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d(x; �(x)) = 2 and this is a contradiction with the assumption
e > 5. We conclude thatC is the repetition code of lengthn.

ii) Suppose thate = 5 andAut (C) is not the symmetric or the
alternating group of degreen. Then by Theorem 2,Aut (C) is
eitherM12 or M24. If Aut (C) = M12, thenC should be a
nontrivial linear code of length12 and minimum distanced �
11. Clearly, the only possibility is the repetition code. Assume
thatAut (C) = M24. SinceC is a nontrivial completely regular
code, then the minimum-weight codewords form ane-(n; d; �)
-design on the set of coordinates (see [12]), orC is a repetition
code. In anye-(n; d; �)-design withe � 4 andn � d+ 2, the
number of blocks isb � n(n�1)=2 (this bound is given in [9]).
Hence, we have at least24 � 23=2 = 276 codewords andC has
dimensionk > 8. But the sphere packing bound says that

2k �
224

5

i=0

(24i )

=) 2k � 302

hencek < 9, which contradicts the previous result. ThusC must
be a repetition code.

Applying Proposition 3, it is easy to see that perfect and extended
perfect Hamming codes are completely transitive withe = 1. Also,
the perfect and the extended perfect binary Golay codes are completely
transitive withe = 3. These examples, and some other ones, are also
mentioned in [10]. For the casee = 2, we can consider the truncated bi-
nary Golay codeC (deleting any fixed coordinate form each codeword
of the binary Golay code). Clearly,C has length22, e = 2 and is in-
variant under the Mathieu groupM22, which is3-transitive; therefore,
C is a completely transitive code by Proposition 3. This last example
comes from [4].

Hence, fore = 1; 2; or3, there exist completely transitive codes. As
we have mentioned above, fore > 3 it has been conjectured that there
is no completely regular code containing more than two codewords,
and hence there is no completely transitive code, with the exception
of the trivial or the repetition codes. This has been proved for the case
e = � (perfectcodes) by Tietäväinen in 1973 (see [11]), and also for
the casee + 1 = � (uniformly packedcodes) by Van Tilborg in 1976
(see [5]). For� > e+ 1 there is no proof of the conjecture.

We have shown the nonexistence of completely transitive codes for
e > 4 with more than two codewords. However, the existence of such
codes fore = 4 remains an open question .
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Abstract—In this correspondencewe describe a class of codes over
GF (q), where q is a power of an odd prime. Thesecodesare analogsof
the binary Reed–Muller codesand share several featuresin commonwith
them. We determine the minimum weight and properties of thesecodes.
For a subclassof codeswe find the weight distrib ution and prove that the
minimum nonzero weight codewords give1-designs.

Index Terms—Group character codes,linear codes,Reed–Muller codes.

I. INTRODUCTION

In thiscorrespondencewedescribeaclassof groupcharactercodes
Cq(r; n), defined over GF(q), with parameters[2n; sn(r); 2n�r],
whereq is a power of anoddprimeand

sn(k) =

k

i=0

n

i
:

The codes Cq(r; n) are defined in analogy with the binary
Reed–Muller codes and have the same parameters [2]. Moreover, as
for Reed–Muller codes,Cq(r; n) is generated by minimum-weight
codewords, and the dual ofCq(r; n) is equivalent toCq(n�r�1; n),
which is the analog of the equalityR(r; n)? = R(n� r � 1; n).

The purpose of this correspondence is to describe this class of codes,
to determine the dimensions and minimum distances, to characterize
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the dual codes, and to find the weight distribution and associated1-de-
signs for the subclassCq(1; n).

II. A BELIAN GROUPCHARACTER CODES

LetA be an additive Abelian group of exponentm and orderN , with
0 as the identity element. LetK be a finite field whose characteristic
does not divideN and which contains themth roots of unity. LetK�

denote the multiplicative group of nonzero elements ofK and letM
denote the multiplicative group of characters fromA toK�. The group
M is isomorphic noncanonically toA [3, Ch. VI]. In particular, we
havejM j = jAj = N .

