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Abstract—The Karhunen–Loève transform (KLT) is optimal for trans-
form coding of a Gaussian source. This is established for all scale-invariant
quantizers, generalizing previous results. A backward adaptive technique
for combating the data dependence of the KLT is proposed and analyzed.
When the adapted transform converges to a KLT, the scheme is universal
among transform coders. A variety of convergence results are proven.

Index Terms—Dithered quantization, lossy data compression, transform
coding, universal source coding.

I. INTRODUCTION

The essence of transform coding is to apply a linear transform to
a source vector and then apply scalar quantization, as opposed to ap-
plying scalar quantization directly to the source vector. Heuristically,
transform coding works because the transform can eliminate correla-
tion between components of the source vector, producing a vector of
transform coefficients more amenable to scalar quantization and en-
tropy coding. Transform codes are popular because they provide an
attractive compromise between computational complexity and perfor-
mance. In the parlance of vector quantization, the point-density and ob-
longitis losses of scalar quantization are eliminated or reduced, leaving
predominantly only a space-filling loss [1].

With a Gaussian source model, the optimal transform is a Karhunen-
Loève (KLT), an orthonormal transform that produces uncorrelated
transform coefficients. The optimality of the KLT is well known for
high rates [2] or when optimal fixed-rate quantizers are employed [3],
but holds more generally (see Appendix I). However, the KLT is rarely
used in practice for a variety of reasons. One prominent reason is that
the KLT is signal-dependent; the transform used in the encoder and de-
coder must be adjusted to correspond to the covariance of the source
in order to maintain optimality. A second reason is that since the KLT
has no special structure, it requires more operations to compute than
a harmonic transform such as a discrete cosine transform. For vectors
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of length ofN , the complexity difference is roughlyN2 compared to
N logN , which is not overwhelming for small values ofN:

This correspondence addresses only the first issue—the matching of
transform to source. Abackward adaptivemethod for transform adap-
tation is proposed and analyzed. In backward adaptation the encoder
and decoder adapt in unison based on the coded data without the ex-
plicit transmission of coder parameters. Backward adaptation is also
calledadaptation without side informationor on-line adaptation.

The use of backward adaptation for transform adaptation in trans-
form coding seems to be unprecedented, though backward adaptive
techniques have a long history. For example, adaptation of prediction
filters in speech coders is often backward adaptive [4], [5] and ADPCM
includes not only backward adaptation of filter taps but also of quan-
tizer scaling [6]. Similar to the quantizer scaling in ADPCM is the back-
ward adaptive context modeling and quantizer scaling of the EQ image
coder [7]. It is also possible to adapt a quantizer more generally without
side information [8].

The incompletely realized aim of our work is to show that backward
adaptation can result in a transform code that isuniversalfor Gaussian
sources. “Universal” is used here to mean that the performance ap-
proaches that of an idealtransform codedesigned witha priori knowl-
edge of the source distribution. The results along these lines are asymp-
totic in the data length, but the transform or block size is fixed. Empir-
ical evidence and partial analyses are provided. Such a code would be
an “on-line” alternative to the “universal codebook” approach to uni-
versal transform coding by Effros and Chou [9].1 Forward adaptive
techniques that are not necessarily universal are discussed, e.g., in [11].

The results of [9] were inspiring to this study because they indi-
cated superior performance of weighted universal transform coding
over weighted universal vector quantization for image compression
with reasonable vector dimensions. It was also shown that there are
sizable gains to be realized by varying the transform, a result that runs
counter to the conventional wisdom in image compression.

In the remainder of the correspondence, the aforementioned ideas
are made more precise. The sources and coding structures under con-
sideration are described in Section II. Unable to satisfactorily analyze
the original coding structure, we give several analyses based on simpli-
fying assumptions. The main results are stated in Section III and proven
in Appendix II. Section IV describes ways in which the encoding algo-
rithms can be modified to reduce computational complexity or to track
a varying source. Concluding comments appear in Section V.

II. PROPOSEDBACKWARD ADAPTIVE CODING STRUCTURE

Let fxngn2 be a sequence of independent and identically dis-
tributed (i.i.d.), zero-mean Gaussian random vectors of dimensionN

with covariance matrixRx = E[xxT ].2 If Rx is not diagonal, i.e., the
components ofx are correlated, one obtains better rate-distortion per-
formance with transform coding than with direct scalar quantization
and scalar entropy coding of the source vectors.

In transform coding, a square, invertible linear transformT is ap-
plied to each source vector to get a vector oftransform coefficients
yn = Txn: The transform coefficients undergo scalar quantization

1See the taxonomy of universal coding methods by Zhang and Wei [10] for
explanations of the quoted terms.

2Throughout the correspondence,R will be used to denote the (exact) co-
variance matrixE[vv ] of a random vectorv: R denotes an estimate ofR ob-
tained from a finite-length observation. Aside from this convention, subscripts
indicate the time index of a variable, except where two subscripts are given to
indicate the row and column indices of a matrix. A superscriptT indicates a
transpose.

0018–9448/00$10.00 © 2000 IEEE
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Fig. 1. Block diagram of transform coding system with backward adaptive transform updates.T is a time-varying orthogonal transform,Q is a scalar quantizer,
andE is a universal scalar entropy coder.

and scalar entropy coding. Ideally, the transform should be selected
such that the transform coefficients are uncorrelated and hence, since
the source is Gaussian, independent. This was first shown by Huang
and Schultheiss [3] under assumptions of optimal fixed-rate quantiza-
tion and a mild, common sense condition on the bit allocation. (Earlier
work by Kramer and Mathews [12] did not involve quantization and
was not in an operational rate-distortion framework.) Using high-reso-
lution quantization theory, the same result can be obtained for optimal
variable-rate (entropy-coded) quantization or uniform quantization [2].
A new extension is given in Appendix I that relies only on the scalar
quantizers having performance invariant to scaling (Theorem 6).

To mathematically describe an optimal transformT , simply note that
by linearity of the expectation operator

Ry = E[(Tx)(Tx)T ] = TRxT
T :

Thus T may be an orthonormal similarity transform composed of
eigenvectors ofRx: This makesRy a matrix with the eigenvalues of
Rx on its main diagonal and zeros elsewhere. Such a transform is a
Karhunen-Loève transform (KLT) of the source.

