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variables,”J. Amer. Statist. Assqozol. 58, pp. 13-30, 1963. N log N, which is not overwhelming for small values &F.

This correspondence addresses only the first issue—the matching of
transform to source. Aackward adaptivenethod for transform adap-
tation is proposed and analyzed. In backward adaptation the encoder
and decoder adapt in unison based on the coded data without the ex-
plicit transmission of coder parameters. Backward adaptation is also

Transform Coding with Backward Adaptive Updates calledadaptation without side informatioor on-line adaptation
The use of backward adaptation for transform adaptation in trans-
form coding seems to be unprecedented, though backward adaptive
techniques have a long history. For example, adaptation of prediction
filters in speech coders is often backward adaptive [4], [5] and ADPCM
Abstract—The Karhunen—Loéve transform (KLT) is optimal for trans- i.ncludes .not only.bgckward adapta.tion of ﬁ,lter, taps but a!so of quan-
form coding of a Gaussian source. This is established for all scale-invariant tizer scaling [6]. Similar to the quantizer scaling in ADPCM is the back-
quantizers, generalizing previous results. A backward adaptive technique ward adaptive context modeling and quantizer scaling of the EQ image
for combating the data dependence of the KLT is proposed and analyzed. coder [7]. Itis also possible to adapt a quantizer more generally without
When the adapted transform converges to a KLT, the scheme is universal side information [8].
among transform coders. A variety of convergence results are proven. The incompletely realized aim of our work is to show that backward
Index Terms—Dbithered quantization, lossy data compression, transform - adaptation can result in a transform code thaiszersalfor Gaussian
coding, universal source coding. sources. “Universal” is used here to mean that the performance ap-
proaches that of an ideshnsform codelesigned witta priori knowl-
I. INTRODUCTION edge of the source distribution. The results along these lines are asymp-
totic in the data length, but the transform or block size is fixed. Empir-
The essence of transform coding is to apply a linear transform ity evidence and partial analyses are provided. Such a code would be
a source vector and then apply scalar quantization, as opposed togp«on-line” alternative to the “universal codebook” approach to uni-
plying scalar quantization directly to the source vector. Heuristicallyersa| transform coding by Effros and Chou [9Forward adaptive
transform coding works because the transform can eliminate corrglgehniques that are not necessarily universal are discussed, e.g., in [11].
tion between components of the source vector, producing a vector ofrhe results of [9] were inspiring to this study because they indi-
transform coefficients more amenable to scalar quantization and @Bieq superior performance of weighted universal transform coding
tropy coding. Transform codes are popular because they provide R weighted universal vector quantization for image compression
attractive compromise between computational complexity and perfQiiih reasonable vector dimensions. It was also shown that there are
mance. In the parlance of vector quantization, the point-density and @-aple gains to be realized by varying the transform, a result that runs
longitis losses of scalar quantization are eliminated or reduced, leaviinter to the conventional wisdom in image compression.
predominantly only a space-filling loss [1]. ) In the remainder of the correspondence, the aforementioned ideas
With a Gaussian source model, the optimal transform is a Karhunefys made more precise. The sources and coding structures under con-
Loéve (KLT), an orthonormal transform that produces uncorrelateffieration are described in Section II. Unable to satisfactorily analyze
transform coefficients. The optimality of the KLT is well known forine griginal coding structure, we give several analyses based on simpli-
high rates [2] or when optimal fixed-rate quantizers are employed [§}ing assumptions. The main results are stated in Section Il and proven
but holds more generally (see Appendix I). However, the KLT is rare{y aAppendix I1. Section IV describes ways in which the encoding algo-
used in practice for a variety of reasons. One prominent reason is thafms can be modified to reduce computational complexity or to track

the KLT is signal-dependent; the transform used in the encoder and QQ/'arying source. Concluding comments appear in Section V.
coder must be adjusted to correspond to the covariance of the source

in order to maintain optimality. A second reason is that since the KLT

has no special structure, it requires more operations to compute than

a harmonic transform such as a discrete cosine transform. For vectorset {=,, },cz+ be a sequence of independent and identically dis-
tributed (i.i.d.), zero-mean Gaussian random vectors of dimension
with covariance matrix?, = E[awT].Z If R, is notdiagonal, i.e., the
components of are correlated, one obtains better rate-distortion per-

a"g"?‘r:‘_i!zgigt rf?IC:i\F/leedf'rAsFt)glr\fios’eizgr\%; ;e;/ri%erg D:r(;emtbhetrhzla' Ulr?92-rsT_thizf"g’afllSrmance with transform coding than with direct scalar quantization
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Fig. 1. Block diagram of transform coding system with backward adaptive transform upfates time-varying orthogonal transfori, is a scalar quantizer,
and E is a universal scalar entropy coder.

and scalar entropy coding. Ideally, the transform should be selectid distortion for a given entropy coder output rate. Assuming that the
such that the transform coefficients are uncorrelated and hence, sittaasform and the universal lossless codes converge, this rate is well-ap-
the source is Gaussian, independent. This was first shown by Huamgximated by the entropy rate of the quantizer output sequence. With
and Schultheiss [3] under assumptions of optimal fixed-rate quantizhis approximation one is left with antropy-constrained scalar quan-
tion and a mild, common sense condition on the bit allocation. (Earligzer to design.
work by Kramer and Mathews [12] did not involve quantization and Even assuming that the variance of the transform coefficient is
was not in an operational rate-distortion framework.) Using high-reskrown, the best quantizer will generally be known only through a
lution quantization theory, the same result can be obtained for optinmaimerical optimization procedure. However, a uniform quantizer is
variable-rate (entropy-coded) quantization or uniform quantization [2}ptimal asymptotically for high rates [13] and, more importantly, is
A new extension is given in Appendix | that relies only on the scalatose to optimal at moderate rates [14]. This is an important distinction
quantizers having performance invariant to scaling (Theorem 6).  between fixed-rate and variable-rate scalar quantization that partially
To mathematically describe an optimal transfdfpsimply note that  justifies our use of fixed uniform quantizers. (Alternatively, it was

by linearity of the expectation operator shown in [8] that backward adaptation of fixed-rate quantizers can be
. . successful, but this is not pursued here.)
R, = E[(Tx)(Tz) | =TR.T" . Now consider the joint optimization of the set of scalar quantizers.