The following lemma is a well-known result, known as the orthogo-
nality relations in character theory [3, Ch. VI, Proposition 4].

Lemma 1. Orthogonality Relations:Let A be a finite additive
Abelian group of orderN and letM be the group of characters ofA.
For charactersf; g in M and elementsx; y in A, we have

1)
x2A

f(x)g(x) =
N; if f = g�1

0; if f 6= g�1

2)
f2M

f(x)f(y) =
N; if x = �y

0; if x 6= �y.

LetM = ff0; f1; � � � ; fN�1g, wheref0 is the trivial character. For
any subsetX of A, we define a linear codeCX overK as

CX = (c0; c1; � � � ; cN�1) 2 KN :

N�1

i=0

cifi(x) = 0 for all x 2 X :

Let X = fx0; x1; � � � ; xt�1g be a subset ofA and letXc be the
complement ofX in A, indexed such thatA = fx0; x1; � � � ; xN�1g.

Proposition 2: LetA andX be as above. For0 � i � N � 1, let
vvvi denote the vector(f0(xi); f1(xi); � � � ; fN�1(xi)). Then the set
fvvv0; vvv1; � � � ; vvvN�1g is linearly independent. In particular

H = [fj�1(xi�1)]1�i�t; 1�j�N

has rankt and is a parity-check matrix ofCX

G = [fj�1(�xt�1+i)]1�i�N�t;1�j�N

has rankN�t and is a generator matrix forCX , soCX is an[N; N�t]
linear code overK. Moreover

[fj�1(�xi�1)]1�i�t;1�j�N

is a generator matrix forCX andCX � CX = KN .
Proof: The linear independence of the setfvvv0; vvv1; � � � ; vvvN�1g

follows from Lemma 1. The other conclusions of the proposition then
follow from this linear independence.

III. ELEMENTARY 2-GROUPCHARACTER CODES

Hereafter we letA be the elementary2-Abelian group(ZZZ=2ZZZ)n,
for which we prescribe a basisfe1; � � � ; eng of generators. Moreover,
we denote the neutral element ofA by e0. For the fieldK we take a
finite field GF(q) for q odd. Sincef�1g is contained in GF(q), the

character groupM of A is defined. Relative to the basis forA we can
define characters byfj(ei) = (�1)j , where

j =

n�1

k=0

jk2
k; for 0 � j < 2n:

One easily verifies that this gives an indexingM = ff0; � � � ; f2 �1g
on the group of characters fromA to GF(q)�, where GF(q)� is defined
to be GF(q)nf0g .

Theorem 3: For any subsetX of A, letXc = AnX . Then the dual
codeC?X equalsCX .

Proof: This follows from the orthogonality relations of Lemma
1, the description of a generator matrix forCX of Proposition 2, and
from the fact that every element ofA is its own inverse.

The classes of codes over GF(q) described in this section have many
subclasses of codes. Different choices of the setX give different sub-
classes of codes over GF(q). We now describe a subclass of codes over
GF(q) which have the same parameters as the binary Reed–Muller
codes.

Definitions: The Hamming weightkak of an elementa =
a1e1+ � � �+anen ofA is defined to be the number of nonzeroak . For
�1 � r � n, let

X(r; n) = fa 2 A: kak > rg

and letCq(r; n) denote the codeCX(r;n) over GF(q). For a word
ccc = (c0; � � � ; c2 �1) in K2 , let the support ofccc be defined as

Supp (ccc) = fi: 0 � i < 2n; andci 6= 0g

and let its weightwt (ccc) be defined asjSupp (ccc)j. By convention we
define the minimum distance of the zero code to be1, which we rep-
resent by any integer larger than the block length of the code.

We usej to denote concatenation of codewords, and for two setsU
andV of codewords defineUkV to be the set

fuuuj(uuu+ vvv): uuu 2 U; vvv 2 V g:

Lemma 4: The dimension of the codeCq(r; n) is

sn(r) =

r

j=0

n

j
:

Proof: This follows from Proposition 2 and the definition of
X(r; n).

