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The Geometry of Turbo-Decoding Dynamics
Tom Richardson

Abstract—The spectacular performance offered by turbo codes
sparked intense interest in them. A considerable amount of re-
search has simplified, formalized, and extended the ideas inherent
in the original turbo code construction. Nevertheless, the nature
of the relatively simple ad hoc turbo-decoding algorithm has re-
mained something of a mystery.

We present a geometric interpretation of the turbo-decoding al-
gorithm. The geometric perspective clearly indicates the relation-
ship between turbo-decoding and maximum-likelihood decoding.
Analysis of the geometry leads to new results concerning existence
of fixed points, conditions for uniqueness, conditions for stability,
and proximity to maximum-likelihood decoding.

Index Terms—Decoding, geometry, maximum likelihood, turbo
codes.

I. INTRODUCTION

SINCE their appearance in 1993 [3], turbo codes have been
widely lauded as one of the most significant recent advances

in coding. Turbo codes offer near-optimal performance while
requiring only moderate complexity. The structure of the codes
presented in [3] and the reasons for their performance lie outside
the conventional wisdom of coding theory. Nevertheless, the
structure of the codes is now fairly well understood [2] and it is
fairly well understood why the codes would perform well under
maximum-likelihood decoding. Maximum-likelihood decoding
of turbo codes is, however, prohibitively complex and the mod-
erate complexity of turbo codes is due to thead hocdecoding
algorithm presented in [3]. Although “turbo codes” is by now an
entrenched term, it is really a misnomer since “turbo” refers only
to the ad hoc turbo-decoding algorithm. The turbo-decoding
algorithm also appeared in [5] although, as applied to different
codes, with less spectacular results than those presented in [3].
The performance results in [3] arise from a synergy between
the decoding algorithm and the codes used there. These results
sparked intense interest in turbo codes and in turbo-decoding
generally. A considerable amount of research has simplified,
formalized, and extended the ideas inherent in the original turbo
code construction. Nevertheless, the nature of the relatively
simple turbo-decoding algorithm has remained something of a
mystery. The turbo-decoding algorithm has been recognized as
an instance of a general algorithm for propagating information
on graphs known as “belief propagation” [7]. In the case of
low-density parity-check codes, the algorithm was proposed in
1961 [4]. Belief propagation is known to be correct on trees [7].
For both turbo codes and low-density parity-check codes the
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corresponding graph is not a tree. From this perspective, the work
in this paper can be said to be directed toward obtaining a global
qualitative understanding of the effect of loops in the graph.

It appears that the turbo-decoding algorithm performs almost
as well as maximum-likelihood decoding when applied to
turbo codes. (Throughout the paper we use the terms “max-
imum-likelihood decoding” and “turbo decoding” to refer to the
soft-decoding process which outputs (estimates of) posterior
likelihoods for each bit. When we wish to refer to the implied
bit value we will speak of the decoding “decision.”) There
are known codes where turbo-decoding is markedly inferior
to maximum-likelihood decoding [9]. The largest gap in the
theory of turbo codes is the lack of understanding of turbo
decoding in general and its relationship to maximum-likelihood
decoding in particular.

In this paper we interpret turbo decoding in a geometric set-
ting as a dynamical system. The goal is to obtain general in-
formation concerning the convergence and stability of turbo de-
coding and its relationship to maximum-likelihood decoding.
The geometric interpretation is a natural one. In particular, it
immediately indicates how turbo decoding is related to max-
imum-likelihood decoding, at least when the two are close. The
interpretation applies to the decoding algorithm generally, i.e.,
it is not limited to turbo codes. Analysis of the geometry leads to
various new results concerning turbo decoding. For simplicity
we concentrate on the case of two parallel concatenated codes,
although these need not be recursive convolutional codes. Many
of the results generalize in various ways: to multiple parallel
codes, for example, and, with some effort, to serially concate-
nated codes. Most of the results are qualitative and concern fixed
points of turbo decoding. In particular, we establish the exis-
tence of fixed points to the turbo-decoding algorithm. We also
indicate conditions for uniqueness of fixed points and condi-
tions for stability of fixed points. Furthermore, we consider the
proximity of fixed-point solutions to maximum-likelihood de-
coding.

The geometric interpretation indicates another interpretation
in which the turbo-decoding algorithm appears as an iterative
algorithm aimed at solving a system of equations in un-
knowns, where is the number of bits in the data sequence.
If the turbo-decoding algorithm converges, then the limit point
gives rise to a solution to these equations. Conversely, solutions
to these equations provide fixed points of turbo decoding.

The system of equations which turbo decoding attempts to
solve captures the underlying geometry in analytical form. By
considering the algorithm as a purely geometric one, abstracting
away from decoding, we are able to obtain several insights that
then guide our analysis of the equations.

