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Mismatched Decoding Revisited: General Alphabets,
Channels with Memory, and the Wide-Band Limit
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Abstract—The mismatch capacity of a channel is the highest
rate at which reliable communication is possible over the channel
with a given (possibly suboptimal) decoding rule. This quantity
has been studied extensively for single-letter decoding rules over
discrete memoryless channels (DMCs). Here we extend the study
to memoryless channels with general alphabets and to channels
with memory with possibly non-single-letter decoding rules. We
also study the wide-band limit, and, in particular, the mismatch ca-
pacity per unit cost, and the achievable rates on an additive-noise
spread-spectrum system with single-letter decoding and binary sig-
naling.

Index Terms—Capacity per unit cost, channels with memory,
general alphabets, mismatched decoding, nearest neighbor de-
coding, spread spectrum.

I. INTRODUCTION

T HIS paper deals with the rates at which reliable communi-
cation is possible over a given channel with a given—pos-

sibly suboptimal—decoding rule. This scenario arises naturally
when, due to imprecise channel measurement, the receiver per-
forms maximum-likelihood decoding with respect to the wrong
channel law, or when the receiver is intentionally designed to
perform a suboptimal decoding rule so as to simplify its imple-
mentation. This problem has been studied extensively, and we
refer the reader to [1], [2] for relevant references.

In the problem’s simplest form, the channel under consider-
ation is a memoryless channel over finite input and output al-
phabets, and the decoding rule is a single-letter rule. Even for
this simple case, the mismatch capacity, which is defined as the
supremum of all achievable rates, is unknown. In fact, it has
been demonstrated in [10] that a general solution to this problem
would yield, as a special case, a solution to the long-standing
problem of computing the zero-error capacity of a channel.

Other than the trivial bound that bounds the mismatch ca-
pacity by the matched capacity, to the best of our knowledge, no
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general upper bounds on the mismatch capacity were reported.
See, however, [4] for binary input channels. Lower bounds on
the mismatch capacity were derived using random coding argu-
ments. Such arguments are based on the analysis of the proba-
bility of error of the mismatched decoder averaged over some
ensemble of codebooks. For each block length one typically
picks some distribution on the set of all codebooks of a given
rate, and one then studies the highest rate for which the average
probability of error—averaged over this ensemble—decays to
zero as the block length tends to infinity. This rate is then achiev-
able by Shannon’s classical random coding argument, as there
must by some family of codes in the ensemble for which the
probability of error decays to zero.

Different choices of the code distribution lead to different
bounds on the mismatch capacity. A distribution over the code-
books under which the codewords are independent and each
codeword is chosen according to a product distribution leads
to a bound that is referred to in [5] as the Generalized Mutual
Information (GMI); see also [6]. A tighter lower bound to the
mismatch capacity can be derived by considering code distribu-
tions under which the different codewords are still independent,
but rather than drawing each codeword according to a product
distribution, each codeword is chosen from a type class [7]–[9].
Further improvements can be made by choosing other distribu-
tions on the codewords [10] or by considering code distributions
where different codewords are not drawn independently [11].

Although the GMI is the loosest of the above bounds, it has
the benefit of being applicable to channels over nonfinite al-
phabets. Indeed, its derivation does not rely on the method of
types [12] but rather on Gallager’s bounds [13], thus making it
applicable to channels over continuous alphabets as well. (See
[14] for an alternative derivation of the GMI via information
spectrum techniques.) On the other hand, the bound based on
equi-type ensembles, while superior to the GMI, relies heavily
on the method of types and is thus essentially limited to chan-
nels over finite alphabets. More critically, the method of types
is of limited applicability to channels with memory, rendering
the bound inapplicable to such channels. See, however, [2] for
some extensions to memoryless channels of an exponential type
and to some channels with memory.

In this paper, we extend the bound obtained by equi-type
ensembles to memoryless channels with general alphabets and
even to channels with memory. This is accomplished by using an
alternative derivation that does not require the method of types.
Using our bound we extend some of Verdú’s [15] and Gallager’s
[16] results on the capacity per unit cost to the mismatched de-
coding scenario. Certain applications to spread-spectrum com-
munication with unknown jamming statistics are also discussed.
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It should be noted that the extension of mismatch results from
finite alphabets to continuous channels cannot, in general, be
accomplished using a limiting argument applied to ever finer
channel quantizations. This approach, while applicable to op-
timal decoding scenarios [13], becomes quite tricky in the pres-
ence of decoding mismatch. Indeed, in the matched case it is
clear that the optimal decoder for the general channel performs
at least as well as a decoder that first quantizes the output and
then performs optimal processing on the quantized samples.
Under mismatched decoding, however, it is unclear how to re-
late the performance of the mismatched decoder on the original
channel to its performance on the output-quantized channel.