Since the optimal transformT depends on an ensemble averageRx,
it is generally unknown at the encoder. (It may also be the case that
E[xnx

T
n ] varies slowly withn, though we will deal with this case only

in passing.) We consider here systems that periodically adjust the trans-
form at the encoder and decoder in a backward adaptive manner. A
block diagram for such a system is shown in Fig. 1. In this system, the
quantizerQ is a scalar quantizer with uniform quantizerq applied to
each component

q(xi) = ki�; for ki �
1

2
� � xi < ki +

1

2
�;

ki 2 ; i = 1; 2; � � � ; N: (1)

The entropy coder hasN separate universal lossless codes for theN
transform coefficient streams.

In this work we concentrate on the update mechanism for the trans-
form and the effect of the transform updates. This is partly a matter of
taste, but it is also motivated by the insensitivity of the optimal quan-
tizer to the source and transform. The use of uniform scalar quantiza-
tion with equal step sizes for each component is discussed in Section
II-A and transform update procedures are considered in Section II-B.

A. Focusing on the Transform

Consider the quantization and entropy coding of a single transform
coefficient branch in Fig. 1. Since the quantizer indices are entropy-
coded, the proper optimization criterion for the quantizer is to minimize

the distortion for a given entropy coder output rate. Assuming that the
transform and the universal lossless codes converge, this rate is well-ap-
proximated by the entropy rate of the quantizer output sequence. With
this approximation one is left with anentropy-constrained scalar quan-
tizer to design.

Even assuming that the variance of the transform coefficient is
known, the best quantizer will generally be known only through a
numerical optimization procedure. However, a uniform quantizer is
optimal asymptotically for high rates [13] and, more importantly, is
close to optimal at moderate rates [14]. This is an important distinction
between fixed-rate and variable-rate scalar quantization that partially
justifies our use of fixed uniform quantizers. (Alternatively, it was
shown in [8] that backward adaptation of fixed-rate quantizers can be
successful, but this is not pursued here.)

Now consider the joint optimization of the set of scalar quantizers.
Using high-resolution analysis, it is easy to show that the optimal allo-
cation of rates between the transform coefficients results in equal dis-
tortions and equal quantization step sizes for each transform coefficient
[2]. Though this result is well known, the minimum rate at which this
is a good approximation is not; thus we present some numerical cal-
culations. At high rates, the operational distortion-rate performance of
entropy-coded uniform quantization (ECUQ) of a Gaussian source with
variance�2 is given approximately by

D =
�e

6
�22�2R: (2)

This is easily obtained by combining theD � �2=12 distortion of
fine, uniform quantization with Rényi’s relation between the differen-
tial entropy of a continuous source and its uniformly quantized version
[15]

H(q(X)) � h(X)� log
2
�: (3)

The inaccuracy of (2) at low rates is apparent from the fact that the
maximum distortion should be�2; the distortion given by (2) exceeds
�2 for rates below� 0.255 bits. The actual distortion-rate behavior is
compared to (2) in Fig. 2(a).

The simplicity of bit allocation using (2) is due to the form of
@D=@R: Consider the allocation ofR1 andR2 bits between compo-
nents with variances�21 and�22 , respectively. Since

@Di

@Ri

= �
�e log 2

3
�2i 2

�2R ; i = 1; 2 (4)

operating at equal slopes demands�212
�2R = �222

�2R : This in turn
makes the component distortions equal and, again using high-resolu-
tion approximations, the quantization step sizes equal. This analysis
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(a) (b)

Fig. 2. Comparisons between the actual performance of entropy coded uniform scalar quantization and high-resolution approximations. (a) Actual distortion-rate
performance compared to (2). (b) Derivative of the actual distortion-rate performance compared to (4).

(a) (b)

Fig. 3. Comparisons between the performance of optimal bit allocation and equal quantization step sizes for variables with variances� = 1 and� = 1=4:
(a) distortion-rate performances; and (b) bit allocations.

demonstrates that using equal quantization step sizes is a good approx-
imation to optimal bit allocation when (4) is accurate. This is true for
rates above about 1 bit per sample (see Fig. 2(b)).

To conclude the discussion of bit allocation, let us look at the effect of
optimal bit allocation in one simple example. Variables with variances
�21 = 1 and�22 = 1=4 are quantized by ECUQ either with optimal bit
allocation or with equal quantization step sizes. Fig. 3(a) compares the
distortion-rate performances and Fig. 3(b) compares the bit allocation.
It is apparent that optimal bit allocation provides little improvement.
Note also that the optimal bit allocation is predicted well by the high-
resolution analysis when the lower rate is at least 1 bit per sample.

For the remainder of the paper, ECUQ with equal quantization step
sizes for all components is employed exclusively. With this restriction,
we may fix the quantization step size� and focus on the entropies
of the quantizer outputs; for small� the distortion is insensitive
to the choice of transform. In the limit as� approaches zero, this
insensitivity is clear because the distortion approaches�

2=12 per
component. It turns out that the deviation from this approximation is
less than 5% for rates above 1 bit per sample. This is demonstrated
in two dimensions by Fig. 4. Sources with covariance matrices

Fig. 4. Dependence of overall distortion on the choice of transform for
a two-dimensional source. The dependence is mild and vanishes as the
quantization step size� shrinks.
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Rx = J(�)T diag (1; 1=4)J(�), whereJ(�) is a Jacobi rotation of
� radians,3 were quantized with various quantization step sizes. The
distortion, normalized by�2=12, is shown on a logarithmic scale as a
function of�: In this example, the distortion differs little from, and is
bounded above, by�2=12:

B. Transform Update Mechanisms

Referring again to Fig. 1, for decoder tracking without side informa-
tion it is necessary that the transformTn+1 depend only onfTkgnk=1
andfŷkgnk=1: We assume that the covariance estimate

Rx̂
(n) =

1

n

n

k=1

x̂kx̂
T
k (5)

is computed and thatTn+1 is chosen such thatTn+1Rx̂
(n)T T

n+1 is di-
agonal with nonincreasing diagonal elements. This amounts to using
Rx̂

(n) as an estimate forRx: The calculation ofTn+1 will have sign
ambiguities4 and if the eigenvalues ofRx̂

(n) are not distinct, there will
be additional ambiguities; these can be resolved arbitrarily. The initial
transformT1 can also be arbitrary.

