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Abstract—The mismatch capacity of a channel is the highest general upper bounds on the mismatch capacity were reported.
rate at which reliable communication is possible over the channel See, however, [4] for binary input channels. Lower bounds on
with a given (possibly suboptimal) decoding rule. This quantity he mismatch capacity were derived using random coding argu-
has been studied extensively for single-letter decoding rules over .
discrete memoryless channels (DMCs). Here we extend the studym?nts' Such arguments are based on the analysis of the proba-
to memoryless channels with general alphabets and to channelsbility of error of the mismatched decoder averaged over some
with memory with possibly non-single-letter decoding rules. We ensemble of codebooks. For each block length one typically
also study the wide-band limit, and, in particular, the mismatch ca- picks some distribution on the set of all codebooks of a given
pacity per unit cost, and the achievable rates on an additive-noise 416 and one then studies the highest rate for which the average
spread-spectrum system with single-letter decoding and binary sig- . .
naling. probability of error—averaged over _thls e!’]semb_le—decay_s to

zero as the block length tends to infinity. This rate is then achiev-
able by Shannon’s classical random coding argument, as there
must by some family of codes in the ensemble for which the
probability of error decays to zero.

Different choices of the code distribution lead to different

. INTRODUCTION bounds on the mismatch capacity. A distribution over the code-
HIS paper deals with the rates at which reliable commurff20ks under which the codewords are independent and each
cation is possible over a given channel with a given—po§odeword is chosen according to a product distribution leads

sibly suboptimal—decoding rule. This scenario arises naturalfyy @ bound that is referred to in [5] as the Generalized Mutual
when, due to imprecise channel measurement, the receiver permation (GMI); see also [6]. A tighter lower bound to the
forms maximum-likelihood decoding with respect to the wrongtismatch capacity can be derived by considering code distribu-
channel law, or when the receiver is intentionally designed #9ns under which the different codewords are still independent,
perform a suboptimal decoding rule so as to simplify its impldUt rather than drawing each codeword according to a product
mentation. This problem has been studied extensively, and @jgtribution, each codeword is chosen from a type class [7]-[9].
refer the reader to [1], [2] for relevant references. Further improvements can be made by choosing other distribu-
In the problem’s simplest form, the channel under considdions on the codewords [10] or by considering code distributions
ation is a memoryless channel over finite input and output akhere different codewords are not drawn independently [11].
phabets, and the decoding rule is a single-letter rule. Even forAlthough the GMI is the loosest of the above bounds, it has
this simple case, the mismatch capacity, which is defined as thé benefit of being applicable to channels over nonfinite al-
supremum of all achievable rates, is unknown. In fact, it hababets. Indeed, its derivation does not rely on the method of
been demonstrated in [10] that a general solution to this probldyR€s [12] but rather on Gallager's bounds [13], thus making it
would yield, as a special case, a solution to the long-standifgPlicable to channels over continuous alphabets as well. (See
problem of computing the zero-error capacity of a channel. [14] for an alternative derivation of the GMI via information
Other than the trivial bound that bounds the mismatch céPectrum techniques.) On the other hand, the bound based on

pacity by the matched capacity, to the best of our knowledge, R8Ui-type ensembles, while superior to the GMI, relies heavily
on the method of types and is thus essentially limited to chan-

nels over finite alphabets. More critically, the method of types
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It should be noted that the extension of mismatch results frdior any Borel subseB C ). Finally, the product lawPy Py is
finite alphabets to continuous channels cannot, in general, defined by
accomplished _using a Iimi_ting argument a.pplied t.o ever finer Py Py(A x B) = Py (A)Py(B). 3)
channel quantizations. This approach, while applicable to op- i ) i
timal decoding scenarios [13], becomes quite tricky in the pres-'V€ shall associate with every input symbo€ X" a nonneg-
ence of decoding mismatch. Indeed, in the matched case if¥e costy(x), where
clear that the optimal decoder for the general channel performs g: X —[0,00) (4)

at least as well as a decoder that first quantizes the output 0@ e measurable. We extend the domain of the definition of
then performs optimal processing on the quantized samplgss cost function ta-tuples in an additive way so that
Under mismatched decoding, however, it is unclear how to re-

late the performance of the mismatched decoder on the original g(x) = 1 Zg(”‘)’ e X",
channel to its performance on the output-quantized channel. ni
The study of the various random-coding bounds to the mis- A rate-R block lengthn codebookC of costI’ maps each
match capacity is sometimes of interest not only as a meafjigssagen € M to somen-tuple
of studying the mismatch capacity, but also in its own right. In

some applications where the mismatch conditions are not taken z(m) = (z1(m), ...z (m)) € A"
into consideration in designing the codebook, some engineersajisfyingg(z(m)) < I'. Here
insight into the performance of a “typical” codebook may be M={1,... "B} (5)

gained from the study of the average performance of a random tes th  of
codebook chosen from an appropriately defined ensemble.qﬁ?\/o es ? setotrr]negsagzs. Let
such situations, the exact mismatch capacity may not give the € howturn to the decoder. Le

right engineering intuition, because it is better suited for appli- d: XxY—R (6)
cations where the nature of the mismatch is taken into consigs some measurable function to which we shall refer as the
eration in designing the optimal codebook. “decoding metric” even though it need not be a metric in the

The rest of this paper is organized as follows. In Section 't'opological sense. Given a codebadland a decoding metric
we formulate the mismatch problem for memoryless channgj@L y), the decoded, is defined as the mapping
and describe some of the known results that are special to mem-

oryless channels over finite alphabets. In Section Ill, we de- ¢a: V" — MU{0} ™
rive the lower bound for memoryless channels over infinite dlhat maps the received sequenc® m € M if
phabets, and in Section IV, we extend these results to channels n
with memory. Section V studies the mismatch capacity per un_ d(@x(m),yx) < Y dzx(m’),u),  m' € M\ {m}
cost, and Section VI studies a spread-spectrum example [1F§! k=1
We conclude the paper with a discussion of the various bounds, (8)
and with a discussion of some of the peculiarities of the miand if no suchn € M exists (as can only be due to ties), we
match capacity per unit cost. setpq(y) = 0.

If messagen € M is transmitted then we shall say that an

Il. THE MISMATCH PROBLEM error has occurred ipq(y) # m.

Consider a memoryless channel of I&#(- | z) over the gen-  Definition 1: ArateR is achievable over the chanri&l(- | -)
eral input and output alphabets, V. Such a channel is thus awith costl’ and decoding ruléy if for every e > 0 and all suf-
mapping from the input alphabat to probability measures on ficiently largen there exists a block lengthrate-R codebook
the output alphabe¥. We shall assume throughout that botlef costl’ that when decoded over the chanhé(: | -) using the
X and) are Polish (i.e., complete separable metric) spaces @@coderp, results in a maximal (over messages) probability of
dowed with the Boreb-algebra. We endowt’ x ) with the error smaller than.
products-algebra. Following [18], we shall assume throughout
that the mappinge — W (- |z) from & to the set of proba-
bility measures o) is Borel measurable, i.e., that for any Bore

The mismatch capacity is the supremum of achievable rates
flnd is denoted Cy, ([).

subsetB of ) the mapping: — W (B | x) is measurable. Setting
Thus for any probability measu#e, on X’ we can define the [min = inf g(x) 9)
probability measuré’x y = Px o W on X’ x )V by TEX
we have the following lemma.
Pxy(Ax B)= / W(B|x)dPx(z) (1)  Lemma 1: For a memoryless chann8f (- | =) with general
A alphabets, the functiofy;(1') is a nonnegative nondecreasing
whereA, B are Borel sets int’ and), respectively. function of I'. It is concave and continuous in the interval

We similarly define the output distributiaRy = Py W by  (I'min, +00).