The study of the various random-coding bounds to the mis-
match capacity is sometimes of interest not only as a means
of studying the mismatch capacity, but also in its own right. In
some applications where the mismatch conditions are not taken
into consideration in designing the codebook, some engineering
insight into the performance of a “typical” codebook may be
gained from the study of the average performance of a random
codebook chosen from an appropriately defined ensemble. In
such situations, the exact mismatch capacity may not give the
right engineering intuition, because it is better suited for appli-
cations where the nature of the mismatch is taken into consid-
eration in designing the optimal codebook.

The rest of this paper is organized as follows. In Section II,
we formulate the mismatch problem for memoryless channels
and describe some of the known results that are special to mem-
oryless channels over finite alphabets. In Section III, we de-
rive the lower bound for memoryless channels over infinite al-
phabets, and in Section IV, we extend these results to channels
with memory. Section V studies the mismatch capacity per unit
cost, and Section VI studies a spread-spectrum example [17].
We conclude the paper with a discussion of the various bounds,
and with a discussion of some of the peculiarities of the mis-
match capacity per unit cost.

II. THE MISMATCH PROBLEM

Consider a memoryless channel of law over the gen-
eral input and output alphabets . Such a channel is thus a
mapping from the input alphabet to probability measures on
the output alphabet . We shall assume throughout that both

and are Polish (i.e., complete separable metric) spaces en-
dowed with the Borel -algebra. We endow with the
product -algebra. Following [18], we shall assume throughout
that the mapping from to the set of proba-
bility measures on is Borel measurable, i.e., that for any Borel
subset of the mapping is measurable.

Thus for any probability measure on we can define the
probability measure on by

(1)

where are Borel sets in and , respectively.
We similarly define the output distribution by

(2)

for any Borel subset . Finally, the product law is
defined by

(3)

We shall associate with every input symbol a nonneg-
ative cost , where

(4)

is Borel measurable. We extend the domain of the definition of
the cost function to -tuples in an additive way so that

A rate- block length- codebook of cost maps each
message to some -tuple

satisfying . Here

(5)

denotes the set of messages.
We now turn to the decoder. Let

(6)

be some measurable function to which we shall refer as the
“decoding metric” even though it need not be a metric in the
topological sense. Given a codebookand a decoding metric

, the decoder is defined as the mapping

(7)

that maps the received sequenceto if

(8)

and if no such exists (as can only be due to ties), we
set .

If message is transmitted then we shall say that an
error has occurred if .

Definition 1: A rate is achievable over the channel
with cost and decoding rule if for every and all suf-
ficiently large there exists a block length-rate- codebook
of cost that when decoded over the channel using the
decoder results in a maximal (over messages) probability of
error smaller than.

The mismatch capacity is the supremum of achievable rates
and is denoted1 .

Setting

(9)

we have the following lemma.

Lemma 1: For a memoryless channel with general
alphabets, the function is a nonnegative nondecreasing
function of . It is concave and continuous in the interval

.

1The mismatch capacity depends on the channel law, the decoding metric,
and the cost�. The dependence on the former two quantities is not, however,
made explicit in our notation.
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Proof: The nonnegativity of follows from its def-
inition.

Consider a codebook of parameters , where
denotes the block length, is the cost constraint, andis the
maximal probability of error incurred over the channel
using the mismatched decoder . Consider also a second
codebook of parameters . From these two code-
books we can form the product codebook that consists of all
possible way by which a codeword from the first codebook can
be concatenated with a codeword from the second codebook.
The product codebook is thus of block length , rate

and has the cost parameter

The mismatched decoder will err in decoding the product code-
book only if either the first symbols of the received sequence
would cause it to err on the first codebook, or if the last
received symbols would cause it to err on the second code-
book. The union of events bound thus demonstrates that on the
product code, the mismatched decoder errs with probability at
most . This establishes the concavity of .

By [19, Theorem 10.1] it follows from the concavity of
that is continuous for .

