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Elementary 2-Group Character Codes

Cunsheng Ding, Member; IEEE, David Kohel, Member, IEEE, and
San Ling

Abstract—In this correspondence we describe a class of codes over
GF (q), where ¢ is a power of an odd prime. These codes are analogs of
the binary Reed-Muller codes and share several features in common with
them. We determine the minimum weight and properties of these codes.
For a subclass of codes we find the weight distribution and prove that the
minimum nonzero weight codewords give 1-designs.

Index Terms—Group character codes, linear codes, Reed—Muller codes.

1. INTRODUCTION

In this correspondence we describe a class of group character codes
C,(r. n), defined over GF (q), with parameters [2". s, (7). 2" "],
i
where ¢ 1s a power of an odd prime and

The codes C';(r.n) are defined in analogy with the bmary
Reed-Muller codes and have the same parameters [2]. Moreover, as
for Reed-Muller codes, C';(r. n) is generated by mimnimum-weight
codewords, and the dual of C'; (. n) 1s equivalent to C'y (n—r—=1, n),
which 1s the analog of the equality [2(r. n) L= Rn—r—1.n).

The purpose of this correspondence 1s to describe this class of codes,
to determine the dimensions and minimum distances, to characterize
the dual codes, and to find the weight distribution and associated 1-de-
signs for the subclass C';(1. n}.

IT. ABELIAN GROUP CHARACTER CODES

Let A be an additive Abelian group of exponent rn and order V', with
0 as the 1dentity element. Let I\’ be a finite field whose characteristic
does not divide N and which contains the mth roots of unity. Let ™"
denote the multiplicative group of nonzero elements of i" and let M
denote the multiplicative group of characters from A to ™. The group
M 1s isomorphic noncanonically to A [3, Ch. VI]. In particular, we
have [M| = |4] = N.

The following lemma is a well-known result, known as the orthogo-
nality relations m character theory [3, Ch. VI, Proposition 4].

Lemma 1. Orthogonality Relations: Let A be a finite additive
Abelian group of order V and let M be the group of characters of A.
For characters f. ¢ m M and elements . y i A, we have
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Let M = {fo. fi. . f~_1}.where f; is the trivial character. For
any subset X of A, we define a linear code (' over i as

.\’.

Cy = 1) E R

(co. c1,-+-. Cn

N
Z c;fi(e)=0foralle € \'} .

i=0

Let X = {wqo. x1. ---. &y 1} be a subset of A and let X'° be the
complement of X in A, indexed such that A = {wg, @y, -+, v 1 }.

Proposition 2: Let A and X be as above. For 0 < i < N — 1, let
v, denote the vector ( fo(r;), fi(aw;), ==+, fv1(w;)). Then the set
{vo. vy, -+, #x 1} is linearly independent. In particular

H=1f; 1lwi))i<i<i1<j<n
has rank ¢ and is a parity-check matrix of C'x
G=1f

(=ar apii<ian i<j<n

has rank N —¢ and 1s a generator matrix for C'y,so C'y isan [N, N —7]
linear code over Iv'. Moreover

[f,l I(_".f 1”1<'t<.f 1T<j<N

is a generator matrix for C've and C'y 1 C'ye = KV,

Proof: The linear independence of the set {vg, ¢y, . #x 1}
follows from Lemma 1. The other conclusions of the proposition then
tollow from this linear independence. [

III. ELEMENTARY 2-GROUP CHARACTER CODES

Hereafter we let A be the elementary 2-Abelian group (Z/2Z)",
tor which we prescribe a basis {¢1. - -. e, } of generators. Moreover,
we denote the neutral element of A by en. For the field i we take a
finite field GF (g} for ¢ odd. Since {£1} is contained in GF (g). the
character group M of A is defined. Relative to the basis for A we can
define characters by f;(e;) = (=1 yii—

n—1
J=> a2t
k=0
One easily verifies that this gives an indexing M = {fo, -+, for 1}
on the group of characters from A to GF (¢)*, where GF (¢)" is defined
to be GF (¢)\{0} .

L where

forO < j < 2",

Theorem 3: For any subset X' of A, let X = A\ X'. Then the dual
code C'+ equals C'xe.