More complicated update mechanisms are possible, but using an
eigendecomposition of (5) has the attractive property of requiring only
constant storage: As the data vectors are coded, only theN(N +1)=2
independent components of (5) must be stored. Adjustments to (5) to
compensate for quantization effects are possible, but are not used so as
to not rely too heavily on the Gaussian model for the source data.

At first glance it may seem that we expectRx̂
(n) to converge to

Rx, which would result in the transform converging to the desired
KLT. In fact, we do not needRx̂

(n) ! Rx to have the desired trans-
form convergence. Suppose for the moment that the effect of quantiza-
tion is to add a zero-mean signalz independent ofx with E[zzT ] =
(�2=12)IN : ThenRx̂ = Rx+(�2=12)IN and sinceRx̂ andRx have
the same eigenvectors, the transform converges to the correct trans-
form. Of course, this is an overly simplistic model of quantization. As
detailed below, the difference betweenE[xxT ] andE[Q(x)Q(x)T ] is
generally not a scaled identity. Nevertheless, we assert that the system
works: The transform converges to the optimal transform, resulting in
a universal system. We cannot prove this convergence precisely, but re-
sults suggesting the observed convergence are given in the following
section.

III. M AIN RESULTS

The main results of the correspondence are summarized in this sec-
tion. Proofs are given in Appendix II.

A. Transform Convergence Implies Universality

Theorem 1: Fix a quantization step size� and supposefTng con-
verges elementwise toT , a KLT of the source. LetLn denote the
per-component code length for coding the firstn vectors using the
adaptive scheme and letL?n denote the per-component code length for
coding the firstn vectors with the fixed, optimal transformT: Then the
average excess raten�1(Ln � L?n) converges in mean square to zero.

As discussed in Section II-A, given a quantization step size, the dis-
tortion of a transform coder depends only slightly on the transform.
Thus Theorem 1 indicates that the backward adaptive scheme will have
performance asymptotically almost equal to an optimal transform coder
whenever the transform converges to a KLT. Transform convergence
can be established when using an independence assumption similar to

3Jacobi rotations are defined in equation (12) of Appendix I
4If T R T is diagonal, then negating any row ofT will not

change the productT R T :

that used in heuristic analyses of the LMS algorithm. In such an anal-
ysis the sequence of transforms is assumed to be independent, though
this assumption is clearly false [16, Appendix 3.B].

The following two sections give different types of convergence re-
sults that are suggestive of the convergence seen in simulations. In Sec-
tion III-B the stochastic variation of (5) is ignored. The transform up-
dates are then described by a deterministic iteration. As an alternative,
the quantizer can be replaced by a subtractive dithered quantizer in
order to insure nice behavior of the transform sequence. This is con-
sidered in Section III-C.

B. Deterministic Analysis

In the original system, the distribution ofx̂n depends onTn, which
in turn depends onT1 andfxkgn�1k=1 : Because of this complicated in-
terdependence between quantization and stochastic effects, it is very
difficult to analyze the convergence of the transform.

One way to reduce the complexity of the analysis is to neglect the
stochastic aspect, meaning to assume there is no variance in moment
estimates despite the fact that moments are estimated from finite-length
observations. The effect is to replace (5) with

R
(n)
x̂ = E x̂nx̂n

T (6)

and update the transform such thatTn+1R
(n)
x̂ T T

n+1 is diagonal with
nonincreasing diagonal elements. We are left with a deterministic iter-
ation summarized by

R
(n)
x̂ =T T

n R
(n)
ŷ Tn=T T

n
~Q(R(n)

y )Tn=T T
n
~Q(TnRxT

T
n )Tn

Tn+1R
(n)
x̂ T T

n+1=�n(diagonal with nonincreasing diagonal elements)

where ~Q : IRN�N ! IRN�N gives the effect of quantization on the
covariance matrix.~Q depends on the source distribution and� and
can be described by evaluating expressions from [17].

SinceRx andR(n)
x̂ generally have different eigenvectors, it is not

obvious that this iteration will converge. The following theorem gives
a limited convergence result.

Theorem 2: LetRx andT1 be given. Then there exists a sequence
of quantization step sizesf�ng � IR+ such that the deterministic iter-
ation described above converges to a KLT of the source. Since the KLT
is ambiguous if the eigenvalues ofRx are not distinct, convergence is
indicated byR(n)

ŷ approaching a diagonal matrix in Frobenius norm.

Theorem 2 does not preclude the possibility that the iteration will
converge only withinf �n = 0: However, numerical calculations sug-
gest that the iteration actually converges for constant sequences of suf-
ficiently small step sizes. Fig. 5 shows numerical results for a four-di-
mensional Gaussian source with(Rx)ij = 0:9ji�jj, T1 = I , and
various values of�: To show the degree to whichTn diagonalizes
Rx, kjR(n)

y kj is plotted as a function of the iteration numbern, where
kjAkj = �i 6=j a

2
ij : An approximate correspondence between quanti-

zation step size and rate is also given.
Starting from an arbitrary initial transform,kjR(n)

y kj becomes small
after a single iteration (note the logarithmic vertical axis). Then, to the
limits of machine precision, it converges exponentially to zero with a
rate of convergence that depends on�: (For � > 3; loss of signifi-
cance problems in the computation combined with very slow conver-
gence make it difficult to ascertain convergence numerically.)

The results shown in Fig. 5 are representative of the performance
with an arbitraryRx: The convergence, as measured bykjR

(n)
y kj, is un-

affected by the multiplicities of the eigenvalues ofRx: The eigenspace
associated with a multiple eigenvalue can be rotated arbitrarily without
affectingkjR(n)

y kj or the decorrelation and energy compaction proper-
ties of the transform.
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Fig. 5. Simulations for various fixed quantization step sizes suggest that the deterministic iteration converges more generally than predicted by Theorem 2. The
source vector length isN = 4 and the initial transform is the identity transform. The accompanying table provides the approximate correspondence between
quantization step sizes and rates.

