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Minimum Description Length Induction, 
Bayesianism, and Kolmogorov Complexity 

Paul M. B. Vitanyi and Ming Li 

Abstract-The relationship between the Bayesian approach 
and the minimum description length approach is established. We 
sharpen and clarify the general modeling principles minimum 
description length (MDL) and minimum message length (MML), 
abstracted as the ideal MDL principle and defined from Bayes's 
rule by means of Kolmogorov complexity. The basic condition 
under which the ideal principle should be applied is encapsulated 
as the fundamental inequality, which in broad terms states that 
the principle is valid when the data are random, relative to every 
contemplated hypothesis and also these hypotheses are random 
relative to the (universal) prior. The ideal principle states that the 
prior probability associated with the hypothesis should be given 
by the algorithmic universal probability, and the sum of the log 
universal probability of the model plus the log of the probability 
of the data given the model should be minimized. If we restrict 
the model class to finite sets then application of the ideal principle 
turns into Kolmogorov's minimal sufficient statistic. In general, 
we show that data compression is almost always the best strategy, 
both in model selection and prediction. 

Index Terms-Bayes's rule, data compression, Kolmogorov com­
plexity, MDL, MML, model selection, prediction, randomness test, 
universal distribution. 

I. INTRODUCTION 

I T IS widely believed that the better a theory compresses the 
data concerning some phenomenon under investigation, the 

better we have learned, generalized, and the better the theory 
predicts unknown data. This belief is vindicated in practice and 
is a form of "Occam's razor" paradigm about "simplicity" but 
apparently has not been rigorously proved in a general setting. 
Here we show that data compression is almost always the best 
strategy, both in model selection by using an ideal form of 
the minimum description length (ideal MDL) principle and in 
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prediction of sequences. To demonstrate these benificial aspects 
of compression we use the Kolmogorov theory of complexity 
[15] to express the optimal effective compression. The general 
idea to use compressed data for prediction was apparently 
first put forward by Solomonoff [30], [46]. Independently, 
Wallace and coauthors formulated in [38] the idea of minimum 
message length (MML) as compressed two-part codes for the 
data corresponding to replacing negative-log probabilities in 
Bayes's rule by Shannon-Fano code lengths. Rissanen [25], 
independent of Wallace but inspired by Solomon off's and 
Kolmogorov' s idea of ultimate effective compression of data, 
formulated the minimum description length (MDL) idea using 
essentially the formal equivalent of negative-log probabilities. 
In 1989, the current authors formulated ideal MDL [20], and in 
1991 Barron and Cover [ 4] analyzed statistical MDL and hinted 
at (but did not formulate) the idea of ideal MDL. Here we 
extend and complete the analysis of [20] and identify precisely 
the situations in which ideal MDL and Bayesianism coincide 
and where they differ. We indirectly validate MDL by showing 
that in a ''typical" situation its decisions coincide with those 
of Bayesianism: With probability rising to one with increasing 
sample size, both the MDL principle and Bayesian induction 
select the same hypothesis or prediction. In fact, we identify 
the class of hypothesis-sample pairs for which this happens: 
the "individually random" ones. Consequently, all results about 
convergence of Bayesian methods carry over to convergence 
with probability one for MDL induction. 

Model Selection: To demonstrate that compression is good 
for model selection we use the ideal MDL principle defined 
from Bayes' s rule by means of Kolmogorov complexity, 
Section II. This transformation is valid only for individually 
random objects in computable distributions; ifthe contemplated 
objects are nonrandom or the distributions are not computable 
then MDL and Bayes's rule may part company. Basing MDL 
on first principles we probe below the customary presentation 
of MDL as being justified in and of itself by philosophical per­
suasion [25], [26)[44]. The minimum message length (MML) 
approach, while relying on priors, in practice is a related 
approach [38], [39]. Such approaches balance the complexity 
of the model (and its tendency for overfitting) against the 
preciseness of fitting the data (the error of the hypothesis). Our 
analysis gives evidence why in practice Bayesianism is prone 
to overfitting and MDL is not. 

Ideal MDL: We are only interested in the following common 
idea shared between all MDL-like methods: "Select the hypoth­
esis which minimizes the sum of the length of the description of 
the hypothesis (also called 'model') and the length of the de­
scription of the data relative to the hypothesis." We take this to 
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mean that evei: ~o~templated individual hypothesis and every 
contemplated md1v1dual data sample is to be maximally com­
pressed: the description lengths involved should be the shortest 
effective description lengths. We use "effective" in the sense of 
"Turing computable" [34], [47]. Shortest effective description 
length is asymptotically unique and objective and known as the 
Kolmogorov complexity [ 15] of the object being described. Thus 
"ideal MDL" is a Kolmogorov complexity based form of the 
minimum description length principle. In order to define ideal 
MDL from Bayes's rule we require some deep results due to L. 
A. Levin [19] and P. Gacs [13] based on the novel notion of in­
dividual randomness of objects as expressed by P. Martin-Lof's 
randomness tests [22]. We show that the principle is valid when 
a basic condition encapsulated as the "fundamental inequality" 
(12) in Section II is satisfied. Broadly speaking, this happens 
when the data are random, relative to each contemplated hypoth­
esis, and also these hypotheses are random relative to the con­
templated prior. The latter requirement is always satisfied for the 
so-called "universal" prior. Under those conditions ideal MDL, 
Bayesianism, MDL, and MML, select pretty much the same 
hypothesis. Theorem 6 states that minimum description length 
reasoning using shortest effective descriptions coincides with 
Bayesian reasoning using the universal prior distribution [19], 
[12], [9], provided the minimum description length is achieved 
for those hypotheses with respect to which the data sample is 
individually random (in the sense of Martin-Lof). If we restrict 
the model class to finite sets then this procedure specializes to 
Kolmogorov's minimal sufficient statistics [8], [21]. 

Kolmogorov Complexity: We recapitulate the basic defini­
tions in Appendix A in order to establish notations. Shortest 
effective descriptions are "effective" in the sense that we can 
compute the described objects from them. Unfortunately, [15], 
[41 l, there is no general method to compute the length of a 
shortest description (the Kolmogorov complexity) from the 
object being described. This obviously impedes actual use. 
Instead, one needs to consider recursive approximations to 
shortest descriptions; for example, by restricting the allowable 
approximation time. This course is followed in one sense or 
another in the practical incarnations such as MML and MDL. 
There one often uses simply the Shannon-Pano code, which 
assigns prefix code length l,, := - log P(x) to x irrespective 
of the regularities in ;i:. If P(x) = 2-1, for every x E {O, l}n, 
then the codeword length of an all-zero x equals the codeword 
length of a truly irregular :z:. While the Shannon-Farro code 
gives an expected codeword length close to the entropy, it does 
not distinguish the regular elements of a probability ensemble 
from the random ones. 

Universal Probability Distribution: Just as the Kolmogorov 
complexity measures the shortest effective description length of 
an object, the universal probability measures the greatest effec­
tive probability. Both notions are objective and absolute in the 
sense of being recursively invariant by Church's thesis [21]. We 
give definitions in Appendix B. We use universal probability as 
a universal prior in Bayes's rule to analyze ideal MDL. 

Martin-Lo! Randomness: The common meaning of a 
"random object" is an outcome of a random source. Such 
outcomes have expected properties but particular outcomes 
may or may not possess these expected properties. In contrast, 

we use the notion of randomness of individual objects. This 
elusive notion's long history goes back to the initial attempts 
by von Mises, [35] to formulate the principles of application 
of the calculus of probabilities to real-world phenomena. 
Classical probability theory cannot even express the notion of 
"randomness of individual objects." Following almost half a 
century of unsuccessful attempts, the theory of Kolmogorov 
complexity, [15], and Martin-Lof tests for randomness, [22], 
finally succeeded in formally expressing the novel notion of 
individual randomness in a correct manner, see [21]. Every in­
dividually random object possesses individually all effectively 
testable properties that are only expected for outcomes of the 
random source concerned. It will satisfy all effective tests for 
randomness-known and unknown alike. In Appendix C we 
recapitulate the basics. 

Two-Part Codes: The prefix code of the shortest effective 
descriptions gives an expected codeword length close to the en­
tropy and also compresses the regular objects until all regularity 
is squeezed out. All shortest effective descriptions are com­
pletely random themselves, without any regularity whatsoever. 
The MDL idea of a two-part code for a body of data D is natural 
from the perspective of Kolmogorov complexity. If D does not 
contain any regularities at all, then it consists of purely random 
data and the hypothesis is precisely that. Assume that the body 
of data D contains regularities. With the help of a description of 
those regularities (a model) we can describe the data compactly. 
Assuming that the regularities can be represented in an effective 
manner (that is, by a Turing machine), we encode the data as a 
program for that machine. Squeezing all effective regularity out 
of the data, we end up with a Turing machine representing the 
meaningful regular information in the data together with a pro­
gram for that Turing machine representing the remaining mean­
ingless randomness of the data. This intuition finds its basis in 
Definitions 10 and 11 in Appendix A. However, in general, there 
are many ways to make the division into meaningful informa­
tion and remaining random information. In a painting, the rep­
resented image, the brush strokes, or even finer detail can be the 
relevant information, depending on what we are interested in. 
What we require is a rigorous mathematical condition to force a 
sensible division of the information at hand in a meaningful part 
and a meaningless part. One way to do this in a restricted set­
ting where the hypotheses are finite sets was suggested by Kol­
mogorov at a Tallin conference in 1973 and published in [16]. 
See [8] and [21] and Section II-A. Given data D, the goal is to 
identify the "most likely" finite set A of which D is a "typical" 
element. For this purpose we consider sets A such that D E A 
and we represent A by the shortest program A* that computes 
the characteristic function of A. We use the notation d( A) for the 
number of elements in a finite set A. The Kolmogorov minimal 
sufficient statistic is the shortest A*, say A0 associated with the 
set A0 , over all A containing D such that the two-part descrip­
tion consisting of A0 and log d(Ao) is as short as the shortest 
single program that computes D without input. This definition 
is nonvacuous since there is a two-part code (based on hypoth­
esis Av = { D}) that is as concise as the shortest single code. 

The shortest two-part code must be at least as long as the 
shortest one-part code. Therefore, the description of D given A() 
cannot be significantly shorter than log d( Ao). By the theory of 
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Martin-Lof randomness in Appendix C this means that Dis a 
"typical" element of A. The ideal MDL principle expounded 
in this paper is essentially a generalization of the Kolmogorov 
minimal sufficient statistic. 

Note that in general finding a minimal sufficient statistic is 
not recursive. Similarly, even computing the MDL optimum in a 
much more restricted class of models may run into computation 
difficulties since it involves finding an optimum in a large set of 
candidates. In some cases one can approximate this optimum, 
[36], [40]. 

Prediction: The most likely single hypothesis does not nec­
essarily give the prediction with the best expectation. For ex­
ample, consider a situation where we are given a coin of un­
known bias p of coming up "heads" which is either P1 = i or 
P2 = ~. Suppose we have determined that there is probability ~ 
that p = Pi and probability 1 that p = P2. Then the most likely 
hypothesis is p = p1 which predicts a next outcome "heads" as 
having probability ~· Yet the expectation of throwing "heads" 
is given by the mixture 

2 1 4 
-pi+ -p2 = -. 
3 3 9 

Thus the fact that compression is good for hypothesis 
identification problems does not imply that compression is 
good for prediction. In Section III, we analyze the relation 
between compression of the data sample and prediction in the 
very general setting of R. Solomonoff [30), [46), [31]. We 
explain Solomon off's prediction method using the universal 
distribution. We show that this method is not equivalent to 
the use of shortest descriptions. Nonetheless, we demonstrate 
that compression of descriptions almost always gives optimal 
prediction. 

Scientific Inference: The philosopher D. Hume (1711-1776) 
argued (14] that true induction is impossible because we can 
only reach conclusions by using known data and methods. 
Therefore, the conclusion is logically already contained in the 
start configuration. Consequently, the only form of induction 
possible is deduction. Philosophers have tried to find a way out 
of this deterministic conundrum by appealing to probabilistic 
reasoning such as using Bayes's rule [2), [42]. One problem 
with this is where the "prior probability" one uses has to 
come from. Unsatisfactory solutions have been proposed by 
philosophers like R. Carnap [5) and K. Popper [24]. 