Lemma 5: The codeCq(r+1; n+1) decomposes as the direct sum

Cq(r+ 1; n)kCq(r; n) = (Cq(r+ 1; n)kf000g)� (f000gkCq(r; n))

wheref000g is the zero code inK2 .
Proof: For vector subspacesU andV of K2 it is clear from the

definitions thatUkV = Ukf000g� f000gkV . Moreover, by the combina-
torial equality

sn(r) + sn(r+ 1) = sn+1(r + 1)

Lemma 4 and the linear independence ofCq(r + 1; n)kf000g and
f000gkCq(r; n) imply the result provided that both are contained in
Cq(r + 1; n + 1).

Let An be the elementary2-Abelian group generated by
fe1; � � � ; eng, identified as a subgroup ofAn+1 = An�ZZZ=2ZZZ en+1.
The characterfj onAn identifies with the characterfj onAn+1 by
settingfj(en+1) = 1 for all 0 � j � 2n � 1. Then by definition
fj+2 = fjf2 , where

f2 (ei) =
�1; if i = n+ 1

1; otherwise.
The words inCq(r + 1; n)kf000g are of the formcccjccc such thatccc =

(c0; � � � ; c2 �1) and

2 �1

j=0

cjfj(a) = 0



282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

for all a in X(r+1; n). One readily verifies thatCq(r+1; n)kf000g=
CX , where

X1 = X(r+ 1; n) [ (An + en+1):

Similarly, f000gkCq(r; n) � CX , where

X2 = X(r; n) [ (X(r; n) + en+1):

SinceX1 andX2 containX(r + 1; n + 1), bothCX andCX are
contained inCq(r+ 1; n+ 1) and the result holds.

Theorem 6:Cq(r; n) is a [2n; sn(r); 2n�r] code over GF(q).
Proof: It only remains to prove the correctness of the minimum

distance. SinceX(0; n) = Anfe0g, a generator matrix forCq(0; n)
is

[f0(e0)f1(e0) � � � f2 �1(e0)] = [1 � � � 1]:

Therefore,Cq(0; n) has minimum weight2n.
At the other extreme,X(n; n) is empty, soCq(n; n) = K2 and

Cq(n; n) has minimum weight1. In particular, it follows that the min-
imum weight is correct forn = 1 and0 � r � 1.

Suppose now that Theorem 6 gives the correct minimum distance
for somen � 1 and all0 � r � n. By Lemma 5, a wordccc in Cq(r+
1; n + 1) is of the form

ccc = uuuj(uuu+ vvv)

whereuuu andvvv are codewords inCq(r + 1; n) andCq(r; n), respec-
tively. Then

wt(ccc)�2wt(uuu)+wt(vvv)�2jSupp(uuu) \ Supp(vvv)j�wt(vvv)�2n�r:

Conversely,f000gkCq(r; n) is a subcode ofCq(r + 1; n + 1) with
minimum distance2n�r, so the minimum distance ofCq(r+1; n+1)
is 2n�r.

Theorem 7: The minimum nonzero weight codewords generate
Cq(r; n).

Proof: LetMq(r; n) denote the set of minimum nonzero weight
codewords ofCq(r; n). The result is clear forn = 1 and allr, and
likewise forr = �1 and alln. Moreover,Cq(r+1; n+1) is generated
by

Mq(r + 1; n)kf000g [ f000gkMq(r; n)

by the direct sum of Lemma 5. This set is contained inMq(r+1; n+1),
from which the result holds by induction.

Let G be defined as the subgroup in the group of linear automor-
phisms ofK2 generatedby permutationsof coordinatesandby mul-
tiplicationsof coordinatesby elementsofK�. Two codesC andC0 are
calledequivalentif andonly if C 0 = �(C) for some� 2 G.