For channels over finite alphabets and in the absence of cost
constraints the following holds [7]–[9].

Theorem 1: For memoryless channels over finite alphabets
and in the absence of cost constraints, the mismatch capacity
can be lower-bounded by

where the maximization is over all probability distributions
on , and

(10)

where denotes the relative entropy functional [20] and
the set denotes the set of all probability mass functionson

that satisfy

and

Note that this lower bound to the mismatch capacity is, in
general, not tight [10]. It is, however, tight if the input alphabet
is binary, i.e., if [4].

Using Lagrange multipliers and duality theory one can give
an alternative expression for [2]

(11)

where the supremum is over all and over all functions
. Here denotes the set of real numbers.

We shall refer to (10) as the primal problem, and to (11) as
the dual problem. The dual problem has two advantages. First,
the dual problem need not be solved in order to obtain a lower
bound on the mismatch capacity. Any choice of the parameter

and the function yields a lower bound to the mismatch
capacity. This should be contrasted with the primal expression
where an arbitrary feasibleonly gives an upper bound to ,
i.e, an upper bound to a lower bound on the mismatch capacity.

The second advantage of the dual expression is that it gen-
eralizes more easily to general alphabets. Indeed, in this paper,
rather than relying on the method of types to obtain the primal
expression and then using duality theory to derive the dual ex-
pression, we shall derive the dual expression directly without
using types.

Before doing so, we conclude this section with two alternative
description of the GMI bound on the mismatch capacity. For any
input distribution the primal expression for the GMI is given
by

where denotes the set of all probability mass functionson
that satisfy

and

Since it is apparent that for any

The better known expression for the GMI is actually the dual
expression and is given by

(12)

Notice that the dual expression to the GMI is obtained from
the dual expression to simply by choosing , thus
demonstrating again that
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III. GENERAL ALPHABETS

In this section we extend (11) to memoryless channels with
general alphabets. The general idea of the derivation is as
follows. To derive the GMI bound (12) for general alphabets is
fairly simple, because it is typically derived using Gallager’s
bounding technique, which does not rely on the method of
types. If for any and function the decoding rule
induced by the metric were
equivalent to the decoding rule induced by the metric ,
then (11) would follow from (12) simply by applying (12) to
the decoding rule (with the parameter in (12) set to
one). The problem, however, is that the decoding rule induced
by is, in general, not equivalent to
the one induced by , unless

does not depend on the message. Imposing this condition
on the ensemble, brings us back to notions of types and away
from the independent and identically distributed (i.i.d.) code-
books that are so amenable to analysis. Instead, we impose a
different condition on the codewords, namely, that

shall be very small. In this case, the decoding rule induced by
is not worse than the decoding rule induced by

with a threshold decoder. Since the latter is simple to analyze
and since the highest rate it can achieve approaches (11) as the
threshold approaches zero, we can prove (11).

The specifics are described next. Fix some input distribution
satisfying

where denotes the expectation functional with its subscript
denoting the law with respect to which the expectation is taken.
Let , , and be defined as in (1), (2), and (3),
respectively.

Fix an and an for which

(13)

Here denotes the set of all functions2 that are integrable
with respect to . For such and let

(14)

and

2The domain of definition of these functions is determined by the argument
�. For example,L (P ) denotes the class of integrable functions fromX to .

Thus , , and for every bounded

(15)

That is, the measure whose Radon–Nikodym derivative with re-
spect to is has -marginal identical to . Con-
sequently,

a.s. (16)

i.e.,

Extend the definition of and to sequences by
defining

Consider a threshold decoder

(17)

that for a given codebook and for some given maps the
received sequence to if

(18)

and if no such exists, maps to .
By taking the logarithm of both sides of (18) one establishes

that if

(19)

then the mismatched decoder (7), (8) errs only if the
threshold decoder (17), (18) errs. It is thus instructive to
investigate the performance of the threshold decoder. To this
end we prove the following lemma, which is analogous to [21,
Lemma 6.9].

Lemma 2: Consider an ensemble of block length-rate-
codebooks whose codewords are drawn independently,
each according to an-fold product distribution on of
marginal .