Essentially, combining the ideas of Epicurus, Ockham, 
Bayes, and modern computability theory, Solomonoff [30), 
[ 46], [31] has successfully invented a "perfect" theory of 
induction. It incorporates Epicurus's multiple explanations 
idea, (1 ], since no hypothesis that is still consistent with the 
data will be eliminated. It incorporates Ockham's simplest 
explanation idea since the hypotheses with low Kolmogorov 
complexity are more probable. It uses the objective fixed 
"universal" prior distribution in all cases instead of a variable 
"real" prior distribution. The inductive reasoning is performed 
by means of the mathematically sound rule of Bayes. 

Comparison with Related Work: Kolmogorov's minimal 
sufficient statistic deals with hypothesis selection where the 
considered hypotheses are finite sets of bounded· cardinality. 
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Ideal MDL hypothesis selection generalizes this procedure to 
arbitrary settings. It is satisfying that our findings on ideal MDL 
confirm the validity of the "real" MDL principle which rests on 
the idea of stochastic complexity. The latter is defined in such 
a way that it represents the shortest code length only for almost 
all data samples (stochastically speaking the ''typical" ones) 
for all models with real parameters in certain classes of proba­
bilistic models except for a set of Lebesgue measure zero, [26], 
[ 44], [ 10], [23]. Similar results concerning probability density 
estimation by MDL are given in [4]. These references consider 
probabilistic models and conditions. We believe that in many 
current situations the models are inherently nonprobabilistic 
as, for example, in the transmission of compressed images 
over noisy channels, [32]. Our algorithmic analysis of ideal 
MDL is about such nonprobabilistic model settings as well as 
probabilistic ones (provided they are computable). The results 
are derived in a nonprobabilistic manner entirely different 
from the cited papers. It is remarkable that there is a close 
agreement between the real properly articulated MDL principle 
and our ideal one. The ideal MDL principle is valid in case the 
data is individually random with respect to the contemplated 
hypothesis and the latter is an individually random element 
of the contemplated prior. Individually random objects are 
in a rigorous formal sense "typical" objects in a probability 
ensemble and together they constitute almost all such objects 
(all objects except for a set of Lebesgue measure zero in the 
continuous case). The nonprobabilistic expression of the range 
of validity of "ideal MDL" implies the probabilistic expressions 
of the range of validity of the "real MDL" principle. 

Our results are more precise than the earlier probabilistic ones 
in that they explicitly identify the "excepted set of Lebesgue 
measure zero" for which the principle may not be valid as the 
set of "individually nonrandom elements." The principle selects 
models such that the presented data are individually random 
with respect to these models: if there is a true model and the 
data are not random with respect to it then the principle avoids 
this model. This leads to a mathematical explanation of corre­
spondences and differences between ideal MDL and Bayesian 
reasoning, and in particular it gives some evidence under what 
conditions the latter is prone to overfitting while the former is 
not. 

II. IDEAL MDL 

The idea of predicting sequences using shortest effective de­
scriptions was first formulated by R. Solomonoff [30], [46]. He 
used Bayes's formula equipped with a fixed "universal" prior 
distribution. In accordance with Occam's dictum, that distri­
bution gives most weight to the explanation which compresses 
the data the most. This approach inspired Rissanen [25], [26], 
[ 44] to formulate the MDL principle. The applied principle and 
the associated one-part code length (the stochastic complexity] 
have evolved; the latest and most complete survey is [3]. Un· 
aware of Solomonoff's work, Wallace and his coauthors [38], 
[39] formulated a related but somewhat different minimum mes· 
sage length (MML) principle. 

We focus only on the following central ideal version whict 
we believe is the essence of the matter. Indeed, we do not ever 
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care about whether we deal with statistical or deterministic hy­
potheses. 

Definition 1: Given a sample of data, and an effective 
enumeration of models, ideal MDL selects the model with the 
shortest effective description that minimizes the sum of 

• the length, in bits, of an effective description of the model; 
and 

• the length, in bits, of an effective description of the data when 
encoded with help of the model. 

Intuitively, a more complex hypothesis H may fit the data 
better and, therefore, decreases the misclassified data. If H de­
scribes all the data, then it does not allow for measuring errors. 
A simpler description of H may be penalized by increasing the 
number of misclassified data. If H is a trivial hypothesis that 
contains nothing, then all data are described literally and there 
is no generalization. The rationale of the method is that a bal­
ance in between seems to be required. 

One way derive the MDL approach is to start from Bayes's 
rule written as 

Pr (HID) = Pr (DIH)P(H) 
Pr (D) . (1) 

If the hypotheses space 'H is countable and the hypotheses H 
are exhaustive and mutually exclusive, then 

I: P(H) = 1 Pr (D) = 2:: Pr (DIH)P(H). 
HE1i HE1i 

For clarity and because it is relevant for the sequel we distin­
guish notationally between the given prior probability "P( · )" 
and the probabilities "Pr ( · )" that are induced by P( ·) and the 
hypotheses H. Bayes's rule maps input (P(H), D) to output 
Pr (HI D)-the posterior probability. For many model classes 
(Bernoulli processes, Markov chains), as the number n of data 
generated by a true model in the class increases the total inferred 
probability can be expected to concentrate on the "true" hypoth­
esis (with probability one for n -+ oo). That is, as n grows the 
weight of the factor Pr (DIH)/ Pr (D) dominates the influence 
of the prior P(·) for typical data of H-by the law oflarge num­
bers. The importance of Bayes's rule is that the inferred prob­
ability gives us as much information as possible about the pos­
sible hypotheses from only a small number of (typical) data and 
the prior probability. 

In general we do not know the prior probabilities. The MDL 
approach in a sense replaces the unknown prior probability 
that depends on the phenomenon being investigated by a fixed 
probability that depends on the coding used to encode the 
hypotheses. In ideal MDL the fixed "universal" probability 
(Appendix B) is based on Kolmogorov complexity-the length 
of the shortest effective code (Appendix A). 

In Bayes' s rule we are concerned with maximizing the term 
Pr (HID) over H. Taking the negative logarithm at both sides 
of the equation, this is equivalent to minimizing the expression 
-log Pr (HID) over H given as 

- log Pr (HID)= - log Pr (DJH)-log P(H) +log Pr (D). 

Since the probability Pr (D) is constant under varying H, we 
want to find the Ho that1 

Ho := min arg{ - log Pr (DIH) - log P(H)}. (2) 
HE1i 

In MML as in [39] or MDL as in [26], [44] one roughly 
interprets these negative logarithms of probabilities as the cor­
responding Shannon-Pano codeword lengths.2 But we can also 
use descriptions such that the lengths of the codewords equals 
the Kolmogorov complexities. Then the expected codeword 
length is close to the entropy, but additionally each object is 
compressed so that all its regularities are accounted for [21]. 
The resulting codeword is maximally random, that is, it has 
maximal Kolmogorov complexity.3 

Under certain restrictions to be determined later, the proba­
bilities involved in (2) can be substituted by the corresponding 
universal probabilities m(·) (Appendix B) 

log P(H) := log m(H) 

log Pr (DIH) := log m(DIH). 

(3) 

According to the Coding Theorem 12 in Appendix B [19), [12), 
[9], we can substitute 

- log m(H) = K(H) (4) 

-log m(DIH) =K(DIH) 

where K ( ·) is the prefix complexity of Appendix A. This way 
we replace the sum of (2) by the sum of the minimum lengths 
of effective self-delimiting programs that compute descriptions 
of Hand DIH. The result is the code-independent, recursively 
invariant, absolute form of the MDL principle [20]. 

Definition 2: Given an hypothesis class 'H and a data sample 
D, the ideal MDL principle selects the hypothesis 

Ho:= minarg{K(DIH) + K(H)}. (5) 
HE1i 

If there is more than one H that minimizes (5) then we break 
the tie by selecting the one of least complexity K ( H). 

The key question of Bayesianism versus ideal MDL is: When 
is the substitution (3) valid? We show that in a simple setting 
were the hypotheses are finite sets the ideal MDL principle 
and Bayesianism using the universal prior m(x) coincide 
with each other and with the "Kolmogorov minimal sufficient 
statistic." We generalize this to probabilistic hypothesis classes. 

1Notation :l'o = min argx {f(.t)} assigns to .ro the argument that minimizes 
f(x). 

2Tue term - log Pr (DI H) is also known as the self-information in informa­
tion theory and the negative log-likelihood in statistics. It can now be regarded 
as the number of bits it takes to redescribe or encode D with an ideal code rel­
ative to H. For the Shannon-Pano code see Section Il-C. 

3The relation between the Shannon-Pano code and Kolmogorov complexity 
is treated in Section II-C. For clarity of treatment, we refer the reader to the Ap­
pendices or [21] for all definitions and the analysis of auxiliary notions. This 
way we also do not deviate from the main argument, do not obstruct the knowl­
edgeable reader, and do not confuse or discourage the reader who is unfamiliar 
with Kolmogorov complexity theory. The bulk of the material is Appendix C on 
Martin-Lof's theory of randomness tests. In particular the explicit expressions 
of universal randomness tests for arbitrary recursive distributions seems unpub­
lished apart from [21] and partially in [13]. 
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In full generality, however, ideal MDL and Bayesianism may 
diverge due to the distinction between the - log P( ·) (the 
Shannon-Pano code length) and the Kolmogorov complexity 
K( ·) (the shortest effective code length). We establish the 
fundamental inequality defining the range of coincidence of 
the two principles. 

From now on, we will denote by < an inequality to within an 

additive constant, and by ~ the situation when both < and t 
hold. 

A. Kolmogorov Minimal Sufficient Statistic 

Considering only hypotheses that are finite sets of binary 
strings of finite lengths, the hypothesis selection principle 
known as "Kolmogorov's minimal sufficient statistic" [16] has 
a crisp formulation in terms of Kolmogorov complexity, Shen' 
[29], V'yugin [37], and Cover and Thomas [8]. We use prefix 
complexity instead of plain complexity as in [21]. For this re­
stricted hypothesis class we show that the Kolmogorov minimal 
sufficient statistic is actually Bayesian hypothesis selection 
using the universal distribution m( ·) as prior distribution and 
it also coincides with the ideal MDL principle. Let k and 6 be 
natural numbers. A binary string D representing a data sample 
is called (k, 6)-stochastic if there is a finite set H ~ {O, 1 }* 
and D E H such that 

K(H)::; k K(DIH) ~ log d(H) - 6. 

The first inequality (with knot too large) means that His suffi­
ciently simple. The second inequality (with the randomness de­
ficiency 6 not too large) means that D is an undistinguished (typ­
ical) element of H. Indeed, if D had simple properties defining 
a very small subset H' of H, then these could be used to obtain 
a simple description of D by determining its ordinal number 
in H', which would require log d(H') bits, which is much less 
than log d( H). 

Suppose we carry out some experiment of which the outcome 
can a priori be every binary string. Suppose the outcome is D. 
Knowing D, we want to recover the appropriate hypothesis H. It 
seems reasonable to require that first, H have a simple descrip­
tion, and second, that D be a "typical" outcome of an experi­
ment under hypothesis H; that is, D to be maximally random 
with respect to H. Suppose that under the hypothesis H every 
outcome is a binary string of length n with n/2 1 's. This set 
has cardinality at most(n/ 2) = 8(2n / y'n). To describe an el-

ement D E H requires :<n - (1/2) log n bits. To describe 
H ~ {O, l}n given n requires 0(1) bits (that is, k is small 
in (6) below). Conditioning everything on the length n, we have 

+ + 1 
K(Dln)<K(DIH, n) + K(Hln)<n - 2log n 

and for the overwhelming majority of the D's in H we have 

+ 1 
K(Dln)>n - 2 log n. 

Such D's are called (0(1), 0(1))-stochastic. 
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The Kolmogorov structurefanction Kk(Dln) of DE {O, 1 }n 
is defined in [8] as 

Kk(Dln) = min {log d(H): DE H, K(Hln):::; k}. 

For a given small constant c, let ko be the least k such that 

Kk(Dln) + k::; K(Dln) +c. (6) 

Let Ho be the corresponding set, and let H0 be its shortest pro­
gram. This k0 with K(Holn) ::; ko is the least k for which the 
two-part description of D is as parsimonious as the best single 
part description of D. 