A key object in decoding is the posterior density on the space
of input sequences arising from the observation of the codeword
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after it has been passed through a channel. The geometry we
focus on is the geometry of densities onthe -dimensional
hypercube. Within the space of densities, a special role will be
played by the subset of “product densities” and sets of densities
sharing common bit-wise marginal distributions. The geometry
of these subsets within the larger space is the dominant theme
of this paper.

In Section II, we outline a turbo encoder and decoder in an ab-
stract manner, loosely following the original construction in [3].
In Section III, we lay the foundation for the geometric analysis
that will be applied to turbo decoding. We define an equivalence
relation on densities where two densities are equivalent if they
normalize to the same probability density. We select a repre-
sentative from each equivalence class (not the probability den-
sity), identifying the space of equivalence classes with
such that the space of corresponding product densities forms an

-dimensional linear subspace. Given a density equivalence
class , we define to be the -dimensional man-
ifold of density equivalence classes having the same single-bit
marginal distributions as the density equivalence class. We
define as the unique product density equiv-
alence class with the same single-bit marginals as. A member
of the density equivalence class can be represented by
bit-wise likelihood ratios. These are the quantities that typically
appear in implementations of turbo decoding. In Section IV we
fully describe turbo decoding from the geometric point of view,
i.e., in terms of the objects introduced above. In Section V, the
turbo-decoding algorithm is temporarily abstracted to a purely
geometric algorithm. In this generalized setting, we obtain sev-
eral results that we will subsequently show to be germane to
turbo decoding. Section VI contains an analysis of turbo de-
coding as a special case of the abstract geometric algorithm.
This last section is comprised of the following:

i) We study the “projection” operator when restricted to
. We show that this map is a homeomorphism of
onto , i.e., we show that it is continuously invert-

ible. In terms of the constituent decoders, this is equiva-
lent to saying that the input prior is uniquely determined
by the output and the parity check information.

The invertibility of allows us to characterize
turbo decoder fixed points as the solution toequations
in unknowns. It also suggests an alternative implemen-
tation of turbo decoding as the iteration of a certain map

. The fixed points of are identical to the fixed points
of turbo decoding.

ii) We establish the existence of fixed points of the map
, thereby proving the existence of fixed points to turbo

decoding.
iii) We consider the issue of local convergence of turbo de-

coding, indicating conditions under which the fixed point
is stable.

iv) By studying the Jacobian of the map, we obtain con-
ditions under which turbo decoding possesses a unique
fixed point.

v) We address the question of proximity of the turbo-de-
coder fixed point to the corresponding maximum-likeli-
hood decoder point, obtaining approximate formulas for
the difference of the likelihood values.

A certain picture emerges concerning the following ques-
tion: when will turbo decoding perform nearly as well as max-
imum-likelihood (bit-wise) decoding? Simply put, the posterior
densities of the constituent codes of the turbo encoder should,
in some sense, be “close to” product densities. Furthermore, it is
preferable that the deviation of the respective constituent poste-
rior densities from product measures be, in some sense, disjoint.
If the deviations are strictly disjoint (in a manner which will be
apparent later), then the turbo code and the maximum-likelihood
bit likelihoods coincide.

In Section VII, we summarize the results and indicate some
directions for further study.

II. A T URBO ENCODER/DECODER

The standard turbo encoder has the following form. A
sequence of bits is passed through two
distinct encoders to produce sequences of parity-check bits
and which may be of different lengths than. According
to the original implementation [3], both encoders are short
memory systematic recursive convolutional encoders. In addi-
tion, however, the second encoder permutes the data sequence

according to a (sampled) random permutation prior to the
convolution step. The random permutation results in a com-
bined encoder that, while easy to implement,
cannot be practically optimally decoded. The turbo-decoding
algorithm is a practical suboptimal decoder.

Consider transmitting each bit in the codeword over
a bit-wise memoryless channel yielding observations .
Assume that each input sequenceis, a priori, equally likely.
The posterior likelihood of an input sequencegiven the obser-
vation is then defined as

(2.1)

where is the probability density of the observation
given the input sequence. Under the assumption that each
input bit is independent and uniform over , an assump-
tion that holds throughout this paper, the posterior likelihood is
proportional to the posterior distribution. As densities, the pos-
terior likelihood and the posterior distribution are equivalent.
The product form appearing in (2.1) is a consequence of the in-
dependence of the channels over which the bits constituting,

, and are, respectively, transmitted.
Maximum-likelihood sequencedecoding chooses the se-

quence that maximizes . Maximum-likelihood
bit-wise(hard) decoding decodes theth bit according to

Maximum-likelihood (bit-wise or sequence) decoding of the
code is prohibitively complex. The idea of turbo
decoding is the following. The constituent codes, and

, can be efficiently decoded optimally. Information can be
exchanged between the constituent decoders so as to allow each
decoder to incorporate information coming exclusively from
the other code. The form of the exchanged information is such
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that no increase in the complexity of the constituent decoders
is required. An iterative process of decoding and exchange is
repeated until, ideally, a consensus is reached as to the “true”
likelihood values.

