the following differential equa-
> el ®) =) tion:
beH; E Cp(b) d v v
_ ri bCH; %Z = DB(y*_i_Zv)v, 4 (0) =0
=c c @P(b) o
W —E NE0) e’ wherewv is an arbitrary unit vector. (Solutions will blow up in
EH-

" bCH; finite time, but that is not important here.) It is easy to see that
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sign (27(¢)) = sign (v;) for all ¢, hencel|z"(¢)|| is strictly in- Consider the two-dimensional affine spakeg C @ given by
creasing. If]|2¥(¢)|| < C», then the function Y*+3 D+ D2, whered; ands, are realand; := P, —Q;
andD; := P, — ()2, as before. Setting; = 5> = 1 we obtain

Py € ®5. Let us now define a (partial) map : & Yy
fo(t) = vy + 2¥(1) b)];IL 2 (p ) map: &2 — oY)

F(Y* + ﬁlDl + [32D2) =Y"* + 108(1 + [3121 + [3222)

(we assuméd); and D, are not collinear), where we have intro-
duced the following notation:
fv(t) = UTJU',(y* + Z'U(t))DB(y*_FZU(t))U > 0. Y= P
22 = 6D2 —1.
Since every pointiifs lies on the trajectory of*+z" for somev,  Recallthatxp ¢(Y*) is alocally affine space (itis affine within
we conclude tha#(y) # 0 for everyy € B. (Note that we could (R+)?). SinceeY , ¥ (1 + X1), ande¥” (1 + X,) each lie in
have allowed; larger since we only requir€’ ¢ (y*+2(t)) >0 exp (Y*), we have

to concludey(y* + z(t)) # 0.) L+ BT+ ) € exp o(Y7)

Remark: The argument used here gives a constructive proof | h ) »
thatp is one-to-one. as long as each component is positive.

Following the general principle outlined in Section V-C, let
Proof of Theorem 6.3.LetY* = By* be a fixed point of ys define
turbo decoding with dat&,, P, P», and assume that

is increasing since

4
dt

One should view" as an approximation to the identity function.
The identity coincides witld” atY™, Y* + D, andY™ + Ds.
Our concern is how well" approximates the identity &* +

It follows thatY* is the unique fixed point and that it is stableD1 + Dz, i.e., how wellP* € o (Y™*) approximateshyir.. See
(C, > 0). SinceY* is stable, it is not difficult to show that, Fig- 4. An appropriate notion of approximation, as we shall see,
for anye > 0, there is a > 0 such that ifP,, P/, P, ¢ iSO consider”* “close to” Pyr. if e (Pur, — P*) is small.

Il x ® x ® lies in a ball of radius centered af, Py, P, then T_his is roughly equivalent to requiring thafft — e be small
turbo decoding with datd), P;, P; possesses a fixed pointSINce

Y* = By* that is withine of Y*. If ¢ is sufficiently small

we can, moreover, conclude that

Cl(y*? POa Pla PQ) < CQ(y*7 POa Pla PQ)

el (Pyr, — P*) = el (D=l 1),

Ci(y", Py, P{, Py) < Cy(y™', Fy, P, Py) We have

e ol = oY 33y = o (et — @) (e — ¢@2) (6.6)
henceY* is the unique fixed point. It follows that the set of

P ” H Y™ H
triples(Py, P;, P») possessing unique fixed poirks = By* SO We say thaP™ is “close to” Py, if ' X1 3, is small.
such that To formalize this notion of approximation, we introduce

(-, -yp to denote the inner product defined by
<‘T7 y)P = <‘T7 dlag (ep)y>'
We us€||-|| » to denote the induced norm, i.8%||p = (z, z)p.
The metric induced by - ||» in a neighborhood o € & is
is an open sd. It is clear thaty™ is a continuous function of approximately equivalent to the metric induced|py||—p in a
Fy, P, P> inl{ and thafll x II x IT C U. O neighborhood ot” € exp @; if « andy are close taP € @,
then||z — yl|p = [le* — e¥||_p.

In general, the distance betweBy, and F'($2), according
to || - || >+, will be the product o¥" and a term second order
in X1 andX,; hence, in this sens&* will be nearly an optimal
approximation inF'(®s) C o(Y*) to Pyy. If 135 = 0, then

In this section, we consider the proximity @fyg, to Y* I is additive andPy, = P*.
whereY* = Py+Q +Q, is a fixed point of turbo decoding. In  We will now derive an alternative expression dr — ¢’
particular, we derive an approximate expressiordfgyr, where Sincep(Y™*) can serve as a translation system, there exists a

PR N uniqueérs € II such thatPyy, — é1s € (Y*), i.e., we have
ML = QmL — Y.