IThe mismatch capacity depends on the channel law, the decoding metric,
_ and the cost'. The dependence on the former two quantities is not, however,
PY(B) - / W(B | a:) dPx (a:) (2) made explicit in our notation.
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Proof: The nonnegativity o€y, (I") follows from its def- Using Lagrange multipliers and duality theory one can give
inition. an alternative expression féry(Px ) [2]
Consider a codebook of parametérs M, T, ¢), wheren
denotes the block lengtlh is the cost constraint, andis the Imv(Px) = sup Z Px(z)W(y|z)

maximal probability of error incurred over the chanié(- | x) (zy)CXXY
using the mismatched decodey. Consider also a second o—sd(z,y)—a(z)
codebook of parametefs’, M’,1", ¢'). From these two code- x log (11)

E PX (xl)e—sd(m’,y)—a(x’)

books we can form the product codebook that consists of all e

possible way by which a codeword from the first codebook can _ _
be concatenated with a codeword from the second codebowkere the supremum is over all> 0 and over all functions

The product codebook is thus of block length- »/, rate a: X — R. HereR denotes the set of real numbers.
We shall refer to (10) as the primal problem, and to (11) as
log|M| n log| M| »/ the dual problem. The dual problem has two advantages. First,
n n4+n n  n4+n the dual problem need not be solved in order to obtain a lower
bound on the mismatch capacity. Any choice of the parameter
and has the cost parameter s and the functioru(-) yields a lower bound to the mismatch

capacity. This should be contrasted with the primal expression
) where an arbitrary feasibleonly gives an upper bound 1,1,
n+n n+n' i.e, an upper bound to a lower bound on the mismatch capacity.

The mismatched decoder will err in decoding the product code-The second advantage of the dual expression is that it gen-

book only if either the firsh symbols of the received sequenceerallzes more easily to general alphabets. Indeed, in this paper,

would cause it to err on the first codebook, or if the last rather than relying on the method of types to obtain the primal

. . (?xpression and then using duality theory to derive the dual ex-
received symbols would cause it to err on the second code” " . : . .
ssion, we shall derive the dual expression directly without

book. The union of events bound thus demonstrates that on %S

product code, the mismatched decoder errs with probr:lbilitytéastmg types.. . . . .
moste + ¢'. This establishes the concavity G (T") Before doing so, we conclude this section with two alternative

By [19, Theorem 10.1] it follows from the concavity 0f_descrlptlon of the GMI bound on the mismatch capacity. For any

input distributionPx the primal expression for the GMI is given

n , n

r

Cpn (D) thatCyy (L) is continuous fol* > L'y, O by
For channels over finite alphabets and in the absence of cost _
constraints the following holds [7]-[9]. Temi(Px) = {JnelgD(V | Px Py)

Theorem 1: For memoryless channels over finite alphabetghereg denotes the set of all probability mass functienen
and in the absence of cost constraints, the mismatch capagity, y that satisfy

can be lower-bounded by

> va,y) = Py(y)

InaXILM(P)() zCX
Px
and
where the maximization is over all probability distributiaRg
<
on X, and Z d(xvy)’/(xvy) = Z d(xvy)PX,Y(xvy)'
(z,y)EAXXY (z,9)EXXY

Itv(Px) =min D(v || Px Py) (10)  sincer C g itis apparent that for anfy
whereD(- || -) denotes the relative entropy functional [20] and Icwi(Px) < Irm(Px).
the set# denotes the set of all probability mass functiensn
X x Y that satisfy The better known expression for the GMI is actually the dual

expression and is given by
v(z,y) = Px(x
yz&; (=4) (=) Teyvi(Px) = sup Z Px ()W (y|x)
520 (Z,y)EXXY
> v(z,y) = Pr(y) d(e)
zeX e
log . (12
and X108 = p (e saw (12
' eX
Z l/(x,y)d(x,y) S Z PX,Y(xvy)d(xvy)' ©
(z,y)EXXY (z,y)EXXY Notice that the dual expression to the GMI is obtained from

the dual expression th,,; simply by choosing:(-) = 0, thus
Note that this lower bound to the mismatch capacity is, ilemonstrating again that
general, not tight [10]. It is, however, tight if the input alphabet

is binary, i.e., |f|X| =2 [4] IGMI(PX) < ILM(P)().
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Ill. GENERAL ALPHABETS Thusa(z) € L1(Px), b(y) € L1(FPy), and for every bounded

In this section we extend (11) to memoryless channels wi@ﬁy)
general alphabets. The general idea of the derivation is as
follows. To derive the GMI bound (12) for general alphabets is hMy)a(z.y) dPx Py (z,y) = /h(y) dPy(y).  (15)
fairly simple, because it is typically derived using Gallager’s
bounding technique, which does not rely on the method &hatis, the measure whose Radon—Nikodym derivative with re-
types. If for anys > 0 and functiona(z) the decoding rule specttoPx Py is g(z,y) hasy-marginal identical ta*-. Con-
induced by the metriad (z,y) = sd(z,y) + a(z) were sequently,
equivalent to the decoding rule induced by the meffic, ),
then (11) would follow from (12) simply by applying (12) to
the decoding rule! (z,y) (with the parametes in (12) set to ie.
one). The problem, however, is that the decoding rule induced
by d’(x,y) = sd(z,y) + a(x) is, in general, not equivalent to Py <{y . /q(x’y) APy () # 1}> _
the one induced by(z, 3), unless

Ep [¢(X,Y)]=1 Pyas. (16)

n Extend the definition ofj(x,y) and ¢(z,y) to sequences by
ot Z a(zr(m)) defining
k=1

@™ (z,y) a(Tr, Yx), z.Yy) € X" x I
does not depend on the message Imposing this condition H (@.9)

on the ensemble, brings us back to notions of types and away
from the independent and identically distributed (i.i.d.) code- ¢ (., y) H adze ), (&y) € X x Y.
books that are so amenable to analysis. Instead, we impose a

different condition on the codewords, namely, that Consider a threshold decoder

nt z": a(zr(m)) — Epy [a(X)] ¢rn s Y — MU{0} (17)

k=1

that for a given codebook and for some given- 0 maps the

shall be very small. In this case, the decoding rule induced [)ecewed sequengee V" tom € Mif

d(z,y) is not worse than the decoding rule inducedd®yz, v) @ (@(m),y) > e i (@(m'), y) m' € M\ {m} (18)
with a threshold decoder. Since the latter is simple to analyze e
and since the highest rate it can achieve approaches (11) asdifi¢ if no suchn € M exists, mapg to 0.