For this approach to be meaningful we need to show that 
there always exists a k satisfying (6). For example, consider 
the hypothesis Hv := {D}. Then, log d(Hv) = 0 and 
K(Hvln)~K(Dln) which shows that setting k~K(DJn) 
satisfies (6) since Kk(Dln)~O. 

We can view this as selecting H's until we found one, say 
H0 , such that D is maximally complex in it-rather similar 
to aiming a magnifying glass at an object choosing different 
positions until the object is sharply in focus. The optimal 
position Ho represents all nonaccidental structures in D. The 
K ko ( D In )-part of the description just provides an index for 
:c in H0--essentially the description of the randomness or 
accidental structure of the string. 

Definition3: Letrl:={H:H~{O, l}n} andDE{O, l}n. 
Define 

Ho := min arg{K(Hln): K(Hln) +log d(H)~K(Dln)}. 
HE"li 

(7) 

The shortest program H0 that prints out the characteristic se­
quence of Ho E {O, 1 }n is called the Kolmogorov minimal suf­
ficient statistic (KMSS) for D, given n. 

All programs describing sets H with K(Hln) :::; ko such 
that Kk0 (Dln) + ko~K(Dln) are sufficient statistics. But the 
"minimal" sufficient statistic is induced by the set Ho having 
the shortest description among them.4 The Kolmogorov min­
imal sufficient statistic is related to Bayesian inference and ideal 
MDL. 

Theorem I: Let n be a large enough positive integer. Con­
sider the hypotheses class H. := { H: H ~ {O, 1 }n} and a data 
sample DE {O, l}n. All of the following principles select the 
same hypothesis: 

i) Bayes's rule to select the least complexity hypothesis 
among the hypotheses of maximal a posterior probability 
using both: a) the universal distribution m( ·) as prior 
distribution and b) Pr (DIH) is the uniform probability 
1/d(H) for D E Hand 0 otherwise; 

ii) Kolmogorov minimal sufficient statistic; and 
iii) ideal MDL-provided we ignore here the "least complexity 

hypothesis" requirement. 
Proof" 

i) ,..... ii). Substitute probabilities as in the statement of the 
theorem in (2). 

4Explicit forms of KMSS will be given in a future paper [33]. 
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ii) ,._., iii). Let Ho be the Kolmogorov minimal sufficient 
statistic for D so that (7) holds. It is straightforward that 

+ 
K(Holn) + K(DIHo, n)>K(Dln) 

and 
+ K(DIHo, n)< log d(H0 ) 

because we can describe D by its index in the set H 0 . Altogether 
it follows that K(DIH0 , n)~ log d(Ho) and 

K(Holn) + K(D\Ho, n)~K(D\n). 

+ 
Since K(Hln) + K(D\H, n)>K(D\n) for all HEH, if 

then 

Ho= {H': H' = min arg{K(Hln) + K(DIH, n)}} 
HE'li 

Ho= minarg{K(H): HE Ho} 
H 

which is what we had to prove. D 

Example 1: Let us look at a coin toss example. If the 
probability p of tossing "l" is unknown, then we can give a 
two-part description of a string D representing the sequence 
of n outcomes by describing the number k of l 's in D first, 
followed by the index j ::; d(H) of D in the set H of strings 
with k l's. In this way, "k\n" functions as the model. If k is 
incompressible with K(k\n)~ log n and K(jlk, n):!:log G) 
then the Kolmogorov minimal sufficient statistic is described by 
kin in log n bits. However if p is a simple value like ~ (or 1 / -rr ), 
then with overwhelming probability we obtain a much simpler 
Kolmogorov minimal sufficient characteristic by a description 

ofp =~and k = ~ + 0( yn) so that K(kln):(~ log n. <) 

B. Probabilistic Generalization of KMSS 

Comparison of (2), (7), and Theorem 1 suggests a more 
general probabilistic version of Kolmogorov minimal sufficient 
statistic proposed by Shen [29] (also [37]). This version turns 
out to coincide with maximum a posteriori Bayesian inference. 
Our analysis comparing it with ideal MDL proceeds more 
smoothly if we restrict consideration to hypotheses classes 
satisfying some mild conditions. 

Definition 4: We call a hypothesis class H complete if it is an 
enumerable class of probabilistic hypotheses and 1) is an enu­
merable domain of data samples such that for every H E H the 
probability density function Pr ( · IH) over the domain of data 
samples is recursive. We require additionally that 1i contains a 
trivial hypothesis H0 satisfying K(H0):!:0, that is, k(Ho) < c 
for a small fixed constant c independent of H, and also for every 
data sample D in the domain there is an H D E H such that 
Pr(DIHD) = 1 and K(DIHn):!:O (the hypothesis forces the 
data sample). 

Let H be a complete hi'pothesis class and let 

H0 := minarg{K(H): K(H)-log Pr(DIH)~K(D)}. (8) 
HEH 

The hypothesis H 0-rather the shortest program H0 that prints 
out the characteristic sequence of Ho E { 0, 1 }"-is called the 
generalized Kolmogorov minimal sufficient statistic (GKMSS) 
for D. Since His complete the GKMSS exists.s. 6 

Theorem 2: The least complexity maximum a poste­
riori probability hypothesis Ho in Bayes's rule using prior 
P(JI) := m(H) coincides with the generalized Kolmogorov 
minimal sufficient statistic. 

Proof' Substitute P(.1:) := m(a:) in (2). Using (4) the least 
complexity hypothesis satisfying the optimization problem is 

Ho:= minarg{K(H'): H' := rninarg{K(H) 
H' HEH 

- log Pr (DIH)}}. (9) 

By assumptions in Definition 4 there is an Ho such that 
K(HD) - log Pr (DIHn )~K(D). It remains to be shown that 

t 
K(H) - log Pr (DIH)>K(D) for all H, D. 

It is straightforward that K(H) + K(DIH)>K(D). For re­
cursive Pr (-1·) it holds that ln:!: - log Pr (DIH) is the code 
length of the effective Shannon-Fano prefix code (see Section 
II-C or [8], [21]) to recover D given H. Since the prefix com­
plexity is the length of the shortest effective prefix code we have 

+ 
- log Pr (DIH)>K(DIH). D 

C. Shannon-Fano Code Versus Shortest Programs 

It is well-known that there is a tight connection between 
prefix codes, probabilities, and notions of optimal codes. A key 
distinction between Bayesianism and ideal MDL lies in the 
distinction between of codes that are optimal on average and 
codes that are optimal in every individual case. 

The Shannon-Farro prefix code [8] for an ensemble of source 
words with probability density q has codeword length lq(:r:) := 
- log q( :z:) (up to rounding) for source word :r:. This code satis­
fies 

H(q)::; L q(:z:)lq(:z:)::::; H(q) + 1 
x 

where H(q) is the entropy of q. By the Noiseless Coding The­
orem this is the least expected codeword length among all prefix 
codes. Therefore, the hypothesis H which minimizes (2) written 
as 

lpr (·IHJ(D) + lp(H) 

minimizes the sum of lengths of two prefix codes that both have 
shortest expected codeword lengths. This is more or less what 
MML [39] and MDL [26], [44] do. 

But there are many prefix codes that have expected codeword 
length almost equal to the entropy. Consider only the class of 
prefix codes that can be decoded by Turing machines (other 
codes are not effective). There is an optimal code in that class 
with codeword length K ( .1:) for object :r. "Optimality" means 

5Tue equivalent hypothesis for a data sample D in the setting of the Kol­
mogorov minimal sufficient statistic was H D = { D}. 

6The Kolmogorov minimal sufficient statistic of Section II-A is the special 
case of the generalized version for hypotheses that are finite sets and with 
"Pr ( DIH)" is the uniform probability "1/d( H)." 
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that for every prefix code in the class there is a constant c such 
that for all x the length of the code for :r: is at least K ( x) - c, 
see Appendix A or [21]. 

In ideal MDL we minimize the sum of the effective descrip­
tion lengths of the individual elements H, D involved as in (5). 
This is validated by Bayes's rule provided (3) holds. To satisfy 
one part of (3) we are free to make the new assumption that 
the prior probability P(·) in Bayes's rule (1) is fixed as m(·). 
However, with respect to the other part of (3) we cannot as­
sume that the probability Pr(-IH) equals m(·IH). The reason 
is that the probability Pr (·IH) may be totally determined by the 
hypothesis H. Depending on H, therefore, lpr (·IHJ(D) may be 
very different from K (DI H).This holds especially for "simple" 
data D which have low probability under assumption of hypoth­
esis H. 

Example 2: Suppose we flip a coin of unknown bias n times. 
Let hypothesis H and data D be defined by 

H := [ Probability 'head' is ~] 

D := hh···h . ..._____, 
n times 'h'(ead)s 

Then we have Pr (DIH) = ( ~) n and 

lpr cwi(D) = - log Pr (DIH) = n. 

In contrast 

+ 
K(DIH)< log n + 2 log log n. 

D. Individually Random Strings 

The question arises: When is - log P(x) ~ K(x)? This is 
answered by the theory of individual randomness. Consider a 
probabilistic ensemble consisting of the set { 0, 1} * endowed 
with a recursive probability density function P: { 0, 1} * __... 
[O, 1).7, 8 By Theorem 15 (Appendix C) an element x is 
Martin-Lof random with randomness deficiency 8 if the 
universal test tLo(xlP) =log (m(x)/ P(x)) = 8.9 

Definition 5: Let P: {O, I}* __,.. [O, 1] be a recursive prob­
ability density distribution. Then, the prefix complexity K(P) 
of P is defined as the length of the shortest self-delimiting pro­
gram for the reference universal prefix machine to simulate the 
Turing machine computing the probability density function P: 
It is the shortest effective self-delimiting description of P, (Ap­
pendix A). 

Definition 6: Let P: { 0, 1} * __,.. [ 0, 1] be a recursive prob­
ability density function. An object x E {O, 1}* is Martin-Lo! 
random with respect to P if the randomness deficiency 

r.:o(xlP) =log (m(x)/ P(x)):<K(P). 
Let l(x) denote the length (number of bits) in x E 

{O, 1}*-as in Appendix A. If P(x) is a recursive distribution 

7 A real-valued function is recursive if there is a Turing machine that for every 
argument and precision parameter b computes the function value within preci­
sion 2-b and halts. 

swe can identify N (the natural numbers) and { 0, 1} • as in Appendix A. 
9This means that every x is random (has randomness deficiency 0) with re­

spect to the universal distribution m(x) (substitute P(x) := m(:r) above). 
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then we can consider the sequence of recursive conditional 
probability distributions P,,(x) := P(xll(x) = n) for 
n = 1, 2, · ·· .. 

Lemma 1: Let R( n) denote the probability that a binary 
string of length n is a Martin-Li:if random element of the 
distribution P n (-) as in Definition 6. Then 

R(n) =I - 0(1/2K(P,nl). 

The probability R(n) goes to I for n __... oo. Moreover 

limsupR(n) = 1- 0(1/n). 
n->oo 

Proof' Let P: {O, 1}* __... [O, I] be a recursive proba­
bility density distribution. The conditional probability on binary 
strings of length n is Pn(:i.:) as above. We want to estimate the 
probability 

Pn { x: log ;:~;) :<K(Pn(·))}. (10) 

We can describe the distribution P n ( ·) by P( ·) and n. This 

shows K ( P n ( ·)) < K ( P, n). Conversely, given the reclir­
sive distribution P n ( ·) as a Turing machine computing the 
probability values for all x's we can compute n by simply 
computing the probabilities for all arguments x in lexico­
graphical nondecreasing order. Since L::i(a:)=n Pn(x) = 1 

there is an x of length n with probability Pn(x) ~ af. 
The first x in the enumeration that satisfies P11 ( x) > 0 
determines n : = l ( x). Since P is recursive its description 

takes 0(1) bits. Hence K(Pn(·)):;K(P, n) and, therefore, 
K(P,,(·))~K(P, n). By the Coding Theorem 12 in Appendix 
B we have K(x)f: - log m(x). Altogether we can rewrite (10) 
in exponential form as 

A:= Pn { x: ;:~~) = 0(2K(P, n))}. (11) 

Since the expectation 

~ m(x) 
~ Pn(x) Pn(x) ::;: 1 

we find by Markov's Inequality ((26) in Appendix C) that 

1 - A = 0 ( 2K(~,n)) . 

