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Abstract—We consider a concatenated coding scheme using a single
inner code, a single outer code, and a fixed single-trial decoding strategy
that maximizes the number of errors guaranteed to be corrected in a con-
catenated codeword. For this scheme, we investigate whether maximizing
the guaranteed error correction rate, i.e., the number of correctable
errors per transmitted symbol, necessitates pushing the code rate to zero.
We show that this is not always the case for a given inner or outer code.
Furthermore, to maximize the guaranteed error correction rate over all
inner and outer codes of fixed dimensions and alphabets, the code rate of
one (but not both) of these two codes should be pushed to zero.

Index Terms—Concatenated codes, decoding strategy, erasure correc-
tion, error correction, error detection.

I. INTRODUCTION

In concatenated coding schemes, elementary codes are combined
into a powerful code that can be encoded and decoded with relatively
low complexity. Concatenated codes have been introduced by Forney
[4]. An excellent overview has been provided by Dumer [3].

In this correspondence we study optimization issues concerning the
single-trial decoding version of the scheme proposed by Zyablov in [9].
This scheme uses a single inner code, a single outer code, and a fixed
single-trial decoding strategy based on bounded distance decoding. Al-
though this may not be the best scheme in terms of performance, it is
still worth studying, mainly because of its great simplicity. In particular,
the decoder has some attractive low-complexity features compared to
other schemes, as will be argued in the following. First of all, it is based
on bounded distance decoding techniques only. Furthermore, the inner
decoder directly produces the input symbols or erasures for the outer
decoder. By contrast, in generalized minimum distance (GMD) based
decoding techniques [4], [6], the output symbols of the inner decoder
first need to be ordered according to reliability, after which an erasing
rule is applied. Finally, in the scheme under consideration, outer de-
coding is performed only once. By contrast, in multitrial decoding,
there are several outer decoders, operating either on the outputs of just
as many different inner decoders [9], or on the output of a single inner
decoder on which different erasing rules are applied [6]. These outer
decoders produce (possibly different) concatenated codewords, one of
which being closest to the received sequence, is the final output. For
information about multitrial decoding, and many other issues related
to concatenated codes, we refer the reader to [3].
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In many applications, it is required to design coding schemes for
which the alphabets and the dimensions of the codes are fixed. Two
criteria play an important role in designing such schemes: the code
rate, which is the number of information symbols per transmitted
symbol, and the guaranteed error correction rate, which is the number
of correctable symbol errors per transmitted symbol. In general,
over all codes of fixed dimension and alphabet, the supremum of the
guaranteed error correction rate, which is1=2, is not attained by any
code. Instead, it can only be approached by a sequence of codes whose
code rates tend to zero. This is not surprising at all since strong codes,
i.e., codes with large Hamming distances, have low rates.

For the simple concatenated coding scheme considered in this cor-
respondence, whose inner and outer codes have fixed alphabets and
dimensions, we investigate whether maximizing the guaranteed error
correction rate necessarily means pushing the code rate to zero. Sur-
prisingly, we show that if the inner or the outer code are given, then
this is not necessarily the case. Furthermore, we show that if the guar-
anteed error correction rate is maximized over all inner and outer codes
of fixed alphabets and dimensions, then the code rate of one, and only
one, of these two codes should be pushed to zero. Therefore, to aim
at maximizing the guaranteed error correction rate, we should either
choose a strong outer code and a weak inner code orvice versa(de-
pending on the codes’ dimensions and alphabets), and avoid choosing
the inner and outer codes to be both weak or both strong! In fact, by
choosing the two codes to be weak we lose in correction rate but gain
in code rate, while by choosing the two codes to be strong we lose in
both correction rate and code rate.

This correspondence is organized as follows. First, in Section II, we
describe the scheme under consideration. Next, in Section III, we de-
rive an expression for the maximum number of channel errors which is
guaranteed to be corrected by the scheme, and we discuss a slight dis-
crepancy between this result and the corresponding result by Zyablov
in [9]. In the same section, we also study the ratio between the number
of correctable errors and the (designed) Hamming distance of the con-
catenated code. Finally, in Section IV, we consider, for given inner and
outer code alphabets and dimensions, the guaranteed error correction
rate. In particular, we determine all cases for which the optimal guaran-
teed error correction rate is achieved by finite-length inner/outer codes.

II. THE ZYABLOV SCHEME WITH SINGLE-TRIAL DECODING

In this section we describe the simple concatenated coding scheme
under consideration in this correspondence, which is in fact the single-
trial version of the more general scheme proposed by Zyablov in [9]. It
uses an outer[N;K;D] block code (i.e., a code of lengthN , dimension
K, and Hamming distanceD) over the finite field GF(qk) and an inner
[n; k; d] block code over GF(q). For ease of notation, we introduce
Q = qk. The data sequence composed ofK Q-ary symbols is first
encoded using the outer code to form a sequence ofN Q-ary symbols.
The inner code is used to map each such symbol to aq-ary sequence
of lengthn. This results in a sequence ofNn q-ary symbols, which we
call the overall codeword, that carriesKk q-ary information symbols.
TheNn q-ary symbols are then transmitted over aq-ary channel and
may suffer from channel errors. The output of the channel is partitioned
into N sequences ofn q-ary symbols. Each one of these sequences
is decoded using the inner code to produce an output sequence ofk
q-ary symbols, which corresponds to a symbol in GF(Q). As it will be
explained later, it may happen that the inner decoder fails to produce
a symbol in GF(Q) and produces an erased symbol instead. TheN
Q-ary symbols/erasures produced by the decoder of the inner code are
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decoded with respect to the outer code to produce a sequence ofK
Q-ary symbols.