Thus T may be an orthonormal similarity transform composed OLsti_ng high-resolution analysis, itis easy to .Sh.OW that the o_ptimal allq-
eigenvectors of?,. This makesR, a matrix with the eigenvalues of catl_on of rates between _the.transfornj coefficients results in equa.I (_jls-
: - in di | and ze?os elsewhere. Such a transform itortlons and equal quarjtlzatlon step sizes fqr t_aach transform c_oefflc_lent
}K?;rl(q)gnl(t;-r:g:‘anve Ite;gg;]%rm (KLT) of the sourcé. fz]’" Though this r_esult_ is Well known, the minimum rate at Whlc_h this
Since the optimal transforffi depends on an ensemble average IS a good appl_'OX|mat|0n IS not; thl.JS we presgnt some numerical cal-
r({g{atlons. At high rates, the operational distortion-rate performance of

itis gif‘era”.y unknown _at the encoder. (l.t may al_so b_e the case ten ropy-coded uniform quantization (ECUQ) of a Gaussian source with
E[z, x,] varies slowly withr, though we will deal with this case only __ . 2 .
variances - is given approximately by

in passing.) We consider here systems that periodically adjust the trans-

form at the encoder and decoder in a backward adaptive manner. A D = €, 29—2R, (2)

block diagram for such a system is shown in Fig. 1. In this system, the 6

quantizerq is a scalar quantizer with uniform quantizeapplied to  This is easily obtained by combining tHe ~ AZ2/12 distortion of

each component fine, uniform quantization with Rényi’s relation between the differen-
1 1 tial entropy of a continuous source and its uniformly quantized version

q(x;) = ki A, for <ki — 5) A< < <ki + 5) A, [15]

ki € Z, i=12,---,N. (1) H(Q(X)) ~ }L(—X) — log, A, (3)

The entropy coder ha¥" separate universal lossless codes forhe The jnaccuracy of (2) at low rates is apparent from the fact that the
transform coefficient streams. maximum distortion should be?; the distortion given by (2) exceeds

In this work we concentrate on the update mechanism for the trags-fq; rates belowss 0.255 bits. The actual distortion-rate behavior is
form and the effect of the transform updates. This is partly a matter&ﬁmpared to (2) in Fig. 2(a).

taste, but it is also motivated by the insensitivity of the optimal quan- The simplicity of bit allocation using (2) is due to the form of

tizer to the source and transform. The use of uniform scalar quantigb/ag_ Consider the allocation o, andR- bits between compo-
tion with equal step sizes for each component is discussed in Sectiihis with variances? andsZ, respectively. Since

II-A and transform update procedures are considered in Section II-B.
oD; _me log 2

A. Focusing on the Transform OR; 3

cZ27h =12 (4)

Consider the quantization and entropy coding of a single transfooperating at equal slopes demand@ 2%+ = ¢2272%2_ Thisin turn
coefficient branch in Fig. 1. Since the quantizer indices are entropyrakes the component distortions equal and, again using high-resolu-
coded, the proper optimization criterion for the quantizer is to minimizéon approximations, the quantization step sizes equal. This analysis
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Fig. 2. Comparisons between the actual performance of entropy coded uniform scalar quantization and high-resolution approximations. &xrictuahts
performance compared to (2). (b) Derivative of the actual distortion-rate performance compared to (4).
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Fig. 3. Comparisons between the performance of optimal bit allocation and equal quantization step sizes for variables withaadaricends? = 1/4:
(a) distortion-rate performances; and (b) bit allocations.

demonstrates that using equal quantization step sizes is a good appro:
imation to optimal bit allocation when (4) is accurate. This is true for
rates above about 1 bit per sample (see Fig. 2(b)).

To conclude the discussion of bit allocation, let us look at the effect of
optimal bit allocation in one simple example. Variables with variances
o7 = 1 andsj = 1/4 are quantized by ECUQ either with optimal bit

0.1 T T T v

&
allocation or with equal quantization step sizes. Fig. 3(a) compares the <03
distortion-rate performances and Fig. 3(b) compares the bit allocation. &-0.4
It is apparent that optimal bit allocation provides little improvement. 2
- . S ) ) g-05
Note also that the optimal bit allocation is predicted well by the high- 5
-0.6f

resolution analysis when the lower rate is at least 1 bit per sample.
For the remainder of the paper, ECUQ with equal quantization step  _o7
sizes for all components is employed exclusively. With this restriction,

. - . . -08
we may fix the quantization step size and focus on the entropies

of the quantizer outputs; for smalk the distortion is insensitive 0.9, 0.05 o1 015 02 025
to the choice of transform. In the limit a& approaches zero, this 8/n

insensitivity is clear because the distortion approachég12 per
component. It turns out that the deviation from this approximation ﬁ . 4. Dependence of overall distortion on the choice of transform for

less than 5% for rates above 1 bit per sample. This is demonstrate€yo-dimensional source. The dependence is mild and vanishes as the
in two dimensions by Fig. 4. Sources with covariance matricegiantization step siz& shrinks.
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R, = J(9)T diag(1,1/4).J(#), where.J(¢) is a Jacobi rotation of that used in heuristic analyses of the LMS algorithm. In such an anal-

¢ radians® were quantized with various quantization step sizes. Thesis the sequence of transforms is assumed to be independent, though
distortion, normalized byA? /12, is shown on a logarithmic scale as athis assumption is clearly false [16, Appendix 3.B].

function ofé. In this example, the distortion differs little from, and is The following two sections give different types of convergence re-

bounded above, by?/12. sults that are suggestive of the convergence seen in simulations. In Sec-
tion 111-B the stochastic variation of (5) is ignored. The transform up-
B. Transform Update Mechanisms dates are then described by a deterministic iteration. As an alternative,

dhe quantizer can be replaced by a subtractive dithered quantizer in
order to insure nice behavior of the transform sequence. This is con-
sidered in Section IlI-C.