Proof: This follows from the orthogonality relations of Lemma

1, the description of a generator matrix for C'x = of Proposition 2, and

from the fact that every element of A 1s its own mverse. O

The classes of codes over GF () described in this section have many
subclasses of codes. Different choices of the set X' give different sub-
classes of codes over GF (¢). We now describe a subclass of codes over
GF (¢) which have the same parameters as the binary Reed-Muller
codes.

r, as
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Definitions: The Hamming weight [la]| of an element «
1161 4+ -+ a,c, of A is defined to be the number of nonzero @y . For
-1 <r < let

X(r.n)={a €At »r}
denote the code 'y, ,,, over GF (¢). For a word

)in K27 let the silppél‘t of ¢ be defined as
{i:0<i<2", ande; # 0}
and let its weight wt (¢) be defined as [Supp (¢)|. By convention we
define the minimum distance of the zero code to be o, which we rep-

and let C'y(r. n)
c = (('(]. T (Com

Supp (¢}

resent by any integer larger than the block length of the code.
We use | to denote concatenation of codewords, and for two sets 7
and V" of codewords define U ||V to be the set
{uf(u+v):uel vel}.

Lemma 4: The dimension of the code Cy(r, n) 1s

% ()

Proof: This follows from Proposition 2 and the defimtion of

X(r.n). O

Sn (1)

Lemma5: Thecode (', (r41. n41) decomposes as the direct sum
Cyr4+ 1) Cytr.n) =(Cylr + 1. n)|{0}) & ({0} C, (0
where {0} is the zero code in 2"

Proof: For vector subspaces U and 1 of K" itis clear from the '
definitions that I||V" = T7||{0} < {0}]|V". Moreover, by the combina-
toral equality

sulr)+salr+1)=s,00(r+1)
Lemma 4 and the linear independence of C,(r + 1, n)[[{0} and
{0}|Cy(r. n) mply the result provided that both are contained in
Cylr+1.n+41).

Let A, Dbe the elementary 2-Abelian group generated by
{e1. -+, en}, 1dentified as a subgroup of A,y = An 0 Z/2Z €41,
The character f; on A, identifies with the character f; on A, 1 by
setting f;(cnyq) = 1 forall0 < j € 2" — 1. Then by definition
fitom = f;for. where

—1. ifi=n+1
fanlei) = .
1. otherwise. t
The words in (', n)|[{0} are of the form ¢|e such that ¢ =
(co. - . Con and
CLE
Z cifila)=1(
=0

forall @ in X (r+1.n). One readily verifies that C',(r+1.n)||{0} =
C'x,. where

Ni=X0r+Ln)U(A, +ensr).
Similarly, {0}||C',(r. n) C C'y,. where

No=X{(r,n)U(X(r.n)+enir).
Since Xy and X contamn X (r+ 1. n 4+ 1),
contained in C, (r + 1., # + 1) and the result holds.

both C'x; and C'x, are

U

Theorem 6: Cy(r.n . S (r). 2777 code over GF (¢).
Proof: Tt only remains to prove the correctness of the minimum
distance. Since X = A\{eo}. a generator matrix for ', (0, n) T
; L
1s

yisa[2"

0, n)

Tole

‘he Corollary 9: C,(r. n) 1 isa 2", s,

[foleo) filea) <=+ for q(ea)] =11 --- 1]
Therefore, C'; (0, n) has minimum weight 2" .
At the other extreme, X (n. n) is empty, so Cy(n, n) = K and

€'y (n. n) has minimum weight 1. In particular, it follows that the min-

tic Imum weight is correct forn = 1 and 0 < » < 1.

Suppose now that Theorem 6 gives the correct minimum distance
forsomen > landall0 < » < n. By Lemma 5, a word ¢ in C,, (r +
1. n + 1) 1s of the form

c=mul{lu+twv)
where # and v are codewords in C'y(r + 1. n) and Cy(r, n

tively. Then

). Tespec-

wt(e) > 2wt(u)+wt(v)—2|Supp(u) N Supp(v)] > wi(v) >2" ",

Conversely, {0}||C,(r. n) is a subcode of C',(r + 1. n + 1) with
minimum distance 2" ", so the minimum distance of (' (r+1. n +1)
82" 7. (N

Theorem 7: The minimum nonzero weight codewords generate
Sl m).