Let denote the average (over messages and code-
books) probability of error incurred by the threshold decoder
(17), (18) over the channel . Let be fixed. Then

where is the -fold product distribution on
of marginal .
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Proof: The proof is very similar to the proof of [21,
Lemma 6.9]. We have

where and are distributed on according to
independently of that are independently

distributed on according to .
For pairs for which we upper-

bound the integrand by. For other pairs, i.e, pairs such that
we note that

where the inequality before last follows from the union of events
bound, and the last inequality follows from Markov’s inequality
and the fact that by (16)

To simplify the analysis we now define a modified threshold
decoder that given a codebook maps the received sequence

to if the transmitted codeword violates

(20)

or if it violates

(21)

and, otherwise, if both conditions are satisfied, mapsto
. The modified decoder thus agrees with the threshold

decoder if the transmitted codeword satisfies both (20) and
(21), and declares an error otherwise.

Lemma 3: Consider an ensemble of blocklength-rate-
codebooks whose codewords are drawn independently, each ac-
cording to an -fold product distribution of marginal .
Let denote the average (over messages and codebooks)
probability of error incurred by the modified threshold decoder

over the channel . Then

(22)

Proof: Follows directly from the union of events bound.

We can now state the main result of this section regarding
the mismatch capacity of a memoryless channel over general
alphabets.

Theorem 2: The mismatch capacity of
a channel with cost function and decoding rule

can be bounded by

where

(23)

where the supremum is over all input distributionssatisfying

(24)

Here is the joint distribution defined by (1), and

(25)

where the supremum is over , and satis-
fying (13).

Proof: We first claim that it suffices to prove that
is no smaller than for distributions for which (24)
holds with strict inequality. To see this, consider the bounds on

derived from applied to distributions that
satisfy (24) with strict inequality. Since the mismatched capacity

is concave in the cost for all (see Lemma
1), the concave envelope of these bounds is also a lower bound
to . Being concave in , this envelope is continuous in
for , and the claim follows.

Fix then some distribution satisfying the strict inequality

(26)

Consider a block length-rate- codebook whose codewords
are chosen independently according to the-fold product distri-
bution of marginal . Fix some . It follows from Lemma
2 and the law of large numbers that as long as

the ensemble averaged probability of error of the threshold de-
coder will decrease to zero as the block lengthtends to infinity.
By Lemma 3 and (26) the same is also true for the ensemble av-
eraged probability of error for the modified threshold decoder

. Given any we can use the random coding argument
to find, for all sufficiently large block length, a codebook of
rate for which the average probability of error incurred by the
decoder is smaller than. By throwing away half its code-
words, we can find a code of rate for which
the maximal probability of error with the decoder is smaller
than .

Since any codeword that violates the cost constraint is incor-
rectly decoded by , it follows that all the codewords in
satisfy the cost constraint (20), as well as the constraint (21).

Since the codewords in satisfy (21), it follows that a re-
ceived sequence will cause the mismatched decoder to
err, only if it causes the threshold decoder to err also. Thus on
the code the probability of error of the mismatched decoder
cannot exceed the probability of error of the threshold decoder,
i.e., . The result now follows by letting tend to zero.
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Remark 1: The lower bound to the mismatch ca-
pacity is unchanged when the decoding metric is re-
placed with the decoding metric

(27)

for arbitrary and .

With regard to the above remark one should note that for
discrete memoryless channels (DMCs), replacing
with as in (27) not only does not change the value of

, but it also does not change the value of the mismatch
capacity [9], [10]. This is because if is finite, then the
mismatch capacity can be achieved with constant composition
codes, and for such codes and yield identical
decoding rules. It is not clear whether this also holds for general
input alphabets.

We conclude this section with a condition under which
is strictly positive. It is clear from the primal expres-

sion (10) that for DMCs over finite alphabets, is zero
if, and only if

This is also true for memoryless channels over general alpha-
bets.

Proposition 1: Let be some input distribution to a mem-
oryless channel over the general alphabets with a non-
negative3 decoding metric . Let and be de-
fined as in (1) and (3). Let be, as in (25), the random
coding lower bound to the mismatch capacity corresponding to
the input distribution . Then

iff

Proof: The choice of and demonstrates
that . Next, by Jensen’s inequality [22, Proposi-
tion 2.12]

and thus

(28)

Consequently, if

then .
We now prove the reverse implication. Choose . Let

3By Remark 1, if a decoding metricd is such that there exists integrable func-
tionsf : X ! andg : Y ! such thatd(x; y) + f(x) + g(y) is nonneg-
ative, the proposition will hold for thisd as well.