Since the inner code has distanced, it can be used to simultane-
ously correct up tot and detect up tod� 1� t channel errors, where
0 � t � b(d� 1)=2c. Such a code is denoted ast-EC(d� 1� t)-ED
(t error correcting andd � 1 � t error detecting). If there exists an
inner codeword which is at distancet or less from the received se-
quence ofn q-ary symbols under consideration, the inner decoder de-
codes the received sequence into theQ-ary symbol corresponding to
that codeword. Otherwise, an erasure is declared. Hence, different de-
coding strategies can be developed based on the same inner code by
varying the parametert. With regard to the outer decoder, we only as-
sume that it returns the original input sequence ofK Q-ary symbols if
the number of errorsX and the number of erasuresY produced by the
inner decoder satisfy2X + Y � D � 1.

III. OPTIMAL INNER DECODING

In designing a concatenated coding scheme, as described in Section
II, many choices need to be made that may have an enormous impact on
the system performance. One of these choices concerns the choice of
the inner decoder. Instead of exploiting the full error correction capa-
bility of the inner code (i.e.,t = b(d�1)=2c), it could also be decided
to use this capability only partly (i.e.,t < b(d � 1)=2c), thus leaving
more erasures but less errors for the outer decoder. Since more erasures
can be corrected than errors, there is a tradeoff problem to be solved
in order to determine the optimal choice. In this section, we will de-
termine the choice oft maximizing the number of channel errors in a
concatenated codeword for which correction is guaranteed. Further, we
will study the ratio between the number of correctable errors and the
(designed) distance of the concatenated code.

Let E(t; d;D) be the maximum number of (q-ary) channel errors
in the overall codeword for which correction is guaranteed in the con-
catenated coding scheme described in Section II, i.e., a scheme with
an outer code of distanceD and at-EC (d � 1 � t)-ED inner code
of distanced. The next proposition gives an explicit expression for
E(t; d;D).

Proposition 1: For0 � t � b(d� 1)=2c andd;D � 1, we have

E(t; d;D) = Dt+D � 1 +minfbD=2c(d� 3t� 2); 0g: (1)

Proof: For the decoder of thet-EC(d� t� 1)-ED inner code to
cause aQ-ary symbol error or erasure, at leastd� t or t+ 1 channel
errors, respectively, have to affect the transmittedq-ary sequence of
lengthn corresponding to that symbol. Further, for the outer code of
distanceD, correction ofX errors andY erasures is guaranteed if and
only if 2X + Y � D � 1. Hence

E(t; d;D) = minf(d� t)X + (t+ 1)Y � 1 : 2X + Y � Dg (2)

where the minimum is taken over all nonnegative integersX andY .
For a givenX, (d� t)X + (t+ 1)Y � 1 achieves its minimum when
Y = maxfD � 2X; 0g. Hence

E(t; d;D) = minf(d� t)X + (t+ 1)(D� 2X)� 1g

= minf(d� 3t� 2)X +Dt+D � 1g (3)

where the minimum is taken over all integersX such that0 � X �
bD=2c. So the minimum is attained forX = 0 in cased � 3t+2, and
for X = bD=2c otherwise. Substituting these values in (3) concludes
the proof.

For our purpose of optimizing the use of an inner code of Hamming
distanced, we want to maximizeE(t; d;D) over all integerst such
that 0 � t � b(d � 1)=2c. Let E(d;D) be the maximum value of
E(t; d;D) over all integerstwith 0 � t � b(d�1)=2c. The following

proposition gives an explicit expression forE(d;D) and the values of
t for which it is achieved.

Proposition 2: Ford;D � 1, we have

E(d;D) =

d�1

2
; if D = 1

D

2

2d

3
� 1; if D is even

D�1

2

2d

3
+ d�2

3
; if D � 3 and D is odd:

(4)
The only choices fort maximizing E(t; d;D) and thus achieving
E(d;D) are

t =

d�1

2
; if D = 1

d

3
; d

3
+ 1; � � � ; d�1

2
; if D = 3

d

3
� 1; d

3
; if D is even andd � 0mod 3

d

3
; otherwise:

(5)
Proof: From Proposition 1 it follows that

E(t; d;D)=
Dt+D�1; if t� d�2

3

D�3 D

2
t+D�1+ D

2
(d�2); if t� d+1

3
:

SinceE(t; d; 1)=t, the only choice oft that maximizesE(t; d;D) in
caseD=1 is t=b(d�1)=2c. Further, note that forD�2,E(t; d;D)
is an increasing function oft on the interval[0; b(d�2)=3c]. Finally,
as a function oft on the interval[b(d+1)=3c; b(d�1)=2c],E(t; d;D)
is decreasing ifD = 2 or D � 4 and constant ifD = 3. Hence, for
D� 2 the maximum ofE(t; d;D) is achieved fort= b(d�2)=3c or
t= b(d+1)=3c. Therefore, we consider

E(b(d+ 1)=3c; d;D)� E(b(d� 2)=3c; d;D)

= D + bD=2c(d� 2� 3b(d+ 1)=3c)

=

D � 2bD=2c � 0; if D � 2 and d � 0mod3

D � bD=2c > 0; if D � 2 and d � 1mod3

D � 3bD=2c � 0; if D � 2 and d � 2mod3:

Note that above equality holds if and only ifD is even andd � 0mod3
orD = 3 andd � 2mod3. This concludes the proof of (5). Finally, (4)
follows by substituting thet from (5) into the expression forE(t; d;D)
from Proposition 1.