To work well, turbo decoding requires soft information on
the bits, hence bit-wise (soft) maximum-likelihood decoding
is preferred to sequence decoding. There is an efficient algo-
rithm [1] for computing posterior bit-wise likelihood values as-
sociated with convolutional constituent codes and

. Although other (nonmaximum-likelihood) bit-wise
decoding algorithms have been applied to turbo codes, we will
focus exclusively on bit-wise maximum-likelihood constituent
decoding.

We assume that each constituent code can be efficiently de-
coded in the following manner (see [8]). Decoder 1 accepts as
input

for and , and computes

(2.2)

Let us write this as . Decoder 2 is similar;
we merely replace with above. Thus the second de-
coder calculates . The turbo-decoding algo-
rithm is an iterative algorithm and can be described as follows,
see Fig. 1. Let denote an iteration counter. We will
define scalars and for to represent the in-
formation passed between decoders. For completeness, we ini-
tialize for . These quantities represent the
so-called “extrinsic information” obtained from the decoders.

The first step of the th iteration of turbo decoding
is to decode the first constituent code via

, where the product is meant
component-wise. Here, is carrying information from the
second code, see below. (Note that for this step is simply
decoding the first constituent code with no information from
the second code.) Next we define via

The factor is interpreted as the “extrinsic information” in
iteration obtained from concerning the value of bit.
(If were just a repetition of, for example, then the factor
would be precisely the bit-wise likelihood value associated with
the second observation of bit.) One now proceeds to decode the
second constituent code incorporating the extrinsic information

Fig. 1. Turbo decoding.

from the first code into the prior for the second code,
. As above, we define via

The factor is interpreted as the extrinsic information con-
cerning the value of bit obtained from . This completes an
iteration, to continue one returns to decoder 1.

The entire procedure iterates until, ideally, converges, i.e.,
.

III. T HE GEOMETRY OFDENSITIES: PRELIMINARIES

A density is a nonnegative function on the-dimensional hy-
percube (the set of vectors of length ). To simplify the
presentation, we will assume that densities are strictly positive.
Thus a density is an element of . For descriptive pur-
poses, it is often convenient to think of as a subset of .
Given a density there is a positive constantsuch that is a
probability density over . We say densities and areequiv-
alent if they determine the same probability density.

By taking logarithms, we can identify densities with the space
of real-valued functions on . Thus alog-densityis an element
of . Two log-densities are equivalent if they differ by a con-
stant.

Maximum-likelihood decoding and turbo decoding, when
viewed as operations or functions on densities, are invariant
under equivalence. It is appropriate, therefore, to view decoding
as an algorithm operating in the space of equivalence classes
of densities. The analysis is often simplified by choosing a
particular representative from each equivalence class. One nat-
ural representative is the probability density. For our purposes,
however, this representative is often not the most convenient
one.
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Let denote the set of real-valued functionson the hy-
percube such that . The function is a density with

. Each density is equivalent to exactly one such den-
sity. Thus can represent the space of equivalence
classes of log-densities. This representation turns out to be a par-
ticularly useful one largely because it is invariant under point-
wise addition. We use to denote those functions on
whose logarithms are in, i.e., denotes the set of densi-
ties taking the value at . As such, represents the space
of equivalence classes of densities and this representation is in-
variant under pointwise multiplication.

Regardless of the normalization, representative densities will
be viewed as functions on the -dimensional hypercube.
Thus if and are densities, then is their pointwise product,
i.e., for any we have . We will generally
use upper case to denote log-densities and lower case to denote
densities.

To avoid cumbersome language, we will say “a log-density
” or “a density ,” it being understood that

these objects are actually representatives of a (log)-density
equivalence class. We use to denote the
elements of , i.e., the binary sequences of length, as
column vectors. For convenience we enumerate the sequences
as follows:

Note, in particular, that for the binary sequence
is the sequence with in the th position and in all other po-
sitions. It will often be convenient to view densities as vectors;
we use the notation to explicitly indicate this, i.e.,

...

From the coding perspective the transmitted sequenceis
distinguished from all others. As a matter of convenience, we
may identify the transmitted sequencewith and denote se-
quences by . Thus represents the transmitted
sequence, and other vectors can be interpreted as “error” vec-
tors. Alternatively, we may assume that is the decoded se-
quence.

A. Constant Marginals

For any we use to denote the set of
binary strings whose th bit is

where is meant component-wise. We use to denote those
strings whose th bit is

Given a log-density , we define to be the
set of all log-densities which induce the same bit-wise marginal
distributions as . By this we mean

iff for all (3.1)

By extension, the set denotes the set of all densi-
ties having the same bitwise marginal distributions as the den-
sity .

From (3.1) it is clear that is a locally affine space.
To obtain an explicit description of , we will intro-
duce a basis for the space of densities in which it is especially
convenient to represent marginal distributions.

We first define two matrices and . The following
example shows and for :

A subset of columns of will serve as a basis for .
We explicitly construct , and show that to establish
that the columns of are linearly independent. The equation

captures the inclusion/exclusion principle in matrix
form. It is more convenient to define first.