threshold approaches zero, we can prove (11). By taking the logarithm of both sides of (18) one establishes
The specifics are described next. Fix some input distributi@hat if
Py satisfying

, m € M (19)

% Z alxp(m /a(x) dPx(z)| <

=1

[NR I

Epc[g(X)] < T

whereE denotes the expectation functional with its subscriphen the mismatched decodéy; (7), (8) errs only if the
denoting the law with respect to which the expectation is takethreshold decodepry, (17), (18) errs. It is thus instructive to
Let Pxy, Py, and Px Py be defined as in (1), (2), and (3),investigate the performance of the threshold decoder. To this

respectively. end we prove the following lemma, which is analogous to [21,
Fix ans > 0 and ana(-) € L;(Px) for which Lemma 6.9].
Lemma 2: Consider an ensemble of block lengthrate-R
log/e_gd(“”’y)_“(“’) dPx(z) € Li(Py). (13) codebooks whosge™ | codewords are drawn independently,
each according to am-fold product distributionPy» on X" of
Here L, (1:) denotes the set of all functiohthat are integrable marginal Px.
with respect tqu. For suchs > 0 anda(-) let Let e(¢1n) denote the average (over messages and code-
books) probability of error incurred by the threshold decoder
gz, y) = efsd(w:y)fa(w% (z,y) € X XY (17), (18) over the chann&V (- | -). Lete > 0 be fixed. Then
R A9 elpm)
(o anien <22
~ 7 7 .'l‘, & nX m M n .'l‘, < +€
—sd(ar,y)—a()—b(y) e v Ty ¢

oz, y)=c

2The domain of definition of these functions is determined by the argumeWherePX”,Y” is then-fold product distribution ont™ x Y
. For exampleL, ( Px ) denotes the class of integrable functions franto R. ~ Of margmaIPX,y.
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Proof: The proof is very similar to the proof of [21, Theorem 2: The mismatch capacitgy;(I'), I' > ', Of

Lemma 6.9]. We have a channellW (- | -) with cost functiong(x) and decoding rule
d(zx,y) can be bounded by
é(¢Th) = /PI‘ <H’laX q(n) (Xm’ay) z e_an(n)(xv y))
it Cor () > Cru(I)
~dPxn yn (2, Y)
o ] where
where X,,, andY are distributed on¥™ x Y™ according to
Px~ v~ independently of X,,.» },,.-.,, that are independently Cem(T) = sup Im(Px) (23)

distributed ont™ according taPx- .
For pairs(z, y) for which ¢ (z,y) < ¢*(®+7) /¢ we upper- where the supremum is over all input distributidhs satisfying
bound the integrand by. For other pairs, i.e, pairs such that

Ep fg(X)] <T (24)
(™) (z,y) > e (B+7) /c we note that x
¢ (x,y) 2 / Epy » [d(X, V)] < 0.
Pr <J?2¥l 0" (X y) > ¢ g™ (ﬁvy)> Here Py y- is the joint distribution defined by (1), and
nR
<P <m§x (X 9) > C—) Tun(Py) N
m’Zm € . 6—5 ,Yy)—alx
un = sup 105 i APy y(z,) (25)
< (CnR _ 1)P1 <q(")(er,y) > c ) 7 m’ 7£ m f@ (=’ ,y)—a( )dPX(.I/)
< ¢ where the supremum is over> 0, anda(z) € Ly (Px) satis-
s €

fying (13).
where the inequality before last follows from the union of events  Proof: We first claim that it suffices to prove thaty,(I")
bound, and the last inequality follows from Markov's inequalitys no smaller thady.i( Px ) for distributionsPx for which (24)

and the fact that by (16) holds with strict inequality. To see this, consider the bounds on
) Cun () derived fromlip i (Px) applied to distributiong’x that
Py {y : /q Y(z,y) dPx~ () # 1} =0. U satisfy (24) with strictinequality. Since the mismatched capacity

Cn(T') is concave in the codt for all T > T'y,;, (Se€ Lemma
To simplify the analysis we now define a modified threshold), the concave envelope of these bounds is also a lower bound
decodew’,, that given a codebook maps the received sequertoeCy; (). Being concave iii', this envelope is continuous In

y to 0 if the transmitted codewordl violates forI' > ', and the claim follows.
n Fix then some distributio’y satisfying the strict inequality
e > glar) <T (20)
n i Ep, [g(X)] < I (26)
or if it violates Consider a block length-rate-® codebook whose codewords
1" r are chosen independently according tosthield product distri-
- Z a(xy) — /a(x) dPx(z)| < 5 (21)  pution of marginalPx . Fix somer > 0. It follows from Lemma
k=1 2 and the law of large numbers that as long as
and, otherwise, if both conditions are satisfied, map$o
#Tn(y). The modified decoder thus agrees with the threshold R+7 <Epxy[logg(X,Y)]
decoder if the transmitted codeword satisfies both (20) afe ensemble averaged probability of error of the threshold de-
(21), and declares an error otherwise. coder will decrease to zero as the block lengtands to infinity.

Lemma 3: Consider an ensemble of blocklengthrate-R By Lemma3 anq (26) the same is also true for the ensemble av-
codebooks whose codewords are drawn independently, eachSi@g€d probability of error for the modified threshold decoder
cording to am-fold product distributionPy of marginalPy. @ty Givenany > 0 we can use the random coding argument
Let(¢,,) denote the average (over messages and codebodRdjd: for all sufficiently large block length, a codebook’ of
probability of error incurred by the modified threshold decoddfteZ for which the average probability of error incurred by the

¢!, over the channelV’(- | ). Then decoderp’,, is smaller thare. By throwing away half its cpde-
N words, we can find a cod& of rate R — n ! log 2 for which
1 . e . .
e(dlpy) < e(drm) + P | — ZQ(Xk) ST the maximal probability of error with the decodgy,, is smaller
n than2e.

rectly decoded by, it follows that all the codewords i6’
satisfy the cost constraint (20), as well as the constraint (21).
(22) Since the codewords ifi’ satisfy (21), it follows that a re-
ceived sequencg will cause the mismatched decodgy to
err, only if it causes the threshold decoder to err also. Thus on
We can now state the main result of this section regarditige codeC’ the probability of error of the mismatched decoder
the mismatch capacity of a memoryless channel over generahnot exceed the probability of error of the threshold decoder,
alphabets. i.e.,2¢. The result now follows by letting tend to zero. O

. (

Proof: Follows directly from the union of events bound.