Referring again to Fig. 1, for decoder tracking without side inform
tion it is necessary that the transfoffn1 depend only o{ 7% }7—,
and{y } r.—1. We assume that the covariance estimate

—n 1 B. Deterministic Analysis
R = - Z Erit ()

— In the original system, the distribution &f, depends off,,, which

. in turn depends off, and{x;};Z,. Because of this complicated in-
is computed and théft,; is chosen such thék, 1 ]f'%é(")if,,lTJrl is di- terdependence between quantization and stochastic effects, it is very
agonal with nonincreasing diagonal elements. This amounts to usififficult to analyze the convergence of the transform.
R:" as an estimate foR,.. The calculation of;, 11 will have sign  One way to reduce the complexity of the analysis is to neglect the
ambiguitied and if the eigenvalues dt; ™ are not distinct, there will stochastic aspect, meaning to assume there is no variance in moment

be additional ambiguities; these can be resolved arbitrarily. The initedtimates despite the fact that moments are estimated from finite-length

transformI’ can also be arbitrary. observations. The effect is to replace (5) with
More complicated update mechanisms are possible, but using an .
eigendecomposition of (5) has the attractive property of requiring only R;") =F [aal ] (6)

constant storage: As the data vectors are coded, onlythé + 1)/2 ,
independent components of (5) must be stored. Adjustments to (5atd update the transform such tHat, R;’”)T,TH is diagonal with
compensate for quantization effects are possible, but are not used seasncreasing diagonal elements. We are left with a deterministic iter-
to not rely too heavily on the Gaussian model for the source data. ation summarized by

At first glance it may seem that we expekt™ to converge to . -~ e .
R, which would result in the transform converging to the desired R =T Ry'T, =T, Q(RY')T, =T.) Q(T. R.T,) )T,
KLT. In fact, we do not need?; ") — R. to have the desired trans-7, , R("'T" | = A, (diagonal with nonincreasing diagonal elements)
form convergence. Suppose for the moment that the effect of quantiza-
tion is to add a zero-mean signaindependent of with E[zz7] = whereQ: RV*" — R"V*" gives the effect of quantization on the
(A%/12)Iy.ThenR: = R,+(A?/12)Iy and sinceR; andR, have covariance matrix() depends on the source distribution afdand
the same eigenvectors, the transform converges to the correct tramast be described by evaluating expressions from [17].
form. Of course, this is an overly simplistic model of quantization. As SinceR.. and Ri generally have different eigenvectors, it is not
detailed below, the difference betweBfzz’| andE[Q(x)Q(x)*"]is  obvious that this iteration will converge. The following theorem gives
generally not a scaled identity. Nevertheless, we assert that the sysgelimited convergence result.

works: The transform converges to the optimal transform, resulting in . .
. 9 op . 9 Theorem 2: Let R, andT} be given. Then there exists a sequence
a universal system. We cannot prove this convergence precisely, butr,

sults suggesting the observed convergence are given in the foIIowPquamization step sizes\, } C IR such that the deterministic iter-
> Sugg g 9 g ar}%n described above converges to a KLT of the source. Since the KLT
section. . ) . ) - .
is ambiguous if the eigenvalues Bf, are not distinct, convergence is

indicated byRQ'L) approaching a diagonal matrix in Frobenius norm.
IIl. MAIN RESULTS Y

. . N Theorem 2 does not preclude the possibility that the iteration will
The main results of the correspondence are summarized in this sec- ithinf A — 0. However. numerical calculations sua-
tion. Proofs are given in Appendix II. converge only Wlth.m " ) ’ 9
gest that the iteration actually converges for constant sequences of suf-

ficiently small step sizes. Fig. 5 shows numerical results for a four-di-
mensional Gaussian source witk,);; = 0.9, Ty = T, and

Theorem 1: Fix a quantization step siz& and suppos¢T’, } con-  various values of\. To show the degree to whicF, diagonalizes
verges elementwise t@&, a KLT of the source. Let,, denote the pg_, |||R§,")||| is plotted as a function of the iteration numberwhere
per-component code length for coding the firstvectors using the ||| A||| = S, a%;. An approximate correspondence between quanti-
adaptive scheme and I&t, denote the per-component code length fopation step size and rate is also given.

coding the first: vectolrs with the fixed, optimgl transfori Then the Starting from an arbitrary initial transforrﬂle") ||| becomes small
average excess rat€ (L. — L;,) converges in mean square to zeroafter a single iteration (note the logarithmic vertical axis). Then, to the

As discussed in Section II-A, given a quantization step size, the d@"ts of machine precision, it corverges exponentially to zgro_v_vith a
tortion of a transform coder depends only slightly on the transforfAte of corg)\llergencehthat depend.smn(Fotr)lA d> 3.,hloss of IS|gnn‘|-
Thus Theorem 1 indicates that the backward adaptive scheme will h&@dce problems in the computation combined with very slow conver-

performance asymptotically almost equal to an optimal transform cod¥ce make it difficult to ascertain convergence numerically.)

whenever the transform converges to a KLT. Transform convergence-rhe results shown in Fig. 5 are representative of the performance

€ . (1 is un-
can be established when using an independence assumption similé{Y'{B anarbitraryri, . '_I'h_e_c_onvergencg, as measured| by, _”|' ISun
affected by the multiplicities of the eigenvaluesiof. The eigenspace
3Jacobi rotations are defined in equation (12) of Appendix | associated with a multiple eigenvalue can be rotated arbitrarily without
4 T4 Rz TT, | is diagonal, then negating any row .., will not affecting||| R, ||| or the decorrelation and energy compaction proper-

change the produdt, ., R "T7, ;. ties of the transform.

