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Upper Bounds for Constant-Weight Codes

ERIK AGRELL, ALEXANDER VARDY, AND KENNETH ZEGER

Abstract— Let A(n,d,w) denote the maximum possible
number of codewords in an (n,d,w) constant-weight binary
code. We improve upon the best known upper bounds
on A(n,d,w) in numerous instances for n < 24 and d < 12,
which is the parameter range of existing tables. Most im-
provements occur for d = 8,10, where we reduce the upper
bounds in more than half of the unresolved cases. We also
extend the existing tables up to n < 28 and d < 14.

To obtain these results, we develop new techniques and
introduce new classes of codes. We derive a number of
general bounds on A(n,d,w) by means of mapping constant-
weight codes into Euclidean space. This approach produces,
among other results, a bound on A(n,d,w) that is tighter
than the Johnson bound. A similar improvement over the
best known bounds for doubly-constant-weight codes, stud-
ied by Johnson and Levenshtein, is obtained in the same way.
Furthermore, we introduce the concept of doubly-bounded-
weight codes, which may be thought of as a generalization
of the doubly-constant-weight codes. Subsequently, a class
of Euclidean-space codes, called zonal codes, is introduced,
and a bound on the size of such codes is established. This
is used to derive bounds for doubly-bounded-weight codes,
which are in turn used to derive bounds on A(n,d,w). We
also develop a universal method to establish constraints that
augment the Delsarte inequalities for constant-weight codes,
used in the linear programming bound.

In addition, we present a detailed survey of known upper
bounds for constant-weight codes, and sharpen these bounds
in several cases. All these bounds, along with all known de-
pendencies among them, are then combined in a coherent
framework that is amenable to analysis by computer. This
improves the bounds on A(n,d,w) even further for a large
number of instances of n, d, and w.

Keywords— Constant-weight codes, Delsarte inequalities,

doubly-bounded-weight codes, doubly-constant-weight co-
des, linear programming, spherical codes, zonal codes.

I. INTRODUCTION

N (n,d,w) constant-weight binary code is a set of bi-
nary vectors of length n, such that each vector con-

tains w ones and n — w zeros, and any two vectors differ in
at least d positions. Given the three parameters: length n,
weight w, and distance d, what is the largest possible
size A(n,d,w) of an (n,d,w) constant-weight binary code?
This question has been studied for almost four decades, and
remains one of the most basic questions in coding theory.
Although the general answer is not known, various up-
per and lower bounds on A(n,d,w) have been developed.
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Lower bounds are typically obtained by means of explicit
code constructions, while upper bounds involve analytic
methods, ranging from linear programming to geometry.

The first systematic tables of bounds on A(n,d,w) ap-
peared in 1977 in the book of MacWilliams and Sloane [42,
pp. 684-691], for n < 24 and d < 10. An updated version of
these tables, along with a more complete treatment of the
underlying theory, was published [8] in 1978. Another up-
date appeared in Honkala’s Licentiate thesis [34, Section 6],
together with a new table of upper bounds for d = 12 and
n < 27. Since then, there has been very little progress on
the upper bounds. In contrast, lower bounds on A(n,d, w)
were improved upon many times. The lower bounds of [8]
were revised in 1980 by Graham and Sloane [31]. Then in
1990, following a large number of new explicit code con-
structions for certain parameters, came the encyclopedic
work of Brouwer, Shearer, Sloane, and Smith [17], where
the best known lower bounds on A(n,d,w) for n < 28 and
d < 18 are collected. Upper bounds are given in [17] only
for those parameters where these bounds are known to co-
incide with the lower bounds.

This work is concerned with the problem of determining
upper bounds on the size of constant-weight codes. Our
contributions to this problem are three-fold, as described
in the next three paragraphs.

First, we improve upon the existing upper bounds on
A(n,d,w) in many instances. For example, out of the 23
unresolved cases for d = 8 in [17,34], 14 upper bounds are
improved upon in this paper. For d = 10, we update 10 out
of the 18 unresolved cases. As a result, we establish seven
new exact values of A(n,d,w), and re-derive by analyti-
cal methods exact values of A(n,d,w) that were previously
found by exhaustive computer search. Furthermore, we ex-
tend the existing tables of upper bounds on A(n, d, w) from
n <24 and d < 10 ton < 28 and d < 14, so as to match
the tables of lower bounds in [17]. In fact, our intent in
the present paper is to provide a counterpart to [17], with
respect to the upper bounds on A(n,d, w).

In addition to the specific bounds on A(n,d,w) men-
tioned in the foregoing paragraph, we develop a number of
new general approaches to the problem. Some of these
are briefly described below. It is well known since the
work of Johnson [35] and Levenshtein [39] that certain
bounds on A(n,d, w) can be derived using doubly-constant-
weight codes, which constitute a special restricted sub-class
of constant-weight codes. In this work, we introduce the
concept of doubly-bounded-weight codes. These codes are
less restricted than doubly-constant-weight codes, yet more
restricted than general constant-weight codes. We derive
bounds on the size of doubly-bounded-weight codes, which
turn out to be extremely useful in developing upper bounds
on A(n,d,w). Another useful approach, developed in Sec-



tion IIT of this paper, is as follows. Map the three types
of constant-weight codes into Fuclidean space. It is shown
in SectionIIT that, under the appropriate mapping, this
results in three different kinds of spherical codes. Conse-
quently, one can use upper bounds for spherical codes (al-
ready known bounds, as well as new bounds for zonal codes
derived in Appendix B) to establish bounds on constant-
weight codes. Surprisingly, this simple idea often leads to
powerful upper bounds on A(n,d,w) (cf. Examples 2, 3,
and 4). Finally, as in most previous work on the subject, we
make use of linear programming, based on the Delsarte [24]
inequalities for constant-weight codes. It is known that the
distance distribution of constant-weight codes is subject to
more constraints than can be obtained from Delsarte in-
equalities, but determining these extra constraints has in
most cases involved a different (nontrivial) manipulation
for each distinct set of parameters (n,d,w). In contrast,
in this work, we develop a universal method to find such
constraints (cf. Proposition 17).

Our third contribution is the integration of all the known
(to us) bounds on constant-weight codes — as well as re-
lated methods and techniques — into a coherent frame-
work that is amenable to analysis by computer. Many ex-
isting bounds on A(n,d,w) are re-stated herein in a dif-
ferent, substantially simplified, way. Other known bounds
whose application was previously limited to specific sets
of parameters (n,d,w) are given here in their most gen-
eral form. We list all methods that we are aware of to
obtain upper bounds on A(n,d,w). The methods are of
two types: dependent and stand-alone. Dependent bounds
are functions of other bounds, whereas stand-alone bounds
are not. Most of the known bounds are dependent, which
makes their evaluation, and the determination of which
bound is best for a given set of parameters, a fairly com-
plex process. These dependencies are outlined in Figure1,
where each arrowhead represents one bound, as given by
a numbered theorem in this paper. (We have omitted the
stand-alone bounds in Figurel.) Thus several steps may
be necessary to prove a tight bound on A(n,d,w) for spe-
cific n, d, and w. The organization of all these methods
into a streamlined framework has the advantage that the
paths in Figure 1 can be followed iteratively until a steady
state is reached. Later in this paper, we give a series of
examples that will illustrate one such route in Figure 1.

Since the early work of Johnson [35] and Freiman [30],
bounds on constant-weight codes have been employed to
derive bounds on unrestricted binary codes. An (n,d)
binary code (unrestricted) is a set of binary vectors of
length n such that any two of them differ in at least d posi-
tions; the maximum number of codewords in any such code
is usually denoted A(n,d). An important relation between
A(n,d) and A(n,d,w) is due to Elias (see [10, p. 451,456])
and Bassalygo [6]. This elegant Bassalygo-Elias inequality

2n
Aln,d) < m
was improved upon by Levenshtein [39, eq.(32)], and later
by van Pul (see [1]), who pointed out that the right-

A(n, d, w) (1)
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Figurel. The interdependence between bounds on the three types
of binary constant-weight codes: A stands for general constant-
weight codes, T” for doubly-bounded-weight codes, and T for doubly-
constant-weight codes. Numbers refer to theorems in this paper. For
example, the arrowhead labeled 20 represents a bound on A(n,d,w),
derived in Theorem 20, in terms of bounds on doubly-constant-weight
codes and bounds on doubly-bounded-weight codes.

hand side of (1) can be reduced by a factor of two. The
best known asymptotic upper bound on A(n,d), given by
McEliece, Rodemich, Rumsey, and Welch [43] in 1977, con-
sists of this inequality in conjunction with a linear program-
ming bound on the size of constant-weight codes. Thus it
should not be surprising that better bounds on A(n,d,w)
lead to new bounds on A(n,d). Our contributions in the
area of unrestricted codes, based on the results of this pa-
per, will be presented elsewhere.