Noting that

Observe that

is nonnegative. Using Fatou’s lemma

Using Fatou’s lemma once more

and thus

This shows that if

then, is positive for sufficiently small .

It should be noted that for DMCs the mismatch capacity is
positive only if for some input distribution
such that for some , see
[10]. It is unclear whether a similar statement can be made for
memoryless channels over general alphabets.

For nondeterministic input distributions that are concen-
trated at two points, the condition for the positivity of
takes on a particularly simple form.

Corollary 1: If is nondeterministic and concentrated on
so that

then if, and only if,

(29)

where

IV. M ORE GENERAL CHANNELS

In this section, we study the mismatch capacity for channels
with memory and non-single-letter decoders. Our results can be
viewed as the mismatched decoding counterparts of the results
of Verdú and Han [23] on channels with memory with optimal
decoding.

As before, we denote the channel input and output alphabets
by and . We assume that for any block lengththe product
sets and are complete separable metric spaces endowed
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with the Borel -algebras, and that is endowed with
the product -algebra. We further assume that for each block
length there corresponds a Borel measurable channel mapping

that maps -length input sequences to probability
distributions on . For example, for a DMC

We let be a sequence of probability measures,
where is a probability measure on . For example, for
a DMC we might consider

Note, however, that even for a memoryless channel, an i.i.d.
input distribution may not be optimal; see [10] for the improved
bounds on the mismatch capacity of DMC obtained by con-
sidering product spaces. As in (1), we denote the joint law on

induced by the input distribution and the channel
by . Similarly, as in (2), we let denote

the law induced on .
We assume as given a sequence of decoding metrics

where

For example, for single-letter decoding

for some . Similarly, we assume a sequence
of cost functions where

For example, in the DMC case we might have

We let denote a sequence of nonnegative real numbers.
For the DMC we would typically set , i.e., a constant
sequence. Finally, we consider a sequence of functions

which for the DMC case could be given by

for some single-letter function .

Theorem 3: Let the sequences and be such
that:

• ;

• ;

• the function formally defined by

is defined and is in .

Let the sequence of input distributions satisfy the cost
constraints with strict inequality

Then, the mismatch capacity with cost is
lower-bounded by

in of

Note: The in probability should be interpreted as the
supremum of real numbersthat satisfy

Proof: The proof is almost identical to the proof of The-
orem 2. We define

and note that the measure whose Radon–Nikodym derivative
with respect to is given by has marginal

and, consequently,

The theorem now follows from Lemma 2 in much the same way
that Theorem 2 follows from that lemma.

V. THE WIDE-BAND LIMIT

Consider a memoryless channel on the input
alphabet and output alphabet . Let be a cost function
on and let be some fixed decoding metric. As before,
we denote by the mismatch capacity with cost. We
define the mismatch capacity per unit cost as

(30)

In this section, we study in an attempt to extend some of
the results of Verdú [15] on the matched capacity per unit cost.
Note, however, that the definition of the capacity per unit cost in
[15] is somewhat different from the definition we adopt. Verdú’s
definition allows for the number of codewords to grow subex-
ponentially in the block length. Nevertheless, he shows that in
the matched case, the two definitions yield identical capacities.

In general, very little can be said about the supremum in (30).
However, in the case where there exists an input symbol of zero
cost, one can show that the supremum is achieved in the limit
as . Before we can state and prove this result, we need the
following lemma.

Lemma 4: Let the nonnegative function
be monotonically nondecreasing and concave in the

interval . Then

(31)

where for .
Proof: If the limit of as is positive, then both

sides of (31) are infinite, and equality thus holds. Otherwise,
if this limit is zero, then is concave and continuous in

with . Consequently,

so that the function is monotonically nonincreasing in
.
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Proposition 2: If there exists some input symbol of zero
cost, i.e, , then

(32)

where .
Proof: In the presence of a zero-cost symbol , so

that by Lemma 1 is monotonically nondecreasing and
concave for . The result thus follows from Lemma 4.

We focus now on two lower bounds to

(33)

and

(34)

By Theorem 2, it follows that

It is not surprising that the inequality can be strict.
Indeed, if all input symbols are of unit cost, then an example is
provided by [10, Example 4].