A. Transform Convergence Implies Universality
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Fig. 5. Simulations for various fixed quantization step sizes suggest that the deterministic iteration converges more generally than préuioremb3. The
source vector length i = 4 and the initial transform is the identity transform. The accompanying table provides the approximate correspondence between
quantization step sizes and rates.

Theorem 3: Let N =2 and letR, be given. There existnax >0 o
such that for any\ < A,...« the deterministic iteration converges, in
the same sense as before, for any initial transféim

C. Using Dithered Quantization

=
o
L

For the sake of analysis, let us alter the system to use subtractive Upper bound on p

dithered quantization [19]. Replace the quantizey defined in (1) by
qdither ((UVL)L) = q((yn)L + Zni) — Zni (7)

where thez,;’s are independent and each is uniformly distributed on
[—A/2, A/2]. We assume that the dither sigiak.: },,cz+ 1 <i<n IS
somehow available at the decoder so that each component of the quar
tizer input can be reconstructed up to an error of magnitnde. The
dither signal is not used in the entropy coder. L ) ) , , .
The effect of the dither is to make the quantization error indepen- 0 05 1 Base1E§:e (bits2pe rcom%gnem) 3 35 4
dent of the data and transform sequences. The following result is ther
straightforward.

b

Bound on p (bits per component)
Q

) ) ) L Fig. 6. Bound (8) on the excess rateas a function of the coding rate for a
Theorem 4: With the dithered quantizer (7) and any initial transGaussian source wittR,, );; = 0.8/: =3l

form T}
2
R:" converges in mean square R + A_[ asn — oc. The constanp can be interpreted as the asymptotic redundancy of
12 the system. It is the excess rate, in bits per source component, of the
Also, the sequence of transforffig,, } converges in mean square to aadaptive system, as compared to a fixed, optimal transform code de-
KLT for the source. signed with knowledge oR,. The bound (8) comes simply from the

variance added by the dither sigfhials A approaches zero, the power

Although we are assuming Gaussian s_ignals'throughout, the prgﬂhe dither signal vanishes and accordinglgpproache8. Thus the
of the theorem does not depend on the distribution of the source. Thg, oreq system is universal for high-rate coding

transform converges to a transform that maximizes coding gain for anYa+ moderate rates, is quite small. For example, consider the coding
i.i.d. source; however, for non-Gaussian sources maximizing codiBgan eight-dimensional Gaussian source Wit ),; = 0 gli—il By
Di; = 0. .

gain may not be idefil' ) . i computing the bound (8) and the correspondence betweand the
When the source is Gaussian, the KLT is the optimal transform apg, of 5 KL T coder for this particular source we get the curve shown

the entropies of th_e quantized variables can be easily estimated. TiHi?—'ig. 6. This roughly indicates thatmust decay exponentially with
leads to the following theorem. the overall coding rate. In fact, using the high-rate approximation

Theorem 5: Denote the eigenvalues @@, by A, Az, ---, An. i
Define L, and L}, as in Theorem 1. Then the average excess rate A2 e (X N _on
n~'(L,. — L) converges in mean square to a consarstimating 12 ~ 6 (H /\1> 2
discrete entropies with (3) =1

N A2
p < i Zlog2 <1 + A_> . (8) SWhen the dither signal is known at the entropy coder, performance better
2N pat 12X than the worst case given by (8) can be expected [20].
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whereR is the rate of the optimal transform coder, (8) can be writteconvergence, and convergence can be shown under certain simplifying

as assumptions such as when the estimation noise is ignored or when the
guantization is dithered. The problem of optimally combining forward
N 5 N 5 . .
1 1 1 A* 1 A* and backward adaptive methods remains open.
P 2N Zl g2 | 1+ 12\, < 2N In 2 Zl 12)\; Gaussian sources were assumed throughout. This assumption was

N N N used in two ways: to justify maximizing coding gain and to concretely
R e 1 «~— 1\ __2r describe the effect of quantization on moment estimation. The avail-
122 <H ) <T Z E) 2 ability of universal lossless coders is assumed, but, in contrast to [24],
= = they are applied only to sequences of scalars. This potentially decreases

At rates of 2 or 3 bits per component, the excess rate is less than 694§ memory requirement and speeds convergence.
1%, respectively.

D. Remark
APPENDIX |

The deterministic analyses and the analysis of the system with dither OPTIMALITY OF THE KARHUNEN—LOEVE TRANSFORM
can be combined to form a heuristic argument for convergence. Soon
after the system is initialized, the variance of (5) is high and thus theThis appendix provides a new result, with two proofs, on the
variation of the transform is also high; this has the effect of a dithejptimality of the Karhunen—Loéve transform (KLT) for transform
Later the changes to the transform are much smaller, but the transfeigdling of Gaussian sources. It is more general than earlier results
cannot settle at an incorrect value because incorrect transforms arerggling on optimal fixed-rate quantization [3] or high-resolution

fixed points of the deterministic iteration. quantization theory [2], [3] because it relies only on a scale-invariance
property of quantizer distortion-rate performance; in particular, it
IV. VARIATIONS ON THE BASIC ALGORITHMS encompasses the earlier results and applies to entropy-coded uniform

Certai dificati to the basic algorith b de t scalar quantization with equal step sizes for each component, as
ertain modifications to the basic algorithms can be made to rez. 4 in this correspondence.