The th row of is the indicator function of the set of binary
strings component-wise larger than . Thus if and
only if component-wise. It follows that if is a
density, then

Let us denote by . By the principle of inclusion/exclusion
we have

(3.2)

Define by
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It follows that (3.2) represents the equation or,
more generally, . We have shown that

, hence the columns of are linearly independent.
If then let denote the th column of multiplied

by . Let us view as a function on , i.e., .
Thus

otherwise.

If is a probability density, then
where denotes probability as induced by the density. It
follows that two probability densities and have the same
bit-wise marginals if and only if , where is
the -dimensional linear subspace of spanned by

, i.e.,

for some uniquely determined . Since for
all such , we see that adensity has the same bit-wise
marginals as thedensity if and only if ,
where denotes direct sum and denotes the one-dimen-
sional subspace spanned by. It now follows that a normalized
density has the same bit-wise marginals as the nor-
malized density if and only if

for some uniquely determined . Note that

We now obtain

where denotes the th row of , and where is deter-
mined by

Thus given we have

where the are real, with the only restriction being that the
argument of the logarithm must be positive.

B. Product Densities

A density is a product densityif the equivalent
probability density defines a product measure on. This means

that each bit in is independent according to. A density
is a product density if and only if

Equivalently, a log-density is a product log-density if
and only if

(3.3)

Let denote the set of product log-densities in. Note that
if , then is the log-likelihood that bit is for

. It is apparent from (3.3) that is an -dimensional
linear subspace of can be identified with the set oflinear
functions on .

For each log-density there is a unique product log-
density having the same bit-wise marginals as,
i.e.,

Let us define the following matrix

...

Note that the matrix is an submatrix of (rows
to ). The columns of form a basis for . If , then
we define

...

so that . Occasionally, we will abuse this notation
slightly by treating as an element of .

For each log-density we have

Thus , which is the vector , is
the vector of bit-wise -likelihood values associated with.

Let denote the complement of

where denotes the matrix all of whose entries
are . For any vector let denote the square diagonal
matrix such that . We will use this notation for
vectors of length and for vectors of length . (For
we will abbreviate to .) Using this notation,
we have
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Fig. 2. Fixed points of turbo decoding. The posterior bit-wise marginals,
represented byQ = �(P + P + P ) is approximated by
Y = �(P + Q + Q ) whereQ approximatesP andQ approximates
P according to the surace'(Y ). Assuming'(Q ) is nearly a translate
'(Y ), the gapQ � Y depends on the shape of the surfaces at�.

Given an -vector , we will henceforth let denote
.

IV. TURBO DECODING

Both maximum-likelihood decoding and turbo decoding de-
pend only on the equivalence classes of , , and

. Let , and represent these equivalence classes
in . Maximum-likelihood bit-wise decoding decodes bitac-
cording to

where

the representative of in . In practice,
cannot be efficiently computed, whereas

and can be efficiently computed for any
(using decoders 1 and 2, respectively). Turbo decoding, which
exploits this fact, can be described as follows (Fig. 2).

Let and denote the product log-densities
(these quantities represent the extrinsic information from codes
1 and 2, respectively) and let ( represents the output
of a constituent decoder). Initially we have . Decoder 1
computes , and the extrinsic information
is then extracted via . Decoder 2 then
computes , and the extrinsic information
is extracted via . The process iterates
until, ideally, converges. Note that , , and are
product densities; in practice they are each represented by their
bit-wise marginals.

A more succinct description of turbo decoding is obtained by
eliminating from the description. According to this descrip-
tion, the algorithm consists of the following two update equa-
tions (with initially) which are alternately and repeat-
edly invoked

(4.1)

(4.2)

If the pair converges, then repre-
sents the algorithm’s determination of the posterior likelihood
product log-density, i.e., its estimate of .

We may interpret as the intersection of and . From
this perspective, is a fixed point of the turbo decoder when

and , where
. Similarly, maximum-likelihood bit-wise

decoding is identified with determining such that
.

V. A GEOMETRIC ALGORITHM

In this section, we shall abstract the turbo-decoding algo-
rithm. The notation will be consistent with nonabstract turbo
decoding. The purpose of this section is to develop some geo-
metric insight into the behavior of turbo decoding and to present
some ideas that will be used later. We relax the dimensional rela-
tionships and we suppose only that the surfacesare smooth
and meet certain general assumptions. We are particularly in-
terested in how the behavior of the turbo-decoding algorithm
depends on the geometry of the surfaces.

Let and let be a -dimensional subspace of
. To correspond with turbo decoding, we make the following

assumptions.

A1) For each there is a unique surface such
that .

A2) Each surface intersects in exactly one point
.

Thus we have defined a (nonlinear) map .
The abstract turbo-decoding algorithm will be as described

above, i.e., an iterative invocation of (4.1) and (4.2). This
algorithm, in principle, attempts to find an approximation to

given and . We say the
algorithm converges if converges (for both (4.1) and
(4.2)), and the limit point is then a fixed point of the algorithm.
Note that the algorithm converges if and only if
converges.