Theorem 3: LetN=2 and letRx be given. There exists�max>0
such that for any� <�max the deterministic iteration converges, in
the same sense as before, for any initial transformT1:

C. Using Dithered Quantization

For the sake of analysis, let us alter the system to use subtractive
dithered quantization [19]. Replace the quantizerq(�) defined in (1) by

qdither ((yn)i) = q((yn)i + zni)� zni (7)

where thezni’s are independent and each is uniformly distributed on
[��=2;�=2]: We assume that the dither signalfznign2 ;1�i�N is
somehow available at the decoder so that each component of the quan-
tizer input can be reconstructed up to an error of magnitude�=2: The
dither signal is not used in the entropy coder.

The effect of the dither is to make the quantization error indepen-
dent of the data and transform sequences. The following result is then
straightforward.

Theorem 4: With the dithered quantizer (7) and any initial trans-
form T1

Rx̂
(n) converges in mean square toRx +

�2

12
I asn!1:

Also, the sequence of transformsfTng converges in mean square to a
KLT for the source.

Although we are assuming Gaussian signals throughout, the proof
of the theorem does not depend on the distribution of the source. The
transform converges to a transform that maximizes coding gain for any
i.i.d. source; however, for non-Gaussian sources maximizing coding
gain may not be ideal.

When the source is Gaussian, the KLT is the optimal transform and
the entropies of the quantized variables can be easily estimated. This
leads to the following theorem.

Theorem 5: Denote the eigenvalues ofRx by �1; �2; � � � ; �N :
Define Ln andL?

n as in Theorem 1. Then the average excess rate
n�1(Ln � L?

n) converges in mean square to a constant�: Estimating
discrete entropies with (3)

� <
1

2N

N

i=1

log2 1 +
�2

12�i
: (8)

Fig. 6. Bound (8) on the excess rate� as a function of the coding rate for a
Gaussian source with(R ) = 0:8 :

The constant� can be interpreted as the asymptotic redundancy of
the system. It is the excess rate, in bits per source component, of the
adaptive system, as compared to a fixed, optimal transform code de-
signed with knowledge ofRx: The bound (8) comes simply from the
variance added by the dither signal.5 As� approaches zero, the power
of the dither signal vanishes and accordingly� approaches0. Thus the
dithered system is universal for high-rate coding.

At moderate rates,� is quite small. For example, consider the coding
of an eight-dimensional Gaussian source with(Rx)ij = 0:8ji�jj: By
computing the bound (8) and the correspondence between� and the
rate of a KLT coder for this particular source we get the curve shown
in Fig. 6. This roughly indicates that� must decay exponentially with
the overall coding rate. In fact, using the high-rate approximation

�2

12
�

�e

6

N

i=1

�i

1=N

2�2R

5When the dither signal is known at the entropy coder, performance better
than the worst case given by (8) can be expected [20].
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whereR is the rate of the optimal transform coder, (8) can be written
as

� <
1

2N

N

i=1

log2 1 +
�2

12�i
<

1

2N ln 2

N

i=1

�2

12�i

�
�e

12 ln 2

N

i=1

�i

1=N

1

N

N

i=1

1

�i
2�2R:

At rates of 2 or 3 bits per component, the excess rate is less than 6% or
1%, respectively.

D. Remark

The deterministic analyses and the analysis of the system with dither
can be combined to form a heuristic argument for convergence. Soon
after the system is initialized, the variance of (5) is high and thus the
variation of the transform is also high; this has the effect of a dither.
Later the changes to the transform are much smaller, but the transform
cannot settle at an incorrect value because incorrect transforms are not
fixed points of the deterministic iteration.

IV. V ARIATIONS ON THE BASIC ALGORITHMS

Certain modifications to the basic algorithms can be made to re-
duce the computational complexity or to facilitate the coding of non-
i.i.d. sources. All of the modifications mentioned in this section apply
equally well to the dithered and undithered systems.

The most complicated step in these algorithms is the computation
of the updated transform; thus the complexity can be reduced by sup-
pressing this computation. Instead of computing an eigendecomposi-
tion of Rx̂

(n) at each step, one can compute the eigendecomposition
everyL steps, holding the transform constant in between.L need not
be constant, but if it is to vary it must be computable from coded data.
Having constantL > 1 does not affect the conclusions in Theorem 4.

The coding of a non-i.i.d. source poses many problems. First of all,
we must assume thatR(n)

x̂ varies slowly, or that the source is “locally
stationary.” If this is not the case, an on-line algorithm will fail because
the coding ofxn is based on an estimate ofR(n)

x̂ from (recent) past
samples.6 Secondly, the covariance matrix estimateRx̂

(n) should be
local, e.g.,

Rx̂
(n) =

1

K

n

k=n�K+1

x̂kx̂
T
k (9)

or

Rx̂
(n) = !Rx̂

(n�1) + (1� !)x̂nx̂n
T (10)

with appropriate initialization. If the update intervalL dividesK in (9),
it is not necessary to store a full window ofK past samples [22].

A technique which simultaneously reduces the computational com-
plexity and introduces a covariance estimate equivalent to (10) is to re-
place the eigendecomposition computation with anincrementalchange
in the transform based on̂xn: This is explored in [16, Ch. 4], [23].

V. CONCLUSIONS

This correspondence has proposed a backward adaptive structure for
transform adaptation in transform coding. Since there is no side infor-
mation, the system is universal for Gaussian sources when the trans-
form converges to a Karhunen-Loève transform. Simulations indicate

6Without local stationarity, a forward adaptive method would presumably be
superior; see [9], [21].

convergence, and convergence can be shown under certain simplifying
assumptions such as when the estimation noise is ignored or when the
quantization is dithered. The problem of optimally combining forward
and backward adaptive methods remains open.

Gaussian sources were assumed throughout. This assumption was
used in two ways: to justify maximizing coding gain and to concretely
describe the effect of quantization on moment estimation. The avail-
ability of universal lossless coders is assumed, but, in contrast to [24],
they are applied only to sequences of scalars. This potentially decreases
the memory requirement and speeds convergence.

APPENDIX I
OPTIMALITY OF THE KARHUNEN–LOÈVE TRANSFORM

This appendix provides a new result, with two proofs, on the
optimality of the Karhunen–Loève transform (KLT) for transform
coding of Gaussian sources. It is more general than earlier results
relying on optimal fixed-rate quantization [3] or high-resolution
quantization theory [2], [3] because it relies only on a scale-invariance
property of quantizer distortion-rate performance; in particular, it
encompasses the earlier results and applies to entropy-coded uniform
scalar quantization with equal step sizes for each component, as
utilized in this correspondence.