duce the computational complexity or to facilitate the coding of non-
i.i.d. sources. All of the modifications mentioned in this section apply Theorem 6 (Optimality of Karhunen—Loéve Transformgonsider
equally well to the dithered and undithered systems. the transform coding of a Gaussian source subject to minimum square
The most complicated step in these algorithms is the computatieror (MSE) distortion. Assume that the distortion-rate performance of
of the updated transform; thus the complexity can be reduced by sapscalar quantizer applied to a component with variasicés D =
pressing this computation. Instead of computing an eigendecompasif (R). Then a KLT is an optimal transform, i.e., for any given max-
tion of R;(") at each step, one can compute the eigendecompositiorum per-component rate, it minimizes the distortion.
everyL steps, ho_ldnr_lg the trar_1$form constant in betweieneed not First note that iff(-) is not nonincreasing, there will be rates that
be constant, but if it is to vary it must be computable from coded data. L
: S are useless: iy > R, but f(R:) > f(R>), rateR, can be replaced
Having constanL > 1 does not affect the conclusions in Theorem 4. . : : . A
. . ; in any purportedly optimal solution by raf, without increasing the
The coding of a non-i.i.d. source poses many problems. First of a . . S .
(n) . _ - S Istortion and without violating the rate constraint. Thus we henceforth
we must assume thd;"’ varies slowly, or that the source is “locally . - ’
. N T . - e assume thaf(-) is nonincreasing.
stationary.” If this is not the case, an on-line algorithm will fail because . ) N . . .
. . ) n Two proofs are given: The first is simple to describe from first prin-
the coding ofz,, is based on an estimate & from (recent) past _ . . - .
: ciples but relies on an iterative construction. The second, more elegant

i ix estimate™
IsoirZFlzi Secondly, the covariance matrix estimate "’ should be proof relying on the theory of majorization (see [25]) is due to Telatar
P [26].

Sy 1 n o Proof 1: Let(R1, R2,-- -, Rx) be any bit allocation vector, i.e.,
R =22 Z Tk ©) suppose thaR; bits are allocated to transform coefficiept Given
any orthogonal transforr’, we will show that there exists a KLT
that yields distortion at most as high as yieldediby

Before proceeding with more complicated constructions, note that
) S ) o . the variances of the transform coefficients should have the same or-
with appropriate initialization. If the update intervablividesi’ in (9),  dering as the rates. 2, > o, butR; < R;, then the distortion is

itis not necessary to store a full window &f past samples [22]. reduced or unchanged by swapping tieand;th rows of7". The re-
A technique which simultaneously reduces the computational coditing change in distortion is

plexity and introduces a covariance estimate equivalent to (10) is to re-
place the eigendecomposition computation witlmemementathange 2 , 2 , 2 ‘ 2 ,
in the transform based o, . This is explored in [16, Ch. 4], [23]. (0 f(B)) + 0 F(Ri)) = (U”ff(f’) + ‘:’/jf(RJ))
= (0, —0y,) (f(R;) — f(R:)) < 0.
—_—

—_———
V. CONCLUSIONS >0 <0

k=n—K+1
or

R = bR 4 (1= w)dndn (10)

This correspondence has proposed a backward adaptive structure for .
transform adaptation in transform coding. Since there is no side inféf-the remainder of the proof we assume thattas the property
mation, the system is universal for Gaussian sources when the trans-

form converges to a Karhunen-Loéve transform. Simulations indicate for anyi andj, ‘757- > aij impliesR; > R;. (11)

BWithout local stationarity, a forward adaptive method would presumably be There is nothing to prove i’ is a KLT, so we may assume that the
superior; see [9], [21]. (i,j) component ofR, = TR,T" is nonzero for somei, j) pair.
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Construct a new transforf, = .](i,j,G)TT. where.J (i, j,0) is a Again let (R, R»,---, Rx) be any bit allocation vector. The
Jacobi rotation defined by problem is to minimize the function

N
D=> o, f(Ri)
r 1 .- 0 ce. 0 e 0T ; v
D : : : by manipulating ther'ji’s through the choice df. Let
0 --- cos# --- sinf --- 0 i . 5

Ji.g.0)=| S : 0= (05,00, 0y,) = diag (TR, TT).

0 ++ —sinf -+ cos@ -+ 0 j For a Hermetian matrix, the diagonal elements are majorized by the
eigenvalues, se@ is majorized by a vectox of eigenvalues oR .. Now

the majorization of by A is equivalent ter being in the convex hull of

L 0 .- 0 e 00 e 1 the N'! permutations of. We are thus left with minimizind over the

Jj convex polytope defined by the permutations\df In minimizing a

6 € [-n/4,7/4) (12) linear function over a convex polytope, the optimum is always attained
at a corner point. This establishes that the optimal transform is a KLT.

andé is chosen such that the, j) element ofl} R.TT is zero. . . - .
. . . . . Furthermore, the arguments given in Proof 1 indicate that the optimal
This choice of transform has a few important properties. The f'r%_

is thatT, R. T} is closer to a diagonal matrix thaiR.T", where T (the optimal permutation) is one that satisfies (11). .
closeness is measured by the Euclidean norm of the off-diagonal

elements. Thus repeatedly cycling through @llj) pairs, defining

Tiy1 = J' T, eventually yields a diagonal matrikR. T, where

T = limg—oo Tk.” A. Proof of Theorem 1

The second property is that among the diagonal elements, only th ‘ .
Nty ode
ith andjth are altered. These are altered such that the larger of the %cz_et denote the number of bits used to ¢ Because of

is increased by a positive increménand the smaller is decreased by,
o . - . the
the same amount. This is easily verified by expanding

APPENDIX Il
PROOFS

convergence of the sequence of transforms and the universality of
entropy codetZ[(,,] converges to some limit, sdy For the static
coder, the number of bits used by the optimal coder; will satisfy

cosf  sind 1% a1 as cosf  sinf by 0 E[t;] = ¢*. Since{T.} converges td" and the entropy rate of the
{ } { } { } = [0 bz:| quantizer output depends only on the transfofns ¢*. Now since
{E[t, — (]} converges to zero, the mean of the sequence

—sinf  cosf as  as —sinf  cosf

and solving fo € [—m/4,7/4). If a1 > a2, one finds

bi=a1+6 nt Z((}k —)y=n"YL,—-L})
bo =ay -6 k=1
where § — —(a1 — az2) + /(a1 — a2)? + 4a} >0 converges to zero in mean square.