Perhaps more surprising is the fact that even in the presence
of a zero-cost symbol, can be strictly smaller than .
(An example demonstrating this phenomenon is presented later
in the section.) Thus while in the presence of a zero-cost symbol
the mismatch capacity per unit cost is always achieved in
the limit as the cost goes to zero, this is not the case for its
random coding lower bound .

In the presence of a zero-cost input symbolone can fur-
ther lower-bound by limiting oneself to binary-input dis-
tributions concentrated on and on some other arbitrary input
symbol. This approach leads to the following bound

Lemma 5: For a memoryless channel with general alphabets
and in the presence of a zero-cost symbol

(35)

where

(36)

and the maximization is over all symbols such
that

(37)

If two symbols and have zero cost then the capacity per
unit cost is infinite if (29) holds.

Proof: Let be any symbol of positive cost and
satisfying (37). Consider the input distribution

where

In studying there is no loss of generality in assuming
that the decoding metric is given by

if
if

see Remark 1. Assume thatis sufficiently small so that
. Fix some and . Let

if
if

With this choice of we have
if
if

With these definitions we have that if

then

and

It can be readily verified that (37) guarantees that
. Indeed, one can write

(38)

and note that the integrand in the first integral is bounded, and
use the bound

for and

in the other.
For any and , by (25)

(39)

Using the inequality we obtain

(40)

By letting tend to zero we obtain

(41)

The result now follows by choosing
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Remark 2: For a DMC, an alternative expression (primal) for
the right-hand side of (35) is

(42)

where the minimization is over all probability mass functions
(PMFs) on satisfying

The following theorem explores conditions under which the
bound on provided by Lemma 5 is tight. See [15] for the
analogous statement about the matched capacity per unit cost.

Theorem 4: Consider a DMC over the finite input
and output alphabets and . Let be a cost function on ,
and assume the existence of a unique input symbolof zero
cost. Further assume that the matched capacity per unit cost

is finite. Then (35) holds with equality and, in particular, there
exists some input symbol such that

where the input distribution satisfies
and .

Proof: See the Appendix.

The following example will demonstrate some of the differ-
ences between the behavior of the matched and mismatched ca-
pacities per unit cost.

Consider a noiseless channel over the input alphabet
and the output alphabet , with

law

Here we use the notation

statement
if "statement" is true
if "statement" is false.

Associate with every input symbol the cost defined
by

Thus all symbols have unit cost except for the symbol, which
has zero cost.

We now choose the decoding metric to discourage the use of
the symbol in spite of its zero cost. Since an inputresults in
the output , and since the mismatched decoder minimizes the
accumulated metric, this is achieved by setting

Next, we guarantee that if a codebook does not contain the
symbol , then our decoding rule will allow for error-free com-
munication. We thus set

whenever and

By using a codebook containing all the distinct -length
sequences over we guarantee a rate of bits per
symbol. Thus

(43)

In fact, it can be shown that
if is uniform over . Thus

(44)

We next show that the mismatch capacity per unit cost is not
achievable using binary signaling. To this end, we first con-
sider binary signaling where neither of the signals in use is the
zero-cost symbol. In this case, the average cost of each code-
words is , and since we are using only two symbols, the com-
munication rate is no bigger than 1 bit/symbol. Thus we cannot
achieve a rate-per-cost larger than , whereas the mismatch
capacity per unit cost is at least ; see (43).

The other form of binary signaling is when one of the symbols
is the zero-cost symbol. Without loss of generality we shall
assume that the other symbol is. We will show that with the
above decoding metric any such binary code yields an average
probability of error of one. Indeed, consider two codewords

and over . Assume that
is transmitted. If then both codewords accumulate the

same metric, thus leading to an error. Assume now that .
In computing the difference between the metric accumulated
by the two codewords, we may ignore componentsfor which

. Consider then some for which . If
then the corresponding received symbol isand the metric

added to the correct codeword is while the metric
added to the incorrect codeword is . In the other case,
if and, consequently, then the metric added to
the correct codeword is while the metric added to
the incorrect codeword is . In either case the metric
accumulated by the incorrect codeword is lower than the metric
accumulated by the correct codeword, and an error results.

The above argument also demonstrates that the average prob-
ability of error of the mismatched decoder over an ensemble of
binary codes consisting of the symbolsand is also one.