While unrestricted codes have obvious applications in
error-correction, constant-weight codes have been histor-
ically regarded as a purely theoretical construction. To-
day, however, they are generally recognized as an impor-
tant class of codes in their own right. They have been
recently introduced in a number of engineering applica-
tions, including CDMA systems for optical fibers [19], pro-
tocol design for the collision channel without feedback [1],
automatic-repeat-request error control systems [54], and
parallel asynchronous communication [12]. In addition,
they often serve as building blocks in the design of spheri-
cal codes [28] and DC-free constrained codes [29,52]. Fur-
ther applications have been reported in frequency-hopping
spread-spectrum systems, radar and sonar signal design,
mobile radio, and synchronization [9,11,19]. For general
background on constant-weight codes, and the related class
of spherical codes, we refer the reader to [22,28,42].

The rest of this paper is organized as follows. In the
next section, we define concepts and terminology that will
be used throughout this work. A simple mapping from bi-
nary codes to spherical codes is introduced in Section III;
bounds derived directly from this mapping improve upon
two well-known bounds by Johnson. Sections IV, V, and VI
list all useful upper bounds on constant-weight codes that
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we are aware of, including many new ones derived in this
paper. One section is devoted to each of the three classes:
constant-weight codes, doubly-bounded-weight codes, and
doubly-constant-weight codes. Finally, tables of the best
known upper bounds on A(n,d,w) are presented in Sec-
tion VII, for all n < 28.

II. PRELIMINARIES

In this section, we introduce concepts and notation that
will be used throughout the paper. We distinguish between
codes in Hamming space (that is, binary codes) and their
counterparts in Euclidean space — the spherical codes.

A. Hamming Space

Four nested levels of binary codes will be discussed. To
begin with, any subset of 7’ (n) = {0,1}" is called an unre-
stricted binary code, in the sense that no weight constraint
is imposed. A constant-weight binary code is any subset of

Hnw) C {ze A0

oz 1=w} (2)
where 1 is the all-one vector and the dot product is carried
out in R". A doubly-bounded-weight code is a constant-
weight code with at most w; ones in the first n; positions
and at least wo ones in the last ny positions. (In the follow-
ing, the first n; positions will be called the head and the
last no positions the tail.) Equivalently, a doubly-bounded-
weight code is a subset of

t}fl(u}lan171‘027,n/2)

def

= {x € A (ni+tne, witwsz) @ T u <wi}p (3)

where head tail

—N— ——
S1,0,...,0) (4)
——

ni na

Finally, a doubly-constant-weight code is any subset of

%(’LUl,TLl,'LUQ,TLQ)

def {x € A (n1+ns2, wi+ws)

XU = wl} (5)
Thus a codeword of a doubly-constant-weight codeword has
exactly wy ones in its head and ws ones in its tail. It fol-
lows directly from the definitions in (2), (3), and (5) that
doubly-constant-weight codes constitute a sub-class of the
doubly-bounded-weight codes, which themselves constitute
a sub-class of the constant-weight codes, which, in turn, are
a sub-class of unrestricted codes.

Unrestricted codes and constant-weight codes have been
studied extensively in the past. Doubly-constant-weight
codes were proposed in [39] and [37]. The class of doubly-
bounded-weight codes is introduced in this paper; it turns
out to be very useful in deriving bounds for the other
classes.

In the following, d(%) denotes the minimum Hamming
distance within a code %, namely

o in_d (e1,¢2) (6)
ci1#ca

where d(cy,c2) is the number of positions in which the
codewords ¢; and ¢, differ. Given a set Z C J#(n), let

def

®(u,d) = {CCcU : d%)>d} (7)

denote all subsets of % whose minimum distance is at
least d. We are interested in the quantities:

Aln,d) & & 8
(n,d) Cg@r(njgﬁ(cn),d)l | (8)
A(n,d,w) def max || 9)

Ced(H(nw),d)

where 0 < d <n and 0 < w < n, as well as

def
Tl(w17n17w27n27d) = max |%|
CED (A (w1,n1,w2,n2),d)
def
T(w17n17w27n27d) = max | |

CED(H (w1,n1,w2,n2),d)

where 0 < w1 < ny, 0 < wy < no, and 0 < d < ny + no.
Despite the potential confusion of using A(-) for both (8)
and (9), we maintain this standard notation [17,42].

B. Euclidean Space

We start by defining, in analogy to (6) and (7), the dis-
tance and the ® functions in Euclidean space, as follows:

def .
dg(€) = min
C1,C2
ci1#ca

Sp(%,dp) = {6 CU

ller — e

Here ||-|| is the Euclidean norm, ¥ is a finite subset of R",
and % is an arbitrary subset of R".

Two types of codes in Euclidean space will be considered.
The unit sphere is the set

def
L) = {weR" : |z =1}

A spherical code is a finite subset of .#(n). To characterize
the codeword separation in a spherical code, the minimum
angle ¢ or the mazimum cosine s is often used instead of
the Euclidean distance. The relation between these three
parameters is

def

d2
s = £

5 (10)

cos¢p =
We will generally use s as the separation parameter. The
maximum possible cardinality of an n-dimensional spheri-
cal code with maximum cosine s is

AS(na S) déf

max ||
Ccde (Y(n),\/272s)



Figure2. A zone.

For s > 0, the best known general upper bound on Ag(n, s)
was given by Levenshtein in [40]. This bound can be im-
proved upon for certain specific parameters using the meth-
ods of Boyvalenkov, Danev, and Bumova [15].

For s < 0, this function is known exactly. Specifically, it
is known that

1 1
A = |1-- ifs<—— 11
S(?’L,S) \‘ SJ ’ IS s n ( )
As(n,s) = n+1, if _1 <s<0 (12)
n
Ag(n,0) = 2n (13)

Rankin [47] was the first to establish (11), while (12) was
originally stated by Davenport and Hajés [23], and proved
by Aczél and Szele [2]. Equation (13) was first stated by
Erdés [26], and proved by Sarkadi and Szele [50].

EXAMPLE 1. We have Ag(25,—3/41) = |44/3] = 14 (to
be continued in Example 15). i
We now introduce the class of zonal codes. A zone is
a subset of a sphere bounded by two parallel hyperplanes

[56, pp. 314-315], as illustrated in Figure 2. Given a “north
pole” vector e, with ||e|| = 1, we define:

F(n, v, vm.e) E {x € S(n) :siny, <z e < sinyy)

where —7/2 < v, < yu < 7/2. A zone with vy = 7/2 is
a spherical cap [56, pp.314-315]. A zonal code is a finite
subset of a zone. The maximum cardinality of a zonal code
is denoted

Az(nys,v0,70) € max|?)| (14)

where the maximum is taken over all
€ € Op(Z(n,vL,vH,€),V2 — 25)
Clearly, the right-hand side of (14) is independent of e.
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III. BOUNDS FROM SPHERICAL CODES

It is well known that, under a suitable mapping, the class
of binary codes can be viewed as a sub-class of spherical
codes. This implies that a lower bound on the size of binary
codes is also a lower bound for spherical codes. Conversely,
an upper bound on the cardinality of spherical codes serves
as an upper bound for binary codes. The former relation
has been successfully exploited — see [22, pp. 26-27], [27],
[28] and references therein. One contribution of the present
paper is to investigate the latter relation, from which we
obtain improved bounds in some cases.