Proof: Let M, (r. n)
codewords of (', (r. n). The result is clear for n = 1 and all r,
likewise forr = —1 and all n. Moreover, ', (r+1. n+1) is generated
by

denote the set of minimum nonzero weight
and

M (r+ 1. m)[[{0} U

{O0H| M, () n)
by the direct sum of Lemma 5. This set is contained in M, (r+1. n+1),
from which the result holds by induction. |

Let G be defined as the subgroup in the group of linear automor-
phisms of i : generated by permutations of coordinates and by mul-
tiplications of coordinates by elements of K. Two codes (" and (' are

called equivalent if and only if ' = &((') for some ¢ € G.

r.n) :

Theorem §8: The dual code (', (
1.n).
Proof: The theorem clearly holds for » S0 We assume

henceforth that 0 < » < n.Let i = ey + - - - + ¢,,. Then the equality

is equivalent to C'y(n —r —

= n,

Xron) =p+Xn—r—1n)
follows immediately from the definitions. By Theorem 3 and the defi-
nitions of the codes, one easily verifies that the map

L D
N =K
({‘Q. e, (Con [ (f()(]l){‘(g. i f)n jl con )
. . ~ -2 .
1s an automorphismof A~ of order two, which induces an equivalence
of Cy(r. )" and €', (n — r — 1. n) and vice versa. O

Hrti :
(n—r—1).2"""] code which
is generated by its minimum nonzero weight codewords.

Proof: The conclusions follow from Theorems 6-8.

O

Remark: The Reed-Muller codes R(r. n) are well-known to have
the same parameters [2". s, (r). 2" 7] as the codes C'y(r, n), so the
latter can be viewed as analogs over GF () of the corresponding binary
Reed-Muller codes. Moreover, we have



Rr. n)‘ =R(n—-r—1,n)
of which Theorem 8 is its analog. While strict equality of (', (r. n )"
and C'y (n — r — 1. n) does not hold, the proof shows that the equiva-
lence is a simple coordinate twist. Stated formally, this says that C', (n—
r =1, n) 1s the dual of C,(r, n) with respect to the twisted inner

product
2%
(u, v) = Z Fitpu, v, ’
=0

\ = -2
onvectors 4 = (g, +++, tzen )andv = (vg, ++ -, vom _)in K7 |

We begin with a series of lemmas which reduce the analysis of the
weight distribution to the weights of codewords in subsets of C'; (1. n).

Lemma 10: Let @ have Hamming weight / in V7. Then the VECIOI‘?
|V, where

W= {b = (b1, . by) € Vb = +a, forall i and Zb, = (]}.

i

v=a-(v. - --.v,)has Hamming weight 2" — 2"

=1

Proof: Clearlya - (v, -
of j for which

. v, ) has weight 2" less the number

n

nur D aifi(e) =0, (1)
Example 1: Consider n = 3. Then C'3(1, 3) 1s a [8, 4, 4] ternary i=1 ce
code with generator matrix
For any such j we associate the vectorb = (a1 f;{e1). -+, an filen))y
1 1 -1 -1 -1 -1 1 1 in V. But for any b in 11" there are 2" ™ indices j for which (1) holds
1 —1 1 -1 -1 1 -1 1 and has associated vector b. Namely, if we let j = 3.7 ' j;2' be one
1“1 -1 1 1 -1 -1 1 such value, then k = 3> ' %,2' is another ifand only if k; | = j; .
1 -1 -1 -1 1 1 L1 { whenevera, # 0. D‘

and weight enumerator polynomial 14 242" 4+ 162" +322° + 82" . In

‘]_

Lets = (¢ — 1)/2 and let {a1, -+ g1} be an indexing of thery

*

Theorem 17, we show that the support of the codewords of minimum _ elements of GF (¢)" such that a;1. = —a,. For an element ¢ =

. , X . itar ) - .~ .
nonzero weight forma 1-(8. 4, 6} design. O™ (ar. az. -+, am,) of V, define for each i