VI. A SPREAD-SPECTRUMEXAMPLE

Consider an additive (not necessarily Gaussian) noise channel
where the output at time is given by

(45)

where denotes the channel input at timeand is the
corresponding noise sample. Note that we do not assume that
the noise samples are of zero mean.

In [25] it was demonstrated that if the noise process has
an ergodic law (that does not depend on the input sequence) and
if the decoder performs nearest neighbor decoding (i.e., the de-
coding rule that would have been optimal if the noise were i.i.d.
zero-mean Gaussian) then for a Gaussian ensemble of power

(46)

where

(47)
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and where denotes here a zero-mean, variance-Gaussian
distribution. In the wide-band limit we obtain

(48)

For wide-band systems, one rarely uses Gaussian codebooks,
and a more practical approach is to use binary spread-spectrum
signaling so that

(49)

If one considers an ensemble of codebooks whose codewords
are chosen i.i.d. according to a product Bernoulli distribu-
tion, one obtains a limit quite similar to (48), i.e.,

(50)

where denotes the Bernoulli distribution that takes on the
values equiprobably.

We shall, however, demonstrate that if in the ensemble the
codewords are chosen uniformly over the Bernoulli type
then

(51)

where

(52)

is the variance of the noise.
Rather than deriving this limit directly, we shall first derive a

more general result applicable to general single-letter decoding
rules, and only then specialize to the Euclidean distance de-
coding metric.

Recall that by (25)

We can, without loss of generality, choose ,
and rewrite the above as

Let

Then, for

We thus see that

(53)

(54)

(55)

(56)

(57)

where the inequality follows from . For the
supremum over we need to consider the following two pos-
sibilities.

1) : The supremum over is achieved at
with value zero.

2) : This implies for other-
wise would equal a constant with probabilityand

. The supremum is achieved at

with value

Let us now specialize to the Euclidean distance decoding
metric, for which . Then , and
thus , ,
and

Furthermore, we claim that if , the lower
bound to is tight as approaches zero, so that

To prove the claim, we need to show that the inequality

is asymptotically tight as gets small. To that end, let and
be the values of and which achieve the supremum in

(55). We will first show that as approaches zero, and
both approach zero. By differentiating (55) with respect

to and we obtain the following equations for optimal
and :

(58)

(59)

Now, if we could prove that approaches zero asap-
proaches zero, it would follow from the first equality that
approaches zero: would approach in probability, and
since is continuous and bounded,

implies that , which yields that . It
is also easy to see that to the first order
in . It is thus sufficient to prove that . To that end,
consider the second equation with . Using
the inequality for (which follows
from ), we obtain
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If is not approaching zero, we can extract a subsequence
for which remains bounded away from zero. Since

, this implies that the left-hand side remains
bounded away from zero. However, the right-hand side ap-
proaches zero, leading to a contradiction. We have thus shown
that approaches zero. Moreover, given that ,
the expectation above remains bounded away from zero, which
implies that remains bounded.

Given that and , we now use the facts
that i) for as

, and ii) since
as . These imply that for any , for sufficiently
small

This inequality implies that our lower bound to is
tight.

VII. D ISCUSSION

The tightness of the random-coding lower bounds on the
mismatch capacity depend on two factors: the distribution ac-
cording to which the codebooks are drawn, and the inequalities
that are used to upper-bound the respective ensemble-averaged
probabilities of error.

The GMI bound (12) is based on a codebook distribution ac-
cording to which codewords are chosen independently of each
other, each according to an i.i.d. distribution. The analysis of
the average probability of error is based on Gallager’s bounding
techniques.

On the other hand, the tighter bound (Theorem 1) is based
on a different code distribution. Here the codewords are still
chosen independently of each other, but each codeword is now
drawn uniformly over a type class. The analysis of the average
probability of error is performed using the method of types.

A natural question to ask is whether the GMI bound is infe-
rior because of the code distribution (i.i.d. versus uniform over
a type) or because of the performance analysis method (Gal-
lager’s bounds versus the method of type). It turns out that for
DMCs the fault lies with the code distribution and not with the
bounding technique: Gallager’s bounding technique is tight for
i.i.d. ensembles in the sense that for rates above the
average probability of error for an i.i.d. ensemble tends to one,
as the block length tends to infinity.4

Similarly, subject to some minor technical conditions, the
method of types technique is tight for ensembles where the
codewords are drawn uniformly over a type class. Thus for
this code distribution and for all rates about , the
ensemble-averaged probability of error tends to one, as the
block length tends to infinity.5 When is strictly smaller
than the mismatch capacity it is not because the method of types
is inadequate, but rather because the codebook distribution

4This claim can be proved as in [25, Theorem 1] using the primal expression
for the GMI, or using techniques similar to those used in [25, Appendix].