This approach, which has been less highlighted than its
converse, was used in [27] to prove two well-known bounds;
see below in Section III-B. A somewhat related method
was suggested by Wax [55], who derived upper bounds!
on binary codes from some sphere packings (not spherical
codes) in Euclidean space.

A. Binary Codes as Spherical Codes

We first map three of the classes of binary codes intro-
duced in the previous section into Fuclidean space. This
mapping produces spherical codes in three different dimen-
sions. Known upper bounds for spherical codes are then
used to generate new upper bounds for the original binary
codes. The derivation of an analogous bound for doubly-
bounded-weight codes is deferred to Section V-B.

Let Q(-) denote the mapping 0 — 1 and 1 — —1 from
binary Hamming space to Euclidean space. Then

Q(A(n) = {1,-1}" (15)
QA (n,w)) = {z€Q(H(n) : x-1=n—2w}
(16)
Q (A" (wr,n1,w2,n2))
= {z QA (n,w) : T -uw >2n —2wi} (17)
Q (0 (w1,m1,w2,n2))
= {z € QA (n,w)) : T -u=n —2uw} (18)

where n = ny + ns, w = w; + ws, and wy is as defined
in (4). Note that if the Hamming distance between two
binary vectors &1 and x> is d, then the Euclidean distance
between Q(z1) and Q(x) is 2V/d.

Clearly, Q(2#(n)) is a subset of the n-dimensional hy-
persphere of radius ro = v/n, centered at ¢y = 0.

For constant-weight codes, any point x € J(n,w) sat-
isfies (U(x) — 1) -1 =0 and ||Q(x) — ¢1|| = r1, where

(19)
and

(20)

Hence Q(J#(n,w)) is a subset of the (n—1)-dimensional
hypersphere of radius r; centered at c¢;.

IThese bounds are not very strong, however. See Appendix A.
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In a similar way, one can show that Q(2 (w1, n1,ws2,n2))
is a subset of the (n; +ns — 2)-dimensional hypersphere of
radius

ro =

2\/w1(n1 - wl) + w2(n2 - w2)
n1 no

centered at

2 2
cy = <1—ﬂ>u1+<1—ﬂ>u2
ny N9

where u; is as defined in (4) and uy = 1 —wu;. This follows
from the fact that for any point @ € 5 (w1, n1,ws,ns), we
have (Q(z) — €2) - u1 = (Q(x) — €2) - uz =0 and ||Q(z) —
CQH =T3.

These observations lead to upper bounds on the size of

the corresponding binary codes, formulated in terms of the
maximum cardinality of spherical codes.

THEOREM 1.
A(n726) < AS(nas)
where
s =1-4 é
n
THEOREM 2.
A(n,20,w) < Asg(n—1,s), ifs>—1 (21)
A(n,26,w) = 1, ifs < —1 (22)
where
s = 1__ 90
w(n —w)

Proof: Let € be a constant-weight code with param-
eters (n,2d,w). Translating Q(%) by —e¢; and scaling the
result by 1/r1, in accordance with (20) and (19), yields an
(n — 1)-dimensional spherical code. Its maximum cosine is
given by (10), where dg = (2/r1)V/25. Using As(n — 1,s)

as an upper bound for |Q(%)| completes the proof. |
THEOREM 3.
T(wy,ny,wa,n2,20) < Ag(ni+na—2,s8), ifs>-—1
T(w1,n1,ws,n2,28) = 1, ifs< -1
where
s = 1— Onins

niwa(ne — ws) + nowi (nq — wq)

The proofs of all three theorems are similar to each other,
and their common principle is demonstrated in the proof
of Theorem 2.

Note that the case s < —1 corresponds to a spherical
code whose minimum Euclidean distance is greater than
the diameter of the sphere. Although formally Ag(n,s) =1
for such s, we chose to treat this trivial case separately.

B. New Bounds

For s < 0, the exact values of Ag(n,s) given by (11),(13)
can be used in conjunction with Theorems 1, 2, and 3 to
yield bounds on the size of binary codes. The method is
simple and produces interesting results.

The resulting bounds, which are summarized in the fol-
lowing three corollaries, can be interpreted as a common
framework for bounds by Plotkin, Johnson, and Leven-
shtein, as well as some new, tighter, bounds. The bounds
(23) and (25) were derived in [27] using this method.

COROLLARY 4.
A(n,28) < 10 if46 > n (23)
) X 46 —n )
A(n,26) < 2n, if4d =n (24)
COROLLARY 5.
) ) 0
A(n,26,w) < ||, ifb> — (25)
b n
A(n,26,w) < n, if0<b< % (26)
A(n,20,w) < 2n—2, ifb=0 (27)
where
b= 5 w(n —w)
n
COROLLARY 6.
T(w17n17w27n2726) < \‘%J 9
)
ifrb> ——— 2
o=z nyt+ny—1 ( 8)
T(w17n17w27n2726) < ni +TL2—1,
)
if b —— 2
if0 < S r— (29)
T(w17n17w27n2726) < 2nl +27L2 _47
ifb=0 (30)

where

5 — wi (ng —wy) _
ni n2

Corollary 4 is similar to the Plotkin bound [44]. The
only difference is that in the latter, the right-hand side of
(23) is truncated to an even value, instead of just an integer
as in Corollary 4. Hence the Plotkin bound is stronger. It
was derived using an entirely different (combinatorial) tech-
nique, as will be mentioned in the context of Proposition 7.

For b > §/(n + 1), Corollary 5 is equivalent to one of
Johnson’s bounds [35]. Johnson showed (25) for all b > 0 by
the same method that is used below to prove Theorem 29.
If we let § = w, Corollary 5 yields

w2(n2 - w2)

b =

A(n,2w,w) < [EJ

" (31)



which is another well-known special case [39], [42, p. 525].
Note also that (22) is covered by (25). The bound (26),
which improves on the Johnson bound for 0 < b < §/(n+1),
has not, to our knowledge, been previously published.
Comparing Corollary 5 with Levenshtein’s linear program-
ming bound [41, Theorem 6.25], it can be observed that
(25) is equivalent to Levenshtein’s bound within the appli-
cable range of parameters, (26) is lower, and (27) is higher.
Hence, (27) needs not be further considered.

The inequalities (29) and (30) in Corollary 6 appear to
be new, whereas (28) was found previously by both Leven-
shtein [39] and Johnson [37]. They use this inequality for
all b > 0 (see also Section V-A).

ExaMmpPLE 2. Take (n,26,w) = (24,10,7). Corollary5
gives b = 1/24 and A(24,10,7) < 24. This is an improve-
ment on the best previously known upper bound of 27,
given in [31]. Since a lower bound of 24 is known [17], we
conclude that this bound is in fact tight. |

ExaMPLE 3. Corollary 5 also gives A(12,6,5) < 12. This
reproduces a well-known bound which was proved in [36]
through a combinatorial argument specifically devised for
these parameters. See also [42, p. 530]. O

ExampLE4. For (wi,ni,ws,n2,20) = (4,9,4,13,10),
Corollary 6 yields b = 1/117 and T'(4,9,4,13,10) < 21,
a significant improvement upon the best previously known
bound of 29, given in [8]. For T'(2,9,6,14,10), Corollary 6
reduces the best known upper bound from 30 to 22. O

C. Plotkin-Type Bounds

It is somewhat surprising that Corollaries 4-6 are so sim-
ilar to the Plotkin bound and its various relatives, since
these bounds have been derived using entirely different
methods. For comparison and for future reference, we now
re-establish the Plotkin bound in its most general form fol-
lowing the traditional, combinatorial, approach. From this
generic form of the Plotkin bound, many related bounds
easily follow. Special cases include the original Plotkin
bound, four of Johnson’s and Levenshtein’s bounds, as well
as a new bound to be reported in Section V-A.

Given a code ¥ C J(n), let f; denote the proportion
of codewords that have a one in position i. We have the
following proposition.