Theorem8: ThedualcodeCq(r; n)
? is equivalenttoCq(n� r�

1; n).
Proof: The theoremclearly holds for r = n, so we assume

henceforththat0 � r < n. Let � = e1 + � � �+ en. Thentheequality

X(r; n)c = �+X(n� r � 1; n)

follows immediatelyfrom thedefinitions.By Theorem3 andthedefi-
nitionsof thecodes,oneeasilyverifiesthatthemap

K
2 ! K

2

(c0; � � � ; c2 �1) 7! (f0(�)c0; � � � ; f2 �1(�)c2 �1)

is an automorphism ofK2 of order two, which induces an equivalence
of Cq(r; n)

? andCq(n� r � 1; n) and vice versa.

Corollary 9: Cq(r; n)
? is a[2n; sn(n�r�1); 2r+1] code which

is generated by its minimum nonzero weight codewords.
Proof: The conclusions follow from Theorems 6–8.

Remark: The Reed–Muller codesR(r; n) are well-known to have
the same parameters[2n; sn(r); 2n�r] as the codesCq(r; n), so the
latter can be viewed as analogs over GF(q) of the corresponding binary
Reed–Muller codes. Moreover, we have

R(r; n)? = R(n� r � 1; n)

of which Theorem 8 is its analog. While strict equality ofCq(r; n)
?

andCq(n� r � 1; n) does not hold, the proof shows that the equiva-
lenceisa simple coordinate twist. Stated formally, this says thatCq(n�
r � 1; n) is the dual ofCq(r; n) with respect to the twisted inner
product

huuu; vvvi =

2 �1

j=0

fj(�)uj vj

on vectorsuuu = (u0; � � � ; u2 �1) andvvv = (v0; � � � ; v2 �1) in K2 .

Example 1: Considern = 3. ThenC3(1; 3) is a [8; 4; 4] ternary
code with generator matrix

1 1 �1 �1 �1 �1 1 1

1 �1 1 �1 �1 1 �1 1

1 �1 �1 1 1 �1 �1 1

1 �1 �1 �1 1 1 1 �1

and weight enumerator polynomial1+24x4+16x5+32x6+8x8. In
Theorem 17, we show that the support of the codewords of minimum
nonzero weight form a1-(8; 4; 6) design.

Example 2: Considern = 4. ThenC3(2; 4) is a [16; 5; 8] ternary
code with generator matrix as seen in the matrix at the bottom of this
page and weight enumerator polynomial

1 + 40x8 + 80x10 + 32x11 + 80x12 + 10x16:

1 �1 �1 �1 1 1 1 �1 1 �1 �1 �1 1 1 1 �1

1 �1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1 �1

1 �1 1 �1 �1 �1 1 1 �1 �1 1 1 1 �1 1 �1

1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1

1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 1
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Its dual codeC3(2; 4)
? is a [16; 11; 4] code with weight enumerator

polynomial

1 + 200x4 + 352x5 + 2544x6 + 5600x7 + 13740x8

+ 23840x9 + 34272x10 + 36480x11 + 30840x12

+ 18400x13 + 8720x14 + 1824x15 + 334x16:

IV. THE WEIGHT DISTRIBUTION IN Cq(1; n)

Let the charactersfj be as defined previously for0 � j < 2n

and define vectorsvvvi = (f0(ei); � � � ; f2 �1(ei)) for 0 � i � n. In
particular,vvv0 is the vector(1; � � � ; 1) andfvvv0; vvv1; � � � ; vvvng is a basis
for the codeCq(1; n).

LetV = GF(q)n and foraaa in V letkaaak denote its Hamming weight.
For aaa = (a1; � � � ; an) in V , setaaa � (vvv1; � � � ; vvvn) equal to the dot
product n

i=1
aivvvi. The collection of vectors of the form n

i=1
aivvvi

constitute a subcodeC0
q (1; n) of codimension1. We first describe the

weight distribution inC0
q (1; n) then treat the nontrivial cosetsa0vvv0+

C0
q (1; n).
We begin with a series of lemmas which reduce the analysis of the

weight distribution to the weights of codewords in subsets ofC0
q (1; n).