A. Stability of Turbo Decoding

Let the matrix be an matrix whose columns form a
basis for . (In the case of nonabstract turbo decodingwill be
as defined in Section III-B.) For any let denote
the representation of according to , i.e., . Given a

, we define to represent the restriction of
to centered at , i.e., for

We use to denote the Jacobian of at .
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The turbo-decoding update (4.1) and (4.2) can be represented
using and , respectively, as follows:

(5.1)

(5.2)

Assume that is a fixed point of these iterations. We
can linearize the update maps to obtain conditions for stability
of turbo decoding. Thus suppose we perturbto prior
to invoking (5.1) and we obtain as a result. It follows
that, to first order, we have

If we then invoke (5.2) to obtain then, to first order, we
have

A straightforward calculation thus shows that the stability of the
fixed point under the turbo-decoding iteration is determined by
the stability of the matrix

(5.3)

i.e., the turbo-decoding fixed point will be stable if the eigen-
values of the above matrix lie inside the unit disc. The first factor
of (5.3) linearizes (5.2) and the second factor linearizes (5.1).

B. Translation Systems

We say that the system of surfaces is atranslation system
if each is obtained by translating some fixed surface by a
vector from , i.e.,

for all . One can easily prove the following.

Theorem 5.1:If is a translation system, then the abstract
turbo-decoding algorithm converges to a fixed point after one
iteration.

Note that in a translation system we have for all .
A surface that generates a translation system requires

certain properties. In particular, the set must be
a singleton for every . If , then is
not defined, violating Assumption A1. If
, then would not be uniquely defined, again violating

Assumption A1. One of the key properties we will prove about
(nonabstract) turbo decoding is that, for any , the surface

can serve as the basis of a translation system.

C. Proximity of Maximum Likelihood

Assume is a fixed point of turbo decoding. Let
be a fixed point and let us define

Note that , and all lie in . Further-
more, we have

Hence, we immediately obtain

Theorem 5.2:If is an -dimensional affine space
then .

The condition that is an dimensional affine
space is not necessary. It is sufficient, for example, that
contains the affine space

Suppose that there exists a smooth (partial) map

such that

(Such a map arises naturally when there is homeomorphism
such that is a (locally) affine set in .

For nonabstract turbo decodingis the exponential map and
is the space .) Given , one can take

as an estimate of in . If is smooth, then this
estimate is second-order in and , i.e.,

Another sufficient condition for is that be
additivewith respect to and , i.e.,

VI. THE GEOMETRY OFTURBO DECODING: RESULTS

We now return to turbo decoding. Thus is no longer an
abstract surface, but rather a surface of log-densities sharing
common bit-wise marginals. In Section III-A, we developed an
explicit representation of . It is convenient here to first focus
on implicit representations.

Recall that, given a log-density , we have
if and only if

where the exponential is taken component-wise. The turbo-de-
coding algorithm can, therefore, be viewed as an iterative at-
tempt to solve the following system of equations:

(6.1)

(6.2)

The algorithm proceeds by solving (6.1) for with
initially, then solving (6.2) for , then iterating. Altogether,
this is a system of equations in unknowns.
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The first issue that arises in connection with these equations
is existence of solutions. We will prove the following.

Theorem 6.1:The turbo-decoding algorithm always pos-
sesses a fixed point, i.e., a solution exists to (6.1) and
(6.2).

The second issue, uniqueness of solutions, does not have such
a simple resolution; neither does the issue of stability. All of
these issues hinge on properties of the mapwhen restricted
to translates of . In turbo decoding, a constituent decoder is
invoked repeatedly with only the prior being varied. This corre-
sponds to computing for various while holding

fixed. Our analysis uses calculus to study locally the depen-
dence of on .

For any log-density let represent the
restriction of to centered at , i.e., for

The following is a key technical result.

Proposition 6.1: For any log-density the map is
a homeomorphism.

This implies that in the equation

we may view as a function of or vice versa. The proof,
which can be found at the end of the next section, will show the
transversality of and at . Intuitively, this means
that and cross each other at. Formally, this means
that for each the tangent space to at and the tan-
gent space to at are linearly independent as subspaces
of the tangent space to. Furthermore, in our case, the direct
sum of the two tangent spaces yields the full tangent space to

at . It then follows that can serve as the basis for a
translation system.

A. The Jacobian of

We will now determine , the Jacobian of at .
Let , then

Perturbing and for infinitesimal and
, and setting , we obtain

where, here, . Rearranging terms

and substituting , we
now obtain

The equation above gives us an expression for. Substituting

into , we can express as

Thus for , which is given by

measures the dependence of the likelihood value of biton bit
. If then .

It is convenient at this point to introduce the following nota-
tion: for any we denote by the diagonal matrix
below

Note that

Let us write

thereby defining .