PROPOSITION 7. Let € € ®(#°(n),20). Then
)
o — Z?:l fil—=fi)

providing the denominator is positive.
Proof: We consider the average distance within the
code €, defined as follows:

def
dav = E d(er, e2)

617026%

%] <

(32)

(33)

where M = |%|. For each ¢ € €, count the contribution to
the sum on the right-hand side of (33) from each position.
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Then, interchanging the order of summation, it is easy to
see that

n

l

The proposition now follows from the fact that d,, > 26.
|

Bounds for many types of binary codes can be derived
from Proposition 7, since constraints on codewords trans-
late into constraints on fi, ..., f,. For instance, using no
information other than 0 < f; < 1 for all ¢, we find that the
maximum of Y f;(1 — f;) is n/4. Substituting n/4 for the
sum in (32) establishes (23). If, in addition, f1,..., f, are
constrained to be multiples of 1/M, the resulting bound is
the classical Plotkin bound of [44].

Bounds for constant-weight codes are obtained from
Proposition 7 by requiring fi + - + f, = w. If this is the
only constraint in the maximization, the result is a proof
of the aforementioned Johnson bound (25) for all b > 0.
Imposing the additional constraint that fi,... , f, are mul-
tiples of 1/M yields Theorem 10.

For doubly-bounded-weight codes, we maintain the con-
straint f1+- -+ f, = w and also require f; +-- -+ fp, < wi.
Again, the maximization can be carried out in either
the continuous domain [0,1] or in the discrete domain
{0,1/M,2/M,...,1}. This yields Theorem 29 in the dis-
crete case and a weaker bound in the continuous case.

Relevant constraints for doubly-constant-weight codes
are f1+ '+fn1 = w; and fn1+1+"'+fn1+n2 = Wa.
The resulting bounds are similar to (28) in the continu-
ous case and to Theorem29 in the discrete case. Both
were proposed independently by Levenshtein [39] and by
Johnson [37]. However, neither of them produces any im-
provement over the selection of bounds on doubly-constant-
weight codes that is presented in Section VI.

IV. BounDS ON A(n,d,w)

In this section, we summarize all important bounds on
the cardinality of constant-weight codes that are known to
us. Corollary 5 gives one such bound, but many more exist.

A. Elementary Bounds

The first theorem states without proof some elementary
properties of A(n,d, w).

THEOREM 8.
Aln,d,w) = A(n,d+1,w), if d is odd (34)
A(n,d,w) = A(n,d,n —w) (35)
n
A(n,2 =
n2w) = () (36)
n
A(n,2 = |—
(n2w,w) = |=| (37)
A(n,d,w) = 1, if d > 2w (38)
EXAMPLES. A(16,10,11) = A(16,10,5) = 3 (to be con-
tinued in Example 16). m|
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The following theorem is due to Johnson [35].

THEOREM 9.
n .

A(n,d,w) < [—A(n—l,d,w—l)J, ifw>0
w

A(n,d,w) < { n A(n—l,d,w)J, ifw<n
n—w

The next theorem is equivalent to another of Johnson’s
bounds [35, eq.(6)], although it may look very different. In-
spired by [39], we have formulated this theorem in a fashion
that makes the relation to Proposition 7 apparent and high-
lights the symmetry between w and n — w. A proof was
outlined in Section ITI-C.

THEOREM 10. Ifb > 0, then

A(n,20,w) < {%J
where
b= 5—7“’(";“’)+%{M%}{M";“’} (39)
M = A(n,26,w) (40)
{2} = z— |z] (41)

The foregoing upper bound on A(n,d,w) is implicit since
the quantity b depends on A(n,d,w) through its depen-
dence on M. Specifically, Theorem 10 implies that certain
values of A(n,d,w) are ruled out because they yield a con-
tradiction. If an upper bound on A(n,d,w) has this prop-
erty, one can decrease the bound by 1 and try again.

Sometimes, when Theorem 10 holds with equality, it can
be sharpened. This was done in two cases in [17] — see Ex-
ample 6 for one of them. The next theorem details when, in
general, such improvement is possible. This general result
is, to the best of our knowledge, new.

THEOREM 11. Suppose that A(n,2d6,w) = §/b, where b
is given by (39). Then

A(n,26,w) < T(wi,n1,ws,na,20)
where

_ My N2

W = n ( M) (42)

ny = n—n{M%} (43)
_ N2 L

b n (w+M) (44)

ng = n{M%} (45)

and M = A(n, 20, w).

Proof: With n; and ny as defined in (43) and (45), we
can rewrite (39) as

w(n —w)  nine

b =
n +MQn

0 —

(46)

Let € be an (n,2d,w) constant-weight code, and assume
that € contains M = §/b codewords. This assumption im-
poses strong constraints on the structure of ¢. First, ac-
cording to Theorem 10, the bound in (32) must hold with
equality, and we get b =60 — 3., fi(1— f;), which implies

n

Yo fl-fi) =

i=1

w(n —w) nine
n M?n

(47)

in view of (46). Observe that w(n — w)/n is the maximum
value of the sum on the left-hand side of (47) subject to the
constraint f; + --- 4+ f, = w. This value is attained when
fi = w/n for all i. Subject to the additional constraint

that fi,..., fn are multiples of 1/M, we find that equality
in (47) is possible if and only if
ME woon .
fi = —L MnJ = E_M—Qn’ for i <my (48)
LMHJ + 1 w nq
o= LTl 7 T4 for ¢ 4
fi i n+Mn’ or i > n (49)
up to permutations of the same sequence fi,..., f,. Fur-

thermore, a necessary condition for equality in (32) is that
day = 20, where d,, is as defined in (33). This means that
all pairwise distances within the code are exactly 2§, which
in turn implies that every two codewords of 4 intersect in
exactly w — § positions.

Consider a codeword ¢ = (¢1,...,¢,) € €. Let wi(c)
and ws(€) denote the weights of the first n; and the last 1o
positions of e, respectively. Let W(c) = MZiEx(c) fi,
where x/(c) is the support of ¢. Then

wi (€) [M%J + ws(c) ([M%J + 1) (50)

= w+ (M —1)(w —9)

W(e) =

(51)

where (50) follows from (48)—(49), while (51) follows from
the fact that every two codewords of € intersect in w — §
positions. Since wy(¢)+wsz(e) = w, equations (50) and (51)
can be solved for the values of w;(¢) and wsy(e), which
means that these values are independent of the choice of ¢.

This proves that % is actually a doubly-constant-weight
code. To find the values of w; (¢) = w; and wy(€) = w2, we
first use the condition M = §/b in conjunction with (46) to
express § as a function of M, w, n, ny, and ns. Substituting
this expression in (51) leads to the solutions for wy and ws
that are given by (42) and (44), respectively. [ |

ExAMPLE 6. From Corollary 5, we get A(21,10,7) < 15.
Furthermore A(21,10,7) # 15 by Theorem21. Assume
that A(21,10,7) = 14. Then Theorem 11 yields

A(21,10,7) < T(2,7,5,14,10)

But T'(2,7,5,14,10) < 13 from Theorems 27 and 33, which
is a contradiction. Hence A(21,10,7) < 13, which in fact
holds with equality [42, p.689]. O

We next describe another well-known upper bound on
A(n,24,w). In this context, let t = w —§ + 1. A t-tuple is



any subset of {1,...,n} of size t. Let € be an (n, 24, w)
constant-weight code. We say that a given t-tuple is covered
by a codeword ¢ € ¥ if it is a subset of the support of ¢. It
is easy to see that no ¢t-tuple can be covered by two distinct
codewords ¢;,c2 € €, since otherwise d(ey,c2) < 2d. The
total number of ¢-tuples is (”), and (“’) of these are covered

t t
by each codeword of 4. Thus we have proved the following.

THEOREM 12. Lett =w — 6 + 1. Then

aer (1)

(%)

Theorem 12 also follows by recursive application of The-
orem9. The codewords of any code % that meets the
bound of Theorem 12 with equality form a Steiner system
S(t,n,w). This means that every ¢-tuple is covered by ex-
actly one codeword of €. See [42, pp. 58-64, 528] and [53,
pp. 1-4, 99-100] for more background on this topic.