%Za(Xk) _/a(a:)dPx(aZ)

Since any codeword that violates the cost constraint is incor-
> Z)
-2
o=1
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Remark 1: The lower bound\i(Px) to the mismatch ca- Noting that/(0) = 0

pacity is unchanged when the decoding meifie, v) is re- I'(0) = lim I(s)/s = —Ep, . [d(X,Y)]
placed with the decoding metric 510 oY ’

@(@,) = d(a,5) + f(5) + h() 27) i 1o [ apy () aB ).
sl0 S
for arbitrary f(y) € L1(Fy) andh(z) € Li(Px). Observe that
With regard to the above remark one should note that for 1 1Og/e—sd(w,y) dPx ()
discrete memoryless channels (DMCs), replacidge,y) s

with d’(x,y) as in (27) not only does not change the value d¢$ nonnegative. Using Fatou’s lemma

I (Px), butit also does not change the value of the mismatch o1 ) sd(a0)

capacity [9], [10]. This is because it is finite, then the —1;18;/108/@ ' dPx(x) dPy (y)
mismatch capacity can be achieved with constant composition 1 sd(zy)

codes, and for such codééz, y) andd (z,y) yield identical > - /151151;103/ dPx (x) dPy (y)

decoding rules. Itis not clear whether this also holds for general 1 g—sdlz.y)

input alphabets. /hm/ dPx (x) dPy (y).
We conclude this section with a condition under which =40

Ira(Py) is strictly positive. It is clear from the primal expres-Using Fatou’s lemma once more

sion (10) that for DMCs over finite alphabef,y; ( Py ) is zero 1 — ¢msd@w)

if, and only if /sw/ dPx(z) dPy (y)

Epyry [d(X,Y)] < Epy , [d(X, Y)]. > / / d(z,y) dPx (z) dPy (1)

This is also true for memoryless channels over general alpt&%d thus
bets.

i

Proposition 1: Let Px be some input distribution to a mem-_ o) = [E,PX P ldX Y] = B [dX Y.
oryless channel over the general alphab¥tsy with a non- 1hiS shows that if
negativé decoding metriei(z, y). Let Px y andPx Py be de- Epyry [d(X,Y)] > Ep, , [d(X,Y)]
fined as in (1) and (3). Lefr.\(Px ) be, as in (25), the random . I(5)
coding lower bound to the mismatch capacity corresponding to
the input distributionPx. Then It should be noted that for DMCs the mismatch capacity is

_ positive only if Ity (Px) > 0 for some input distributiodPx
I(Px) =0, it Epep, [dX V)] S Ep [dX Y] gyep thatPx (z) = Px(x') = 1/2 for somez,«’ € X, see
Proof: The choice ofs = 0 anda(x) = 0 demonstrates [10]. It is unclear whether a similar statement can be made for

that I\ (Px) > 0. Next, by Jensen’s inequality [22, Proposiinemoryless channels over general alphabets.

is positive for sufficiently smalb. O

tion 2.12] For nondeterministic input distributiondy that are concen-
ede ) —a(a’) ) trated at two points, the condition for the positivity&fy( Px )
108‘/@ PREImOE) dPx (') takes on a particularly simple form.
Corollary 1: If Px is nondeterministic and concentrated on
> _ d ! _ ! dP ! X
> /( s’ ) —ale)) ) dPx(e') - COORY LI
and thus Px(zo) + Px(#1) =1,  0< Px(x0) <1,
e—sd(m,y)—a(m) . .
. thenIp(Px) > 0if, and only if,
IOg fefsd(w’,y)fa(ac’) dP)((J}/) dPX,Y(xvy) LM( X) y
<s ([pr Py [d(X’ Y)] - [EPX,V [d(X’ Y)]) : (28) /A(y) ary | X=mzo (y) > / A(y) dPy | X=a1 (y) (29)
Consequently, if where
lEPXPY [d(X7 Y)] < [EPX,Y [d(X7 Y)] A(y) = d(l’l, y) - d(.’ro, y)

thenILM(PX) = 0.
We now prove the reverse implication. Choaege) = 0. Let

6—8d(m,y)

IV. M ORE GENERAL CHANNELS

I(s) = | log ———— dPx v (z,9) In this section, we study the mismatch capacity for channels
J e 4" v) dPx (') with memory and non-single-letter decoders. Our results can be
= —sEpy, [d(X,Y)] viewed as the mismatched decoding counterparts of the results
1 sd(ay) of Verdd and Han [23] on channels with memory with optimal
/ Og/ dPx (x) dPy (y). decoding.

As before, we denote the channel input and output alphabets
3By Remark 1, if a decoding metritis such that there exists integrable func-

tionsf : X' — Randg : ¥ — R such thatl(z. y) + f(x) + g(y) is nonneg- PY & and}. We assume that for any block lengttihe product
ative, the proposition will hold for thig as well. setsA’™ and)™ are complete separable metric spaces endowed
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with the Borels-algebras, and that™ x Y™ is endowed with Then, the mismatch capacity"y,(I') with cost [' is
the products-algebra. We further assume that for each blodkwer-bounded by

lengthn there corresponds a Borel measurable channel mapping, (1) > liminf in Py y« of

W)(.|z) that mapsn-length input sequences to probability - (n) 1) () ()
distributions ory™. For example, for a DMC —sVdTXLY) — (X)) - DY),

L Note: Thelimin{ in probability should be interpreted as the
(n) -
W (y|x) = kl:[l W (k| wk)- supremum of real numbersthat satisfy
We let {Px. }o2, be a sequence of probability measureslim Py« (—8(")d(")(X7Y) — aM(X) - bM(Y) < Oé)
where Px» is a probability measure oft™. For example, for —0.

a DMC we might consider Proof: The proof is almost identical to the proof of The-

Pyxn(z) = ﬁ Px(zy). orem 2. We define
k=1 N ¢(z,y) =
Note, however, that even for a memoryless channel, an i.ighd note that the measure whose Radon—-Nikodym derivative

input distribution may not be optimal; see [10] for the improveg;ith respect toPx. Py~ is given by ¢ (x,%) has marginal
bounds on the mismatch capacity of DMC obtained by com,., and, consequently,

sidering product spaces. As in (1), we denote the joint law on
X™ x Y™ induced by the input distributiof*x~ and the channel Py <{y : /q(") (z,y) dPxn(z) # 1}) =0.
(.. w v SiMi i n .
WE(| ) by Pxe y+. Similarly, as in (2), we lef denote 1, y06rem now follows from Lemma 2 in much the same way

H .
the law induced ol ; . that Theorem 2 follows from that lemma. O
We assume as given a sequence of decoding metrics

{d™)(z,y)} where
d™ A" x Yt - R.
For example, for single-letter decoding

[~ d) (@9)—al (@) =5 (9)]

V. THE WIDE-BAND LIMIT

Consider a memoryless chann&(-|z) on the input
. alphabet¥” and output alphabé¥. Let g(x) be a cost function
d(n)(m7 y)=nt Z A, i) on& and letd(xz,y) be some fixed decoding me.tric. As before,
— we denote byC,,(T") the mismatch capacity with cobt We

for somed : X' x ) — [0, 00). Similarly, we assume a sequenc&€fine the mismatch capacity per unit cost as
of cost functionsy™ where O — s M)
M =8Up ———-
g(n) I (LN [0’ OO) | h ) dgj F>_0 I g .
. . n this section, we stud¢’; in an attempt to extend some o
For example, in the DMC case we might have the results of Verdd [15] on the matched capacity per unit cost.

g(n)(m) — ! zn: glzn). Note, however, that the definition of the capacity per unit costin
P [15] is somewhat different from the definition we adopt. Verdd’s
ative real numbepgﬁnition allows for the number of codewords to grow subex-
ponentially in the block length. Nevertheless, he shows that in
the matched case, the two definitions yield identical capacities.
In general, very little can be said about the supremum in (30).