Theorem 6 (Optimality of Karhunen–Loève Transform) :Consider
the transform coding of a Gaussian source subject to minimum square
error (MSE) distortion. Assume that the distortion-rate performance of
a scalar quantizer applied to a component with variance�2 is D =
�2f(R): Then a KLT is an optimal transform, i.e., for any given max-
imum per-component rate, it minimizes the distortion.

First note that iff(�) is not nonincreasing, there will be rates that
are useless: ifR1 > R2 butf(R1) > f(R2); rateR1 can be replaced
in any purportedly optimal solution by rateR2 without increasing the
distortion and without violating the rate constraint. Thus we henceforth
assume thatf(�) is nonincreasing.

Two proofs are given: The first is simple to describe from first prin-
ciples but relies on an iterative construction. The second, more elegant
proof relying on the theory of majorization (see [25]) is due to Telatar
[26].

Proof 1: Let (R1; R2; � � � ; RN) be any bit allocation vector, i.e.,
suppose thatRi bits are allocated to transform coefficientyi: Given
any orthogonal transformT , we will show that there exists a KLT~T
that yields distortion at most as high as yielded byT:

Before proceeding with more complicated constructions, note that
the variances of the transform coefficients should have the same or-
dering as the rates. If�2y > �2y butRi < Rj , then the distortion is
reduced or unchanged by swapping theith andjth rows ofT: The re-
sulting change in distortion is

(�2y f(Rj) + �
2
y f(Ri))� (�2y f(Ri) + �

2
y f(Rj))

= (�2y � �
2
y )

>0

(f(Rj)� f(Ri))

�0

� 0:

In the remainder of the proof we assume thatT has the property

for any i andj; �
2
y > �

2
y impliesRi � Rj : (11)

There is nothing to prove ifT is a KLT, so we may assume that the
(i; j) component ofRy = TRxT

T is nonzero for some(i; j) pair.
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Construct a new transformT1 = J(i; j; �)TT; whereJ(i; j; �) is a
Jacobi rotation defined by

J(i; j; �) =

1 � � � 0 � � � 0 � � � 0
...

. . .
...

...
...

0 � � � cos � � � � sin � � � � 0
...

...
. . .

...
...

0 � � � � sin � � � � cos � � � � 0
...

...
...

. . .
...

0 � � � 0 � � � 0 � � � 1

i j

i

j

;

� 2 [��=4; �=4) (12)

and� is chosen such that the(i; j) element ofT1RxT
T
1 is zero.

This choice of transform has a few important properties. The first
is thatT1RxT

T
1 is closer to a diagonal matrix thanTRxT

T ; where
closeness is measured by the Euclidean norm of the off-diagonal
elements. Thus repeatedly cycling through all(i; j) pairs, defining
Tk+1 = JTTk, eventually yields a diagonal matrix~TRx

~T T ; where
~T = limk!1 Tk:7

The second property is that among the diagonal elements, only the
ith andjth are altered. These are altered such that the larger of the two
is increased by a positive increment� and the smaller is decreased by
the same amount. This is easily verified by expanding

cos � sin �

� sin � cos �

T
a1 a3
a3 a2

cos � sin �

� sin � cos �
=

b1 0

0 b2

and solving for� 2 [��=4; �=4): If a1 � a2; one finds

b1 = a1 + �

b2 = a2 � �

where � =
�(a1 � a2) + (a1 � a2)2 + 4a23

2
� 0

with equality if and only ifa3 = 0:
Suppose�2y � �2y : Then using the second property, the change in

distortion by usingJ(i; j; �)TT in place ofT is

((�2y + �)f(Ri) + (�2y � �)f(Rj))� (�2y f(Ri) + �2y f(Rj))

= �

>0

(f(Ri)� f(Rj))

�0

� 0:

Thus as we iterate to find~T , the distortion is decreased or unchanged at
each step. The~T thusly constructed is both a KLT and at least as good
asT in distortion-rate performance.

Proof 2: The second proof is based on elementary properties of
majorization, which are detailed in [25]. A vector(�1; �2; � � � ; �N) is
said to bemajorizedby another vector(�1; �2; � � � ; �N ) if

k

i=1

�[i] �

k

i=1

�[i]; k = 1; 2; � � � ; N � 1

and

N

i=1

�[i] =

N

i=1

�[i]

where the[�] notation indicates a decreasing ordering�[1] � �[2] �
� � � � �[N ]:

7This is the well-known classical Jacobi algorithm for computing eigende-
compositions of symmetric matrices; for details, including convergence results,
see [27, Sec. 8.5].

Again let (R1; R2; � � � ; RN) be any bit allocation vector. The
problem is to minimize the function

D =

N

i=1

�2y f(Ri)

by manipulating the�2y ’s through the choice ofT: Let

� = (�2y ; �2y ; � � � ; �2y ) = diag (TRxT
T ):

For a Hermetian matrix, the diagonal elements are majorized by the
eigenvalues, so� is majorized by a vector� of eigenvalues ofRx:Now
the majorization of� by� is equivalent to� being in the convex hull of
theN ! permutations of�: We are thus left with minimizingD over the
convex polytope defined by the permutations of�.8 In minimizing a
linear function over a convex polytope, the optimum is always attained
at a corner point. This establishes that the optimal transform is a KLT.
Furthermore, the arguments given in Proof 1 indicate that the optimal
KLT (the optimal permutation) is one that satisfies (11).

APPENDIX II
PROOFS

A. Proof of Theorem 1

Let N`n denote the number of bits used to codexn: Because of
the convergence of the sequence of transforms and the universality of
the entropy coder,E[`n] converges to some limit, saỳ: For the static
coder, the number of bits used by the optimal coderN`?n will satisfy
E[`?n] = `?: SincefTng converges toT and the entropy rate of the
quantizer output depends only on the transform,` = `?: Now since
fE[`k � `?k]g converges to zero, the mean of the sequence

n�1
n

k=1

(`k � `?k) = n�1(Ln � L?n)

converges to zero in mean square.