In [9] Zyablov presented a concatenated coding scheme withz
inner/outer decoders. As stated before, the simple scheme considered
in this correspondence can be seen as thez = 1 case of Zyablov’s
scheme. However, the results presented in Proposition 2 slightly
differ from the results obtained by substitutingz = 1 in the relevant
formulas from [9]. Zyablov claims the best choice fort in the
simple scheme is obtained by rounding off(d � 2)=3 to the nearest
integer. Indeed,t = (d � 2)=3 maximizes the functionE(t; d;D)
over all real t if D � 2. However, Propositions 1 and 2 assert that
maximizingE(t; d;D) over all integer t is not always achieved by
the integer closest to(d � 2)=3. In particular, forD � 3 odd and
d � 0mod3, the optiont = d=3 indicated by Proposition 2 gives
E(d=3; d;D) = Dd=3, while Zyablov’s choicet = d=3 � 1 gives
onlyE(d=3� 1; d;D) = Dd=3� 1.

In order to study the number of correctable errors as a fraction of the
Hamming distance of the concatenated code, we define the functions

�(t; d;D) = E(t; d;D)=dD (6)

and

�(d;D) = E(d;D)=dD: (7)

Note that the denominatordD in (6) and (7) is strictly speaking only a
lower bound on the Hamming distance of the concatenated code. Nev-
ertheless, we still call�(t; d;D) and�(d;D) correction-to-distance
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Fig. 1  (�; D) for 0 � � < and various values ofD.

ratios, since the simple (de)coding scheme under consideration does
not exploit any advantages a true minimum distance beyonddD might
give, and sincedD can be considered as adesigneddistance. Next, we
determine the asymptotic behavior and the suprema of�(t; d;D) and
�(d;D).

First, we study�(t; d;D) for large values ofd, while fixing the ratio
betweent andd. Therefore, we introduce� = t=d and define

 (�;D) = lim
d!1

�(�d; d;D): (8)

The next result follows immediately from (8), (6), and Proposition 1.

Proposition 3: For0 � � < (1=2) andD � 1, we have

 (�;D) = � +minfbD=2c(1� 3�)=D; 0g: (9)

Fig. 1 shows (�;D) for 0 � � < 1

2
and various values ofD.

Now, we study�(d;D). The next six propositions can be derived
from an easy analysis of the result (4) in combination with defini-
tion (7).

Proposition 4: ForD � 1, we have

lim
d!1

�(d;D) =

1

2
; if D = 1

1

3
; if D � 2:

(10)

The result (10) can also be observed from Fig. 1.

Proposition 5: ForD � 1, we have

sup
d

�(d;D) =

1

2
; if D = 1

1

3
; if D = 2

1

2
� 1

2D
; if D � 3

(11)

where the supremum is achieved only for

d!1; if D = 1; 2

all d � 1; if D = 3

d = 2; if D � 4 andD is even
d = 1; 2 if D � 5 andD is odd:

(12)

Proposition 6: For d � 1, we have

lim
D!1

�(d;D) = d2d=3e=2d: (13)

Proposition 7: For d � 1, we have

sup
D

�(d;D) =

1

2
; if d = 1; 2

3

8
; if d = 4

1

d

d�1

2
; if d = 3 or d � 5

(14)

where the supremum is achieved only for

D !1; if d = 1; 2; 4

D !1 and all oddD � 1; if d = 3; 6

D !1 andD = 1; if d = 5; 8

D = 1; if d = 7 or d � 9:

(15)

Proposition 8: We have

lim
D!1

lim
d!1

�(d;D) = 1=3: (16)

Proposition 9: We have

sup
d;D

�(d;D) = 1=2 (17)
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where the supremum is achieved only for the following three cases:

d = 1 and D !1;

d = 2 and D !1;

d!1 and D = 1:

(18)

IV. GUARANTEED ERRORCORRECTIONRATE

The maximal number of errors in an overall codeword of length
nN for which correction is guaranteed isE(d;D). The concatenated
scheme can thus correctE(d;D)=nN errors per transmittedq-ary
symbol. We callE(d;D)=nN the guaranteed error correction rate.
In this section, we consider optimization issues with regard to this rate.
Throughout, we assumeq; k; andK have been given. First, we con-
sider the situation of a given outer code and optimize the guaranteed
error correction rate over all possible inner codes. Next, we consider
the situation of a given inner code and optimize the guaranteed error
correction rate over all possible outer codes. Finally, we consider
optimization of the guaranteed error correction rate over inner and
outer codes jointly. Of particular interest is whether an optimum is
attained for a finite-length inner/outer code or only asymptotically for
an infinite sequence of inner/outer codes of increasing lengths.