This shows the first part of the theorem. Since K ( P, n) 5. K ( n) 
and K ( n) __,.. oo for n __,.. oo [21] the second part of the theorem 
follows immediately. Since also limsupn-+oo K(n) > log n 
(in fact, K(n) >log n +log log n for infinitely many n [21]) 
the third part of the theorem follows as well. D 

E. The Fundamental Inequality 

In ideal MDL as applied to a complete hypothesis class 1i 
("complete" in the sense of Definition 4) there are two boundary 
cases: Using the trivial hypothesis H0 with K(H0):f:o we al­
ways obtain K(DIH0):f:K(D) and, therefore, 

K(H0) + K(DIH0)~K(D). 
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The hypothesis Hn of Definition 4 also yields 

K(Hn) + K(DIHn)~K(D). 

Since always K(H) + K(DjH)>.K(D), both of these hy­
potheses minimize the ideal MDL description. 

For trivial hypotheses, only Kolmogorov random data are 
typical. In fact, ideal MDL correctly selects the trivial hypoth­
esis for individually random data. However, in general, "mean­
ingful" data are "nonrandom" in the sense that K(D) « l(D). 
But then Dis typical only for nontrivial hypotheses, and a trivial 
hypothesis selected by ideal MDL is not one for which the data 
are typical. We need to identify the conditions under which ideal 
MDL restricts itself to selection among hypotheses for which 
the given data are typical-it performs as the generalized Kol­
mogorov minimal sufficient statistic. 

Note that hypotheses satisfying (8) may not always exist if 
we do not require that every data sample in the domain is forced 
by some hypothesis in the hypothesis space we consider, as we 
did in Definition 4. 

Example 3: We look at a situation where the three optimiza­
tion principles (2), (5), and (8) act differently. Again, consider 
the outcome of n coin flips of a coin with probability p of flip­
ping "1" and probability 1 - JJ of flipping "O." There are two 
possible hypotheses H = {Ho, Hi} where 

Ho= [v = ~] 
H1 =[p=O]. 

The prior P is P(H0 ) = ~and P(II1 ) =~-Consider the data 
sample D = 0" with n K;lmogorov random (also with respect 
to Ho and H 1 ) so that 

+ . . + log n < K(D), K(DjII0 ), K(DIH1) <log n + 2log log n. 

Now 

- log P(Ho) - log Pr (DIHo)~n 
- log P(H1 ) - log Pr (DIH1)bO. 

Therefore, Bayesianism selects H 1 which is intuitively correct. 
Both hypotheses have complexity :to. Hence, we can substitute 
- log P(H) := K(II) to obtain 

K(H0 ) - log Pr (DIHo):bn 

K(H1 ) - log Pr (DIII1):to. 

Now the generalized Kolmogorov minimal statistic does not se­
lect any hypothesis at all because the right-hand side is unequal 
K ( D). Ideal MDL, on the other hand, has the ex equo choice 

K(Ho) + K(DjH0 ) =log n + O(log log n) 

K(H1) + K(DjH1 ) =log n + O(log log n) 

which intuitively seems incorrect. So we need to identify 
the conditions under which ideal MDL draws correct con­
clusions. <:; 

While we can set the prior P(-) := m(·) in Bayes's rule to 
obtain the generalized Kolmogorov minimal sufficient statistic 

for a complete hypothesis class, we cannot in general also set 
- log Pr (DIHo) := K(DIIIo) to obtain ideal MDL. For this 
we need the theory dealing with randomness of individual 
objects that states the conditions for - log Pr (DjH) and 
K(DjH) to be close. 10 

Definition 7-Fundamental Inequality: Let Pr (·I·) and P(·) 
be recursive probability density functions. The Fundamental In­
equality is the following relation that possibly holds between 
data D and hypothesis H 

jK(DjH) + K(II) +log Pr (DjII) +log P(II)I :'.'.:: a(P, H) 
(12) 

with 

a(P, II)= K(Pr (·IH)) + K(P). 

Theorem 3: Assume the terminology above. If both hypoth­
esis II is ?(·)-random and data Dare Pr(-jH)-random then 
the fundamental inequality is satisfied. 

Proof We first consider the data part: Because Pr (·I H) 
is recursive we have m(DjH) ;::: 2-K(Pr (·IH)) Pr (DjH), (27). 

Therefore, 

log m(DjH) > -K(Pr (-jH)). (13) 
Pr(DjII) -

Note that K(Pr (·IH)).2::K(II) because from H we can 
compute Pr(·IH) by assumption on Pr(·I·). Second, Dis a 
Martin-Lof random element of the distribution Pr ( ·IH) if 

log m(DllH~ :'.'.:: K(Pr (·IH)) 
Pr(D H 

(14) 

by Theorem 15 and Definition 6. If D is a Martin-Lof random 
element of the distribution Pr ( · IH) then by (3), (13), and (14) 
we obtain 

IK(DIII) +log Pr (DIII)I :'.'.:: K(Pr (·IH)). (15) 

We now consider the hypothesis part: If we set the a priori 
probability P(H) of hypothesis H to the universal probability 
then we obtain directly - log P(H) = m(:r). However, we do 
not need to make this assumption. For a recursive prior I'(·), 
we can analyze the situation when H is random with respect to 
P(·). 

If II is a Martin-Lof random element of P( ·) then we obtain 
analogous to the proof of (15) 

IK(H) +log P(II)I :'.'.:: K(P). (16) 

Together (15) and (16) yield the theorem. D 

Theorem 4: The probability that hypotheses of binary length 
m and data of binary length n satisfy the fundamental inequality 
goes to one for m and n grow unboundedly. Moreover, the 
limsup of that probability exceeds 1 - 0(1/ min {m,, n} ). 

Proof By Theorem 3 the fundamental inequality is satis­
fied for Martin-LOf random hypotheses H (with respect to prior 
P) together with Martin-LOf random data D (with respect to 
the density Pr (-jH) of the corresponding H).The probability 

ICJThis follows from (27) in Appendix C 
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of satisfying the fundamental inequality is estimated by picking 
a pair from the joint probability P(D, H) = Pr (DrH)P(H) 
by first picking a random m-bit hypothesis H from the prior and 
then picking a random n-bit data sample from the Pr ( · IH) dis­
tribution. By Lemma 1 the contemplated probability is at least 

( 1 -0 ( 2K~m))) ( 1 -0 ( 2;(n))) · 
Since the Kolmogorov complexity grows unboundedly with 
increasing arguments [21] this proves the first statement. The 
lim sup of the displayed expression exceeds ( 1-1 / m) ( 1-1 / n) 
since limsupx--+oo K(x) >log x +log log x [21]. 0 

What does the fact that the fundamental inequality is satisfied 
say about the typicality (randomness) of the hypothesis and data 
concerned? 

Theorem 5: Assume the above notation. If 

- log Pr (D/H) - log P(H):bK(D/H) + K(H) (17) 

then H is P( ·)-random up to randomness deficiency 

~ K(Pr (-/H)) - K(P) 

and Dis Pr (·/H)-random up to randomness deficiency 

+ <K(P) - K(Pr(·/H)). 

(Negative randomness deficiencies correspond to 0.) 
Proof" By Theorem 12 in Appendix B and (27) in Ap­

pendix C we know that always 

-log Pr (D/H) 2 K(D/H) - K(Pr (·/H)). 

Similarly, always 

- log P(H) 2 K(H) - K(P). 

Suppose Dis not Pr (·/H)-random. Then, by (14) 

- log Pr (DIH) - K(DIH) = K(Pr (-IH)) + 6. 

for randomness deficiency 6. > 0. By our assumption this im­
plies 

- log P(H) - K(H):b - K(Pr (·/H)) - 6. 

which is only possible if 

+ 6.<K(P) - K(Pr C-IH)). 

The case that His not P-random is handled similarly. 0 

Remark 1: The only way to violate the fundamental in­
equality is that either the data D are not Pr (·!H)-random 
and, therefore, - log Pr (DIH) ~ K(DIH), or that His not 
P-random and, therefore, - log P(H) ~ K(H). Hypoth­
esis H is P-random means that H is "typical" for the prior 
distribution P(·) in the sense that it must not belong to any 
effective minority (sets on which a minority of P-probability 
is concentrated). That is, hypothesis H does not have any 
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simple effectively testable properties that distinguish it from a 
majority. Here "simple" means properties that can be expressed 
by tests that have Kolmogorov complexity that is low in terms 
of the complexity of H. This matter is treated in some detail in 
Appendix C and more completely in (21]. The set of "typical" 
hypotheses Hare those that satisfy K(H):b - log P(H) up to 
an additive term of K(P). In case P(H) = m(H), that is, the 
prior distribution equals the universal distribution, then for all 
H we have K(H):b - log P(H), that is, every hypotheses is 
random with respect to the universal distribution. 

For other prior distributions hypotheses can be random or 
nonrandom. For example, let the possible hypotheses corre­
spond to the binary strings of length n, and let Ln be the 
uniform distribution that assigns probability Ln(H) = (!r 
to every hypothesis H. Let us assume that the hypotheses are 
coded as binary strings oflength n, so that H E {O, l}n. Then, 

H := 00 · · · 0 has low complexity: K(H/n)~ log n. However, 
- log Ln(H) = n. Therefore, by (16), His not Ln-random. 
If we obtain H by n flips of a fair coin, however, then with 
overwhelming probability we will have that K(H/n):bn and, 
therefore, - log Ln(H):bK(H/n) and His Ln-random. 

That data sample D is Pr (·/H)-random means that the 
data are random with respect to the probability distribution 
Pr ( · / H) induced by the hypothesis H. This is illustrated 
easiest using the identification of a Bernoulli process 
Bp = (p, 1 - p) (0 < p < 1) that generates a given 
data sample D E {O, l}n. Let Pr (D/Bp, n) denote the 
distribution of the outcome D of n trials of the process BP. 
If the data D are "atypical" like D = 00 · · · 0 (n failures) for 
p = ~ and n large, then it violates the Pr (·IB1;2 1 n)-ran­
domness test (14) by having - log Pr (DIB1; 2 ) = n and 

- log m(DIB1;2):bK(D/B1;2)< log n + 2 log log n. !::; 

F. Ideal MDL and Bayesianism 

The best model or hypothesis to explain the data should be 
a "typical" element of the prior distribution such that the data 
are "typical'' for the contemplated hypothesis-as prescribed by 
Kolmogorov's minimum sufficient statistics. Thus it is reason­
able to admit only hypotheses as defined below in selecting the 
best one. 

Definition 8: Given data sample D and prior probability P, 
we call a hypothesis H admissible if His P-random and Dis 
Pr (·/H)-random. 

By Theorem 3, admissible hypotheses satisfy the funda­
mental inequality (12). By Theorem 4, admissible hypotheses 
have high probability. 

Theorem 6: Let the data sample be D and let the corre­
sponding set of admissible hypotheses be 'lfo ~ H. Then the 
maximum a posteriori probability hypothesis Hbayes E 7-iD in 
Bayes's rule and the hypothesis Hrndl E 7-iD selected by ideal 
MDL are roughly equal 

Pr(HrnctilD) 
I log Pr(Hbayes/D) I :S 2a(P, H) 

/K(D/Hmdl) + K(Hmcti) - K(D/Hbayes) - K(Hbayes)I 

S 2a(P, H). (18) 
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Proof' Assume the fundamental inequality (12). By 

definition H = Hmdl minimizes K(HID) + K(H). De­

note the minimal value by A. Then in (12) the H' that 

minimizes - log Pr (DIH) - log P(H) yields a value B 
with IA - BI :::; n(P, H). This is easy to see since if 

A - B > a(P, H) then K(H'ID) + K(H') < A by (l2) 

contradicting that A is the minimum for the sum of the com­

plexities, and if B - A > lt(P, H) then 

- log Pr (DIHrn<l1) - log P(Hm<l1) < B 

contradicting that B is the minimum for the sum of the negative 

log probabilities. Now H = Hbayes maximizes 

Pr (HID)= Pr (DIH)P(H)/ Pr (D) 

with Pr (D) constant and therefore Hbayes is an H' as above 
that minimizes 

- log Pr (DIH) - log P(H). 