B. Proof of Theorem 2

The proofs of Theorems 2 and 3 rely on properties of~Q, the function
that describes the effects of quantization on the covariance matrix.

Let �1 and�2 be jointly Gaussian with

E[�1] = E[�2] = 0

E[�21 ] = �21 E[�22] = �22

and

E[�1�2] = �12:

Define

�̂22 = E[q(�1)
2] �̂22 = E[q(�2)

2]

and

�̂12 = E[q(�1)q(�2)]

whereq(�) was defined by (1). Then using expressions from [17], one
can show

�̂2i = �2i +
�2

12
+

1

m=1

(�1)me�2m � � =� �2

m2�2
+ 4�2i ;

i = 1; 2 (13)

and

�̂12 = (1 + �)�12 + � (14)

8We have not carefully argued that all points in the polytope are feasible, but
the achievability of the optimizing value will be clear.
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where

�=2

1

m =1

(�1)m e�2m � � =� +

1

m =1

(�1)m e�2m � � =�

and

� =

1

m ;m =1

(�1)m +m �2

m1m2�2

� exp
�2�2(m2

1�
2
1 +m2

2�
2
2)

�2
sinh

4�2�12m1m2

�2
: (15)

For any covariance matrixR, the diagonal elements of~Q(R) are
described by (13) and the off-diagonal elements are described by (14).
For the purpose of this theorem, we need only the following simple
property of ~Q:

~Q(R) = R+
�2

12
I + C; whereC ! 0 elementwise as�! 0:

(16)

To measure the degree to whichTn diagonalizesRx, define a dis-
tance measurekj � kj between a matrixA and the set of diagonal ma-
trices bykjAkj = �i6=j a

2
ij : The strategy of the proof is to show that

for sufficiently small�; the inequalitykjR(n+1)
y kj � 1

2
kjR

(n)
y kj holds

for all n � 1:
CombiningR(n)

x̂ = T T
n R

(n)
ŷ Tn with R

(n)
x̂ = T T

n+1�nTn+1 gives

T T
n+1�nTn+1 = T T

n R
(n)
ŷ Tn: DefineHn = TnT

T
n+1 so that

R
(n)
ŷ = Hn�nH

T
n : (17)

Also notice that

R(n+1)
y =Tn+1RxT

T
n+1=Tn+1T

T
n TnRxT

T
n TnT

T
n+1=HT

nR
(n)
y Hn:

As a final preparation, defineZn = R
(n)
y � R

(n)
ŷ :

We can now make the calculation

kjR(n+1)
y kj = kjHT

nR
(n)
y Hnkj = kjHT

n (Zn +R
(n)
ŷ )Hnkj

= kjHT
nZnHnkj

where the last equality follows fromHT
nR

(n)
ŷ Hn being diagonal (see

(17)). From (16), it is clear that if� is small enough,

kjZnkj �
1

4
kjR(n)

y kj:

It remains now to relatekjZnkj andkjHT
nZnHnkj:

SubstituteR(n)
ŷ = R

(n)
y + �2I=12 + C1; wherekC1k ! 0 as

� ! 0; in (17) to get

R(n)
y +

�2

12
I + C1 = Hn�nH

T
n : (18)

Decrementing the index and rearranging gives

HT
n�1R

(n�1)
y Hn�1 +

�2

12
I +HT

n�1C1Hn�1 = �n�1: (19)

SinceHT
n�1R

(n�1)
y Hn�1 = R

(n)
y ; comparing (18) and (19) gives

Hn�nH
T
n = �n�1 + C1 �HT

n�1C1Hn�1: (20)

Fig. 7. Simulations of the deterministic iteration forN = 2 suggest
convergence for any quantization step size�: The eigenvalues ofR are1 and
1=4. The step sizes shown are� = 1; 2; � � � ; 5: ' is the iterate that follows
after �: Global convergence is indicated by the curves lying inside the cone
j'j � j�j, which is marked by dotted lines.

Now letC2 = Hn�I:Substituting in (20) and expanding, we conclude
thatkC2k ! 0 as�! 0: Thus by expandingHT

n ZnHn we see that

kjHT
nZnHnkj � kjZnkj ! 0

faster thankjZnkj ! 0 as�! 0, so by choosing� small enough we
have the boundkjHT

nZnHnkj � 2kjZnkj:
Combining all these calculations gives

kjR(n+1)
y kj = kjHT

n ZnHnkj � 2kjZnkj � 2 �
1

4
kjR(n)

y kj

=
1

2
kjR(n)

y kj:

C. Proof of Theorem 3

Without loss of generality (rotating the coordinate system and initial
transform, if necessary), assumeRx = diag (�11 ; �

2
2); �1 � �2: The

transform iterates are all inSO2(IR) and can be parameterized as

T� =
cos � � sin �

sin � cos �

where� 2 [��=4; �=4]: We assume�1 > �2; if �1 = �2 the situation
is uninteresting becauseRy is diagonal for anyT�:

Denote the transform iterate that follows after� by': The proof will
be completed by showing that there is a constant�max, independent
of �, such that� � �max implies sin2 2' � sin2 2� with equality
only when� = 0: This will show global convergence to the fixed point
zero, which is an optimal transform. As a preview of this result—and to
motivate the rest of the proof—we compute and plot the “next iterate”
map� 7! ': Fig. 7 shows the map� 7! ' when�1 = 1 and�2 = 1=2
for � = 1; 2; � � � ; 5: The iteration globally converges as long as the
graph of'(�) lies inside the conej'j � j�j: From the plot, it seems
this may be true for any�; we endeavor to show this for� less than
some�max:

The first step is to relate' to �: By looking at the general form of
T�Rx̂T

T
� ; one can show that

' =
1

2
arctan

�2(Rx̂)1;2
(Rx̂)1;1 � (Rx̂)2;2

: (21)
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Rx̂ is related to� throughRy andRŷ

Ry =T�RxT
T
�

=
�21 cos

2 � + �22 sin
2 �

1

2
(�21 � �22) sin 2�

1
2
(�21 � �22) sin 2� �21 sin

2 � + �22 cos
2 �

=
�21 �12
�12 �22

(22)