2
with equality if and only ifas = 0. B. Proof of Theorem 2

Supposeri > af,j. Then using the second property, the change in The proofs of Theorems 2 and 3 rely on propertie§ofhe function

distortion by using/ (i, j,8)" T in place ofT is that describes the effects of quantization on the covariance matrix.
. i ; . . Letn; andy. be jointly Gaussian with
(02, + 8)F () + (03, = 8)J(By) — (02, 7 (o) + 0% F(B,) 1 e DE 1Y
= & (FRA - R <0, E[m] = Elnz] = 0
SR = f(B) <0 Enl=Ele] =0
>0 <0 Elnl= Elnz] = v5

. - . L and
Thus as we iterate to firifl, the distortion is decreased or unchanged at

each step. Th& thusly constructed is both a KLT and at least as good Elnnz] = viz.
asT in distortion-rate performance. U Define
Proof 2: The second proof is based on elementary properties of 2 N2 .2 2
majorization, which are detailed in [25]. A vect@r;, aa, - - -, ) iS v2 laCn)'] 2 La(r2)"]
said to bemajorizedby another vectof3, 2, - - -, B ) if and
i % 12 = Elg(m)e(n2)]
2 T < Z B, k=1,2---,N-1 whereg(-) was defined by (1). Then using expressions from [17], one
= =t can show
and . oo 2
~2 2 AZ X m —r)m27r2u.2/A2 A= 2
N N vy =vi + ) + Z (=1)"e™" : o +4v; ),
Z ()('[7‘] = Z ’/3[,:] m=1
=1 =1 1= 1. 2 (13)
where the[-] notation indicates a decreasing ordering, > ;) > and
e > N
1912 = (1 + (S)Vlz + 22 (14)

"This is the well-known classical Jacobi algorithm for computing eigende-
compositions of symmetric matrices; for details, including convergence results8We have not carefully argued that all points in the polytope are feasible, but
see [27, Sec. 8.5]. the achievability of the optimizing value will be clear.
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where

> 22 2 2 it 22 2 2
§=9 < Z (_1)m1672mlﬂ vi/A + Z (_1)m2672m27\' vy /A )

mi1=1 mo=1
and

o 2

A
L = _1)ml+7n2
/ Z ! ( m1mom?2
my,mo=

o, g 0 9
=272 (mivi 4+ m3v3)

AQ

41 2 p 2 L
- exp < ) sinh <%) . (15

For any covariance matri®, the diagonal elements @(R) are

described by (13) and the off-diagonal elements are described by (14)
For the purpose of this theorem, we need only the following simple

property ofQ:

A?

Q) = R+ 75

I+ C, whereC — 0 elementwise a&x — 0.
(16)

To measure the degree to whigh diagonalizesR.., define a dis-

tance measurf - ||| between a matrixd and the set of diagonal ma-
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Fig. 7. Simulations of the deterministic iteration féy 2 suggest
convergence for any quantization step sizeThe eigenvalues ak, arel and

1/4. The step sizes shown arfe = 1,2,---,5. y is the iterate that follows
after §. Global convergence is indicated by the curves lying inside the cone
|| < 16|, which is marked by dotted lines.

Now letC; = H, —I. Substituting in (20) and expanding, we conclude

trices by|||4[|| = Zi%; a};. The strategy of the proof is to show thatthat||C.|] — 0 asA — 0. Thus by expandindf ! Z, H,, we see that

for sufficiently smallA, the inequalityl] | RS ||| < L|||RS™||| holds

5l
foralln > 1. / /
CombiningR{™ = TTf’Rg")Tn with R = T A, T, 1, gives
Tl AnToss = TP RVT,. Define H, = T, T, so that

(n) _ T
R = H,A . 17)

Also notice that

RV =T R T =T T Tu R T T T = Hy RV Ho

As a final preparation, defing, = R{" — R;”).
We can now make the calculation

RSO = NH] RS Bl = 1 H (Zo + BV HA|l|
=||[Hy Zo Ha|l|

where the last equality follows frorH[Rg”)Hn being diagonal (see
(17)). From (16), it is clear that iA is small enough,

1 n
1Za Nl < SRS

It remains now to reIat{?|Zn||| and|||H! Z, H,|||.
SubstituteR;" = Ry + A*T/12 4 C', where||Cy| — 0 as
A — 0,in (17) to get

(n) 4 A T
R+ 351+ Ci= HoAoH,,. (18)
Decrementing the index and rearranging gives

. A2
H' R VH,. ., + i+ H! \C\H,_,=A,_,. (19)

sinceH! RV H,_, = R, comparing (18) and (19) gives

H A H! =A,_1+Ci—H!_CiH,_,. (20)

I Hy Zo Halll = 11 Zalll = 0

faster thar|| Z,. ||| — 0 asA — 0, so by choosing\ small enough we
have the bound||H. Z, H..||| < 2|/|Z.|-
Combining all these calculations gives

n ya ‘ 1 n
RSV = H Zo Bl < 20120l < 2 IR
1

S 11251l

C. Proof of Theorem 3

Without loss of generality (rotating the coordinate system and initial
transform, if necessary), assutRe = diag (o1,03),01 > 02. The
transform iterates are all ifiO-> (IR) and can be parameterized as

cost

T9:|: —51n9:|

sinf  cosf
wheref € [—7 /4,7 /4]. We assume; > o3; if 01 = o the situation
is uninteresting becaude, is diagonal for any/.