(30)

We let{s(™} denote a sequence of nonneg
For the DMC we would typically set™ = s, i.e., a constant
sequence. Finally, we consider a sequence of functions

. al s AT = R However, in the case where there exists an input symbol of zero
which for the DMC case could be given by cost, one can show that the supremum is achieved in the limit
) ) n asl' | 0. Before we can state and prove this result, we need the
a(z) =n Z afzp) following lemma.
k=1
for some single-letter functiom : X — R. Lemma 4:Let the nonnegative functioff : (0,00) —

[0,+c0] be monotonically nondecreasing and concave in the
interval [0, o). Then
&) _ . f©)
» () € Ly(Px); W T (1)
a™(X)—Epy.[a™(X)]| > 6) =0,6 > 0; wherea/0 = +oo for & > 0.
Proof: If the limit of f(£) as¢ | 0 is positive, then both

1 sides of (31) are infinite, and equality thus holds. Otherwise,
(™) (y) = _10g/e"[*s(”)d(”)<37y>*a(”><”>] dPxn if this limit is zero, thenf(¢) is concave and continuous in

" [0, +00) with £(0) = 0. Consequently,

fa) zaf()+ (A -a)f(0), O0<axgl

Let the sequence of input distributiof8x~ } satisfy the cost — af(€)
so that the functiory(£)/£ is monotonically nonincreasing in

constraints with strict inequality
Fre [90(X)] <1, nz1. (0, +50). O

Theorem 3: Let the sequencels:(™ ()} and{s(™)} be such
that:

o lim Pxn(
n—oo

« the functionb™ : Y™ — R formally defined by

is defined and is irL; (Py~ ).
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Proposition 2: If there exists some input symbe} of zero see Remark 1. Assume thiatis sufficiently small so that <

cost, i.e,g(xo) = 0, then 8 < 1/2. Fix somes > 0 and« > 0. Let
Cu(I) . Cy(I) 0 ifx==z
=1 32 =<{ 0
?i% r 11?01 (32) o) { —log «, if v = 1.
wherea/0 = +o0, a > 0. With this choice ofe(z) we have

Proof: Inthe presence of a zero-cost symbg};,, = 0, so el g)—a(a) 1 if £ = 0
that by Lemma 1C},(T") is monotonically nondecreasing and e v = {ae—sA(y) if 2 = .
concave fo® > 0. The result thus follows from Lemma 4[] With these definitions we have that if

We focus now on two lower bounds @, ) — log / e g
Crnr = s ZEM () |
e T (33) then
>
and b(y) = log(]_ + G—SA(ZJ)-Hog atlog8 /3)

Crm (I
CPy = limsup L )
rlo r

By Theorem 2, it follows that

Chy < Crm < Cuy.
It is not surprising that the inequality;.,; < Cjs can be strict.
Indeed, if all input symbols are of unit cost, then an example}é by dPy (y) =/ |b(w)| dPy (y)
provided by [10, Example 4]. yey yi—sAly)+log atlog §<0

(34) and
Py () =pW(|x1)+ (1 = BW(-|z0).
It can be readily verified that (37) guarantees thg) €
L,(Py). Indeed, one can write

Perhaps more surprising is the fact that even in the presence +/ b(y)| dPy (1)
of a zero-cost symboly?,,; can be strictly smaller tha@. . yi—5A(y)+Hlog atlog >0
(An example demonstrating this phenomenon is presented later (38)

in the section.) Thus while in the presence of a zero-cost symk@ld note that the integrand in the first integral is bounded, and
the mismatch capacity per unit casSt; is always achieved in yse the bound

the limit as the cost goes to zero, this is not the case for its x

random coding Iower%ound’LM , log(1+¢” - f) < 2 +log2, forz > 0ands 2 0
In the presence of a zero-cost input symbglone can fur- 1N the other.

ther lower-boundy; by limiting oneself to binary-input dis- O @nys = 0 anda, by (25)

tributions concentrated ary and on some other arbitrary input T Iv(Pxr)

symbol. This approach leads to the following bound

1 ae— W)
Lemma 5: For a memoryless channel with general alphabets 2 m {/108‘ 1— B+ Bac—2W dW (y | x1)
and in the presence of a zero-cost symhpk X’

1 1
1 - _ -

Ol = sup sup —— [—s [ awawla) + 500 108 g %)} -

z1#30 520 g(xl) (39)

- 103;/6_5A(y) dW(y|zo)| (35) Using the inequalityog(l 4+ x) < = we obtain
where %ILM(PX,F)
Ay) = d(z1,y) — d(xo,y), (36) > {loga _ S/A(y) dW (y | z1)
and the maximization is over all symbats € X \ {x} such g(ar)
that — [3/ (ae_SA(y) — 1) dW (y | z1)
min{A(y),0} € L1 (W(-|z0)) N Li(W (- |z1)).  (37) N

If two symbolsz, andz; have zero cost then the capacity per - (1- /3)/ (ae—s () _ 1) dW (y | wo)} :
unit cost is infinite if (29) holds. (40)

Proof: Let z; € & be any symbol of positive cost and

satisfying (37). Consider the input distribution By letting 5 tend to zero we obtain

1
Pxr(X=21)=1-Pxr(X =20)=p 15?01 fILM(PX,F)
where '
> log v — S/A dW(y|x
b T b () W (y |,
g(1) A
. . o . - / (046_5 (W) _ 1) AW (y | a:o)} . (41)

In studyingl;.n(Px ) there is noloss of generality in assuming

that the decoding metric is given by The result now follows by choosing

0 if x =xq 1
= ’ . = . l:‘
d(=,v) { Aly), if x = a1 “ J e 2 dW (y | zo)
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Remark 2: For a DMC, an alternative expression (primal) for By using a codebook containing all th& distinctn-length

the right-hand side of (35) is sequences ovefrl, 2,3} we guarantee a rate dbg 3 bits per
max min D(f() | W(- | o)) (42) Symbol. Thus
z17#xT0  f U CJW(F) > CJW(F) > loe 3 (43)
where the minimization is over all probability mass functions F>% r =— I | 5
(PMFs) f(-) on Y satisfying In fact, it can be shown that
Z Fl)Ay) = Z W(y | z1)A). I (Q) = log 3 if @ is uniform over{1,2, 3}. Thus
= = sup Crm(I) > Crm(I) > log 3. (44)
I'>0 r r I'=1

The f0”0\éVin9 theorem explores conditions under which the e next show that the mismatch capacity per unit cost is not
bound onCty; provided by Lemma 5 is tight. See [15] for theachievable using binary signaling. To this end, we first con-
analogous statement about the matched capacity per unit cosier binary signaling where neither of the signals in use is the

Theorem 4: Consider a DMOV (y | ) over the finite input Z€r0-COSt symbab. In this case, the average cost of each code-

and output alphabett andY. Letg(z) be a cost function oy, Words is1, and since we are using only two symbols, the com-
and assume the existence of a unique input symbaif zero Munication rate is no bigger than 1 bit/symbol. Thus we cannot

cost. Further assume that the matched capacity per unit coschieve arate-per-cost larger triag 2, whereas the mismatch
capacity per unit cost is at ledsk; 3; see (43).