Example 2: Consider n = 4. Then C'3(2. 4) is a [16. 5. §] ternary nila)=[{k:1 <k <nandap = Fa;jf.
code with generator matrix as seen in the matrix at the bottom of this Lemma 11: Fora iV, let ny = ni(a). ---.n, = n.la) be.
: : . e . - na-
page and weight enumerator polynomial the associated multiplicities. Then the weight of the vector ¢ =
- n.(,lw_..._g;”)is er
14 402" 4 802" 4 320" 4+ 800" + 100", : "
ey oI

Its dual code C5(2. 4)" is a [16. 11, 4] code with weight enumerator- 2 -2 Z H ni +m; |-
polynomial ng<mg<ng i=l 2

1+ 2002" 4+ 3522° 4+ 253442° + 560027 + 137402°
+ 238400" + 342722" + 364802"" + 30840+
+ 184002 + 87200 + 18242 + 3342"°.

O crat

it =n;mod?2
] n
=1 g o, =u
In particular, the weight of v depends only on the multiplicities
iny. -+ ns, and not on the ordering of the coordinates of @.
Proof: By Lemma 10, it suffices to determine |117|. Let b be in’

W, and for each 7 let u; be the number of occurrences of a, i the

ightoordinates of b. Then the number of occurrences of —; in this vector

]

d

IV. THE WEIGHT DISTRIBUTION IN (', (1. n)

Let the characters f; be as defined previously for 0 < j < 2"
and define vectors v; = (fol(ei). ---. far i (c;)) for 0 < i < n. In.
particular, vy is the vector (1. -+, 1) and {vg. vy, ---, v, } is a basis
for the code (', (1. n).

LetV = GF (¢)" and fora in V" let ||a|| denote its Hamming weight.
Fora = (ay. -, a,)mV, seta- (¢, ---. ¥,) equal to the dot’
product 3 _"_, a;v;. The collection of vectors of the form Y /_, a;v;
constitute a subcode ("f: (1, n) of codimension 1. We first describe the ™
weight distribution in C"fﬁ(l. n) then treat the nontrivial cosets aovq + °
CJ(1.n).

1

mi

1s n; — u;. It follows that

i
E b;
=1

el B

Z(u,(\, — (i —u)o ) = Z(Zu, — ;o

=1 i=1

and we set m,; = 2u; — n,. Since there are [[\_, (111) vectors b in 117
. . N P . e
with associated multiplicities rq. - - - .

> oIl

=1

is, We obtain

n;
U,

/
f this
W] =

< -
O<u;<ny

g g oy =0
E Ls vy =
i=1 ¢

1 -1 -1 -1 1 1 1 -1
1 -1 -1 1 -1 1 -1 1
1 -1 1 -1 -1 -1 1 1
1 1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1 1

1 -1 -1 -1 1 1 1 -1
-1 1 -1 1 -1 1 1 -1
-1 -1 1 1 1 -1 1 -1

1 1 1 1 1 1 -1 -1

1 1 1 -1 -1 -1 -1 1



from which the lemma follows.

The following lenna gives the weight of vectors in the nontrivial
coset of C'/(1. n) in C'y (1, n). and is proved similarly.

) be the
associated multiplicities. Then the weight of a vector # = agvy +
a- (v, . v,), withag # 0, 1s

SR |

n; < ng 1=1

Lemma 12: Fora mV, letny = ny(a). ---. n, = nyla

m ”/

211. _ 211.

m;= n?mu(] )

# 0 1
E e
=1 T

In particular, the weight of v depends only on the multiplicities
ny. -+, ny, and not on the ordering of the coordinates of a.
When ¢ = 3 the product in Lemmas 11 and 12 consists of one term.t
In this case, we obtain a precise formula for the weight distribution in
C21, n) and Cs(1,

binomial coefhments 1N progressions.