Lemma 6.1:For any log-density the matrix is sym-
metric and positive definite, hence .

Proof: It is convenient to consider the matrix
. We will show that is symmetric

and positive-definite and it follows that the same is true of.
We have

Calculating a single entry of we obtain
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so we see directly that is symmetric. Now

where . It is not difficult to verify that
. We now have

so we see that is positive-semidefinite. Positive definiteness
is apparent by considering for .

Remark: We have

(6.3)

so is similar to a symmetric positive definite matrix.
We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1:We claim that for any there
exists a constant such that

for all . To prove this first note that

Now, assume that and write

We readily obtain

Similarly, if we assume that and write

then we obtain

Thus in general, we have

Fig. 3. Defining the map�: If Q = B� (y), then�(P +Q) = By.

Since for all , it follows that is
locally invertible and that it has a continuous inverse. The claim
above further implies that is onto and one-to-one, hence the
proof is complete.

B. Existence of Fixed Points

We are now ready to prove Theorem 6.1. Given
, and , we define a map by

(6.4)

(See Fig. 3 for a depiction of .) If solves (6.1) and
(6.2), then is a fixed point of . Conversely,
if is a fixed point of , then and

solves (6.1) and (6.2).
Practically speaking, we can interpret as follows.

Proposition 6.1 implies that, given the output log-likelihoods
of a constituent decoder (, say) and the parity-check log-like-
lihoods of the constituent code (, say), the input (prior)
log-likelihoods are uniquely determined (as ). Thus
one could attempt to find a fixed point of turbo decoding by
proceeding in reverse. First, guess the fixed pointand com-
pute , interpreted as the corresponding prior ,
thereby defining . Similarly, determine as

. In principle, one can update the guessaccording
to (6.4), i.e., by replacing with , as an alternative to
turbo decoding.

Proof of Theorem 6.1:As in the proof of Proposition 6.1,
there exists a constant such that .
It follows from the Brouwer fixed point theorem that the map

possesses a fixed point.

C. Stability of Fixed Points

As in abstract turbo decoding (Section V-A), the stability
of the fixed point under the turbo-decoding iteration
((4.1) and (4.2)) is determined by the stability of the matrix

I I (6.5)
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where the first factor of (6.5) reflects the stability of (4.2) and
the second factor reflects the stability of (4.1).

Let denote . By (6.3) we see that both

and

are symmetric matrices so it follows that the product (6.5) is
stable if both of its factors are stable. It is difficult to study the
stability of even though both factors can be made symmetric
in an appropriate basis. Nevertheless, it is instructive to consider
stability conditions for each factor separately since this indicates
conditions which will affect the stability of . Thus we will look
for conditions on under which is stable.

In this section, probability densities appear frequently. For
log-densities we will use
to denote the corresponding probability densities. Thus

.
Let , let , and let .

Since is a positive-definite symmetric matrix,
we have

and stability of is, therefore, equivalent to

I

Noting that

and that I, we have

Thus stability of is equivalent to the following (sym-
metric) matrix inequality:

which reduces to

Expressing explicitly in terms of and noting that
, we write the stability condition as

Recall that

for some uniquely determined . Let abbreviate
where . Note that , where is

the probability that bits and are both according to , and
is the probability that bits and are both according to
. Furthermore, is the probability that bit is according

to and/or . The stability criterion can also be expressed
in the following form:

Assume that is the decoded sequence. Note that the matrix
on the left depends on probabilities of two or more errors while
the matrix on the right depends only on probabilities of single
bit errors. In the case of high signal-to-noise decoding, a typical
term on the left will be exponentially smaller than the diagonal
terms on the right. This will be the case, for example, whenever
ana priori bound of the form holds.

For recursive systematic convolutional codes, i.e., the con-
stituent codes of standard turbo codes, it is known that for cer-
tain special values of , an input error se-
quence gives rise to a low-weight error sequence. Thus
one would expect the posterior density to deviate most from its
product density approximation on such sequences. In the case of
turbo codes, the permutation prior to the second code ensures
that, in most cases, the low-weight error sequences from the
first code are mapped into high-weight error sequences in the
second code. Thus in the turbo code case, although the log-den-
sity might give rise to some relatively large values of

, the log-density will do so to a much lesser
degree.

Using the results above, we can characterizethe set of those
giving rise to stable .

Theorem 6.2:The set (the set of such that is
strictly stable) is a pathwise connected open set containing.
Furthermore, the set is star-shaped with center

.
Proof: The fact that is open and that is clear.

Note that if and only if

Let and define , for , by
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Then , , and . It follows
that

and since , we conclude that for
each .

D. Uniqueness of Fixed Points

It is known that turbo decoding may possess multiple
fixed points [6]. Ideally, we would like to find those triples

such that the fixed point is unique.
Finding practical conditions under which the fixed point is
unique appears to be a daunting problem. We can use the map

to construct sufficient conditions for uniqueness, as we will
show in this section, but they are probably very conservative.
We will prove the following.