Lemma 10: Let aaa have Hamming weightm in V . Then the vector
vvv = aaa � (vvv1; � � � ; vvvn) has Hamming weight2n � 2n�mjW j, where

W = bbb = (b1; � � � ; bn) 2 V : bi = �ai for all i and
n

i=1

bi = 0 :

Proof: Clearlyaaa � (vvv1; � � � ; vvvn) has weight2n less the number
of j for which

n

i=1

aifj(ei) = 0: (1)

For any suchj we associate the vectorbbb = (a1fj(e1); � � � ; anfj(en))
in W . But for anybbb inW there are2n�m indicesj for which(1) holds
and has associated vectorbbb. Namely, if we letj = n�1

i=0
ji2

i be one
such value, thenk = n�1

i=0
ki2

i is another if and only ifki�1 = ji�1
wheneverai 6= 0.

Let s = (q � 1)=2 and letf�1; � � � ; �q�1g be an indexing of the
elements of GF(q)� such that�i+s = ��i. For an elementaaa =
(a1; a2; � � � ; am) of V , define for eachi

ni(aaa) = jfk: 1 � k � n andak = ��igj :

Lemma 11: For aaa in V , let n1 = n1(aaa); � � � ; ns = ns(aaa) be
the associated multiplicities. Then the weight of the vectorvvv =
aaa � (vvv1; � � � ; vvvn) is

2n � 2n�m

�n �m �n
m �n mod2

m � =0

s

i=1

ni
ni +mi

2

:

In particular, the weight ofvvv depends only on the multiplicities
n1; � � � ; ns, and not on the ordering of the coordinates ofaaa.

Proof: By Lemma 10, it suffices to determinejW j. Let bbb be in
W , and for eachi let ui be the number of occurrences of�i in the
coordinates ofbbb. Then the number of occurrences of��i in this vector
is ni � ui. It follows that

n

i=1

bi =

s

i=1

(ui�i � (ni � ui)�i) =

s

i=1

(2ui � ni)�i

and we setmi = 2ui � ni. Since there are s

i=1

n

u
vectorsbbb in W

with associated multiplicitiesn1; � � � ; ns, we obtain

jW j =

0�u �n

m � =0

s

i=1

ni
ui

from which the lemma follows.

The following lemma gives the weight of vectors in the nontrivial
coset ofC0

q (1; n) in Cq(1; n), and is proved similarly.

Lemma 12: Foraaa in V , let n1 = n1(aaa); � � � ; ns = ns(aaa) be the
associated multiplicities. Then the weight of a vectorvvv = a0vvv0 +
aaa � (vvv1; � � � ; vvvn), with a0 6= 0, is

2n � 2n�m

�n �m �n
m �n mod2

m � =�1

s

i=1

ni
n +m

2

:

In particular, the weight ofvvv depends only on the multiplicities
n1; � � � ; ns, and not on the ordering of the coordinates ofaaa.

Whenq = 3 the product in Lemmas 11 and 12 consists of one term.
In this case, we obtain a precise formula for the weight distribution in
C0
3(1; n) andC3(1; n). First we prove a result concerning sums of

binomial coefficients in progressions.

Lemma 13: Let m be a positive integer. Define

a =

0�j�m
j�0mod3

m

j
b =

0�j�m
j�1mod3

m

j
c =

0�j�m
j�2mod3

m

j
:

1) If m = 3k, then

a =
2m + (�1)k2

3
b = c =

2m � (�1)k

3
:

2) If m = 3k + 1, then

a = b =
2m + (�1)k

3
c =

2m � (�1)k2

3
:

3) If m = 3k + 2, then

b =
2m + (�1)k2

3
a = c =

2m � (�1)k

3
:

Proof: Let m be of the form3k + i, with 0 � i � 2, and let�
be a primitive third root of unity. We note that� has trace�1 and that
� + 1 is a cube root of�1 whose square is�. Expanding the binomial
expression we obtain

(�+ 1)m =

m

j=0

m

j
�m�j :

In the three casesi = 0, 1, and2, respectively, we obtain

(�1)k = a+ c�+ b�2

(�1)k(�+ 1) = b+ a�+ c�2

(�1)k� = c+ b�+ a�2:
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TABLE I
THE WEIGHT DISTRIBUTION IN

C (1; n)

TABLE II
THE WEIGHT DISTRIBUTION IN C (1; n)nC (1; n)

Taking the trace of1 and� times the corresponding equation, together
with the equation2m = a+ b+ c, gives the asserted result.