Denote 

- log Pr (DIHm<l1) - log P(Hm<l1) 

by B'. Then by (12) we have IA - B'I :::; a(P, H) and, there­
fore, 

IB - B'I :::; 2a(P, H). (19) 

By Bayes's rule 

B +log Pr (D) =-log Pr (HbayeslD) 

and 

B' +log Pr (D) = - log Pr (Hmd1ID) 

where log Pr ( D) is constant. Substitution in (19) yields the first 

inequality of the theorem. The second inequality follows by the 

same argument with the roles of complexities and negative log 

probabilities interchanged. D 

Remark 2: Let us first interpret what the theorem says: If in 

the fundamental inequality n(P, JI) is small then this means 

that both the prior distribution P is simple, and that the prob­

ability distribution Pr ( -IJ·I) over the data samples induced by 

hypothesis H is simple. The theorem states that the hypoth­

esis selected by MDL and by Bayesianism are close both in the 

sense of a postiori probability (the Bayesian criterion) and in 

sum of the complexities of the hypothesis and the data encoded 

with help of the hypothesis (the MDL criterion). In contrast, 

if c~(P, H) is large, which means that either of the mentioned 

distributions is not simple, for example, when K(Pr (·IH)) = 

K (JI) for complex JI, then the discrepancy can widen for both 

criteria. 
As a consequence, if cx(P, JI) is small enough and Bayes's 

rule selects an admissible hypothesis, and so does ideal MDL, 

then both criteria are (approximately) optimized by both se­

lected hypotheses. Is this a likely situation? 

Theorem 7: The probability that for data of binary length n 
hypotheses of binary length m selected by Bayesian maximum 

a posteriori and minimum description length principle, respec-

tively, are close in the sense of satisfying relations ( 18) of The­

orem 6 goes to one, form and n grow unboundedly. Moreover, 

the lim sup of that probability exceeds 1 - 0 ( 1 / min { rn, n}). 
Proof' By Theorems 4 and 6. D 

The choice of m( ·) as prior fulfills part of the requirements 

for the fundamental inequality (and the above theorem). This 

prior is an objective and recursively invariant form of Occam's 

razor: a simple hypothesis JI (with K(H) ~ l(H)) has high 

m-probability, and a complex or random hypothesis H (with 

K ( H) ::::::: l ( H)) has low m-probability r 1CH). The random­

ness test log ( m( H) / P( JI)) evaluates to 0 for every H, which 

means that all hypotheses are random with respect to distribu­
tion m(·).11 

Theorem 8: Let o:(P, JI) in the FI (12) be small (for 

example, o::t:Q) and prior P( ·) := m( · ). Then the fun­

damental inequality (12) is satisfied iff data sample D is 

Pr ( · \Hmd1)-random. This has probability going to one for the 

binary length n of the data rising unboundedly (and the limsup 

of the probability exceeds 1 - 0(1/n)). 

Proof' With a(P, H)~O and P(·) .- m(·) (so 

- log P(H) = K(H)) by the Coding Theorem 12 in Ap­

pendix B, we can rewrite (12) as 

-log Pr (DIH):t:K(DIH). 

This defines the admissible hypotheses for data D. By Defini­

tion 6, D is Pr (·I H)-random for these admissible hypotheses. 

In particular, the JI:= Hmdl minimizing K(DIH) + K(H) is 

admissible iff D is Pr (·I H)-random. This happens with proba­

bility going to one by Lemma 1. D 

Corollary 1: Ideal MDL is an application of Bayes's rule 

with the universal prior distribution m( ·) and selection of an 

optimal admissible hypothesis Hmdl (that is, the data sample 

D is Pr (·I JI md1)-random) with probability going to one for in­

creasing data. 
Since the notion of individual randomness incorporates all 

effectively testable properties of randomness (but in this finite 

case only to some degree), application of ideal MDL will select 

the simplest hypothesis H that balances K(DIH) and K(H) 

such that the data sample D is random to it-as far as can ef­

fectively be ascertained. Restricted to the class of admissible 

hypotheses, ideal MDL does not simply select the hypothesis 

that precisely fits the data but it selects a hypothesis that would 

typically generate the data. 

G. Applications 

Unfortunately, the function K is not computable [21]. For 

practical applications one must settle for easily computable ap­

proximations, for example, restricted model classes and partic­

ular codings of hypotheses. In this paper we will not address the 

question which encoding one uses in practice, but refer to [26], 

[44], [38], [40], and [36]. 
In statistical applications, H is some statistical distri­

bution (or model) H = P(B) with a list of parameters 

I I The choice of m as prior agrees with the preceding analysis even though it 

is not recursive. This is because the randomness test log :;:; Z; is identically 0. 
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() = (()1, · · ·, ()k), where the number k may vary and influence 
the (descriptional) complexity of B. (For example, H can be 
a normal distribution N (µ, lT) described by 8 = (/l, lT) .) 
Each parameter (Ji is truncated to fixed finite precision. The 
data sample consists of n outcomes y = (y1, · · ·, :rn) of n 
trials x = (x 1 , · · ·, :1:n) for distribution P(8). The data Din 
the above formulas is given as D = (x, y). By expansion of 
conditional probabilities we have, therefore, 

Pr (DjH) =Pr (x, yjH) =Pr (xjH) ·Pr (yjH, x). 

In the argument above we take the negative logarithm of 
Pr (DJH), that is, 

- log Pr (DjH) = - log Pr (.xjH) - log Pr (yjH, x). 

Taking the negative logarithm in Bayes's rule and the anal­
ysis of the previous section now yields that MDL selects 
the hypothesis with highest inferred probability satisfying x 
is Pr(-jH)-random and y is Pr(·JH, x)-random. Bayesian 
reasoning selects the same hypothesis provided the hypothesis 
with maximal inferred probability has x, y satisfy the same 
conditions. Illustrative examples related to learning polyno­
mials are given by Rissanen [26], [44]. 

Remark 3. Exception-Based MDL: A hypothesis H mini­
mizing K(DjH) + K(H) always satisfies 

K(DjH) + K(H);::: K(D). 

Let E i;::; D denote the subset of the data that are exceptions to 
H in the sense of not being classified correctly by H. The fol­
lowing exception-based MDL (E-MDL) is sometimes confused 
with MDL: With E := D - DH and DH as the data set classi­
fied according to H, select 

He-mdl 

= rninarg{K(H'): H' := rninargH{K(H) + K(EjH)}}. 
H' 

In E-MDL we look for the shortest description of an accepting 
program for the data consisting of a classification rule H and 
an exception list E. While this principle sometimes gives good 
results, application may lead to absurdity as shown in the fol­
lowing. 

In many problems the data sample consists of positive ex­
amples only. For example, in learning (the grammar for the) 
English language, given the Oxford English Dictionary. Ac­
cording to E-MDL the best hypothesis is the trivial grammar H 
generating all sentences over the alphabet. This grammar gives 
K(H):bo independent of D and also E := 0. Consequently, 

rnin{K(H) + K(EjH)} = K(H):bo 
H 

which is absurd. The E-MDL principle is vindicated and reduces 
to standard MDL in the context of interpreting D = (x, y) with 
x fixed as in "supervised learning." Now for constant K(.xjH) 

He-rndl = minargH' {K(H'): H' := min argH{K(H) 

+ K(yjH, x) + K(xjH)}} 
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is the same as 

Hmdl = minargH,{K(H'): H' := minargs{K(H) 

+ K(y\H, x)}}. 

Ignoring the constant x in the conditional K(yjH, .x) corre­
sponds to K(EjH). D 

III. PREDICTION BY MINIMUM DESCRIPTION LENGTH 

Let us consider theory formation in science as the process of 
obtaining a compact description of past observations together 
with predictions of future ones. R. Solomonoff [30], [46], 
[31] argues that the preliminary data of the investigator, the 
hypotheses he proposes, the experimental setup he designs, the 
trials he performs, the outcomes he obtains, the new hypotheses 
he formulates, and so on, can all be encoded as the initial 
segment of a potentially infinite binary sequence. The investi­
gator obtains increasingly longer initial segments of an infinite 
binary sequence w by performing more and more experiments 
on some aspect of nature. To describe the underlying regularity 
of w, the investigator tries to formulate a theory that governs 
w on the basis of the outcome of past experiments. Candidate 
theories (hypotheses) are identified with computer programs 
that compute binary sequences starting with the observed initial 
segment. 

There are many different possible infinite sequences (histo· 
ries) on which the investigator can embark. The phenomenon 
he wants to understand or the strategy he uses can be stochastic. 
Each such sequence corresponds to one never-ending sequen­
tial history of conjectures and refutations and confirmations anc 
each initial segment has different continuations governed b) 
certain probabilities. In this view each phenomenon can be iden· 
tified with a measure p on the continuous sample space of infi· 
nite sequences over a basic description alphabet. This distribu· 
tion p. can be said to be the concept or phenomenon involved 
Now the aim is to predict outcomes concerning a phenomenor 
J.l under investigation. In this case we have some prior evidenc1 
(prior distribution over the hypotheses, experimental data) arn 
we want to predict future events. 

This situation can be rnodeled by considering a sample spac1 
S of one-way infinite sequences of basic elements B defined b: 
S = s=. We assume a prior distribution µ over S with µ(a: 
denoting the probability of a sequence starting with x. Hereµ,(· 
is a semimeasure 11 satisfying 

p.( E) :S 1 

11.(:r:);::: I: p(xa). 
aEB 

Given a previously observed data string x:, the inference proble1 
is to predict the next symbol in the output sequence, that is, t 
extrapolate the sequence x. In terms of the variables in ( 1 ), Hx 
is the hypothesis that the sequence starts with initial segmentxi 
Data D "' consists of the fact that the sequence starts with initi: 
segment x:. Then, Pr (DxlHa,y) = 1, that is, the data is force 

12Traditional notation is "µ(f x )"instead of "p(.r)" where cylinder r, 
{w E S: "'-'starts with .r }. We use "µ(:r)" for convenience. /I is a measure 
equalities hold. 
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by the hypothesis, or Pr (Dz \Hxy) = 0 for z is not a prefix of 
xy, that is, the hypothesis contradicts the data. For P(Hxy) and 
Pr(Dx) in (1) we substitute µ(xy) andµ(x), respectively. For 
Pr (Hxy\Dx) we substitute µ(y\x). This way (1) is rewritten as 

µ(y\x) = µ(xy). 
µ(x) 

(20) 

The final probability µ(y\x) is the probability of the next symbol 
string being y, given the initial string x. Obviously, we now only 
need the prior probabilityµ to evaluate µ(y\x ). The goal of in­
ductive inference in general is to be able to either: i) predict, 
or extrapolate, the next element after x or ii) to infer an under­
lying effective process that generated x, and hence to be able to 
predict the next symbol. In the most general deterministic case 
such an effective process is a Turing machine, but it can also be 
a probabilistic Turing machine or, say, a Markov process. The 
central task of inductive inference is to find a universally valid 
approximation to µ which is good at estimating the conditional 
probability that a given segment x will be followed by a seg­
ment y. 

In general, this is impossible. But suppose we restrict the class 
of priors µ to the recursive semimeasures13 and restrict the set 
of basic elements to { 0, 1}. Under this relatively mild restric­
tion on the admissible semimeasures /L, it turns out that we can 
use the universal semimeasure M as a "universal prior" (re­
placing the real prior µ) for prediction. The theory of the uni­
versal semimeasure M, the analog in the sample space { 0, 1} 00 

of m in the sample space { 0, 1} * equivalent to N, is devel­
oped in [21, Chs. 4 and 5}. It is defined with respect to a spe­
cial type Turing machine called monotone Turing machine. The 
universal semimeasure M multiplicatively dominates all enu­
merable (Definition 12, Appendix B) semimeasures. It can be 
shown that if we flip a fair coin to generate the successive bits 
on the input tape of the universal reference monotone Turing 
machine, then the probability that it outputs xa (x followed by 
something) is M(x), [41]. 

The universal probability M( ·) allows us to explicitly express 
a universal randomness test for the elements in {O, 1}00 analo­
gous to the universal randomness tests for the finite elements of 
{O, 1}* developed in Appendix C. This notion of randomness 
with respect to a recursive semimeasure ~· satisfies the following 
explicit characterization of a universal (sequential) randomness 
test (for proof see [21, Ch. 4 ]). 