Let nq(k; d) be the length of a shortest linear code over GF(q) of
dimensionk and distanced. An important result which is used in our
analysis is the Griesmer bound [5], [7]

nq(k; d) �

k�1

i=0

dd=qie: (19)

Baumert and McEliece [1] proved that for any fixedk andq, equality
holds in this bound for all sufficiently larged, i.e., there exists a number
d�(k; q) such that

nq(k; d) =

k�1

i=0

dd=qie; for all d � d�(k; q):

From this we easily obtain the following results onnq(k; d):

nq(k; d) �

k�1

i=0

d

qi
=
d(1� q�k)

1� q�1
; (20)

nq(k; d) =

k�1

i=0

d

qi
=
d(1� q�k)

1� q�1
;

if d � d�(k; q) and d � 0 mod qk�1 (21)

nq(k; d) = d+

k�1

i=1

d+1

qi
=
d(1�q�k)+q�1�q�k

1�q�1
;

if d�d�(k; q) and d��1mod qk�1 (22)

nq(k; d) <
d(1� q�k)

1� q�1
+ k if d � d�(k; q) (23)

lim
d!1

nq(k; d)

d
=

1� q�k

1� q�1
: (24)

A. Inner Code Optimization

We now start by considering the situation of a given outer code.
Then, the parametersN;K;D; q; andk (and thusQ = qk) are fixed.
The inner code is a linear code over GF(q) of dimensionk, lengthn,
and distanced. We are interested in optimizing the guaranteed error
correction rate over allq-ary inner codes of dimensionk. SinceN is
fixed, it suffices to consider the supremum of

�d(q;D; k) =
E(d;D)

nq(k; d)
(25)

over all positive integersd. Let �(q;D; k) denote this supremum. We
say that an inner code achieves�(q;D; k) if E=n = �(q;D; k) where
n is the length of the inner code andE is the number of correctable
errors in an overall codeword. We say that an infinite sequence of inner
codes of increasing lengths asymptotically achieves�(q;D; k) if the
sequenceE=n tends to�(q;D; k). Clearly, if no inner code achieves
�(q;D; k), then there exists a sequence of inner codes that asymptoti-
cally achieves�(q;D; k). On the other hand, if there exist inner codes
that achieve�(q;D; k), then it is desirable to specify the shortest length
n among all these codes since the overall code rate of the concatenation
scheme is(kK)=(nN), wherek, K, andN are fixed.

We are now ready to derive an explicit expression for

lim
d!1

�d(q;D; k)

and bounds on�(q;D; k).

Proposition 10: ForD � 1, q is a prime power, andk � 1, we have

lim
d!1

�d(q;D; k) =

1�q
2(1�q )

; if D = 1

D(1�q )

3(1�q )
; if D � 2:

(26)

Proof: From (25) and (7) it follows that

�d(q;D; k) =
E(d;D)

nq(k; d)
=
dD�(d;D)

nq(k; d)
: (27)

Taking the limit asd!1 and using (24) and Proposition 4 completes
the proof.

Proposition 11: ForD � 1; q is a prime-power, andk � 1, we
have

lim
d!1

�d(q;D; k) � sup
d

�d(q;D; k) �
D(1� q�1)

1� q�k
sup
d

�(d;D)

(28)
where equality holds in the first inequality if and only ifD � 3 or
D = 4 andq = 3 andk � 2; among these cases, the supremum of
�d(q;D; k) is achieved for a finited if and only if D = 3 or D = 4
andq = 3 andk = 2.

Proof: The first inequality in (28) is trivial, while the second fol-
lows from (20) and (7):

�d(q;D; k) =
E(d;D)

nq(k; d)
�
D(1� q�1)�(d;D)

1� q�k
(29)

for all d � 1. In order to prove the remaining statements in the propo-
sition, we distinguish between three cases.

Case 1)D � 3. From Propositions 5 and 10 it now follows that
equality holds everywhere in (28) ifD � 3. Hence

�d(q;D; k)=
E(d;D)

nq(k; d)
=
dD�(d;D)

nq(k; d)
� lim

d!1
�d(q;D; k)

(30)

for all d � 1. ForD � 2 the inequality in (30) can be shown
to be strict for alld � 1, while forD = 3 equality holds
for all d � d�(k; q) which are multiples ofqk�1 because
of (21).

Case 2)D � 4 andq � 1; 2mod3. In this case there exists a�d such
that �d � d�(k; q), �d � 2mod3, and �d � 0mod qk�1. For
this �d, it follows from (21), (4), and Proposition 10 that

��d(q;D; k) =
E( �d;D)

nq(k; �d)
=

(1� q�1)E( �d;D)
�d(1� q�k)

>
D(1� q�1)

3(1� q�k)
= lim

d!1
�d(q;D; k): (31)
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TABLE I
PARAMETERS [n; k; d], 1 � k � 7, OF THESHORTESTINNER BINARY CODES

ACHIEVING �(2;D; k) FORD � 3 AND �(2; k;K) FORK � 2

Case 3)D � 4 andq � 0mod 3. In this case there exists a�d such
that �d � d�(k; q), �d � 2mod3, and �d � �1mod qk�1.
For this �d, it follows from (22) and (4) that

��d(q;D; k) =
E( �d;D)

nq(k; �d)

=
D �d=3 + (D� 3)=3

( �d(1� q�k) + q�1 � q�k)=(1� q�1)

=
D(1� q�1) + (D� 3)(1� q�1)=�d

3(1� q�k) + 3(q�1 � q�k)=�d
: (32)

Comparing this expression and (26), it follows that the supremum of
�d(q;D; k) overd is achieved for a finite value ofd and not asymptot-
ically (d ! 1) if D � 5 or q � 6 orD = 4 andq = 3 andk = 1.
Further, the supremum of�d(3;4; 2) overd is achieved both asymp-
totically (d ! 1) and for a finite value ofd. Finally, the supremum
of �d(3; 4; k) over d is achieved only asymptotically(d ! 1) if
k � 3.