Rŷ = ~Q(Ry) = Ry +
�2

12
I +

� �

� 


where�, �, and
 depend on�, �1, and�2 as given by (13), (14), and
(22). Now, after computingRx̂ = T T

� RŷT�; one finds

(Rx̂)1;1 � (Rx̂)2;2 = �21 � �22 + (�� 
) cos 2� + 2� sin 2�

and

(Rx̂)1;2 =
1

2
(
 � �) sin 2� + � cos 2�: (23)

Sincesin2(arctan�)=�2=(1+�2), we get (24) at the bottom of this
page, where the inequality follows from minimizing the denominator
over�:The following three lemmas allow us to complete the bounding
of sin2 2':

Lemma 1: j� � 
j < c1(�; �1; �2) uniformly in �, with
c1(�; �1; �2)! 0 as�! 0:

Proof: The series in (13) is an alternating series with terms that
monotonically decrease in absolute value. Thus it can be bounded (with
appropriate sign) by any partial sum [28]. Using simply the first term

�e�2� (R ) =� �2

�2
+ 4(Rŷ)1;1 < � < 0

and similarly for
: Finally,

j��
j�maxfj�j; j
jg<e�2� � =� �2

�2
+4�21 =c1(�; �1; �2)

since� and
 have the same sign and�1 < �2:

Lemma 2: j�j � c2(�; �1; �2)j sin 2�j uniformly in �; with
c2(�; �1; �2) ! 0 as� ! 0:

Proof: Rearranging (14) gives� = �(Rŷ)1;2 + �, where the
definitions of� and� must use(Rŷ)1;1, (Rŷ)2;2, and(Rŷ)1;2 in place
of �21 , �22 , and�12: As in the proof of Lemma 1,� can be bounded by
using the first term in each series

j�j < 2(e�2� (R ) =� + e�2� (R ) =� ) < 4e�2� � =� :

(25)

Assume for the moment that the absolute value of the summand of
(15) decreases monotonically with bothm1 andm2: Then computing

the double summation (15) in either order gives alternating series, so
the same bounding technique can be used. We get

j�j �
�2

�2
exp

�2�2((Rŷ)1;1 + (Rŷ)2;2)

�2

� sinh
4�2(Rŷ)1;2

�2

=
�2

�2
exp

�2�2(�21 + �22)

�2

� sinh
2�2(�21 � �22)

�2

�
�2

�2
exp

�2�2(�21 + �22)

�2

� sinh
2�2(�21 � �22)

�2
sin 2�

�
�2

2�2
e�2� � =� sin 2�: (26)

Combining (25) and (26) gives

j�j = j�(Rŷ)1;2 + �j =
1

2
�(�21 � �22) sin 2�

�
1

2
(�21 � �22)j�k sin 2�j+ j�j

< 2(�21 � �22) +
�2

2�2
e�2� � =�

c (�;� ;� )

j sin 2�j:

In general, the terms of (15) are not monotonically decreasing. How-
ever, the terms are monotonically decreasing (in absolute value) outside
of (m1;m2) 2 f1; 2; � � � ;Mg2 for someM < 1: Since each indi-
vidual term for(m1;m2) 2 f1; 2; � � � ;Mg2 can be bounded as above,
the bound can be extended to the general case.

Lemma 3: j�j < c2(�; �1; �2) uniformly in �, with
c2(�; �1; �2)! 0 as�! 0:

Proof: This follows immediately from Lemma 2.

By combining Lemmas 1 and 3, there exists�1 > 0 such that
�<�1 implies (� � 
)2 + 4�2 � (�21 � �22)

2=4; uniformly in �:
Thus assuming� < �1 we have

sin2 2' �
[(�� 
)2 sin 2� � 2� cos 2�]2

1

4
(�21 � �22)

2

:

Applying Lemmas 1 and 2

sin2 2' � (c1 + 2c2)
2 sin2 2�

sin2 2' =

�2(Rx̂)1;2
(Rx̂)1;1 � (Rx̂)2;2

2

1 +
�2(Rx̂)1;2

(Rx̂)1;1 � (Rx̂)2;2

2 =
(�2(Rx̂)1;2)

2

((Rx̂)1;1 � (Rx̂)2;2)2 + (�2(Rx̂)1;2)2

=
[(�� 
)2 sin 2� � 2� cos 2�]2

(�21 � �22)
2 + 2(�21 � �22)[(�� 
)2 cos 2� � 2� sin 2�] + (�� 
)2 + 4�2

�
[(� � 
)2 sin 2� � 2� cos 2�]2

[�21 � �22 � (�� 
)2 + 4�2]2
(24)
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and there exists�2 > 0 such that� < �2 implies(c1 + 2c2)
2 < 1:

The proof is complete with�max = minf�1;�2g:
The bounds in this theorem are rather complicated but we can check

that the requirements on� are reasonable. Suppose�1 = 1 and�2 =
1=2: Then�1 > 1:366 and�2 > 1:565; so the theorem guarantees
convergence for any� < 1:366: (For this range of�, (15) can be
bounded by them1 = m2 = 1 term for any�.) As we found for
Theorem 2, numerical calculations suggest convergence for any� (see
Fig. 7).

D. Proof of Theorem 4

The mean-square convergence ofRx̂

(n) follows from the Chebyshev
law of large numbers [29] once we establish that each term of (5) has
common expected valueRx +�2I=12, has finite variance, and is el-
ementwise uncorrelated with every other term. The second conclusion
follows easily.

First note that

x̂k = T T
k ŷk = T T

k (yk + (ŷk � yk)) = xk + T T
k (ŷk � yk):

Because of the use of subtractive dither,ŷk�yk is uniformly distributed
on the hypercube[��=2;�=2]N and independent ofxk andTk [18],
[19]. (The overall error̂xk � xk is uniformly distributed on a rotated
hypercube, independent ofxk but not independent ofTk: Its compo-
nents are uncorrelated but not independent.) Now any term of (5) can
be expanded as

x̂kx̂
T
k = xkx

T
k + xk(ŷ

T
k � yTk )Tk + T T

k (ŷk � yk)x
T
k

+TT
k (ŷk � yk)(ŷ

T
k � yTk )Tk: (27)

Sinceŷk�yk depends onTk butxk andTk are independent, computing
the expectation of̂xkx̂Tk is simplified by first conditioning onTk

E[x̂kx̂
T
k jTk] =E[xkx

T
k jTk] + E[xk(ŷ

T
k � yTk )TkjTk]

+ E[T T
k (ŷk � yk)x

T
k jTk]

+ E[T T
k (ŷk � yk)(ŷ

T
k � yTk )TkjTk]

=Rx + 0 + 0 + T T
k

�2

12
ITk

=Rx +
�2

12
I

where we have used the independence ofxk andŷk � yk and the fact
that each has mean zero.