Lemma 2: Letµ be a recursive semimeasure on {O, 1}00 • An 
infinite binary sequence w is µ-random if 

sup M(w1 · · ·wn)/µ(w1 · · ·wn) < 00 
n 

and the set of µ-random sequences has µ-measure one. 
In contrast with the discrete case, the elements of { 0, 1} 00 

can be sharply divided into the random ones that pass all effec­
tive (sequential) randomness tests and the nonrandom ones that 
do not. 

We start by demonstrating convergence of M(y\x) and 
µ(y\x) for x --. oo, with µ-probability 1.14 

13There is a Turing machine that for every ;i· and b computes 11(.1·) within 
precision 2 -b. 

Theorem JO: Let µ be a positive recursive measure. If the 
length of y is fixed and the length of x grows to infinity, then 

M(y\x) _, 1 
µ(y\x) 

with µ-probability one. The infinite sequences w with prefixes x 
satisfying the displayed asymptotics are precisely the µ.-random 
sequences. 

Proof: We use an approach based on the Submartingale 
Convergence Theorem, [11, pp. 324-325], which states that the 
following property holds for each sequence of random variables 
w1, w2, ·· .. If f(w1: n) is a µ-submartingale, and the µ-expec­
tation E\f(w1: n)\ < oo, then it follows that limn->oo f(w1: n) 
exists with µ-probability one. 

In our case 

t( I ) _ M(w1,,,) 
WI :n µ -

µ(w1 :n) 

is a µ-submartingale, and the µ-expectation Et(w1, n\µ) :::; 1. 
Therefore, there is a set A ~ {O, 1 }00 with µ.(A) = 1, such that 
for each w E A the limit limn-+oo t(w1 , n \µ) < oo. These are 
the µ-random w's by [21, Corollary 4.5.5]. Consequently, for 
fixed m, for each w in A, we have 

1. M(w1:n+m)/µ(w1:n+m) l 
lID = 

n->oo M(w1: ,.)/ µ(w1: n) 

provided the limit of the denominator is not zero. The latter. fact 
is guaranteed by the universality of M: for every ;r E { 0, 1} * 
we have M(a:)/ µ(x) 2: 2-K(µ) by [21, Theorem 4.5.l and eq. 
(4.11)]. D 

Example 4: Suppose we are given an infinite decimal 
sequence w. The even positions contain the subsequent digits 
of 7r = 3.1415 .. ., and the odd positions contain uniformly 
distributed, independently drawn random decimal digits. 
Then, M(a\w1 , 2;) -t 1/10 for a = 0, 1, .. ., 9, while 
M(a\w1 , 2;+1 ) -t 1 if a is the ·i.th digit of rr, and to 0 
otherwise. !) 

The universal distribution combines a weighted version of 
the predictions of all enumerable semimeasures, including 
the prediction of the semimeasure with the shortest program. 
It is not a priori clear that the shortest program dominates 
in all cases-and as we shall see it does not. However, we 
show that in the overwhelming majority of cases-the typical 

14We can express the "goodness" of predictions according to M with resp~~t 
to a true 11 as follows: Let Sn be the 11 -expected value _of the square of th_e ~1!­
ference in µ-probability and M -probability of 0 occumng at the 11 th pred1ct1on 

Sn= 2..:: µ(.I·){M(O\.r) - 11.(0i.rW. 
l(x)=n-1 

We may call Sn the expected squared error at then th predi~tion. The foll~w~ng 
celebrated result ofSolomonoff, [31], says that Mis very smtable for pred1ct1on 
(a proof using Kulback-Leibler divergence is given in [21]). 

Theorem 9: Let /l be a recursive semimeasure. Using the notation of 
Footnote 14, :En S,.::::; k/2 with h· = E(/1)lu 2. (Hence, S,, converges to 0 
faster than .l ). 

However,nSolomonoff' s result is not strong enough to give the required con­
vergence of conditional probabilities with p.-probability 1. 
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cases-the shortest program dominates sufficiently to use 
shortest programs for prediction. 

Taking the negative logarithm on both sides of (20), we want 
to determine y with l(y) = n that minimizes 

- log fL(yl:r) = - log p.(:i:y) +log p.(:r). 

This y is the most probable extrapolation of :i:. 

Definition 9: Let U be the reference monotone machine. 
The complexity Km, called monotone complexity, is defined 
as K rn: monotone complexity 

Krn(:r:) = min {l(p): U(p) =:cw, w E {O, 1} 00 }. 

We omit the Invariance Theorem for Km complexity, stated and 
proven completely analogous to the theorems with respect to the 
C and K varieties. 

Theorem 11: Let Jl be a recursive semimeasure, and let w be 
a ft-random infinite binary sequence and xy be a finite prefix of 
w. For l(:r) growing unboundedly and l(y) fixed 

lim - log p.(yl:i:):bKrn(:1:y) - Km(:z:) < oo 
l(:c )->oo 

where Krn(:cy) and Kni(:r) grow unboundedly. 
Proof By definition, - log M(:I:) ::; Km(:i·) since the 

left-hand side of the inequality weighs the probability of all pro­
grams that produce :1: while the right-hand side weighs the prob­
ability of the shortest program only. In the discrete case we have 
the Coding Theorem 12: K(:I:):b- log M(:z:). L. A. Levin [18] 

erroneously conjectured that also Km(:i:):b - log M(:i:). But 
P. Gacs (13] showed that they are different, although the differ­
ences must in some sense be very small. 

Claim 1: 

+ 
- log M(:i:)::; Km.(:c)< - log M(.r) + Km(l(:r:)); (21) 

sup 1- logM(:r:) - Km(:r:)I = oo. 
i·E(O, l}' 

However, for a priori almost all infinite sequences :r:, the differ­
~nce between Km(·) and - log M( ·) is bounded by a constant 
(13]. 

Claim 2: 
i) For random strings :i: E {O. 1}* we have Km(.r) + 

log M(:c):bo. 
ii) There exists a function f(n) which goes to infinity with 

n _., oo such that K m(:c) +log M(:r:) :'.'.'. f ( l( :z:) ), for infinitely 
many :c. If :r is a finite binary string, then we can choose f (n) 
as the inverse of some version of Ackermann' s function. 

Let w be a /t-random infinite binary sequence and :i:y be a 
finite prefix of w. For l ( x) grows unboundedly with l (y) fixed, 
we have by Theorem 10 

Jim log µ(yl.x) - log M(yl:i:) = 0. (22) 
l(.r)->oo 

Therefore, if :r: and y satisfy the above conditions, then 
maximizing ri(yi:r:) over y means minimizing - log M(yl:i:). 
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It is shown in Claim 2 that - log M ( x) is slightly smaller 
than Km( :r:), the length of the shortest program for x on the 
reference universal monotonic machine. For binary programs 
this difference is very small, Claim I , but can be unbounded in 
the length of x. 

Together this shows the following. Given xy that is a prefix of 
a (possibly not µ-random) w, optimal prediction of fixed length 
extrapolation y from an unboundedly growing prefix x of w 

need not necessarily be achieved by the shortest programs for 
:i:y and :i: minimizing Km(xy) - Km(x), but is achieved by 
considering the weighted version of all programs for xy and x 

which is represented by 

- log M(xy) +log M(x) 

= (Km(xy) - g(:I:y)) - (Km(x) - g(x)). 

Here g ( .1:) is a function which can rise to in between the inverse 
of the Ackermann function and Km(l(x)) ::; log log :r.-but 
only in case x is not fL-random. 

Therefore, for certain :r and y which are not ft-random, op­
timization using the minimum-length programs may result in 
incorrect predictions. For ft-random x we have that - log m( x) 
and Km(:z:) coincide up to an additional constant independent 

of :r, that is, g(:1:y) = g(:r:):bo, Claim 2. Hen~e, together with 
(22), the theorem is proven. D 

By its definition Km is monotone in the sense that always 
Krn(:i:y) - Km(:i:) :'.'.'. 0. The closer this difference is to zero, 
the better the shortest effective monotone program for x is also 
a shortest effective monotone program for :ry and hence pre­
dicts y given x. Therefore, for all large enough ft-random x, 
predicting by determining y which minimizes the difference of 
the minimum program lengths of :i:y and :z: gives a good predic­
tion. Here y should be preferably large enough to eliminate the 
influence of the 0( 1) term. 

Corollary 2. Prediction by Data Compression: Assume the 
conditions of Theorem 11. With p.-probability going to one as 
l(:I:) grows unboundedly, a fixed-lengthy extrapolation from :c 
maximizes p.(yl.1:) iffy can be maximally compressed with re­
spect to :c in the sense that it minimizes Km(xy) - Krn(x). 
That is, y is the string that minimizes the length difference be­
tween the shortest program that outputs :cy · · · and the shortest 
program that outputs :r: · · ·. 

IV. CONCLUSION 

The analysis of both hypothesis identification by ideal MDL 
and prediction shows that maximally compressed descriptions 
give good results on data that is individually random with re­
spect to the contemplated probabilistic hypothesis. This situa­
tion occurs with probability going to one with increasing data. 

APPENDIX A 

KOLOMOGROV COMPLEXITY 

The Kolmogorov complexity [15] of a finite object x is the 
length of the shortest effective binary description of x. We give 
some definitions to establish notation. For more details see [41] 
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and [21]. Let J:, y, z E N, where /I/ denotes the natural num­

bers and we identify N and { 0, 1} * according to the correspon­
dence 

(0, c:), (L 0), (2, 1), (3, 00), (4, 01), .... 

Here E denotes the empty word" with no letters. The length l(:c) 
of ::c is the number of bits in the binary string x. For example, 
1(010) = 3 and l(E) = 0. 

The emphasis is on binary sequences only for convenience; 

observations in any alphabet can be so encoded in a way that is 
"theory neutral." 

A binary string x is a proper prefix of a binary stringy if we 

can write x = yz for z ;/: E. A set {:r, y, .. ·} s:;; {O, 1}* is 

prefix-free if for any pair of distinct elements in the set neither 

is a prefix of the other. A prefix-free set is also called a prefix 

code. Each binary string J: = x1:c2 · · · :r:n has a special type of 

prefix code, called a self-delimiting code 

where •Xn = 0 if :r:n = 1 and --i:1:n = 1 otherwise. This code is 

self-delimiting because we can detem1ine where the codeword 

x ends by reading it from left to right without scanning past the 

end of :i:. Using this code we define the standard self-delimiting 

code for :r: to be .T' = l ( :r: ):.r. It is easy to check that l (x) = 2n 
and l(:i:') = n + 2 log n. 

Let T1, T2, · · · be a standard enumeration of all Turing ma­

chines, and let </; 1 , c/;2 , · · · be the enumeration of corresponding 

functions which are computed by the respective Turing ma­

chines. That is, T; computes cf;;. These functions are the partial 

recursive functions or computable functions. The Kolmogorov 

complexity C(:r:) of :r is the length of the shortest binary pro­

gram from which :r is computed. Formally, we define this as 

follows. 

Definition 10: The Kolmogorov complexity of :r: given y (for 

free on a special input tape) is 

C ( :i: I :Y) = rnin { l ('i' p): c/>i (p, y) = :r 1 p E { 0, 1} *, i E N}. 
p, 7 

Define C(:r:) = C(:rjE). 

Though defined in terms of a particular machine model, the 

Kolmogorov complexity is machine-independent up to an addi­

tive constant and acquires an asymptotically universal and abso­

lute character through Church's thesis, from the ability of uni­

versal machines to simulate one another and execute any effec­

tive process. The Kolmogorov complexity of an object can be 

viewed as an absolute and objective quantification of the amount 

of information in it. This leads to a theory of absolute informa­

tion contents of individual objects in contrast to classic infor­

mation theory which deals with average information to commu­

nicate objects produced by a random source [21]. 