;T;gﬁ{D(W(' ) | W (- [lwo0))/g(x)} The other form of binary signaling is when one of the symbols
is finite. Then (35) holds with equality and, in particular, ther the zero-cost symbal. Without loss of generality we shall
exists some input symbaj, € X’ such that assume that the other symbollisWe will show that with the

above decoding metric any such binary code yields an average

Py = lim M probability of error of one. Indeed, consider two codewards
r'o r (x1,...,z,) andz’ = (z,...,2’,) over{0,1}". Assume that
where the input distributiotPx r satisfiesEp, .[¢(X)] = I' gz is transmitted. It = &’ then both codewords accumulate the
andPx r({zo,z1}) = 1. same metric, thus leading to an error. Assume nowahatz’ .
Proof: See the Appendix. O In computing the difference between the metric accumulated

The following example will demonstrate some of the differ?y the two codewords, we may ignore compondntsr which

—_ / H H / J—
ences between the behavior of the matched and mismatchedxé‘eh-_ xkh' Consider thgn some for(\j/vhlchbxo;;) 7 zk 'hlf Tk =
pacities per unit cost, 0 then the corresponding received symbobiand the metric

Consider a noiseless chanfiy- | -) over the input alphabet added to the correct codewordd§,0) = 3 while the metric

X = {0,1,2,3} and the output alphabgt = {0, 1, 2, 3}, with added to the incorrect codewordil, 0) = 0. In the other case,
R SR if 2, = 1 and, consequentlyy, = 1 then the metric added to

law the correct codeword i¢(1,1) = 1 while the metric added to
W(j i) =1{i = j}, 0<4,5<3. the incorrect codeword i$(0, 1) = 0. In either case the metric
accumulated by the incorrect codeword is lower than the metric
Here we use the notation accumulated by the correct codeword, and an error results.
1, if "statement” is true The above argument also demonstrates that the average prob-
I{statemenjt = { 0, if "statement" is false. ability of error of the mismatched decoder over an ensemble of

Associate with every input symbalc X’ the costy() defined binary codes consisting of the symbo6land1 is also one.

by VI. A SPREAD-SPECTRUMEXAMPLE

g(t) =I{i#0},  i=0,1,2,3. Consider an additive (not necessarily Gaussian) noise channel

) ) where the outpul}, at timek is given b
Thus all symbols have unit cost except for the synihathich Putx g y
has zero cost. Y=+ 7y (45)
We now choose the decoding metric to discourage the use/\dferezx denotes the channel input at tinkeand 7y, is the
the symboD in spite of its zero cost. Since an inputesults in - corresponding noise sample. Note that we do not assume that
the outputd, and since the mismatched decoder minimizes tfifge noise samples are of zero mean.

accumulated metric, this is achieved by setting In[25] it was demonstrated that if the noise procg&s} has
4(0,0) = 3 an ergodic law (that does not depend on the input sequence) and

if the decoder performs nearest neighbor decoding (i.e., the de-
d(4,0) =0, J=12.3 coding rule that would have been optimal if the noise were i.i.d.

Next, we guarantee that if a codebook does not contain th@f0-mean Gaussian) then for a Gaussian ensemble of gower

symbol0, then our decoding rule will allow for error-free com- I P = 1 loe( 1 P
S / == + = 46
munication. We thus set ami(Fe) %8 N (46)

d(i,i) =1, i=1,2,3
d(i,§) =2, wheneverl < 4,5 < 3andi # j. N =E [Z]] (47)

where
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and wherel’; denotes here a zero-mean, variadt&aussian > (loge) sup F[E[XB(Y)] _ E[E[(sB(Y) _ a)Q]:| (56)
- 2

distribution. In the wide-band limit we obtain s>0,a
o1 1
% plov(Pe) = 5 loge. (48) = (loge) sup EE[XB(Y)] - %SQ Var[B(Y)]} (57)

For wide-band systems, one rarely uses Gaussian codebooks,

. . 2
and a more practical approach is to use binary spread-spectiffgre the inequality follows fromeosh = < e* /_2- For the
signaling so that supremum oves we need to consider the following two pos-

sibilities.
i € {6, =0}, (49) 1) E[XB(Y)] < 0: The supremum oves is achieved at

If one considers an ensemble of codebooks whose codewords § = 0 with value zero.
are chosen i.i.d. according to a product Bern@uj) distribu- 2) E[XB(Y)] > 0: This impliesVar[B(Y")] > 0 for other-
tion, one obtains a limit quite similar to (48), i.e., wise B(Y") would equal a constant with probabilityand

lim iIGMI(PB) _ b log e (50) E[XB(Y)] = 0. The supremum is achieved at
510 6 2N s = E[(X/6)B(Y)]/Var[B(Y)]
where Pg denotes the Bernoulli distribution that takes on the with value
valuesté equiprobably. E[(X/8)B(Y)]?
We shall, however, demonstrate that if in the ensemble the (log C)W-
codewords are chosen uniformly over the Berng¢ufi2) type :
then Let us now specialize to the Euclidean distance decoding
1 1 metric, for whichd(z,vy) = (z — y)?. ThenB(y) = 28y, and
161113 §ILM(PB) = ﬁlogc (51) thusE[(X/&)B(Y)] = 262, Var[B(Y)] = 46%(6? + Var[Z]),
and
where I (P ) . (1 )162 1
/ oge) -0 ——=+——=5-
N =E (2] - (ElZ)? (52) PP = TR Valz + 2

Furthermore, we claim that ® < Var[Z] < oo, the lower

Is the variance of the noise. a{)ound tol1 v (Pg) is tight asé approaches zero, so that

Rather than deriving this limit directly, we shall first derive
more general result applicable to general single-letter decoding lim Itm(Pg) — (loge)
rules, and only then specialize to the Euclidean distance de- s—0 2 2 Var[Z]
coding metric.