5See [11, Theorem 3] for the multiple-access channel version of this claim,
or [2, Theorem 1] for a slightly weaker single-user version of this claim.

is inappropriate. The “average codebook” in this ensemble is
simply not good enough to achieve the mismatch capacity.

We turn now to some remarks about the mismatch capacity
per unit cost. In contrast to the behavior of the matched capacity
[15] and to the behavior of the random coding lower bound to
the mismatch capacity per unit cost (Theorem 4) we have the
following.

Remark 3: Even in the presence of a zero-cost symbol, the
mismatch capacity per unit cost need not be achievable
using codebooks over a subset of cardinality two.

Proof: This is demonstrated by the example in Section V,
where binary signaling cannot achieve a rate per cost greater
than , whereas ternary signaling can achieve a rate per cost
of .

Since the input alphabet in the above example contains
a zero-cost symbol, it follows from Theorem 4 that is
achieved by binary signaling with one of the symbols being
the zero-cost symbol. For the example at hand this implies that

. On the other hand, it is demonstrated that is no
smaller than , see (44). We thus conclude.

Remark 4: Even in the presence of a zero-cost symbol, the
random coding lower bound to the mismatch capacity per unit
cost need not be attained in the limit of zero cost. That is,

can hold with a strict inequality.

If the function were concave for then by
Lemma 4 (applied to function ) it would have followed
that and are identical, in contradiction to Remark 4.
We can therefore only conclude the following.

Remark 5: The random coding lower bound to the mismatch
capacity need not be a concave function of the cost.

This has the following consequence, which was observed ear-
lier in [24].

Remark 6: The random coding lower bound de-
fined in (25) need not be a concave function of the input distri-
bution .

Proof: To arrive at a contradiction to Remark 5 we shall
assume that is concave. Let be other-
wise arbitrary. Let satisfy

and

Similarly, define a sequence . Let be arbi-
trary, and let .

If were concave then we would have

from which a contradiction to Remark 5 results upon letting
approach infinity.
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APPENDIX

PROOF OFTHEOREM 4

Without loss of generality (see Remark 1) suppose that
for all . Let . Since

is finite and is the only symbol of zero cost, . Since

we can find sequences and such that

and

(60)

Let denote the output distribution on that corresponds
to the input distribution .

For let . From (60) it follows
that . Note that for and

.
Recall that is given by either the primal or the dual ex-

pressions

(61)

(62)

(63)

where in (61), the infimum is over all’s for which

and

Let be the distribution that achieves the infimum in the
primal expression (61). By duality, is of the form

with . Without loss of generality we can fix .
It follows from the condition on the marginal that

and thus

(64)

Since and are in for all , and since
and are finite, we can extract a subsequence for which
the limits and exist for
each . To simplify notation, we shall assume that
the original sequences and were chosen such that this

convergence already held. Let these limits above be and
, respectively. Since , the marginal

condition implies

From (64) we observe that

Taking limits on both sides we see that

exists, and observing that and

(65)

Now

Since is bounded, and , for large enough the
argument of the logarithm above exceeds. Since

for

(66)
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The finiteness of the matched capacity implies that the-mea-
sures are absolutely continuous with respect to

, i.e.,

implies

In particular, implies , and thus for
those and for large enough

is bounded (by (65)). Hence the third term in (66) is .
Thus

(67)

The boundedness of and allows us to
replace above by its limiting value, , to ob-
tain

(68)

Observe now that the term inside the braces is a linear function
of , and using the fact that is less than

Let be the that achieves this maximum. Sinceis finite,
we can extract a subsequence for which is constant.
Letting that value to be , we thus obtain

(69)

We will now show that the above upper bound to can
be achieved by a binary distribution. To that end, consider a
sequence of distributions for which is nonzero
only for and , and . Let

denote the corresponding output distribution.

By using the dual expression for

where and are those obtained from . Thus

where the second inequality follows from . We
thus see that

The boundedness of allows us to conclude
that

(70)

Comparing this expression to the upper bound on we see
that can be achieved by a binary input distribution.
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