For technical reasons we need a variant of complexity, 

so-called prefix complexity, which is associated with Turing 

machines for which the set of programs resulting in a halting 

computation is prefix-free. We can realize this by equipping 

the Turing machine with a one-way input tape, a separate work 

tape, and a one-way output tape. Such Turing machines are 

called prefix machines since the halting programs for anyone 

of them form a prefix-free set. Taking the universal prefix 

machine U we can define the prefix complexity analogously 

with the plain Kolmogorov complexity. If J:* is the first shortest 

program for :i: then the set {:r*: U(J:*) = :r, :r E {O. l }*}is a 

prefix code. That is, each :r* is a codeword for some :i:, and if 

:i:* and y* are codewords for :1: and y with :r ::I y then :r* is not 
a prefix of y*. 

Let 0 be a standard invertible effective one-one encodina 

from N x N to prefix-free recursive subset of JV. For example~ 
we can set (:r, y) = :r:':1/. We insist on prefix-freeness and re­

cursiveness because we want a universal Turing machine to be 

able to read an image under ( ·) from left to right and determine 

where it ends, without reading past the last symbol. 

Definition 11: The prefix Kolmogorov complexity of .r given 
y (for free) is 

K(:r:jy)=min{l((p, 1:)):</;;((p, y))=:i:, pE{0.1}*. iEN}. 
p,l 

Define K(x:) = K(xjE). 

The nice thing about K(:I:) is that we can interpret 2-K(J·) 

as a probability distribution since K(:1:) is the length of a 

shortest prefix-free program for :c. By the fundamental Kraft's 

inequality, see for example [8], [21], we know that if l1, !2 , ... 

are the codeword lengths of a prefix code, then 'L:r 2-I, ::; 1. 

This leads to the notion of universal distribution-a rigorous 

form of Occam's razor-in Appendix B. 

APPENDIX B 
UNIVERSAL DISTRIBUTION 

A Turing machine T computes a function on the natural num­

bers. However, we can also consider the computation of real­

valued functions. For this purpose we consider both the argu­

ment of c/> and the value of c/> as a pair of natural numbers ac­

cording to the standard pairing function (·).We define a function 

fromN to the reals R by a Turing machine T computing a func­

tion c/> as follows. Interprete the computation c/;( (:r:. t)) = (p. q) 
to mean that the quotient p / q is the rational valued fth approxi­

mation of f(:r;). 

Definition 12: A function f: N-+ R is enumerable if there 

is a Turing machine T computing a total function (/> such that 

c/;(x, t+l) ~ ef>(x, t) andlirnt->= <f;(J:, t) = f(:i:). This means 

that f can be computably approximated from below. If f can 

also be computably approximated from above then we call f 
recursive. 

A function P: N -+ (0, 1] is a probability distribution if 

'ExEJ\f P(x) :S 1. (The inequality is a technical convenience. 

We can consider the surplus probability to be concentrated on 

the undefined element 'll r;t N.) 
Consider the family EP of enumerable probability distribu­

tions on the sample space N (equivalently, { 0, 1} •).It is known, 

(21], that [p contains an element m that multiplicatively dom­

inates all elements of EP. That is, for each P E E'P there is a 

constant c such that cm( :r:) > P( :i:) for all J: E /'/. We call m a 

universal distribution. 
The family EP contains all distributions with computable pa­

rameters which have a name, or in which we could conceivably 
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be interested, or which have ever been considered. The domi­
nating property means that m assigns at least as much proba­
bility to each object as any other distribution in the family EP 
does-up to the multiplicative factor. In this sense it is a uni­
versal a priori by accounting for maximal ignorance. It turns out 
that if the true a priori distribution in Bayes's rule is recursive, 
then using the single distribution M, or its continuous analog 
the measure m on the sample space {O, 1} 00 (Section III), is 
provably as good as using the true a priori distribution. 

We also know, [19], [12], [9], that 

Theorem 12: 

- log m(:i:) = K(:t:) ± 0(1). (23) 

That means that m assigns high probability to simple 
objects and low probability to complex or random 
objects. For example, for :r 00 · · · 0 (n O's) we 

haveK(:r: )~K(n).< log n + 2 log log n since the program 

print n_times a "O" 

prints x. (The additional 2 log log n term is the penalty term for 
a self-delimiting encoding.) Then, l/(nlog2 n) = O(m(x)). 
But if we flip a coin to obtain a string y of n bits, then with 

overwhelming probability K(y)!>n (because y does not con­
tain effective regularities which allow compression), and hence 

m(y) = 0(1/2"). 

APPENDIX C 
RANDOMNESS TESTS 

One can consider those objects as nonrandom in which one 
can find sufficiently many regularities. In other words, we would 
like to identify "incompressibility" with "randomness." This is 
proper if the sequences that are incompressible can be shown 
to possess the various properties of randomness (stochasticity) 
known from the theory of probability. That this is possible is 
the substance of the celebrated theory developed by the Swedish 
mathematician P. Martin-Li:if [22]. This theory was further elab­
orated in [41], [28], [45], [17], [43], and later papers. 

There are many properties known which probability theory 
attributes to random objects. To give an example, consider se­
quences of n tosses with a fair coin. Each sequence of n zeros 
and ones is equiprobable as an outcome: its probability is 2-n. 
If such a sequence is to be random in the sense of a proposed 
new definition, then the number of ones in :r should be near to 
n/2, the number of occurrences of blocks "00" should be close 
to n/4, and so on. 

It is not difficult to show that each such single property sepa­
rately holds for all incompressible binary strings. But we want 
to demonstrate that incompressibility implies all conceivable 
effectively testable properties of randomness (both the known 
ones and the as yet unknown ones). This way, the various the­
orems in probability theory about random sequences carry over 
automatically to incompressible sequences. 

In the case of finite strings we cannot hope to distin­
guish sharply between random and nonrandom strings. For 
instance, considering the set of binary strings of a fixed 
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length, it would not be natural to fix an rn and call a string 
with rn. zeros random and a string with m + 1 zeros non­
random. 

We take some ideas from statistics. Consider a sample space S 
with an associated distribution P. Given an element :c of the 
sample space, we want to test the hypothesis ";i; is a typical out­
come." Practically speaking, the property of being typical is the 
property of belonging to any reasonable majority. In choosing 
an object at random, we have confidence that this object will 
fall precisely in the intersection of all such majorities. The latter 
condition we identify with :r: being random. 

To ascertain whether a given element of the sample space be­
longs to a particular reasonable majority we introduce the notion 
of a test. Generally, a test is given by a prescription which, for 
every level of significance f, tells us for what elements :r: of S 
the hypothesis "x belongs to majority M in S" should be re­
jected, where E = 1- P(11/J). Taking f = 2-m, m = 1, 2, · . ., 
this amounts to saying that we have a description of the set 
V i;;;; N x S of nested critical regions 

V,n = {:r:: (m, :r:) E V} 

rn = 1, 2, · · ·. 

The condition that v;n be a critical region on the significance 
level E = 2-m amounts to requiring, for all n 

'2:: {P(x): l(x) = n, :i: E Vm} :::; f. 

x 

The complement of a critical region Vm is called the (1 - E) 
confidence interval. If x E Vm, then the hypothesis "x belongs 
to majority M," and, therefore, the stronger hypothesis "x is 
random," is rejected with significance level E. We can say that 
x fails the test at the level of critical region Vm. 

Example 5: A string x 1:c 2 · · · :1.::,, with many initial zeros 
is not very random. We can test this aspect as follows. 
The special test V has critical regions Vi, V2 , · • .. Consider 
x = O.:i: 1:z:2 · · · :r:n as a rational number, and each critical region 
as a half-open interval Vm = [O, 2-"') in [O, 1), m = 1, 2, .... 
Then the subsequent critical regions test the hypothesis "x is 
random" by considering the subsequent digits in the binary 
expansion of :r:. We reject the hypothesis on the significance 

level E = 2-m provided ::z:1 = :r:2 = · · · = :cm = 0. 0 

Example 6: Another test for randomness of finite binary 
strings rejects when the relative frequency of ones differs 
too much from 1. This particular test can be implemented by 
rejecting the hypothesis of randomness of :r: = x 1x2 · · · x,, 
at level E = 2-m provided l2f.,, - nl > g(n, rn), where 

fn = 2:::7= 1 :r:i, and g( n, m) is the l~ast number determined by 
the requirement that the number of binary strings x of length n 
for which this inequality holds is at most 2n-m. O 

In practice, statistical tests are effective prescriptions such that 
we can compute, at each level of significance, for what strings 
the associated hypothesis should be rejected. It would be hard 
to imagine what use it would be in statistics to have tests that 
are not effective in the sense of computability theory. 
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Definition 13: Let P be a recursive probability distribution 
on the sample space N. A total function b: N ~ Jv is a P-test 
(Martin-LOf test for randomness) if 

1) bis e~umerable (the set V = {(m, x): 6(1:) 2:: m} is 
recursively enumerable); and 

2) 2={P(:r:): b(:x;) 2:: rn, l(:;;) = n} s; 2-m, for all n and rn. 

The critical regions associated with the common statistical 
tests are present in the form of the sequence Vi 2 Vi 2 ... , 
where Vm = {x: b(x) 2:: m}, form? 1. Nesting is assured 
since 8(x) 2:: m + 1 implies 8(x) 2:: m. Each set Vm is recur­
sively enumerable because of Item 1). 

A particularly important case is when P is the uniform dis­
tribution, defined by L(:;;) = 2- 21 CxJ- 1 . The restriction of L to 
strings of length n is defined by Ln ( 1:) = 2-n for l ( :r) = n and 
0 otherwise. (By definition, Ln(:r) = L(:i:ll(:r) = n).) Then, 
Item 2) can be rewritten as Lx·EF,,, L,, (:r:) '.S 2-m which is the 
same as 

d({:r: l(:r) = n, :i; E V,n}) '.S 2n-m. 

In this case we often speak simply of a test, with the uniform 
distribution L understood. 

In statistical tests membership of ( m, x) in V can usu­
ally be determined in polynomial time in l(m) + l(:i:). 
Example 7: The previous test examples can be rephrased in 

terms of Martin-Ltif tests. Let us try a more subtle example. A 
real number such that all bits in odd positions in its binary repre­
sentation are 1 's is not random with respect to the uniform dis­
tribution. To show this we need a test which detects sequences 
of the form :r.: = l:i: 2 l:r:4 l:c 0 l:r:8 ··-.Define a test b by 

8(:r) = max{·i: :c 1 = :r::3 = · · · = X2;-1 = 1} 

and h(:i:) = 0 if :r: 1 = 0. For example: 6(01111) = O; 
8(10011) = 1; 6(11011) = l; 6(10100) = 2; h(lllll) = 3. 
To show that b is a test we have to show that b satisfies the 
definition of a test. Clearly, 8 is enumerable (even recur­
sive). If b(:r:) 2: rn where l(:i:) = n ? 2m, then there are 
2m-l possibilities for the (2rn - 1)-length prefix of :r:, and 
2n-(2m-l) possibilities for the remainder of :r. Therefore, 
d{x: b(:r:);::: m, l(:r) = n} '.S 211 -m. () 

Definition 14: A universal Martin-Lof test for randomness 
with respect to distribution P, a universal P-test for short, is 
a test 60 ( · jP) such that for each P-test 6, there is a constant c, 
such that for all :r, we have 60 (:.c:IP) ? 6(x) - c. 

We say that bo(·IP) (additively) majorizes b. Intuitively, 
bo C IP) constitutes a test for randomness which incorpo­
rates all particular tests 6 in a single test. No test for ran­
domness 6 other than 60 (·IP) can discover more than a con­
stant amount more deficiency of randomness in any string 
:i:. In terms of critical regions, a universal test is a test such 
that if a binary sequence is random with respect to that test, 
then it is random with respect to any conceivable test, ne­
glecting a change in significance level. With bo( ·IP) a uni­
versal I'-test, let U = {(m, :i:): b0 (:i:IP) ? m}, and, for 

any test b, let 1/ = {(rn, :c): b(:r.) 2:: m.}. Then, defining 
the associated critical zones as before, we find 

Vm+c ~Um, m,= L 2. ··· 

where c is a constant (dependent only on U and \/). 
It is a major result that there exists a universal ?-test. The proof 
goes by first showing that the set of all tests is enumerable. 