Recall that by (25)
Iim(Pp) Elncosh(2s8Y — a)) < (1/2)E(2s8Y — a)?

e—sd(X,Y)—a(X)

To prove the claim, we need to show that the inequality

is asymptotically tight as gets small. To that end, le{6) and

= sup Elog

5>0,a L [emsd0Y)—a(0) 4 ¢—sd(=0¥)—a(=8)] " 5(§) be the values of, and s which achieve the supremum in
We can, without loss of generality, choag@) = —a(—8) = a, (55)- We will first show that a$ approaches zeroz,(_&) and
and rewrite the above as 6s(6) both approach zero. By differentiating (55) with respect
e sdUX,Y) to ¢ and s we obtain the following equations for optima({é)
IT,]\/[(PF)') = SSZL})I?QIElog % [C_Sd((S’Y)_a + e—sd(—é,Y)—I—a] . ands(é)
Let Etanh(2s(6)6Y — a(6))] =0 (58)
1
Aly) = 518, 9) + d(=6,y)] E[25Y tanh(2s(8)5Y — a(6))] = E[2XY] = 26%. (59)
1
B(y) = =[d(—=6.y) — d(6,v)]. Now, if we could prove thats(§) approaches zero asap-
2 hes zero, it would follow from the first equality that)
Then, forz € {6, -6} proac ' st equaltty
approaches zer@s(6)Y would approactd in probability, and
d(é,y) = Aly) — B(y) sincetanh is continuous and bounded,
d(—6é,y) = A(ly) + B
(=6,y) = Aly) + B(y) tanh(25(8)5Y — a(8)) = 0
d(z,y) = Aly) — 5 B(y). o L
We th that implies thattanh(a(6)) — 0, which yields thata(§) — 0. It
€ thus see is also easy to see thats) ~ 2s(6)SE[Y] to the first order
Iun(Pp) (53) in 6. Itis thus sufficient to prove thats(§) — 0. To that end,
SX/8BY) consider the second equation witty) = 2s(6)§¢(6). Using
= sup Elog (54)

the inequalitytanh(z) > x/(1 + «) for z > 0 (which follows
frome® > 1 + z), we obtain

Y =) ],
14+26s(6)|)Y —¢(6)|] —

s>0a cosh(sB(Y) — a)
= (loge) sup [g[E[XB(Y)] — Elncosh(sB(Y) — a)}

s>0,a

26s(6)F

(55)
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If §s(&) is not approaching zero, we can extract a subsequenseénappropriate. The “average codebook” in this ensemble is
6y, for which é,,s(6,,) remains bounded away from zero. Sinceimply not good enough to achieve the mismatch capacity.
Var[Z] > 0, this implies that the left-hand side remains We turn now to some remarks about the mismatch capacity
bounded away from zero. However, the right-hand side aper unit cost. In contrast to the behavior of the matched capacity
proaches zero, leading to a contradiction. We have thus shol@B] and to the behavior of the random coding lower bound to
that 6s(8) approaches zero. Moreover, given thats) — 0, the mismatch capacity per unit cost (Theorem 4) we have the
the expectation above remains bounded away from zero, whfcliowing.

implies thats(é) remains bounded.

Given thatés(6) — 0 anda(é) — 0, we now use the facts
thati)ln cosh(z) > (1 —n(e))(1/2)2? for |z| < ¢, nm(e) — Oas
e — 0, and ii) sinceVar[Z] < oo, E[Y?1}y|<4(Y)] — E[Y?]
asA — oo. These imply that for anyy > 0, for sufficiently
small 6

Remark 3: Even in the presence of a zero-cost symbol, the
mismatch capacity per unit cost,; need not be achievable
using codebooks over a subget C X of cardinality two.

Proof: This is demonstrated by the example in Section V,
where binary signaling cannot achieve a rate per cost greater
thanlog 2, whereas ternary signaling can achieve a rate per cost

E[ln cosh(25(6)8Y — a(8)] > (1 - n)%E(MY oy, Ofloss -

Since the input alphabet in the above example contains
This inequality implies that our lower bound . (P5) is & 2€ro-cost symbol, it follows from Theorem 4 thap,, is _
tight. achieved by binary signaling with one of the symbols being
the zero-cost symbol. For the example at hand this implies that
OEM = 0. On the other hand, it is demonstrated thaf; is no

smaller tharlog 3, see (44). We thus conclude.
The tightness of the random-coding lower bounds on theR K4 E in th ¢ bol. th
mismatch capacity depend on two factors: the distribution ac- emark 4: Even in the presence of a zero-cost symbol, the

cording to which the codebooks are drawn, and the inequalitf@dom coding lower bound to the mismatch capacity per unit

that are used to upper-bound the respective ensemble-averafgpeséneed not be attained in the limit of zero cost. Thattj, <

- .M can hold with a strict inequality.
probabilities of error.

The GMI bound (12) is based on a codebook distribution ac- If the functionCr (I") were concave foF € (0, oo) then by
cording to which codewords are chosen independently of edatmma 4 (applied to functiofir,(-)) it would have followed
other, each according to an i.i.d. distribution. The analysis tifatC?,; andCry are identical, in contradiction to Remark 4.
the average probability of error is based on Gallager’s boundi¢e can therefore only conclude the following.

techniques. Remark 5: The random coding lower bound to the mismatch

On the other hand,.tht.e tighter bound (Theorem 1) is bas,@&ipacitycm\q(l“) need not be a concave function of the dst
on a different code distribution. Here the codewords are still

chosen independently of each other, but each codeword is now his has the following consequence, which was observed ear-
drawn uniformly over a type class. The analysis of the averab@' in [24].

probability of error is performed using the method of types.  Remark 6: The random coding lower bounfi y( Py ) de-

A natural question to ask is whether the GMI bound is infgined in (25) need not be a concave function of the input distri-
rior because of the code distribution (i.i.d. versus uniform ovegtion Py .

a type) or because of the performance analysis method (Gal- proof: To arrive at a contradiction to Remark 5 we shall

lager’s bounds versus the method of type). It turns out that fegsume thafy1(Px ) is concave. Lef';, I’y > ', be other-
DMCs the fault lies with the code distribution and not with theyise arbitrary. Let{ P)(("% } satisfy
L 1

bounding technique: Gallager’s bounding technique is tight for
i.i.d. ensembles in the sense that for rates aldeve (P ) the [E,,;(n% g(X)] <I'y
average probability of error for an i.i.d. ensemble tends to Onaehd o
as the block length tends to infinity.

Similarly, subject to some minor technical conditions, the sup J1.m (P)((")pl) =Crm(ly).
method of types technique is tight for ensembles where the "
codewords are drawn uniformly over a type class. Thus f@imilarly, define a sequenc@t’)((")r }. Let A € (0,1) be arbi-
this code distribution and for all rates abalitwi(Px), the gy and leth = 1 — A. e
ensemble-averaged probability of error tends to one, as thef 1, ,(Py) were concave then we would have
block length tends to infinity. When Cyy is strictly smaller
than the mismatch capacity it is not because the method of types ¢y \; (AT'; + AL'2) > Iiu ()\p)((")r1 +A P)((n)rz)
is inadequate, but rather because the codebook distribution ’ ’

VII. DISCUSSION

> ’ (n) ) o ( (n) )
4This claim can be proved as in [25, Theorem 1] using the primal expression 2 Mim (Px,n + Al PXT?

for the GMI, or using techniques similar to those used in [25, Appendix]. . L .
5See [11, Theorem 3] for the multiple-access channel version of this claifioM Which a contradiction to Remark 5 results upon letting

or [2, Theorem 1] for a slightly weaker single-user version of this claim.  approach infinity. O
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APPENDIX convergence already held. Let these limits above(hey) and
PROOF OFTHEOREM 4 v(y|x), respectively. Sincé’x r, (zo) — 1, theY marginal

Without loss of generality (see Remark 1) suppose th%\?ndition implies

d(zo,y) =0forally € Y. Letl', ; = inf,,, g(x). SinceX’

is finite andz is the only symbol of zero codf] . . > 0. Since

min
Crm(I)

v(@o,y) = v(y| o) = W(y| o).