Table I lists the parameters of the shortest inner binary codes
achieving�(2;D; k) for k � 7 andD � 3. These values ofk are
considered sincen2(k; d) is known for all d if k � 7 [8]. As an
illustration of the derivation of the entries in the second column of this
table, we consider the casek = 3. From (28), (26), and (11) we have

4D

21
� �(2;D; 3) �

2D � 2

7
: (33)

From [8] we know thatn2(3; d) = d + dd=2e + dd=4e for all d. In
particularn2(3; 8) = 14, and so it follows with (20) and (4) that

�d(2;D; 3) =
E(d;D)

n2(3; d)
�
E(d;D)

7d=4
�
E(8;D)

14
= �8(2;D; 3)

(34)

if d > 8 andD � 3. Hence, for a fixedD � 3, the maximum of
�d(2;D; 3) is attained by somed in the range1 � d � 8. If D is
odd, �d(2;D; 3) = (D � 1)=6, (D � 1)=4, D=6, (3D � 1)=14,
(2D � 1)=10, (2D)=11, (5D � 1)=26, and(3D � 1)=14 for d =
1; � � � ; 8, respectively. It is easy to check that the smallestd that at-
tains the maximum is4 if D = 3 and 2 if D � 5 is odd. Thus
[n2(3; 4) = 7; 3; 4] and [n2(3; 2) = 4; 3; 2] are the parameters of
the shortest inner binary codes achieving�(2;D; 3) for D = 3 and
oddD � 5, respectively. IfD is even,�d(2;D; 3) = (D � 2)=6,
(D � 1)=4, (D � 1)=6, (3D � 2)=14, (2D � 1)=10, (2D � 1)=11,

(5D � 2)=26, and(3D � 1)=14 for d = 1; � � � ; 8, respectively. It
is easy to check that the smallestd that attains the maximum is8 if
D = 4 and 2 if D � 6 is even. Thus[n2(3; 8) = 14; 3; 8] and
[n2(3; 2) = 4; 3; 2] are the parameters of the shortest inner binary
codes achieving�(2;D; 3) for D = 4 and evenD � 6, respectively.

It can be concluded from Proposition 11 that, for a givenqk-ary
[N;K;D] outer code, the guaranteed error correction rate optimiza-
tion only requires an infinitely longq-ary inner code of dimensionk if
D � 2 orD = 4 andq = 3 andk � 3. In all other cases, the optimal
guaranteed error correction rate is achieved for an inner code of finite
length, and so it is not necessary to push the code rate to zero in order to
optimize the guaranteed error correction rate. For example, it follows
from Table I that forq = 2, k = K = 3, and a[7; 3; 5] Reed–Solomon
code over GF(8) as outer code, the guaranteed error correction rate is
optimum when using a binary[4; 3; 2] inner code. This leads to a code
rate of(3� 3)=(7� 4) = 9=28 = 0:321 and a guaranteed error cor-
rection rate ofE(2;5)=(4�7) = 4=28 = 0:143. Note that choosing a
binary inner code of dimension3 with a higher distance (e.g., a binary
[6; 3; 3] code [2]) does not improve upon either the code rate of the con-
catenated code((3� 3)=(6� 7) = 9=42 = 0:214) or its guaranteed
error correction rate(E(3;5)=(6� 7) = 5=42 = 0:119). Ultimately,
an infinitely long binary inner code of dimension3would lead to a code
rate of0 and a guaranteed error correction rate of20=147 = 0:136,
where the latter value (derived using Proposition 10) is indeed smaller
than the guaranteed error correction rate0:143 obtained by using the
[4; 3; 2] binary inner code.

B. Outer Code Optimization

Next, we continue by considering the situation of a given inner code.
Then, the parametersn, k, d, K, andq (and thusQ = qk) are fixed.
We are interested in optimizing the guaranteed error correction rate
over allQ-ary outer codes of dimensionK. Sincen is fixed, it suffices
to consider the supremum of

�D(Q;d;K) =
E(d;D)

nQ(K;D)
(35)

over all positive integersD. Let�(Q; d;K) denote this supremum. We
now derive explicit expressions for bothlimD!1 �D(Q;d;K) and
�(Q;d;K).

Proposition 12: For d � 1, Q is a prime power, andK � 1, we
have

lim
D!1

�D(Q;d;K) = d2d=3e
1�Q�1

2(1�Q�K)
: (36)

Proof: From (35) and (7) it follows that

�D(Q;d;K) =
E(d;D)

nQ(K;D)
=
dD�(d;D)

nQ(K;D)
: (37)

Taking the limit asD !1 and using (24) and Proposition 6 completes
the proof.