Theorem 6.3:There exists an open set
containing such that implies the
following.

i) Turbo decoding possesses a unique fixed point
.

ii) Both and lie in .

Furthermore, is a continuous function of in .
Let be a fixed point of turbo decoding with data

. We will show that there is a continuous function
, satisfying if and

, such that if is another fixed point then
. We can do this by refining the argument used in the proof

of Proposition 6.1.
Let and let , then

where denotes probability according to the log-density.
We prove this inequality, as in the proof of Proposition 6.1, from
the following:

Substituting , where is a parameter, we obtain

Using the above inequality with and , we
have

for and for .
Since , we have

and the corresponding expression with and reversing
roles. Defining

we now have .
Let us define . We have proved the bound

. Note that is yet another measure of the deviation
of the constituent posterior densities from product densities.

Now, let us define to be the radius
of the largest open ball centered at such that if then

and , where
and . Note that,

by Theorem 6.2, is a continuous function of its arguments
and that if and .

Consider the map defined by .
If is a fixed point of , then and uniqueness
of fixed points is identified with uniqueness of the solution to

. The Jacobian of at is given by

If then . Therefore, if

then and we have .
Now, consider the solutions to the following differential equa-

tion:

where is an arbitrary unit vector. (Solutions will blow up in
finite time, but that is not important here.) It is easy to see that
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for all , hence is strictly in-
creasing. If , then the function

is increasing since

Since every point in lies on the trajectory of for some ,
we conclude that for every . (Note that we could
have allowed larger since we only require
to conclude .)

Remark: The argument used here gives a constructive proof
that is one-to-one.

Proof of Theorem 6.3:Let be a fixed point of
turbo decoding with data , and assume that

It follows that is the unique fixed point and that it is stable
. Since is stable, it is not difficult to show that,

for any , there is a such that if
lies in a ball of radius centered at , then

turbo decoding with data possesses a fixed point
that is within of . If is sufficiently small

we can, moreover, conclude that

hence is the unique fixed point. It follows that the set of
triples possessing unique fixed points
such that

is an open set . It is clear that is a continuous function of
in and that .

E. Proximity to Maximum Likelihood

In this section, we consider the proximity of to
where is a fixed point of turbo decoding. In
particular, we derive an approximate expression for, where

First, however, we consider the more fundamental question of
proximity of to .

Consider the two-dimensional affine space given by
, where and are real and

and , as before. Setting we obtain
. Let us now define a (partial) map

by

(we assume and are not collinear), where we have intro-
duced the following notation:

Recall that is a locally affine space (it is affine within
). Since , , and each lie in

, we have

as long as each component is positive.
Following the general principle outlined in Section V-C, let

us define

One should view as an approximation to the identity function.
The identity coincides with at , and .
Our concern is how well approximates the identity at

, i.e., how well approximates . See
Fig. 4. An appropriate notion of approximation, as we shall see,
is to consider “close to” if is small.
This is roughly equivalent to requiring that be small
since

We have

(6.6)

so we say that is “close to” if is small.
To formalize this notion of approximation, we introduce

to denote the inner product defined by

We use to denote the induced norm, i.e., .
The metric induced by in a neighborhood of is
approximately equivalent to the metric induced by in a
neighborhood of ; if and are close to ,
then .

In general, the distance between and , according
to , will be the product of and a term second order
in and ; hence, in this sense, will be nearly an optimal
approximation in to . If , then

is additive and .
We will now derive an alternative expression for .
Since can serve as a translation system, there exists a

unique such that , i.e., we have
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Fig. 4. Geometrical relationship between turbo-decoding fixed points and maximum-likelihood posterior density.

where the coefficients are determined by this equation. Let
denote

We now have

(6.7)

Roughly speaking, this expression decomposes
into one component tangent to

at and another component tangent to . We
assert (but cannot prove) that both of these components are of
the same order of magnitude as .

The tangent space to (at any point) is spanned by
. The tangent space to at

is spanned by the columns of , which can be ap-
proximated by the columns of . The transversality
of the two tangent spaces with respect to is apparent
from these expressions since when . Thus
our assertion fails only if the vector is, essentially,
tangent to .

If this were true in general, it could only arise as a very special
property of the constituent codes and the manner in which they
constrain and . Consider the possibilities when and
are not so constrained. If we perturb and slightly to

and so that
and , then is still a fixed
point. Roughly speaking, we require to be tangent to
at and to be tangent to at .
For the perturbed system, we have

Choosing, for example, (note that
is approximately tangent to here) for an appropriately
small constant , and choosing , we obtain

which would likely have a substantial component tangent to
. It is very unlikely that any typical constituent codes con-

strain the possible values of and so as to guarantee that
is generically closer to , according to , than

the product of and a term second order in and ; we
shall henceforth assume that this is not the case.