Lemma 3: We can effectively enumerate all P-tests. 
Proof (Sketch.) We start with the standard enumeration 

r/>1, <h, · · · of partial recursive functions from N into N x /v, 
and turn this into an enumeration 81, 52 •... of all and only 
P-tests. The list r/>1, </>2. · · · enumerates all and only recursively 
enumerable sets of pairs of integers as { </J;(:i·): x ~ I} for ·i = 
L 2, · ·-.In particular, for any P-test 6, the set { ( m, :r): 5(:i:) ::::: 
m} occurs in this list. The only thing we have to do is to elimi­
nate those <Pi of which the range does not correspond to a P-test. 
This gives the idea. For details see [21]. O 

Theorem 13: Let 61, 62, · · · be an enumeration of above 
P-tests. Then, 5o(:i:IP) = rnax{by(:r) - y: y ~ I} is a uni­
versal P-test. 

Proof: Note first that bo(-IP) is a total function onN be­
cause of Item 2) in Definition 14. 
1) The enumeration 61 , 62 , · · · in Lemma 3 yields an enumer­

ation of recursively enumerable sets 

{(m, :r;): 61(x)? m}, {(rn, :i:): 82(:r)? m}, · ... 

Therefore, V = {(rn, :i:): 60 (:rlP) ? rn} is recursively 
enumerable. 

2) Let us verify that the critical regions are small enough: for 
each n 

L {P(:i:): b0 (:clP)? rn} 
l(J:)=n 

'.SL L {P(:i:): c5y(:r:)? m + y} 
y=l l(X')=n 

00 '.SL 2-m-y = 2-m. 

y=l 

3) By its definition, 80 (-IP) majorizes each b additively. 
Hence, it is universal. D 

By definition of 80(-IP) as a universal P-test, any particular 
P-test 6 can discover at most a constant amount more regularity 
in a sequence :x: than does 60(-IP), in the sense that for each by 
we have by(x) S 5o(xlP) + y for all :i:. 

For any two universal P-tests 80(-IP) and 6'o(·II'), there is 
a constant c 2:: 0, such that for all :1:, we have lflo(:rlP) -
6'o(xJP)I '.S c. 

We started out with the objective to establish in what sense 
incompressible strings may be called random. 

Theorem 14: The function f(x) = l(:.c:) - C(:rll(:r)) - 1 is 
a universal £-test with L the uniform distribution. 

Proof' 
1) We first show that f(x) is a test with respect to the uni­

form distribution. The set { (m, :c) : f ( :i:) ~ 1n} is recur-
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sively enumerable since C( ) can be approximated from 
above by a recursive process. 

2) We verify the condition on the critical regions. Since the 
number of x's with C(xjl(x)) ::; l(x) - m - 1 cannot 
exceed the number of programs of length at most l ( x) -
m-1, wehaved({x:f(x);::: m})::; 21(x)-m -1. 

3) We show that for each test 8, there is a constant c, such that 
f(x) 2:: 8(x) - c. The main idea is to bound C(xjl(x)) 
by exhibiting a description of x, given l ( x). Fix x. Let the 
set A be defined as 

A= {z: 8(z) 2: 8(x), l(z) = l(x)}. 

We have defined A such that x E A and d(A) ::; 
21<x)-o(x). Let 8 = Dy in the standard enumeration 
81, 82, · · · of tests. Given y, l(x), and 8(x), we can 
enumerate all elements of A. Together with x's index j 
in enumeration order of A, this suffices to find x. We pad 
the standard binary representation of j with nonsignifi­
cant zeros to a strings= 00 · · · Oj oflength l(x) - 8(x). 
This is possible since l ( s) 2:: l ( d( A)). The purpose of 
changing j to sis that now the number 8(x) can be de­
duced from l(s) and l(x). In particular, there is a Turing 
machine which computes x from input ys, when l(x) is 
given for free. Consequently, since C( ) is the shortest ef­
fective description C(xjl(x)) ::; l(x) - 8(x) + 2l(y) + 1. 
Since y is a constant depending only on 8, we can set 
c=2l(y)+2. D 

In Theorem 13, we have exhibited a universal P-test for ran­
domness of a string x of length n with respect to an arbitrary 
recursive distribution P over the sample set S = En with l3 = 
{O, 1}. 

The universal P-test measures how justified is the assumption 
that x is the outcome of an experiment with distribution P. We 
now use m to investigate alternative characterizations of random 
elements of the sample set S = E* (equivalently, S = N\ 

Definition 15: Let P be a recursive probability distribution 
on N. A sum P-test is a nonnegative enumerable function 8 
"atisfying 

L P(x)26(x) ::; 1. (24) 
x 

A universal sum P-test is a test that additively dominates each 
sum P-test. 

The sum tests of Definition 15 are slightly stronger than the 
tests according to Martin-Lof's original Definition 13. 

Lemma 4: Each sum P-test is a P-test. If 8(x) is a P-test, 
then there is a constant c such that 8'(x) = 8(x)-2 log 8(x)-c 
is a sum P-test. 

Proof" It follows immediately from the new definition that 
for all n 

L{P(x): 8(x) > k, l(x) = n} ~ z-k. (25) 

If (25) is false, then we contradict (24) by 

L P(x)26(x) > L P(x)2k 2: 1. 
xEN l(x)=n 
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Conversely, if 8 ( x) satisfies (25) for all n, then for some con-
stant c, the function 8(x) - 2log 8(x) - c satisfies (24). D 

This shows that the sum test is not much stronger than the 
original test. One advantage of (24) is that it is just one in­
equality, instead of infinitely many, one for each n. We give an 
exact expression for a universal sum P-test in terms of com­
plexity. 

Theorem 15: Let P be a recursive probability distribution. 
The function 

11;0 (xjP) =log (m(x)/ P(x)) 

is a universal sum P-test. 
Proof" Since m is enumerable, and P is recursive, 

11;o(xjP) is enumerable. We first show that 11;o(x[P) is a sum 
P-test 

x x 

It is only left to show that 11;0 (xlP) additively dominates all 
sum P-tests. For each sum P-test 8, the function P(x)26(x) 

is a semimeasure that is enumerable. It has been shown, 
Appendix B, that there is a positive constant c such that 
c · m(x) 2:: P(x)26(x). Hence, there is another constant c such 
that c · Ko(:r.[P);::: 8(x), for all x. D 

Example 8: An important case is as follows. If we consider 
a distribution P restricted to a domain A C N, then we have 
two choices for the universal sum P-test 

i) log (m(:r:[A)/P(x[A)). For example, if Ln is the uniform 
distribution on A = {O, 1 }",then the universal sum Ln-test 
for x E A becomes 

log (m(:r:[A)/ L.,,(.1:))±.n - K(x[n). 

We have Ln(x) = 1/2" and log m(x[A) = -K(x[A) by 
the Coding Theorem, Appendix B where we can describe A 
by giving n. 

ii) log(m(x)/P(x[A)) where we view P(x[A) as a distribu­
tion PA(x) that is positive only on subdomain A. For the 
uniform distribution Ln this gives the universal sum L,, -test 

log(m(x)/Ln(x))±n - K(x). 

Example 9: The Noiseless Coding Theorem states that the 
Shannon-Pano code, which codes a source word x straightfor­
wardly as a word ofabout - log P(x) bits, Appendix B, nearly 
achieves the optimal expected codeword length. This code is 
uniform in the sense that it does not use any characteristics of x 
itself to associate a codeword with a source word x. The code 
that codes each source word x as a codeword of length K(x) 
also achieves the optimal expected codeword length. This code 
is nonunifonn in that it uses characteristics of individual x' s to 
obtain shorter codewords. Any difference in codeword length 
between these two encodings for a particular object x can only 
be due to exploitation of the individual regularities in x. 
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Define the randomness deficiency of a finite object :r with Then, by Markov's Inequality 
respect to P as 

-llog P(.r.)J - K(x):J;. - log P(:r:) +log m(:z:)bK,0 (:r:II') 

by the major theorems in this appendix. That is, the randomness 
deficiency is the outcome of the universal sum P-test of The­
orem 15. !) 

Example 10: Let us compare the randomness deficiency as 
measured by 1':o(xlP) with that measured by the universal test 
Do(x ), for the uniform distribution. That test consisted actually 
of tests for a whole family Ln of distributions, where Ln is the 
uniform distribution such that each Ln ( x) = 2-n for l ( ;r:) = n, 
and zero otherwise. Rewrite 50 ( :r) as 

for l(x) = n, and oo otherwise. This is close to the expres­
sion for ""o(xlLn) obtained in Example 8. From the relations 
between C and K in [21] it follows that 

lbo(xlLn) - K,o(xlLn)l<2log C(x). 

The formulation of the universal sum test in Theorem 15 can 
be interpreted as to express the notion of randomness of objects 
with respect to a given distribution. While for infinite binary 
sequences the Martin-Lof theory gives a sharp distinction be­
tween the random and the nonrandom sequences, for finite se­
quences this distinction is blurred. We cannot say that a given 
finite string is random and by changing one bit it becomes non­
random. Therefore, we more or less arbitrarily introduce cutoff 
points. The real significance lies in the fact that a random se­
quence should have small randomness deficiency as defined pre­
viously. In the main text in Definition 6 we define an element 
1: to be Martin-Lof random with respect to distribution P if 

+ 
Ko(:r:IP)<K(P). 

This means that for :z: to be random P(x) should be large 
enough, not in absolute value but relative tom( :r). If we did not 
have this revitalization, then we would not be able to distinguish 
between random and nonrandom outcomes for the uniform dis­
tribution Ln ( x) above. 

Let us look at an example. Let :r = 00 · · · 0 of length n. 

Then, 11:0 (:rlLn):};.n - K(:rin):J;.n. If we flip a coin n times to 
generate y, then with overwhelming probability K(yln) 2: n 
and ""o(ylLn) = 0(1). 

Example 11: Markov's Inequality says the following. Let P 
be any probability distribution, f any nonnegative function with 
?-expected value E = "L:x P(x)f(a:) < oo. For E 2: 0 we 
have 

l:{P(x): f(:r)/E > k} < I/k. 

Let P be any probability distribution (not necessarily recur­
sive). The ?-expected value ofm(x)/P(:i;) is 

'"""'P('')m(x) < l. 
L......, .r P(x) -

x 

L{P(:r:):m(:i:)::; kP(:z:)} 21- ~-
:r 

(26) 

Since m dominates all enumerable semimeasures multiplica­
tively, we have for all :r 

P(x):::;crm(x), anditcanbeshowncr=2K(Pl. (27) 

Equations (26) and (27) have the following consequences. 

1) If :r: is a random sample from a simple recursive distribution 
P, where "simple" means that K(P) is small, then m is a 
good estimate for P. For instance, if :r; is randomly drawn 
from distribution P, then the probability that 

is at least 1 - l/cp. 
2) If we know or believe that :i; is random with respect to P, 

and we know P(:r:), then we can use P(:i:) as an estimate of 
m(x). 

In both cases the degree of approximation depends on the 
index of P, and the randomness of :r: with respect to P, as mea­
sured by the randomness deficiency 

K,o(xlP) =log (m(:r:)/ P(:z:)). 

For example, the uniform discrete distribution on 13* can be de­
fined by L(.r) = 2-2/(a:). Then, for each n we have Ln(x) = 
L(:r:ll(:r:) = n). To describe L takes 0(1) bits, and, therefore, 

K,o(xlL)bl(:z:) - K(:r). 

The randomness deficiency i,;0 (:r:IL)~O iff K(:r)-).l(:r), that is, 
if :i: is random. 

The nonrecursive "distribution" m(x) = 2-K(J·) has the re­

markable property that the test K,0 (xlm)~O for all :i:: the test 
shows all outcomes :r random with respect to it. We can inter­
pret (26) and (27) as saying that if the real distribution is P, then 
P(x) and m(x) are close to each other with large ?-probability. 
Therefore, if :r: comes from some unknown recursive distribu­
tion P, then we can use m (x) as an estimate for P(;r ). In other 
words, m ( x) can be viewed as the universal a priori probability 
of :r. 

The universal sum P-test K~o(:r:IP) can be interpreted in the 
framework of hypothesis testing as the likelihood ratio between 
hypothesis P and the fixed alternative hypothesis m. In ordinary 
statistical hypothesis testing, some properties of an unknown 
distribution P are taken for granted, and the role of the universal 
test can probably be reduced to some tests that are used in sta­
tistical practice. /) 
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