If X(n,d,w) is an integer and it is known that a Steiner
system S(t,n,w) does not exist, the bound of Theorem 12
can be improved to X' (n, d,w)—1. The next theorem makes
it possible to further improve this bound to X'(n,d, w) — 2
under a certain condition. Although two special cases of
this theorem were implicitly used in [8] (one such case is
Example7), the general result has not, to our knowledge,
been previously published.

A(n,26,w) < X(n,d,w)

THEOREM 13. If n divides wX (n,§,w), then
A(n,26,w) # X(n,d,w)—1

Proof: Assume that A(n,20,w) = X(n,d0,w) — 1, and
let € be a code that attains this bound. Note that this
assumption implies, in particular, that X'(n,d,w) is an in-
teger. For all i = 1,... ,n, we have

n—1

(tfl) _ UJX(TL, 67 UJ)
—1 -

(i) n

since otherwise there exists a t-tuple, involving position ¢,

that is covered by two codewords. On the other hand,

€1y fi =
i=1

by assumption. This implies that (52) must hold with
equality for at least n —w values of . Without loss of gen-
erality, let these values be i = 1,... ,n — w. This means
that every t-tuple that involves any of the first n — w po-
sitions is covered by a codeword of . The total number
of such t-tuples is () — (%). Since |€] = X(n,d,w) — 1
by assumption, this is precisely equal to the total number
(X(n,d,w) — 1)(Y) of t-tuples covered by the codewords
of #. This, in turn, implies that none of the (%) ¢-tuples
that involve only the last w positions is covered by a code-
word of €. A vector & = (0,...,0,1,...,1) of weight w
covers all these t-tuples and no others. Hence ¢’ = €U{x}
is an (n, 26, w) constant-weight code. This contradicts the
assumption that A(n,20,w) = X(n,d,w) — 1. [ |

1€1fi < (52)

|€|lw = wX(n,d,w) —w (53)
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ExaMmpPLE 7. Consider the case (n,26,w) = (15,4,5).
Then X(n,d,w) = 273, which is not achievable by The-
orem21. Since 15 divides 5-273, the condition of Theo-
rem 13 holds, and the theorem proves that A(15,4,5) can-
not equal 272 either. Hence A(15,4,5) < 271, which was
stated without proof in [8] (though A(15,4,5) < 272 was
proved there). m|

B. The Freiman-Berger-Johnson Bound

The well-known Hamming bound [33] for unrestricted
codes is obtained by centering a sphere around each code-
word. Johnson [37] developed a family of bounds for
constant-weight codes using a similar technique, and
thereby generalized a bound by Berger [7], who in turn
generalized a bound by Freiman [30].

Johnson [37] gives a range of versions of the same general
bound, which leaves the user of these bounds some freedom
to choose a suitable level of complexity. Since the original
presentation in [37] does not contain an explicit description
on how to evaluate these bounds, we now summarize the
key equations necessary for complete implementation.

THEOREM 14. For all j = —0,—§ +1,... ,4, we have

()
< "
An, 20, w) < {K(n,é,w,j)Jrﬁ(”v‘saw’j)
where
[
\ def b T
Lln,dw,5) = > . <z><Z—J>
z:maX{OJ}

while the value of K(n,d,w,j) depends on the parity of j
as follows. If j = mod 2, then

e A 28A—-B
K(n,d,w,j) def max{a,h}

(w —5)6

(w —j)d

n

ify>0and~y >

If j # 0 mod 2, then

e A
K(n,d,w,j) df hax {0, E}



JUNE 24, 2000

where
4 () (59
J+y+1/\y+1
) )
—< )( )T(é,w,&,n—w,%)
v/ \J+
a Ty +1Lw—j,j+7+1n—w+j,2)
qer 5—j—1
7T T
Theorem 14 specifies one version of the bounds in [37],

namely, the same version that Johnson used in his experi-
ments in that paper. Colbourn [20] successfully evaluated
another, simpler, version. We have simplified the original
notation of [37] for brevity and ease of reading.

C. Linear Programming

The distance distribution of a code € C ' (n) may be
defined as
1
A 3 )] (54)
|(g| ce?

fori =0,...,n, where .%;(¢) denotes the shell of Hamming
radius 7 centered at ¢, namely

Fie) ¥z e? : de,x) =i}

The shell .%;(e) is equivalent under translation by ¢ to
a constant-weight code. If € is a constant-weight code,
then .%;(e) is equivalent under translation and permuta-
tion to a doubly-constant-weight code.

The linear programming bound for constant-weight
codes is based on the properties of the distance distri-
bution of a code ¥ € ®((n,w),20) for given constants
n, w, and §. Throughout this subsection, it is assumed that
w < n/2. The component A; of the distance distribution
is, in this case, trivially zero for i < 26, i > 2w, and when-
ever i is odd. Thus we focus on Ass, Agsia,... , Azy. The
general idea is to find linear inequalities involving these
components, for use in the linear programming problem
of Theorem 20.

Since .%;(e) is a doubly-constant-weight code, its size can
be upper-bounded as

|-Z(e)] < T(i/2,w,i/2,n — w,20) (55)
Combining this result with (54) yields the following well-
known constraint [8].

ProPOSITION 15. For all i = 9,... ,w,

0 < A2 < T(i,w,i,n—w,2d)

The following profound inequality of Delsarte [24, Sec-
tion4.2] has led to the success of linear programming
bounds for constant-weight codes.

9
PROPOSITION 16. Forallk=1,... ,w
w
Zq(k,i,n,'LU)AQi 2 -1
i=6
where
(=) (B (e Ry (e
q(k,i,n,w) déf 2]70( )(])(z—])( i—j ) (56)

(D)

It is known that the distance distribution of constant-
weight codes is subject to more constraints than can be
obtained from Propositions 15 and 16. However, deter-
mining these additional constraints has, in most cases, in-
volved a separate nontrivial argument for each distinct set
of parameters n, d, w (as in [8, Theorem 22]). The follow-
ing proposition is, in some sense, a generalization of this
type of constraints. This proposition provides a universal
method to find constraints for pairs of distance distribu-
tion components, given bounds on doubly-bounded-weight
codes and doubly-constant-weight codes.

PROPOSITION 17. Leti,j € {§,0+1,...,w}, withi # j.
Ifi+j>n—90, then

PjAQi +PiA2j < PZ’P]' (57)

where P; and P; are any non-negative integers such that

P;
P;

T(i,w,i,n —w,20)
T(j,'LU,j,n - ’IU,Q(S)

(58)

Z
> (59)

If i+ j < n— 0, define P;; and Pj; as any non-negative
integers such that

in {P;, T'(A,j,i — A,n—w—j,2i —2A)} (60)

> m
> min{Pj,T'(A,i,j—A,n—w—i,2j—2A)} (61)

where A ¥ w — 5. Then

P. P.
PjiAs; + (Pi—Pij) Asj < PPy, if =24+ 220 > 1
P, P
(62)
P At P A p o D Dii
(Pj—Pj;) As; + PijAs; < PPy, if + > 1
P, P
(63)
P. P.
PjAs; + PiAs; < PPy, if 224220 <1
P, P
(64)

Proof: The proof relies on the following lemma that
relates the sizes of two shells .%5;(c) and #;(c).

LeEmMMA 18. Let 4,5 € {d,...,w}, with i # j; and let
c €%. If |%i(c)| > 1, then

|Sj(e)] < T'(Ai,j—A,n—w—i,2j — 2A)

for j < n—06—i, and Sj(c) = @ elsewhere.