Proposition 13: For d � 1; Q is a prime-power, andK � 1, we
have

sup
D

�D(Q;d;K)

=

b(d� 1)=2c=K; if K = 1 and Q � 2 and d � 7

or K = 2 and Q = 2 and
d � 15 and d 6= 16; 20

d2d=3e 1�Q
2(1�Q )

; otherwise

(38)
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d = 1 and D !1; d = 2 and D !1;

d!1 and D = 1; if k = 1 and K = 1

d = 1 and D !1; d = 2 and D !1; if k = 1 and K � 2

d = 2 and D !1; d!1 and D = 1; if k = 2 and K = 1 and q = 2

d = 2 and D !1; if k = 2 and K � 2 and q = 2

d!1 and D = 1; if k = 2 and K = 1 and q � 3;

or k � 3 and K = 1

one or more finited and D!1; if k = 2 and K � 2 and q � 3

or k � 3 and K � 2:

(46)

where the supremum is achieved for

D=1; if K=1 and d�7 and d 6=8

orK=2 and Q=2

and d�15 and d 6=16; 17; 18; 20; 22; 26

D=1 and D!1; if K=1 and d=3; 5; 6; 8

orK=2 and Q=2

and d=9; 13; 17; 18; 22; 26;

D!1; otherwise.

(39)

Furthermore, theseD are the only values for which the supremum
is achieved, except whenK = 1 and d = 3; 6; or K � 2 and
Q � 1mod 2 andd � 0mod3, in which cases the supremum is also
achieved for infinitely many finite values ofD.

Proof: We start by considering the caseD � 2. It follows from
(20), (4), and Proposition 12 that

�D(Q;d;K) =
E(d;D)

nQ(K;D)
�

E(d;D)

D(1�Q�K)=(1�Q�1)

� d2d=3e
1�Q�1

2(1�Q�K)
= lim

D!1
�D(Q;d;K) (40)

for all D � 2. Note that equality holds in the last inequality in (40)
if and only if d � 0mod3 andD � 1mod2. From (19) and (20) it
is clear that in order to have equality in the first inequality in (40), it
must hold thatD � 0modQK�1. Hence, it can be concluded that for
equality to hold everywhere in (40), it is necessary thatd is a multiple
of 3 andD is both odd and a multiple ofQK�1. With (21) it is thus
clear that (infinitely many) finite values ofD � 2 exist for which

�D(Q;d;K) = lim
D!1

�D(Q;d;K)

if and only if eitherQ is odd andd is a multiple of3 orQ is even and
d is a multiple of3 andK = 1.

Based on the preceding analysis forD � 2, it can be concluded that
supD �D(Q;d;K) is achieved forD = 1 or forD ! 1. Analyzing
when the difference

lim
D!1

�D(Q;d;K)� �1(Q;d;K)

= d2d=3e
1�Q�1

2(1�Q�K)
� b(d� 1)=2c=K (41)

is smaller than, equal to, or greater than zero concludes the proof.

From Proposition 13 it can be concluded that, for a givenq-ary
[n; k; d] inner code, optimization of the guaranteed error correction rate
requires an infinitely long outer code for quite a broad range of cases.
However, there are also cases for which the optimal guaranteed error
correction is achieved by choosing an outer code withD = 1, i.e., by
having no outer code at all. For example, forq = 2, k = 3, K = 1,
and a[13; 3; 7] binary inner code [2], using no outer code at all leads to
a code rate of3=13 = 0:231 and a guaranteed error correction rate of
3=13 = 0:231. Using a[D; 1; D] outer code over GF(8) with D � 2

leads to a code rate of3=(13D) and a guaranteed error correction rate
of 5=26� 1=(13D) if D is even and of5=26� 1=(26D) if D is odd.
Hence, for this example, applying an outer code gives both a lower code
rate and a lower guaranteed error correction rate compared to the situa-
tion of using no outer code at all. On the other hand, forq = 2, k = 3,
K = 1, and a[7; 3; 4] binary inner code [2], using no outer code at all
leads to a code rate of3=7 = 0:429 and a guaranteed error correction
rate of1=7 = 0:143. Using a[D; 1; D] outer code over GF(8) with
D � 2 leads to a code rate of3=(7D) and a guaranteed error correc-
tion rate of3=14� 1=(7D) if D is even and of3=14� 1=(14D) if D
is odd. Hence, for this example, applying an outer code withD � 3
gives a higher guaranteed error correction rate compared to the situa-
tion of using no outer code. Ultimately, the optimal guaranteed error
correction rate3=14 = 0:214 is achieved forD ! 1.

C. Joint Inner and Outer Code Optimization

Finally, we consider the joint optimization of inner and outer codes
for givenq; k; andK (and thusQ = qk). For anyd andD, the guaran-
teed error correction rate is then optimized by choosing an inner code
of lengthnq(k; d) and an outer code of lengthnq (K;D). Therefore,
we introduce the function

�d;D(q; k;K) =
E(d;D)

nq(k; d)nq (K;D)
: (42)

Let �(q; k;K) denote the supremum of�d;D(q; k;K) over all positive
integersd andD. We now derive an explicit expression for

lim
D!1

lim
d!1

�d;D(q; k;K)

and bounds on�(q; k;K).

Proposition 14: Forq is a prime power andk;K � 1, we have

lim
D!1

lim
d!1

�d;D(q; k;K) =
1� q�1

3(1� q�kK)
: (43)

Proof: From (42) and (7) it follows that

�d;D(q; k;K) =
E(d;D)

nq(k; d)nQ(K;D)
=

dD�(d;D)

nq(k; d)nQ(K;D)
:

(44)

Taking the limits asd ! 1 andD ! 1 and using (24) two times
and Proposition 8 completes the proof.