). First we prove a result concerning sums ofl€

Lemma 13: Letm be a positive integer. Define of t

m

m m\
1 = h= X c= .
Z 2 2
0<j<im 0< j<im 0<j<im
j=0mod3 J=1mod3 j=2mod3
1) If m = 3k, then r
i +(7])£2 gm ( -l)i\
hn= - (') = r= -
3 3
2) It m = 3k + 1. then
pm Jr(*])k pm 7(7]-)R'2 ;
a=b=—" = —
3 3 2
3) Itm = 3k + 2. then
gm + (71 )AZ pm ( -l)i. e
b= —r—— t=c= —
3 3

Proof: Letmn be of the form 3% + ¢, with 0 < 7 < 2, and let ¢,
be a primitive third root of unity. We note that ¢ has trace —1 and that
€ + 1 is a cube root of —1 whose square is ¢. Expanding the binomial
expression we obtain

"

(r+ ) 72 f;i

i=u

In the three cases i = 0, 1, and 2, respectively, we obtain

(=1)" =+ ce+be” ;
(71)'&‘[(‘}' 1)=0+ ae+ {.(3
(=1 e =c+be+aé’

Cor

1.

TABLE 1
THE WEIGHT DISTRIBUTION IN

CY(1, n)
0<m<n Weight Frequency
m = 3k 27 —n=m(9m 4 (—1)*2)/3 nyam
m=3k+1 | 2" —2r"m(2m — (-1)*2)/3 n)am
m=3k+2 | 2% —2" (2™ + (-1)*2)/3 | (*)2™
TABLE OI
THE WEIGHT DISTRIBUTION N C'5 (1. n)\C'{ (1, n)
0<m<n Weight Frequency
m =3k 2n —oan—m(am _ (—1)F)/3 - am+1
m=3k+1 |20 —2"""(2™ 4+ (-1)%)/3 | (Z)2m*!
m=3k+2 | 2" —2* (2" — (-1)%)/3 | (r)2"!

Taking the trace of 1 and ¢ tunes the corresponding equation, together
with the equation 2" = a + b 4 ¢, gives the asserted result. |

Theorem 14: The WEIC’llI dlsmbunou in the code C9(1. n
bv Table Tand in C'5 (1, #)\C'5(1. n) by Table IL.
Proof: The We1ghts follow by applying Lemma 13 to the weight

) 1s given

formulas of Lemmas 11 and 12. The frequency of a given weight 1s de-
ternuned by counting the number of @ in V' with Hamming weight r .[]

Corollary 15: The weight distribution of the dual code ('3
2. n)" is given in Tables I and II.
Proof: This follows from the equivalence with C'3 (1. n
orem 8.

(n —

) of The-
O

Having determined the weight distribution in C'3 (1. »), we now de-

termine the minimum nonzero weight codewords.

Theorem 16: The mimimum nonzero weight codewords m C's(1, n)
are precisely the distinct words av; + bv;, for a, b in GF(3)"
0 <7 < j < n. Inparticular, they are 2n(n + 1) in number, and
two words have the same support if and only if one 1s a multiple of the

other.

and

. o amd
Proof: By Theorem 6, the minimum nonzero weight is 2"

By Theorem 14, the weight 2" ' codewords are those of the form
ar; + bv;, of which there are 2n(n — 1). The final statement 1s an
immediate consequence. |

Corollary 17: The set of supports of the minimum nonzero weight
codewords of Cs(1. n)isa 1-(2™. 2" ' n(n + 1 )/2) design.
Proof: By Theorem 6, the mimimum nonzero weight supports are
subsets of the 2" coordinate positions of size 2" ', and by Theorem
16 are n(n + 1) in number. Since Fth coordinate of ; 1s fr1(e;). 1t
is clear that exactly one of the pair {aw; £ bv; } has nonzero k lh coor-
dmate. Thus exactly half of the supports of minimmum nonzero weight
codewords contains a given 4, and the result follows.

V. CONCLUDING REMARKS

We have described a class C', (r, n) of group character codes over
GF (¢) and determined their dunensions and minunum weights. For
each » and r, the length, dimension, and mmimum weight of C', (r, n)
agrees with that of the binary Reed—Muller code I2(r, n). For the codes
C, (1. n) we have explicitly determined the weight distribution and
proved that the minimum nonzero weight codewords give 1-designs.
It remains an open problem for the class of codes €, (r. n) described

here to determine the weight distribution for » greater than 1.
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