Denote the transform iterate that follows afidsy . The proof will
be completed by showing that there is a constant., independent
of #, such thatA < A,... impliessin® 2¢ < sin? 26 with equality
only whend = 0. This will show global convergence to the fixed point
zero, which is an optimal transform. As a preview of this result—and to
motivate the rest of the proof—we compute and plot the “next iterate”
mapé — . Fig. 7 shows the map+— ¢ whens, = 1 ande, = 1/2
for A = 1,2,---,5. The iteration globally converges as long as the
graph ofe(#) lies inside the congp| < |#|. From the plot, it seems
this may be true for anyA; we endeavor to show this fax less than
someAnax.

The first step is to relate to #. By looking at the general form of
Ty R: T, , one can show that

) . (21)

1
@ = — arctan
©T 3

<M
2 (Rz)i1 — (1s)2,2
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R; is related tod throughR, andR; the double summation (15) in either order gives alternating series, so
) the same bounding technique can be used. We get
R, =TyR.T,
o2cos’ 4 oZsin’ b 1((Tf — 3)sin 26 A? _2”2((31})1‘1 + (Ry)2,2)
2 il < =5 exp N
%(Jf —02)sin28  oisin®8 + o3 cos® 8 '

47r2(R@)1‘2

_ {Vf Vﬂ 22) - sinh <T)

V12 vy

. A? —27%(0} 4+ 032)
~ A? v 3 - —2f AL P2
Rz}:Q(Ry):Ry—}—%I—}—{(; :/:| w2 OXP( A2 )
/ / 0
il 212 (6} — 02)
whereq, 3, and~ depend o, o1, anda- as given by (13), (14), and S A2
(22). Now, after computind®?; = TQTRQT(,, one finds - A2 o <—27r'2(a'12 + 03))
-_— 2 < / 2
(Ri)1,1 — (Ri)22 = U% - 03 + (o —y)cos 26 4+ 23 sin 26 " 2 2 ° 2
. 27701 — 03) \ .
and - sinh Az )i 26
1
(R#)1,2 = =(v — a)sin 26 + j3 cos 26. (23) 2 ,
2 < %efﬁwZU%/Az sin 24. (26)
s

Sincesin?(arctan ¢) = ¢*/(14+¢?), we get (24) at the bottom of this
page, where the inequality follows from minimizing the denominatdZombining (25) and (26) gives
overd.The following three lemmas allow us to complete the bounding

in? 20 -
of sin* 2, 18] = 18Ry )1z + ul = ‘%mf ~ o?)sin ze‘

Lemma 1:|a — 7| < «¢i1(A,01,02) uniformly in 6, with

1 .
c1(A,01,02) — 0 asA — 0. < 5(0% - U§)|5” sin 26| + |
Proof: The series in (13) is an alternating series with terms that A2 b oo
monotonically decrease in absolute value. Thus it can be bounded (with < (2007 —03) + 2—2> o—27203/a | sin 26].
) ™

appropriate sign) by any partial sum [28]. Using simply the first term

v

c2(A,01,02)

w2

5

—ar?(Ry)1a/a (AT ‘
—e ¥ S+ 4Ry ) <a<0 . .
< (Bp)ra In general, the terms of (15) are not monotonically decreasing. How-

ever, the terms are monotonically decreasing (in absolute value) outside
of (m1,ms) € {1,2,---, M}* for someM < oo. Since each indi-
vidual term for(my, m») € {1,2,---, M }* can be bounded as above,

and similarly fory. Finally,

. ; A? ;
o —~| < max{|a], |y|} < e~2702/A7 <F+40f) =c1(A,01,02)  the bound can be extended to the general case. O
) ] Lemma 3:|3 <  c2(A,01,02) uniformly in 6, with
sincea and~ have the same sign and < 0. O (A, 01,04) — 0 asA — 0.
Lemma 2: 3] < c2(A, oy, 02)|sin26] uniformly in ¢, with Proof: This follows immediately from Lemma 2. O

c2(A,01,02) = 0@asA — 0. By combining Lemmas 1 and 3, there exisis > 0 such that
Proof: Rearranging (14) gives = 6(Rj)12 + p, where the A & A, implies(a — v)% + 457 < (07 — 02)2/4, uniformly in 6.

definitions of6 andy mustusé Ry )11, (Rg)2,2, and(Ry)1 2 inplace  Th,s assuming < A, we have = ;

of v}, vZ, andvi». As in the proof of Lemma 1§ can be bounded by

using the first term in each series (o — v)? sin 26 — 243 cos 26]?

1

sin® 20 < [

6] < 2(67272(%)1,1/&2 + 672#(1-:@)2,2/&2) < 4@’2”205/“. Z(Jf —a2)2
(25)
Applying Lemmas 1 and 2
Assume for the moment that the absolute value of the summand of
(15) decreases monotonically with both andm.. Then computing sin® 2¢ < (e1 4 2¢2)” sin® 26

sin

2y, <(R>_121(R%) _ (—2@

T 1+ < _Z(RJ})LQ )2 B ((Ri)11 - (Ri) ‘2)
(R:)i,1 — (Rz)2,2
[( — ~)? sin 26 — 23 cos 26]?
- (02 —62)2 4+ 2(02 — 62)[(a — v)%2 cos 26 — 23 sin 260] + (v — v)2 + 4132
[( = ~)? sin 26 — 23 cos 26]*

<
Slot—oi = Vo

?1,2)2

+ (—=2(Rz)1,2)?

(24)
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and there existd, > 0 such thatA < A, implies(¢1 + 2¢2)* < 1.
The proof is complete with\ ;. = min{A;, As}.