First, however, we consider the more fundamental question of L —brs — I Z fyb(ey* — uyp)
proximity of Py, to o(Y™). wh (b)>2

Ci(y*, Fo, Pr, o) < Co(y*, By, P1, P»)

E. Proximity to Maximum Likelihood
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Geometrical relationship between turbo-decoding fixed points and maximum-likelihood posterior density.

where the coefficients; are determined by this equation. LetChoosing, for example; ~ n(c>~92 — 1) (note thatP, — Q»

>, denote

Z (1l —e™Y w).

wt (b)>2
We now have

P,

e el = M (1 -

ey 4V 8. (6.7)
Roughly speaking, this expression decomposés: — ¢
(=e¥ X1%,) into one component tangent éap (Pyr. + 11)

at et and another component tangentdep (Y *). We

is approximately tangent tp(Y*) here) for an appropriately
small constant), and choosing. = 0, we obtain

e
CP

PP
~ GPML _ GP’“ + 77(CPZ—QZ

P+ +Q2 (22)2

_ 1)6P0+P1(6P2 _ GQZ)

= el _ + ne
which would likely have a substantial component tangent to
e”"11. Itis very unlikely that any typical constituent codes con-
strain the possible values &% and P, so as to guarantee that
Py, is generically closer tg(Y ™), according td| - || », than
the product okY" and a term second order iy andX»; we

assert (but cannot prove) that both of these components arged|l henceforth assume that this is not the case.

the same order of magnitude @s ¥; %».

Rewriting (6.7) using (6.6), we have

The tangent space tap ©(Y™*) (at any point) is spanned by

{e¥" =y} 1y>2- The tangent spacedap ( Py +11) ate e eM(] — ¢70ms) = &V (3,8, — 3L). (6.8)
is spanned by the columns dfag () B, which can be ap- i ~

proximated by the columns dfiag (" )B. The transversality Noting thate*” 3., is the null space ofi/(Y*), we write

of the two tangent spaces with respec{to-) _p- is apparent i P e e Y

from these expressions sinB&w;, = 0 whenwt (b) > 2. Thus MY )™ (1 —e™™)] = MY")[e" %3] (6.9)

our assertion fails only if the vectef ™t — ¢ is, essentially,

tangent toexp (Y ™*).

If this were true in general, it could only arise as a very specizil/[(?*)[ey* $15,] = M(?*)[GPML
property of the constituent codes and the manner in which they

constrainP; andF,. Consider the possibilities wheh and P
are not so constrained. If we pertufp and P, slightly to P{ =
Pl +e andPQI =Pt e SOthatP0+P1+Q2+€1 c (p(Y*)
andPy + Q1 + P + ez € o(Y™), then(Qy, Q2) is still a fixed
point. Roughly speaking, we requiege to be tangent tg (Y ™)
at Py + P, + @2 ande, to be tangent to(Y™*) at Py + Q1 + Ps.
For the perturbed system, we have

6P0+P1’+P2’ P il ~ GPI\IL ™ & Py

et + €1¢60¢€
+(:16P0+P1(6P2 —GQZ)

+ oot (GP‘ — @ ).

c

(Note that
— el = M(Y™)[eMr].

According to our assumption, the componente&fr — ¢
tangent toexp ¢(Y™*) is not, generically, of “significantly”
larger magnitude than the component8fr — ¢ tangent to
exp (P* +1II). (Even ife™ — ¢ were randomly uniformly
oriented, the expected magnitudes of the two components
would be different by a factor arising from the dimensions of
the subspaces they respectively represent. By “significant” we
mean a difference much larger than this factor.) On the other
hand, in the calculation af/(Y *)[¢/], a relatively large can-
cellation occurs betweeBT [¢™] anddiag (¢¥ B [¢"r]
which does not similarly occur, according to our assumption,
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in the calculation ofM(Y*)[e{*ElEQ]. Another way of ex- incurring a diagonal correction factor of sizet- O(6y1). We
pressing this is to say th§f\/ (Y *)[e"Mr — ¢I”']|| is relatively now obtain
stable under perturbation @ff whereag|M (Y *)[e™ML] « || is -1
not. ; NI
/ e diag (1+ ¢ MY )|t 12
Consider the left side of (6.9). We shall argue the validity of ome <Z ) 8 JMET 122]

the approximations
which can be written

M(Y*)[GPML(]_ _ e—‘STS)] ~ M(Y*)diag(ePML)BSTS (6 10) S BT[ ( Py te)(ePZ _ GQZ)]
. ML = BT[GY*]
~ M (7 (Py))diag(e™ ") Béps. _ Bf[ef (e — e@r)(ef: — e92)]
(6.112) BT[eY"] (6.14)