10

Proof: Let © € %;(c). Without loss of generality, re-
order the positions so that ¢ and x have the forms

w n—w
c=(1,...,1,1,...,1,0,...,0,0,...,0)  (65)
z = (1,...,1,0,...,0,1,...,1,0,...,0)  (66)

If #j(c) = @, there is nothing to prove. Otherwise, con-
sider any codeword y € %5;(c). As in (66), it must have j
zeros among the first w positions and j ones among the last
n — w positions. Let di(-), respectively da(-), denote the
Hamming distance between the first w positions, respec-
tively the last n — w positions, of two codewords. Then
di(y,z) < (w—1i)+ (w—j). Since d(y,x) > 26, we have

do(y,z) = d(y,z) —di(y,x) >

This implies that y has at least j — A ones among the last
n—w—i positions and at most A ones in the preceding block
of i positions. (If i+j > n—4, this is impossible, and hence
“;(c) must be empty.) It follows that the punctured code
obtained by extracting the last n —w positions from .%;(c)
is a doubly-bounded-weight code. To bound its distance,
consider any pair of codewords y, z in .%5;(c). They satisfy
di (y,z) < 2w — 27, and hence da(y, z) > 25 — 2A. [ ]

i+j—2A

REMARK. Although Lemma 18 is valid for any distinct
i,j € {9,...,w}, parameters near the lower end of this in-
terval yield useless bounds. In particular, it follows from
the results of Sections V-A and VI-A that if i < A, then

T'(8,4,5 — A,n—w—14,2] —2A) > T(4,w,j,n — w,24)

Hence Lemma 18 gives a weaker bound on |.%5;(c)| than
(55) whenever ¢ < w—4¢. Thus the application of Lemma 18
can be confined to i,j > max{d, A + 1}.

We are now ready to complete the proof of Proposi-
tion 17. Tt follows from (55) and Lemma 18 that

|-72i(c)| < P (67)
|-#2i(e)| < Py, if [#;(c)) >0 (68)
|#i(e)] < P (69)
|#j(e)| < P, if [#i(c)] >0 (70)

with P;, P;;, P;, and Pj; as in (58)—(61). Define the sets
¢ = {ce¥ : Sile) >0}
€ = {ce¥ . Si(c) >0}

Then (54), in conjunction with (67) and (68), yields

Yo el + Y [Hle)

Ce%iﬁ?j CECKZ'OCK]'

|6 A2 =
< |6 NE P+ 6N €| Py (71)

where o7 denotes the complement of a set <. Similarly,
we have

|€|A2; < [ NE;|P; + |6 NG| Py (72)
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(b)

Figure 3. The inequalities (67)—(70) define the region enclosed by
the thick lines. Its convex hull (shaded) is the domain of (Ay;, Asj).
Dashed lines indicate the well-known bound of Proposition 15.

We multiply both sides of (71) by P; — Pj; and both sides
of (72) by P;j. Adding the results then yields

(Pj — Pji)|€| Az + Pyj| | Az
< 6 VE|PiPy — |6, N G|(P;Pji + P;Py; — PiP))
< |€|P;Py,  if PiPj + P;P; — P;P; > 0

where we have used some elementary set relations to estab-
lish the first inequality. This proves (63). The bound (62)
follows by symmetry. To prove (64), we take a different
linear combination of (71) and (72), namely

P;|€|As; + Pi|€| Ay
< 4 UG P; — | N E;|(PiP; — PiPji — P Pyj)
Finally, the bound (57) for i + j > n — ¢ follows from the
above by observing that €; N €} is empty in this case. W

From a geometrical viewpoint, the inequalities (67)—(70)
can be regarded as lines bounding a region in the plane.
Two examples are shown in Figure 3. The definition of the
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distance distribution in (54) implies that a point (As;, As;)
is formed by averaging the points (|.#%:(c)|, |-#2;(c)|) for all
c € €. Hence the domain of (As;, As;) is the convex hull
of the domain of (|.%;(¢)|,|2j(c)|). This convex hull is
a polygon with either three or four sides, depending on the
values of P;, Pj, P;j, and Pj;. This is illustrated in Figures
3a and 3b, respectlvely. In the former case, the polygon is
bounded by (64) and in the latter case by (62)-(63). Note
that if Pij = PZ and Pji = Pj in (62)*(63), then the pOlngIl
becomes a rectangle and Proposition 17 reduces to Propo-
sition 15. In all other cases, Proposition 17 gives a stronger
constraint on the distance distribution Asgs, Assya, ... , Aoy
than Proposition 15.

REMARK. It would suffice to evaluate Proposition 17 for
i and j such that max{J,A + 1} < j < i < w. The lower
bound comes from the earlier remark regarding Lemma 18,
while ¢ > j can be assumed without loss of generality.

ExXAMPLE 8. Suppose that (n,d,w) = (27,10, 11), and
consider (7, j) = (11,10). We have

P, = 3 = T(11,11,11,16,10)
P; = 13 > T(10,11,10, 16, 10)
P; = 2 = T'(6,10,5,6,10)
Pji = 7 > T'(6,11,4,5,8)

from Examples 16, 17, 11, and 13, respectively. Then Pro-
position 17 yields Asg + 7TAss < 21 and Asg + 3422 < 13
This example will be concluded in Example 10. |

The following proposition gives another useful constraint
on the distance distribution of constant-weight codes de-
rived from bounds for doubly-bounded-weight codes.

ProOPOSITION 19. Forallj =46,6+1,...,

ZAm < T

Proof: For any code € € ®(# (n,w),2d) and any co-
deword ¢ € @, the set |J;_; #%i(c) is a doubly-bounded-
weight code with parameters as in (73). |

Having established the constraints on the distance distri-
bution, we now state the linear programming bound itself.

< n/2, then

w— 1, we have

w = j,w, j,n — w,26) (73)

THEOREM 20. If w <

w
A(n,20,w) < \‘maxZA2i| +1
=4
where the maximum is taken over all (Aas, Aost2, ... , Aow)
that satisfy the constraints in Propositions 15-17 and 19.

ExampLEY. For (n,d,w) = (20,8,9), the linear pro-
gramming bound, using the constraints developed in Pro-
positions 17 and 19, yields 4(20,8,9) < 195. This improves
upon the best previously known upper bound of 215. O

ExaMPLE 10. Using the constraints on Asg and Ay de-
rived in Example 8, linear programming yields the upper
bound A(27,10,11) < 900. m|
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D. Specific Bounds

In this subsection, bounds that hold only for specific val-
ues of n, d, and w are collected and discussed. The follow-
ing theorem lists all the relevant specific bounds that we
are aware of. This theorem does not include all specific
bounds that have ever been proposed; some of them have
later been reproduced or superseded by general bounds.

THEOREM 21.

A(15,4,5) < 272 (74)
A(13,6,5) = 18 (75)
A(14,6,7) = 42 (76)
A(17,6,4) = 20 (77)
A(18,6,6) < 203 (78)
A(19,6,4) = 25 (79)
A(17,8,7) = 24 (80)
A(21,8,10) < 399 (81)
A(22,8,5) = 21 (82)
A(23,8,10) < 1109 (83)
A(26,8,5) = 30 (84)
A(20,10,8) = 17 (85)
A(21,10,7) < 14 (86)
A(22,10,7) = 16 (87)
A(22,10,10) < 73 (88)
A(22,10,11) < 81 (89)
A(23,10,7) = 20 (90)
A(26,12,11) < 69 (91)
A(26,12,12) < 83 (92)
A(26,12,13) < 92 (93)
A(27,12,10) < 65 (94)
A(27,12,11) < 100 (95)
A(28,12,8) < 20 (96)

We have not verified all the values in Theorem21. In
general, it is very difficult to check specific upper bounds
found by others. (As pointed out in [17], an extreme case of
this is the celebrated result of Lam, Thiel, and Swiercz [38]
that there is no projective plane of order 10, which is equiv-
alent to A(111,20,11) < 110. The proof of [38] is based on
years of research and thousands of hours of computer time.)
Thus Theorem 21 relies on the published literature. We
now provide references for each bound listed in Theorem 21.

The bounds (77) and (79) were obtained by Brouwer [16]
and Stinson [51], respectively. The method used was as-
suming the existence of a code with a higher value of
A(n,d,w), identifying properties of this hypothetical code,
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and arriving at a contradiction. The bound (75) is given
as a problem in [42, p.531], where it is suggested that it
can be proved using a similar technique.

The bounds (74) and (78) follow from the nonexistence of
certain Steiner systems, while (86) and (96) follow from the
nonexistence of certain 2-designs [21,25,32] (see [17] and
the discussion following Theorem 12). These four bounds
can each be decreased by one using Theorems 11 or 13.