Proposition 15: For q a prime power andk;K � 1, we have

1� q�1

3(1� q�kK)
< sup

d;D

�d;D(q; k;K) �
1� q�1

2(1� q�kK)
: (45)

where equality holds in the latter inequality if and only ifK = 1 or
k = 1 or k = 2 andq = 2; the supremum is achieved only for the
conditions in (46), shown at the top of this page.
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Proof: With (20) and Proposition 9 it follows that

�d;D(q; k;K) =
E(d;D)

nq(k; d)nQ(K;D)
=

dD�(d;D)

nq(k; d)nQ(K;D)

�
(1� q�1)�(d;D)

1� q�kK
�

1� q�1

1� q�kK
sup
d;D

�(d;D)

=
1� q�1

2(1� q�kK)
(47)

for all d;D � 1; which proves the upper bound in (45). From Propo-
sition 9 it follows that equality holds in the second inequality in (47) if
and only ifd = 1 andD !1 or d = 2 andD !1 or d!1 and
D = 1. Fromnq(k; 1) = k, nq(k; 2) = k + 1, and (24), it follows
that, among these three cases, equality holds in the first inequality in
(47) if and only ifK = 1 or k = 1 or k = 2 andq = 2. Also, for
these parameters the only values ford andD achieving the supremum
are indeed as given in (46).

In the rest of this proof we consider the cases in which the second
inequality in (45) is strict, i.e., the cases in whichK � 2 andk = 2
andq � 3 orK � 2 andk � 3. If q is not a multiple of3, then there
exists a�d such that�d � d�(k; q), �d � 2mod 3, and �d � 0mod qk�1.
For this �d, it follows from (21), (24), and Proposition 6 that

��d;1(q; k;K) = lim
D!1

�dD�( �d;D)

nq(k; �d)nQ(K;D)
=
d2 �d=3e(1� q�1)

2 �d(1�Q�K)

=
( �d+ 1)(1� q�1)

3 �d(1� q�kK)
>

1� q�1

3(1� q�kK)
: (48)

If q is a multiple of3, then there exists a�d such that�d � d�(k; q)
and �d � �1 mod qk�1. For this �d, it follows from (22), (24), and
Proposition 6 that

��d;1(q; k;K) = lim
D!1

�dD�( �d;D)

nq(k; �d)nQ(K;D)

=
d2 �d=3e(1� q�1)(1�Q�1)

2( �d(1� q�k) + q�1 � q�k)(1�Q�K)

>
( �d+ 1)(1� q�1)(1� q�k)

3( �d(1� q�k) + 1� q�k)(1� q�kK)

=
1� q�1

3(1� q�kK)
: (49)

This completes the proof of the lower bound in (45).
Finally, note that

sup
d;D

�d;D(q; k;K) = sup
d

1

nq(k; d)
sup
D

�D(Q;d;K) (50)

and observe from Proposition 13 thatsupD �D(Q;d;K) is achieved
for D ! 1 in caseK � 2 andk = 2 andq � 3 or K � 2 and
k � 3. Furthermore, no finiteD achieves this supremum, except when
q is odd andd is a multiple of3. It follows from (20) and (4) that

�d;D(q; k;K) =
E(d;D)

nq(k; d)nQ(K;D)
�

1� q�1

3(1� q�kK)
(51)

if D � 2 andd is a multiple of3, and that

�d;1(q; k;K)=
E(d;1)

nq(k; d)nQ(K;1)
<

1� q�1

2K(1�q�k)
<

1�q�1

3(1�q�kK)

(52)

if q � 3. The latter inequality in (52) follows by observing that

2K(1� q�k) � 4(1� 3�2) = 32=9 > 3(1� q�kK): (53)

Hence, it can be concluded thatsupd;D �d;D(q; k;K) is only achieved
for D ! 1 and one or more finited in caseK � 2 andk = 2 and
q � 3 orK � 2 andk � 3.

Table I lists the parameters of the shortest inner binary codes
achieving�(2; k;K) for k � 7 andK � 2. (Note that no such codes
exist if K = 1 andk � 3.) From Proposition 15,D should tend to
infinity to achieve�(2; k;K). Indeed, except in casek = 4, the code
parameters are identical to those listed in the second column of the
table as the parameters of the shortest inner binary codes achieving
�(2;D; k) asD tends to infinity. We choose the exceptional case
k = 4 as an illustration of the derivation of the entries in the third
column of this table. Proposition 6 and (24) imply that

�d;1(2; 4;K) = lim
D!1

dD�(d;D)

n2(4; d)n16(K;D)

=
15

32(1� 16�K)

d2d=3e

n2(4; d)
: (54)

Furthermore, from [8] we know that

n2(4; d) = d+ dd=2e+ dd=4e+ dd=8e

for all d. Thus maximizing�d;1(2;4;K) over all d is equivalent to
maximizing

fd =
d2d=3e

d+ dd=2e+ dd=4e+ dd=8e
(55)

over alld. Clearly, ford � 9

fd�
2(d+1)=3

d+d=2+d=4+d=8
=

16

45
1+

1

d
<
16

45
1+

1

8
= f8:

(56)

Hence, the maximum offd is attained by somed in the range1 � d �
8. It is easy to see thatfd = 1=4;2=5; 2=7; 3=8;4=11;1=3;5=14;2=5
for d = 1; � � � ; 8, respectively. Therefore, the smallest value ofd that
maximizesfd and�d;1(2; 4;K) is 2. However, we should notice that
d = 2 does not maximize�d;D(2;4;K), which is equivalent to max-
imizing �d(2;D; 4), for any fixed finite integerD. The smallest such
d is actually8 if D � 3. In fact, �2(2;D; 4) = (D � 1)=5 and
�8(2;D; 4) = (D � 1=3)=5 for D � 3.