Theorem 14: The weight distribution in the codeC0

3 (1; n) is given
by Table I and inC3(1; n)nC

0

3 (1; n) by Table II.
Proof: The weights follow by applying Lemma 13 to the weight

formulas of Lemmas 11 and 12. The frequency of a given weight is de-
termined by counting the number ofaaa in V with Hamming weightm.

Corollary 15: The weight distribution of the dual codeC3(n �
2; n)? is given in Tables I and II.

Proof: This follows from the equivalence withC3(1; n) of The-
orem 8.

Having determined the weight distribution inC3(1; n), we now de-
termine the minimum nonzero weight codewords.

Theorem 16: The minimum nonzero weight codewords inC3(1; n)
are precisely the distinct wordsavvvi + bvvvj , for a; b in GF(3)� and
0 � i < j � n. In particular, they are2n(n + 1) in number, and
two words have the same support if and only if one is a multiple of the
other.

Proof: By Theorem 6, the minimum nonzero weight is2n�1.
By Theorem 14, the weight2n�1 codewords are those of the form
avvvi + bvvvj , of which there are2n(n � 1). The final statement is an
immediate consequence.

Corollary 17: The set of supports of the minimum nonzero weight
codewords ofC3(1; n) is a1-(2n; 2n�1; n(n+ 1)=2) design.

Proof: By Theorem 6, the minimum nonzero weight supports are
subsets of the2n coordinate positions of size2n�1, and by Theorem
16 aren(n + 1) in number. Sincekth coordinate ofvvvi is fk�1(ei), it
is clear that exactly one of the pairfavvvi � bvvvjg has nonzerokth coor-
dinate. Thus exactly half of the supports of minimum nonzero weight
codewords contains a givenk, and the result follows.

V. CONCLUDING REMARKS

We have described a classCq(r; n) of group character codes over
GF(q) and determined their dimensions and minimum weights. For
eachn andr, the length, dimension, and minimum weight ofCq(r; n)
agrees with that of the binary Reed–Muller codeR(r; n). For the codes
Cq(1; n) we have explicitly determined the weight distribution and
proved that the minimum nonzero weight codewords give1-designs.
It remains an open problem for the class of codesCq(r; n) described
here to determine the weight distribution forr greater than1.
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New Constructions of Superimposed Codes

Arkadii G. D’yachkov, Anthony J. Macula, Jr, and
Vyacheslav V. Rykov

Abstract—Kautz–Singleton (1964) [1] suggested a class of binary
superimposed codes which are based on the-ary Reed–Solomon codes
(RS codes) [2]. Applying a concatenation of the binary constant-weight
error-correcting codes [2] and the shortened RS codes, we obtain new
constructions of superimposed codes. Tables of their parameters are given.
From the tables it follows that the rate of obtained codes exceeds the
corresponding random coding bound [3].

Index Terms—Clone-library screening, concatenated codes, Reed–
Solomon codes, superimposed codes.

I. SUPERIMPOSEDCODES

A. Notations and Definitions

Let 1 � s < t; N > 1 be integers andX = kXi(u)k,
i = 1; 2; � � � ; N , u = 1; 2; � � � ; t; be a binary(N � t)-ma-
trix (code) of size t and length N with columns (codewords)
xxx(1); xxx(2); � � � ; xxx(t), wherexxx(u) = (x1(u); x2(u); � � � ; xN(u)).
Let

def
= denote the equation by definition. For codeX, letw and� be

defined by

w
def
= min

u

N

i=1

xi(u) �
def
= max

u; v

N

i=1

xi(u)xi(v):

w is theminimal weight of codewordsand� is themaximal correlation
of codewords.

We say that the binary columnxxx coversthe binary columnyyy if the
Boolean sumxxx _ yyy = xxx. The codeX is called [1], [4]–[6], asuper-
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