The value in (84) was derived in [13] from the nonexis-
tence of a certain instance of what is known as a partial
linear space [18, pp. 68-70,435, 650].

The bounds (88) and (89) were obtained by van Pul [45,
p. 38] using linear programming with contraints specifically
derived for these parameters. In a similar manner, Honkala
[34, Section 5] obtained (91)—(95).

A full search algorithm by Brouwer, Shearer, Sloane, and
Smith [17] has contributed several exact values of A(n,d, w)
compiled in TableIII of [17]. The cases in Theorem 21 ob-
tained from this source are (76), (80), (85), (87), and (90).
See also Appendix A regarding the exact value of (90).

The bounds (81) and (83) have been reported as results
of linear programming [42, p. 688] and the Freiman-Berger-
Johnson bound [37], respectively. Both [42] and [37] appar-
ently used undisclosed constraints to obtain these bounds.

Finally, the bound (82) is from TableIII of [17], where
the only justification is: “By the Bose-Connor theorem
a square divisible design GD(5,1,2;11x2) does not exist.”
We believe it would be useful to provide a more elabo-
rate argument, as follows. Let (n,2,w) = (22,8,5) and
proceed in a manner similar to the proof of Theorem 13.
From (52), we have |€|f; < 5 for all 4, which implies that
|| = i, |€]fi/w < 22. For a code that attains this
bound, we must have |¢|f; = 5 for all i. The t-tuples
in this case are simply pairs, and out of all (%) = 231
pairs of positions, 220 are covered by the 22 codewords,
in such a way that each position is contained in exactly
20 covered pairs. It follows that the remaining 11 pairs,
which are not covered by any codeword, are disjoint. This
structure is known, in the terminology of design theory,
as a group divisible incomplete block design with parame-
ters (v,7,b,k,m,n, A\, \2) = (22,5,22,5,11,2,0, 1), but no
such design exists [14].

E. Redundant Bounds

Many bounds for constant-weight codes have been pro-
posed, but not all of them remain competitive today. Our
intent in this work is to list all the upper bounds for
constant-weight codes known to us. Thus, for complete-
ness, we briefly mention in this section those bounds that
were evaluated in the present study but did not contribute
to our tables in Section VII.

Two standard bounds that we have so far omitted are [42,
p. 525, Theorems 1(d), 2]. As already mentioned, both are
contained in Corollary 5, and are often improved upon by
this corollary. The upper bound version of [8, Theorem 20)]
also does not need to be separately considered. It can be
shown that this theorem is weaker than Theorem 10.
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Levenshtein’s bound [39, eq.(4)] relates constant-weight
codes to doubly-constant-weight codes in precisely the
same way as the Bassalygo-Elias inequality (1) relates un-
restricted codes to constant-weight codes. It yields, in con-
junction with the linear programming bound of [43], the
best known upper bound on A(n,d,w) asymptotically, as
n, d, and w tend to infinity [4,5,48]. Nevertheless, neither
[39, eq.(4)] nor its strengthened version [39, eq.(5)] improve
on any of the values in our tables. Neither does [41, The-
orem 6.25], which has the same asymptotical performance.
Apparently, n < 28 is not large enough to do these bounds
justice.

Known results on Steiner systems yield exact values of
A(n,d,w) in a number of cases [35, p.207], [8, p.90], [17,
pp. 1339,1341]. All such values were also obtained by some
other means in our investigation.

The linear programming bound suggested by van Pul [45,
Section 3.3] was implemented, and we also combined his
constraint [45, p. 20] with the constraints of Section IV-C.
No improvements were obtained from this general ap-
proach, but including contraints specific for each instance
of (n,d,w) has led to interesting results; see Section IV-D.

V. BounDs ON T'(wy,ny,ws,na,d)

All the bounds for doubly-bounded-weight codes derived
here are new. Our motivation for introducing and study-
ing these codes is that they have strong connections to
constant-weight codes. Several methods for bounding the
size of constant-weight codes based on doubly-bounded-
weight codes, either directly or indirectly, via doubly-
constant-weight codes, are presented in Sections IV and VI.
These relations are also summarized in Figure 1.

A. Elementary Bounds

As defined in SectionII, a doubly-bounded-weight code
is any subset of 7' (w1, n1,ws,n2). Thus doubly-bounded-
weight codes are a sub-class of constant-weight codes ob-
tained by imposing an upper bound on the weight of the
head or a lower bound on the weight of the tail. Let
(97)

p def min{wy,ns — wa}

It follows immediately from the definition (3) that for any
vector in ' (wy,n1,ws,ns), the weight of the head ranges
from wy — p to wy, and the weight of the tail ranges corre-
spondingly from wsy to ws + p.

Since each of the relations in the following theorem is
straightforward, we omit the proofs.

THEOREM 22.

= A
Tl(nl,nl,’U}Q,nQ, = Anl +n27d7n1 +w2)

d) (n2,d,w2)
d) (
T'(wi,n1,0,n,d) = A(ny +nz,d,w)
d) (
d) !

!
T (0,711,’11}2,712,

!
T(wl,n1,n2,n2, = Anladawl)

Il
N~

!
T'(wi,n1,ws,na, (n2 —wa,n2,n1 — wi,ny,d)
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Tl(w17n17w23n27d+ 1)7
if d is odd

> () ()

In the following cases, simple expressions exist for the
exact value of T' (w1, n1, ws,n2,d).

Tl(w17n17w27n27d) =

Tl(w17n17w27n272) =

THEOREM 23.

T'(wl,nl,w2,n2, 2(11}1 + UJ2))

- @J | if (98)
wa ni U]
T’(’LUl,TLl,'U}Q,nQ, 'LU1 +w2))
_ n1 +n2J LN w2 (99)
| w1 + w2 n2
T’(’LUl,TLl,'U}Q,nQ, (n2+w1 _'LUQ))
- J it L2 <1 (100)
| N2 — W2 ny N9
T'(wy,n1, w2, n2,2(n + w1 — w2))
- —J, it L2251 01
| w1 ny N2
T' (w1 ,n1,w2,n2,2(n1 + Nz — w1 — w2))
_ {LJ it UM (g
ny — wi ni UP)
T' (w1 ,n1,w2,n2,2(n1 + n2 — w1 — w2))
— { m A J i s (103
ny + ne — w1 — Wa ni na
T'(wl,nl,wg,n2,d) = 1, If

d > 2 min{w +wa, n2+w; —ws, n1+ns—wi; —ws } (104)

Proof: The distance between two codewords of a code
in ' (wy,n1,ws,n2) equals 2w; + 2wy if and only if
their ones are in disjoint positions. The total num-
ber of codewords with disjoint ones is upper-bounded by
[(n1 + n2)/(w1 + we)|. Similarly, the total number of
codewords with disjoint ones in the tails is upper-bounded
by |n2/ws]. Thereby the upper bound versions of (98)
and (99) are proved. To prove that these bounds are attain-
able with equality, we consider two constructions. First,
let €1 € ®(H(n1,w),2w;) and G € (I (na, ws), 2ws)
with |%1| = |62] = |na2/w=2]. Such codes exist, according
to (37), if |n2/ws| < [n1/w1]. The code formed by joining
each codeword in %7 with a unique codeword in %5 belongs
to ®(H'(w1,n1,ws,n2),2w; + 2ws), which proves (98).
Now, let € be a code in ®(H (n1 +na, w +ws), 2wy + 2ws)
with || = |(n1 +n2)/(w1 +w2)]. Then reordering the po-
sitions so that all codewords have at most w; ones in their
heads (which can be done if w|%| < n1) completes the
proof of (99).

The proofs of the remaining cases, except (104), are sim-
ilar. The distance between two codewords whose ones in
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the heads and zeros in the tails are in disjoint positions
is 2(ne + wy; — wsy), and the distance between codewords
with disjoint zeros in all positions is 2(n; + ne — w; — ws).
The details of these proofs are omitted. Finally, (104) fol-
lows from the foregoing two observations, along with the
fact that the distance between two codewords cannot be

greater than 2wy + 2ws. |
ExampLE 11. From (102), we have T"(6, 10, 5,6, 10) =
(this example is continued in Example8). O

The simple nature of the next bound may suggest that
it is not very strong. It is, however, useful in certain cases,
as demonstrated later in Example 12.