From (64) we observe that
Y, = limsup
ry —snd(z,y)—an(x) _ Vn (y | .’L')

e .
vn(y | o)

we can find sequencds, | 0 andPx r, such that
Taking limits on both sides we see that

I (P
ZPXI” (z)g(z) =1, and lim w =P\

n—oo n

lim e~ ord@y)=an(@)
exists, and observing thaty|«) <1 andv(y|zo) =W (y|zo)

Let Py, denote the output distribution dn that corresponds 1

to the input distributionPx r . lim e~rd@w—anle) < (65)
Forz # xg let A, (z) = Pxr, (z)/T,. From (60) it follows nTee W (y| o)
that0 < A, (x) < 1/I;,,. Note thatA(x) > O forz # zo and  Now
Zx:a};ﬁxo g(a:)A(a:) =L
Recall that/ry is given by either the primal or the dual ex- Iy v (Px r,,)
pressions =Y Pxr,(z)W(y|z)
Iim (Px,r,,) =inf D (v || Pxr, Pyr,) (61) o Ao
v 1 ] ¢ Sn (ac,y)fan(ac)
ILM (PXI”) = s>up Z nyrn (a:)W(y | JZ) (62) X log E G_S”d(“"zy)_a”(“",)PX T (xl)
s20,a ~ L
=" zy @
10g Gsd(m,y)—a(az) (63) = - Z nyrn (.’L’) Z W(y | .’L’) [Snd(.’lj', y) + an (.’L’)]
Z eSd(m,:y)_”'(m,)PX7rn ({L'/) zrEL) Yy
_ . —snd(z,y)—an(z)
where in (61), the infimum is over all's for which Z Py, (y)log lz ¢ Pxr, (x)]
Yy x
Y ovley)=Prr,(y) D vlwy)=Pxr, (@) = Do Y An(@) Y W(y|2)[snd(@,y) + an(o)]
4 Y rHETo Y
and =Y Prr,(y)log
Zl/(a:,y)d(a:,y) < PX,Fn(x)W(y|$)d($7y) Y
Y
—spd(z,y)—ay (x
Let »,, be the distribution that achieves the infimum in the x| 1+Th Z (C (ra)an(®) 1) An()
primal expression (61). By duality, is of the form TF0
vl 1) = efsnd(a;,y)fan(Jz)fbn(y)PXIn (@) Pyr. (3) SinceA,(z) is bounded, and',, — 0, for large enough: the

argument of the logarithm above exceed8. Sincelog(1+x) >

with s,, > 0. Without loss of generality we can fix, (zo) = 0. @ — z” forz > —1/2
It follows from the condition on th& marginal that

Iivm (Pxr,)
o) — emond@w)—an@ Py ¢ (2)Pyr, (y) <-To >0 A(@) S W (y | 2)[snd(z, y) + an(@)]
Y > emmmd(@y)=an (m,)PX,Fn (') z#£zg Y
~Tn > Py, (4)
and thus zy:
e—snd(m,y)—an(m)Pyr (y)
= R —spd(z,y)—an(z
Vn(y | .’L') E 67571d(x,7y)7an (m,)PXJ‘n (.I'/) - (64) X ; (6 (z.y) (=) _ 1) An(.’l')
=’ TF=T0
Sincev,(z,y) andr, (y | z) are in[0, 1] for all , and sinceY +I2> " Prr,(y)
and) are finite, we can extract a subsequetiag} for which Y
the limits limg_, o0 ¥/, (@, ¥) andlimy o v, (¥ ] &) exist for 2
each(z,y) € X x V. To simplify notation, we shall assume that X Z (e*snd@“y)*“” (=) _ 1) An(z)| . (66)

the original sequencés, andPx r,, were chosen such that this x#T
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The finiteness of the matched capacity implies thatifhmea- By using the dual expression féf.y
sures W(y|x) are absolutely continuous with respect to
W(y|zo), i.e., Iv(@Qxr,) = S ZQX r.(2)W(y|z)
W(y|z) > 0impliesW (y|zo) > 0. ) e—sd(zy)—a(x)
x log —sd(z’,y)—a(z’) !
In particular,Pyr, (y) > 0impliesW (y | zo) > 0, and thus for Z ! @x.r, (@)
thosey and for large enough
v 9e enotis > Z Qx.r, ()W (y )

e snd(@y)—an(z)

—snd(m,y)—an (=)

is bounded (by (65)). Hence the third term in (66)1¢[2). x log S e—ond W)= Qy p (a)
Thus y I

i I (Pxr,) wheres,, anda,, are those obtained from,. Thus

S " I, M(QX r.)

< lim Z An( Z (y|z)[snd(x,y) + an(x)] -Qx,r,(z Z Wy |2")[snd(z", y) + an(z")]
TFETQ Y
- Z Qyr.(y 103(1 + Qx,r,(z%)
= > Aul@) Y P, () (e demen@ 1) |
o v x [(e—sndw w)—an(z") _ 1)})
(67)

> Q-ISXFH ZW y|.’1} Sn ( *7y)+an($*)]
The boundedness ef *»4(*¥)=a(#) and A,,(x) allows us to

replacePy r, (y) above by its limiting valuel¥ (y | zo), to ob- _
tain QX,F Z Qvr,
CE]\'T — hIn w X (G*Snd(l‘ ,y)fan(a; ) _ 1) ;
where the second inequality follows framg(1 + z) < x. We
< lim |- Z An( ZW y|x)[snd(z,y) + an(x)] thus see that
@70 Irv(@Qxr,.) 1
: SR> — Wy | z*)spd(x™, 1) + a,(z*
CY A ZWylwo o g(x*)i,y:[ (y|2")lsnd(x",y) + an(a")]
TET0 fy)—an(z*
4 Qv (y) (e—snd@ w)=an(a”) _ 1)} .
x (e snd@y)—an(@ _ )1 68
(e ) (68) The boundedness ef *» 4" ¥)=2x(=") allows us to conclude
that
Observe now that the term inside the braces is a linear function Iin(Qx 1)
of A, and using the fact that, (z) < 1/g(z) is less than nh—>oo F =
max ——— Z [W(y|x)[snd(x,y) + ap(x)] 2 e nlglgoz [ (y]2")[snd(z", y) + an(z™)]
zwHET g(.’L’) "
+ W(y | o) (e—%“w)—“n(m) — 1)} : + W(y|zo) (G_S”d(’” o) 1)} ~ (70)

Let 27 be thex that achieves this maximum. Sindgis finite, Comparing this expression to the upper bound®¥y, we see
we can extract a subsequeneg for which z;, is constant. thatCp,, can be achieved by a binary input distribution.
Letting that value to be*, we thus obtain
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