We can conclude from Proposition 15 that in order to optimize the
guaranteed error correction rate over allq-ary inner codes of dimen-
sionk and allqk-ary outer codes of dimensionK, it is necessary to
choose an inner or outer code of infinite length. However, not both the
outer and the inner codes should be infinitely long, since that leads to
a suboptimal guaranteed error correction rate!
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The Undetected Error Probability Threshold
of -out-of- Codes

Fang-Wei Fu, Torleiv Kløve, Senior Member, IEEE, and Shu-Tao Xia

Abstract—The well-known -out-of- code
 consists of all binary
vectors of length and weight It is known that it is good for error
detection (in the technical sense, that is, the probability of undetected error

(
 ) (
 1 2) for all ,0 1 2) only for a few
small values of and It is therefore of interest to determine (bounds
for) the threshold in general, that is, find the range of bit-error probabilities

for which (
 ) (
 1 2) In this correspondence
such bounds are given.

Index Terms—Error detection, -out-of- codes, undetected error
probability threshold.

The well-knownm-out-of-n code
mn consists of all binary vectors
of lengthn and weightm: Them-out-of-n codes have been widely
used as the error-detecting codes in the digital communication systems
with feedback, such as the automatic-repeat-request (ARQ) error-con-
trol system. The undetected error probability of an error-detecting code
is one of the major parameters for evaluating the efficiency of ARQ
error-control system. For a general introduction to the theory of the
probability of undetected error for codes, we refer the reader to [3] and
its references. Wang, Yang, and Zhang, [5]–[10] studied the codes
m

n

for error detection.
LetC be a binary code of lengthn and sizeM: When the codeC is

used for error detection on a binary-symmetric channel with symbol
error probabilityp, the undetected error probability is denoted by
Pud(C; p): A general rule of thumb is that to useC for error detection,
we want

Pud(C; p) � Pud(C; 1=2) (1)

mainly because this gives a simple upper bound onPud(C; p) for all
p 2 [0; 1=2]: Therefore, if (1) is satisfied for allp 2 [0; 1=2], the code
C is calledgoodfor error detection. However, many codes are not good
in this sense. On the other hand,p is usually small in most practical
applications and (1) may well be satisfied for the actual values ofp:
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Therefore, we consider the threshold ofC (introduced in [2]), which is
defined by

�(C) = max p0 2 [0; 1=2]
Pud(C; p) � Pud(C; 1=2)

for all p 2 [0; p0]
:

For p � �(C) the bound (1) is still valid. In particular,C is good for
error detection if and only if�(C) = 1=2: Note that�(C) is a root of
the equationPud(C; p) = Pud(C; 1=2) and it is the smallest root in
the interval (0, 1/2] except in the rare cases whenPud(C; p) happens
to have a local maximum for this smallest root (this is not the case for

m
n ).
It is easy to show and well known that

Pud(

m
n ; p) =

m

i=1

m

i

n�m

i
p2i(1� p)n�2i: (2)

In particular,Pud(
m
n ; p) = Pud(


n�m
n ; p) for all n, m, and p:

Therefore, we can restrict our attention tom such that1 � m � n=2:
Wang et al. [5]–[10] showed that
m

n is good for error detection
exactly for the following values of(n;m) with 1 � m � n=2: (2; 1);
(3; 1); (4; 1); (4; 2); (5; 2); (6; 3); (7; 3); (8; 4): Another proof of
this fact is given in [1].

The goal of this correspondence is to estimate�(
m
n ):We start with

a heuristic argument for approximations of�(
m
n ):We will then prove

one such approximation. We use the notations

	 =	(n;m) = Pud(

m
n ; 1=2) =

n
m

� 1

2n

 = (n;m) =
	(n;m)

m(n�m)

1=2

:

From (2) we see that� = �(
m
n ) is the smallest positive root of the

equation

m(n�m) 2 =

m

i=1

m

i

n�m

i
�2i(1� �)n�2i:

In particular, if� = �(
m
n ) is small, then� �  :

Consider the corresponding general equation

m(n�m)y2 =

m

i=1

m

i

n�m

i
p2i(1� p)n�2i (3)

wherep andy are variables. Solving forp, we getp as a function ofy,
and it can be expressed as a power series

p =

1

j=1

sj(n;m) yj : (4)

The simplest way to determine the coefficientssj(n;m) is to substitute
(3) in (4) and compare coefficients. We get the following initial terms
of (4):

p = y +
n� 2

2
y2 +

3n2 � 9n+ 7�m(n�m)

8
y3

+
(4n2 � 11n+ 9� 3m(n�m)) (n� 1)

12
y4 + � � � : (5)

Note that it is nota priori clear if this expansion converges fory =  
and we have no proof that it does. If it does, we expect to get a good
approximation to� by taking the first few terms in the expansion. A
heuristic argument indicates that the expansion converges at least for
jyj < 2=(en) and we will show that < (32=(�n5))1=4 < 2=(en):
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