The(i; j) element ofRx̂
(n) is the average ofn random observations

of (x̂kx̂Tk )ij ; which we denoteA(k)
ij : The calculation above shows that

eachA(k)
ij has mean(Rx)ij +�2�ij=12: It can furthermore be shown

that eachA(k)
ij has variance bounded by a constant and thatA

(k)
ij is

uncorrelated withA(`)
ij for k 6= ` [16, Appendix 3.C]. Thus by the

Chebyshev law of large numbers we have thatRx̂
(n) ! Rx+�2I=12

elementwise in mean-square. The second conclusion follows from the
fact thatRx andRx +�2I=12 have the same eigenvectors.

Note that the dither is essential to the proof because it makes the
quality of the estimateRx̂

(n) independent of the sequence of trans-
forms.

E. Proof of Theorem 5

The convergence ofn�1(Ln � L?
n) to a constant follows by mim-

icking the proof of Theorem 1. In this case, the constant� is not zero
because the entropy rate of the quantizer output depends not only on
the transform but on the dither. It remains to estimate�:

Using (3) and the differential entropy of a Gaussian random variable

h(N (0; �2)) =
1

2
log2 2�e�

2 bits

the entropy of a Gaussian random variable with variance�2, uniformly
quantized with bin width�, is approximately2�1 log2�

�22�e bits.
Thus the rate of the static optimal system is approximately

Ropt =
1

N

N

i=1

1

2
log2

2�e�i
�2

bits/component: (28)

The adaptive scheme converges to an optimal transform. However,
because of the dithering, the signal at the input to the quantizer is not
Gaussian and does not have component variances equal to the�i’s.
Sincefzng is independent offyng, the variances simply add, giving
�i + �2=12, i = 1; 2; � � � ; N: Since a Gaussian probability density
function has the largest differential entropy for a given variance, the
asymptotic rate of the universal coder can be bounded as

Runiv <
1

N

N

i=1

1

2
log2

2�e(�i +�2=12)

�2
: (29)

Subtracting (28) from (29) and pairing terms gives (8).
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Universal Coding of Nonstationary Sources
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Abstract—In this correspondence we investigate the performance of
the Lempel–Ziv incremental parsing scheme on nonstationary sources.
We show that it achieves the best rate achievable by a finite-state block
coder for the nonstationary source. We also show a similar result for a
lossy coding scheme given by Yang and Kieffer which uses a Lempel–Ziv
scheme to perform lossy coding.

Index Terms—Data compression, entropy, Lempel–Ziv algorithm, non-
stationary sources, universal source coding.

I. INTRODUCTION

We investigate the use of universal coding methods for coding non-
stationary sources. It is widely known that Lempel–Ziv coding methods
are asymptotically optimal for the coding of stationary ergodic sources.
We will show that for lossless coding of finite possibly nonstationary
sources Lempel–Ziv coding methods perform as well as any finite-state
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block coding scheme. We will also consider as an example of a nonsta-
tionary source the Arbitrarily Varying Source and investigate the per-
formance of universal noiseless coding schemes for this source. For
lossy coding of finite sources we show that the Yang–Kieffer coding
scheme asymptotically performs better than any block code even when
applied to nonstationary sources.

Lempel–Ziv coding techniques are known to be asymptotically op-
timal for individual sequences in the sense that they perform as well
as any finite-state coding scheme [11]. There are alsouniformbounds
on the performance of the incremental-parsing techniques in terms of
the coding performance achievable by a finite-state coder [5]. Kieffer
[3], [4] gave the optimal rate for coding nonstationary sources using fi-
nite-state coders. Given the performance of Lempel–Ziv techniques on
individual sequences it is natural to investigate whether they achieve
the optimal rates given by Kieffer for nonstationary sources.

II. L OSSLESSCODING

Let us consider the lossless coding of a sourceXXX = (X1; X2; � � �)
with distributionP . LetXn = (X1; X2; � � � ; Xn) take values inAn

governed by the marginal distributionPn, whereA is a finite set. The
probability measureP is possibly nonstationary. We code the source
using the Lempel–Ziv incremental parsing scheme given in [11]. We
will define the stationary hull ofP as defined in [4] and denote it by
S(P ). For the sake of completeness we repeat the definition here.

Defninition 1: Consider a (possibly nonstationary) random process
XXX taking values in a finite setA. We say that a processZZZ belongs to
the stationary hull ofXXX if there exists a sequence of natural numbers
n0; n1; � � � such that

lim
j!1

1

nj

n

i=1

E(f(Xi;Xi+1; � � � ; Xi+m�1))

= E(f(Z1; Z2; � � � ; Zm))

for all real-valued functionsf that depend only on finitely many coor-
dinates.

Processes in the stationary hull capture properties of finite-dimen-
sional distributions along various convergent subsequences. In partic-
ular, if for a given sizem the bestm-block code has bad performance
on the nonstationary source along a particular subsequence then there
is a source in the stationary hull which reflects this. It is shown in [3]
that the best possible average rate at which the source can be coded
using a finite-state adaptive block to variable-length code is given by

R(P ) = sup
Z2S(P )

H(Z)

whereH(Z) is the entropy rate of the stationary sourceZ. We will
show that this rate is achieved asymptotically by the Lempel–Ziv
coding scheme. LetLZ(xn) denote the length ofxn when coded
by the Lempel–Ziv algorithm. We will denote byxji the string
(xi; xi+1; � � � ; xj). We will see that the key property we will require
is a uniform bound onLZ(xn) in terms of a certain finite-state code.
One such bound is given by Lemma 1 in [10, Appendix], but we could
have also used the result in [5].

Theorem 1: SupposeXXX is a source with distributionP that takes
values in a finite set. then

lim sup
n!1

E(LZ(Xn))

n
� R(P ):
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