The first approximation (6.10) essentially asserts (modulo

Vhere the division is meant component-wise.
scale factor)

Itis worth considering what this formula suggests in the case
(v, [ (1 — e?™)]) ~ (v, diag(e™)Bérs)  (6.12) Of standard turbo codes. Let us assume thds the decoded
vector. Since single-bit error sequences produce large codeword
for v an arbitrary unit vector. Thus we are claiming thaérror sequences, the largest terms/in(e — ¢@1)(e Pz_@Qz)
(1— e ®ts) ~ Bérg according to the distance induced bywill likely arise from those sequences. L&t 1, ---, n and
(; )y, Let us assume thal’ is the most likely vector consider approximating™ (b) =~ e (b') ~ 0 to obtam an es-
according to}*. Assuming thatrs is small, i.e., that it has timate of the contribution t¢y;.); arising from these single bit

small components, the approximation terms, according to (6.14). The estimated contribution is given
[1—e %] =[1— ¢ B8] ~ Bérg by
: . 1—>" e¥
would be valid for those components corresponding to small i
weight binary vectors. On the other hand, the components corre- W (6.15)
sponding to larger weight binary vectors are weighted by expo- i

nentially smaller factors in (6.12), so the approximation remains
valid. The second approximation (6.11) repladgéy*) with ~Wherey is given byBy = I + Q1 + @2, i.e.,y is the vector
M(#(Patr)). Sincer(Pyr) = Y* + Sur ~ Y* + Jp. Srs of bit-wise log-likelihood values. In the high signal-to-noise

we see that this approximation is second-ordet;ig. limit, ¢*/ — 0, this expression converges 1o Sincey; —
Inserting the approximation (6.11) into (6.9), we obtain ~ —°0; We see that t'he correction term is negligible in this !Imlt[.
If (6mr.); is negative, then, necessarily, the maximum-likeli-
M (7 (Pyy))diag (e ™) Bérs ~ M(Y*)[e¥ £:%,]. (6.13) hood decoding decision and the turbo-decoding decision on bit
) ) _ 1 agree. Hence, when the expression above is negative it can be
Since, for any log-density’ € @, the following formula holds: \je\ed as indicating bias toward agreement of turbo decoding
-1 and maximum-likelihood decoding. This is likely to occur in
Jp = <Z e ) diag (14 ¢ "M (7 (P))diag (¢")B  low signal-to-noise regimes. For (6.15) to be positive we require
E#i e¥ < 1, so a typical likelihood value will be at most
1/n, and the small positive bias indicated here will be insuffi-
cient to change the sign of the putativg-likelihood. Thus we
-1 observe that the contribution from single-bit error terms rarely
Iy 0TS = <Z e”ML> diag (14 ¢~ ") Ap(Y*)  causes a bit-wise decision discrepancy between turbodecoding
and maximum-likelihood decoding. In general, this term can
. [eY*ElEQ]. cause a discrepancy in at most one bit, and this requires an ap-
parently rather pathological situation.

the approximation (6.13) leads to

Assuming thabrg is small, we havédy;;, ~ Jp,,, é1s which
yields VII. CONCLUSIONS

1 We have presented the dynamics of turbo decoding from a
. Pur, . —#(Pur) S Y geometric perspective. The elegance of the geometric perspec-
1L 2 ag (1 MY Y13l . -
S, <Z ¢ ) diag (1 +c IMYT)e™ 212l e has enabled Us to obtain new results concerning turbo de-
coding. We have proved that turbo decoding always possesses

To simplify the expression further, we approximate fixed points. We have given conditions under which there will
-1 be a unique fixed point. Uniqueness probably occurs regularly
Z L diag (1 + Cf%(PML)) in practice, but, as we ha_\ve only sufficient_gonditi(_)ns, we are
o not able to clearly establish this. The stability of fixed points

is of obvious practical importance; we have given necessary

—1
~ Z R diag (1 + C—YV*) and sufﬁgignt cpnditioqs fothis property. Veri.fy'ing or;tqdying
the conditions in practice will require determining pairwise bit
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probabilities and determining properties ofamx n symmetric fixed points it may be possible to distinguish and bias toward a
matrix. This may be difficult for very large, but should be fea- “preferred” fixed point, a fixed point which corresponds to best
sible for reasonably large Perhaps most significantly, we haveperformance.
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