The bounds in this theorem are rather complicated but we can check
that the requirements ah are reasonable. Suppase= 1 ande, =
1/2. ThenA,; > 1.366 andA: > 1.565, so the theorem guaranteesyg entropy of a Gaussian random variable with variaricemiformly
convergence for anA < 1.366. (For this range ofA, (15) can be quantized with bin width\, is approximatel2~" log, A~22re bits.

bounded by then, = m. = 1 term for anyf.) As we found for 1,5 the rate of the static optimal system is approximately
Theorem 2, numerical calculations suggest convergence fahgdage
Fig. 7). N
1 1
Ropt = ]\,_T E 5 10g2

=1

Using (3) and the differential entropy of a Gaussian random variable

N (0,6%)) = %log2 2mea” bits

2mweN;
A2

bits/component (28)

D. Proof of Theorem 4

The mean-square convergencdif™ follows from the Chebyshev  The adaptive scheme converges to an optimal transform. However,
law of large numbers [29] once we establish that each term of (5) hascause of the dithering, the signal at the input to the quantizer is not
common expected valuR, + A*T/12, has finite variance, and is el- Gaussian and does not have component variances equal 9'the
ementwise uncorrelated with every other term. The second conclus@ince{z, } is independent ofy. }, the variances simply add, giving

follows easily.
First note that

A+ A%/12,
function has the largest differential entropy for a given variance, the

1,2,---, N. Since a Gaussian probability density

asymptotic rate of the universal coder can be bounded as

T =T¢ g = T3 (e + (G — 90)) = @0 + T (G — ys)-

Because of the use of subtractive dithigr-yx is uniformly distributed
on the hypercubg-A/2, A/2]" and independent af;. andT} [18],

N

1%
¥ 2 3l

=1

Runiv < QTFC()V /J’_ A2/12) .

o 29)

[19]. (The overall errori, — ;. is uniformly distributed on a rotated Subtracting (28) from (29) and pairing terms gives (8).

hypercube, independent of. but not independent df;.. Its compo-
nents are uncorrelated but not independent.) Now any term of (5) can
be expanded as
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= l'kl’z + Lk(ng - y{)T/@ + TE(!J!@ - yk)}dz
+T0 (G — ye) (G — vi) T (27)

Tl

(1
Sincey, —yr depends off;. butz;, andT. are independent, computing

the expectation of ;. &}, is simplified by first conditioning off, 2l
T T T T [3]
E[ikik |Tk] = E[.’L‘kl’k |Tk] + E[Lk(gk — Yk )Tk|Tk]
+ E[T{ (g — yi)xh |T] (4]
+ E[Ty (Gr — yi)(Gk — vi )T |Ti] -
A2
— 1 _ .
=R.+0+0+17T; 12[Tk [6]
A2

=R, + il [7]

where we have used the independence,0éndy, — v, and the fact
that each has mean zero. [8]

The(4, j) element ofR: (™ is the average of random observations

of (2121 )7, which we denotet!*’. The calculation above shows that (9]

eachAEf) has meani R, );; + A?6;,/12. It can furthermore be shown
that each4§ff) has variance bounded by a constant and H{éﬂ is
uncorrelated Withﬁl,(;j) for & # ( [16, Appendix 3.C]. Thus by the [10]
Chebyshev law of large numbers we have hat” — R. +A%1/12
elementwise in mean-square. The second conclusion follows from the
fact thatR, andR, + A®I/12 have the same eigenvectors. (11

Note that the dither is essential to the proof because it makes thgy)
quality of the estimateR; ™) independent of the sequence of trans-
forms.

[13]

E. Proof of Theorem 5 [14]

The convergence of ~'(L,, — L) to a constant follows by mim-
icking the proof of Theorem 1. In this case, the constaist not zero
because the entropy rate of the quantizer output depends not only g1y
the transform but on the dither. It remains to estimate

[15]
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Defninition 1: Consider a (possibly nonstationary) random process

X taking values in a finite set. We say that a proces belongs to
the stationary hull ofX if there exists a sequence of natural numbers
ng, ni, -+ - such that
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for all real-valued functiong that depend only on finitely many coor-

Abstract—n this correspondence we investigate the performance of dinates.
the Lempel-Ziv incremental parsing scheme on nonstationary sources. . . . . .
We show that it achieves the best rate achievable by a finite-state block ~ Processes in the stationary hull capture properties of finite-dimen-
coder for the nonstationary source. We also show a similar result for a sional distributions along various convergent subsequences. In partic-

lossy coding scheme given by Yang and Kieffer which uses a Lempel-Ziv ylar, if for a given sizen the bestn-block code has bad performance
scheme to perform lossy coding. on the nonstationary source along a particular subsequence then there
Index Terms—Data compression, entropy, Lempel-Ziv algorithm, non- is a source in the stationary hull which reflects this. It is shown in [3]
stationary sources, universal source coding. that the best possible average rate at which the source can be coded
using a finite-state adaptive block to variable-length code is given by

l. INTRODUCTION
R(P)= sup H(Z)
We investigate the use of universal coding methods for coding non- ZeSs(P)
stationary sources. Itis widely known that Lempel-Ziv coding methods
are asymptotically optimal for the coding of stationary ergodic sourceghere H(Z) is the entropy rate of the stationary soutée We will
We will show that for lossless coding of finite possibly nonstationarghow that this rate is achieved asymptotically by the Lempel-Ziv
sources Lempel-Ziv coding methods perform as well as any finite-st@eding scheme. LeL.Z(2") denote the length of™ when coded
by the Lempel-Ziv algorithm. We will denote by] the string
(xi, xit1, -+ -, ;). We will see that the key property we will require
Manuscript received March 6, 1999; revised December 6, 1999. This waia uniform bound or. Z(2") in terms of a certain finite-state code.
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