Rewriting (6.7) using (6.6), we have

(6.8)

Noting that is the null space of , we write

(6.9)

(Note that

According to our assumption, the component of
tangent to is not, generically, of “significantly”
larger magnitude than the component of tangent to

. (Even if were randomly uniformly
oriented, the expected magnitudes of the two components
would be different by a factor arising from the dimensions of
the subspaces they respectively represent. By “significant” we
mean a difference much larger than this factor.) On the other
hand, in the calculation of , a relatively large can-
cellation occurs between and
which does not similarly occur, according to our assumption,
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in the calculation of . Another way of ex-
pressing this is to say that is relatively
stable under perturbation of whereas is
not.

Consider the left side of (6.9). We shall argue the validity of
the approximations

(6.10)

(6.11)
The first approximation (6.10) essentially asserts (modulo a
scale factor)

(6.12)

for an arbitrary unit vector. Thus we are claiming that
according to the distance induced by

. Let us assume that is the most likely vector
according to . Assuming that is small, i.e., that it has
small components, the approximation

would be valid for those components corresponding to small
weight binary vectors. On the other hand, the components corre-
sponding to larger weight binary vectors are weighted by expo-
nentially smaller factors in (6.12), so the approximation remains
valid. The second approximation (6.11) replaces with

. Since ,
we see that this approximation is second-order in.

Inserting the approximation (6.11) into (6.9), we obtain

(6.13)

Since, for any log-density , the following formula holds:

the approximation (6.13) leads to

Assuming that is small, we have which
yields

To simplify the expression further, we approximate

incurring a diagonal correction factor of size . We
now obtain

which can be written

(6.14)

where the division is meant component-wise.
It is worth considering what this formula suggests in the case

of standard turbo codes. Let us assume thatis the decoded
vector. Since single-bit error sequences produce large codeword
error sequences, the largest terms in
will likely arise from those sequences. Let and
consider approximating to obtain an es-
timate of the contribution to arising from these single bit
terms, according to (6.14). The estimated contribution is given
by

(6.15)

where is given by , i.e., is the vector
of bit-wise log-likelihood values. In the high signal-to-noise
limit, , this expression converges to. Since

, we see that the correction term is negligible in this limit.
If is negative, then, necessarily, the maximum-likeli-
hood decoding decision and the turbo-decoding decision on bit

agree. Hence, when the expression above is negative it can be
viewed as indicating bias toward agreement of turbo decoding
and maximum-likelihood decoding. This is likely to occur in
low signal-to-noise regimes. For (6.15) to be positive we require

, so a typical likelihood value will be at most
, and the small positive bias indicated here will be insuffi-

cient to change the sign of the putative-likelihood. Thus we
observe that the contribution from single-bit error terms rarely
causes a bit-wise decision discrepancy between turbodecoding
and maximum-likelihood decoding. In general, this term can
cause a discrepancy in at most one bit, and this requires an ap-
parently rather pathological situation.

VII. CONCLUSIONS

We have presented the dynamics of turbo decoding from a
geometric perspective. The elegance of the geometric perspec-
tive has enabled us to obtain new results concerning turbo de-
coding. We have proved that turbo decoding always possesses
fixed points. We have given conditions under which there will
be a unique fixed point. Uniqueness probably occurs regularly
in practice, but, as we have only sufficient conditions, we are
not able to clearly establish this. The stability of fixed points
is of obvious practical importance; we have given necessary
and sufficient conditions for this property. Verifying or studying
the conditions in practice will require determining pairwise bit
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probabilities and determining properties of an symmetric
matrix. This may be difficult for very large, but should be fea-
sible for reasonably large. Perhaps most significantly, we have
given a formula that estimates the gap between turbo log-like-
lihood values and maximum-likelihood log-likelihood values.
Evaluating this gap precisely for largeis not practically fea-
sible. Nevertheless, in many cases of practical interest most of
the terms in the density will be negli-
gible (e.g., terms corresponding to large-weight binary strings);
good approximations involving a relatively small number of
terms should therefore be feasible.

One interesting question which has not been resolved in this
work concerns the limiting (low signal-to-noise ratio (SNR))
factor in the performance of (standard) turbo codes. The per-
formance curves of turbo codes are almost step functions; what
happens at the step? As the maximum-likelihood performance
of turbo codes degrades, the stability of the turbo-decoder fixed
point weakens. It is clear that the stable region of the map
widens as becomes more “certain.” Therefore, a likely cause
of the breakdown of turbo code performance at low SNR is a
failure to converge. Although the turbo decoder may well pos-
sess stable fixed points, the algorithm may initially venture far
into the unstable regime and fail to arrive in the domain of con-
vergence of the fixed point. If this is true, then a possible remedy
might be to gradually scale the information in and while
tracking the fixed point from to its final value. Such a scaling
might enable the algorithm to remain in the stable regime and
thereby converge.

Another factor which may affect turbo-decoding performance
is the existence of multiple fixed points. In the case of multiple

fixed points it may be possible to distinguish and bias toward a
“preferred” fixed point, a fixed point which corresponds to best
performance.
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