THEOREM 24.

T (wy,n1,w2,n2,d) < T'(wy + 1,n1,ws — 1,n3,d),
ifw; <ny; and we >0 (105)
T'(wy,n1,w2,n2,d) < T'(wy,ny + 1,wz,n9,d)  (106)
T (wy,n1,wz,ne,d) < T'(wi+1,n1+1,ws,na,d) (107)
T (wy,n1,wz,ne,d) < T'(wy,ni,ws,na+1,d)  (108)
T (wy,n1,wz,ne,d) < T'(wi,ni,ws+1,n2+1,d) (109)

Proof: The bound (105) is a consequence of the fact
that ' (wy,n1,ws,n2) C A (w1 + 1,01, w2 — 1,n2). Ap-
pending a zero or a one to all codewords of a doubly-
bounded-weight code yields (106)—(109). |

THEOREM 25. Let p be as defined in (97). Then

T'(wy,n1, w2,n2,d) < T(wy,ni +p,ws + p,ns + p,d)

Proof: FExtending the head of a doubly-bounded-
weight code with p bits, suitably chosen for each codeword,
assures that the weight of the head is a constant w;. An-
other p extra bits make the weight of the tail wy +p. H

THEOREM 26. For alli =0,... ,p—1,

T'(wi,n1, w2, n2,d) < T'(wi —i—1,n1,ws +i+1,n,d)
+ T(wi,n1 + i, w2 +4,n0 +i,d)

Proof: We partition a code in ®(' (w1, n1,w=2,n2),d)
into two subcodes. Let the codewords with weight at most
w; — ¢ — 1 in the heads form one subcode and the remain-
ing codewords another. The former subcode belongs to
(w1 —i—1,n1, w2 + 14+ 1,n2). In the latter subcode,
the weight in the heads ranges from w; — i to wy, and in
the tails from ws to wy + i. Extending the latter code
with 27 bits as in the proof of Theorem 25 yields a code in
%(wl,n1+i,w2+i,n2+i). |

THEOREM 27.

T'(wl,nl,wz,n2,25) S A(?’Ll +n2,26,w1 +UJ2) (110)
Tl(w17n17w27n2726)
< A(ny + ng,2min{d,ny —wy,we},wy +ws) — 1

(111)

The latter bound holds with equality if 6 = n; —w; = ws.
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Proof: The bound (110) is obvious from (3). To prove
(111), let

¢ = (1,...,1,0,...,0)
— ——

witwz N1+ n2 —wp — w2

and consider a code € € ®(#' (w1, n1,ws,n2),20). Now
€' = €U{c'} is a constant-weight code with |¢”| = || +1.
Its minimum distance is

d(¢') =

min {d(%), min d(e, c')} (112)

cE?
To derive a lower-bound on d(¢, ¢'), we consider two cases.
If wi + ws < nq, then the tail of ¢’ is all zero, which implies
that heads and tails each contribute at least wy to the
distance. Analogously, if wy +wy > ny, then the head of ¢’
contains only ones, and heads and tails contribute at least
ni; — wy each to the distance. Hence,

d(e,c) > 2w,,
d(e,c) > 2ny — 2w,
or, equivalently,

d(e,¢') > 2min{n; — wy,ws}
for all ¢ € €. Thus d(%") > 2min{d,n; — wy,ws}.

To prove the equality part of (111), consider any
constant-weight code that attains A(n,26,w). If we re-
order the bits so that (1,...,1,0,...,0) is a codeword
and then remove this codeword, then all of the remain-
ing A(n,2,w) — 1 codewords have at least § zeros in the
first w positions. The doubly-bounded-weight code formed
by these codewords demonstrates that

An,28,w) —1 < T'(w — §,w,d,n — w,20)

Taking ny = w, no =n —w, wy = w — 0, and wy = J in
the above expression completes the proof. |

ExampLE12. T'(1,5,5,13,10) < A(18,10,6) = 4 di-
rectly by Theorem 27. If, however, Theorem 24 is used
as an intermediate step, the bound can be improved to
T'(1,5,5,13,10) < 7'(1,5,6,13,10) < A(19,10,6) — 1 = 3.

O

THEOREM 28.

Tl(w17n17w27n27d)

ni
<
ny —wi

T'(wl,nl — 1,w2,n2,d)J N 1fw1 < np

T’(wl,nl,'IUQ,nQ,d)

N9 '
< {—T (wy,n1,wy —1,ny —

l,d)J . ifws >0
w2

Proof: Counsider a code € € (' (wy,n1,w=2,n2),d)
and form a new code %; by shortening % in the j-th po-
sition, where 1 < j < ny (this consists of (i) selecting all
codewords for which the j-th bit is zero, and (ii) deleting
the j-th bit). The total number of zeros in the heads of
all codewords of % equals 27;1 |€;]. On the other hand,
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the same number is lower-bounded by (ny — w1)|%’|. Since
C; € ®(H'(w1,n1 — 1, w2, ns),d) for all j, we have

(n1 —w)|€] < miT'(wi,n1 — 1, w2, n2,d)

This proves the first inequality in Theorem 28. Similarly,
the second inequality is proved by counting in two ways
the number of ones in the tails. |

The next bound is similar to a bound for doubly-
constant-weight codes, given by both Levenshtein [39] and
Johnson [37, eq.(20)]. We use the notation of [39], which
shows the connection with (28).

THEOREM 29. Ifb > 0 and wy/n; < we/ng, then

0

T'(wl,nl,wg,nQ,Qé) < \;—J (113)

b
where
wl(nl - wl) _ w2(n2 - w2)

ni U]

ni w1 ny —wp
— <L M— M —
+M2{ nl}{ n }

no w2 N9 — W
—  M— M
+M2{ n2}{ ny }

M =

Tl(w17n17w27n27 26)

and {z} denotes the fractional part x — |z|, as in (41).

Proof: The proof is based upon Proposition 7. We take
n =mny +ny and let € € (' (w1,n1,ws,n2),2§). Then

the following constraints hold for fi,..., fu,4+n.:
0< fi<l, fori=1,...,n1 +ns (114)
Mfi€Z, fori=1,...,n1+ns (115)
ni
Yofi < w (116)
i=1
ni+nz
(117)

Z fi = w1 t+ws
i=1

The maximum of Zf:lfm fi(1 — f;) subject to the con-

straints (114)—(117) is

w1 (n1 — wl)

+ w2 (n2 - w2)
ni no

ni w1 ny —w
— — <A M— M —
M2{ nl}{ n }

no wa No — wWo
- 2 IM=2M
MQ{ n2}{ 2 }

if wy/ny < w2/ne, and

(118)

(w1 + U)Q)(?’Ll +no —wyp — ’11}2)
ny + no

_n1+n2 Mwl-i—wg M
ni + no

M2
otherwise. Substituting (118) for the sum in (32) completes
the proof. ]

n1+n2—w1—w2}

ni + no
(119)
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REMARK. An alternative bound is obtained if (119) is
substituted for the sum in (32), but this bound has already
been covered by a combination of Theorems 10 and 27.

ExaMPLE 13. From Example 14 in the next subsection,
we have T'(1,11,10,16,10) < 14. Suppose that equality
holds. Then Theorem 29 yields M < 13, a contradiction.
Hence, T'(1,11,10,16,10) < 13. Similarly, Theorem 29 re-
duces the upper bound for 7"(6,11,4,5,8) from 8 (Exam-
ple14) to 7. This example continues in Examples 17 and 8.

O

B. Binary Doubly-Bounded-Weight Codes as Zonal Codes

In Section III-A, bounds on unrestricted binary codes,
constant-weight codes, and doubly-constant-weight codes
were obtained by mapping these codes into Euclidean space
and applying known bounds for spherical codes. Now,
an analogous bound will be derived for doubly-bounded-
weight codes. We have found this bound to be particularly
successful in conjunction with Proposition 17.

The new bound depends on the existence of upper
bounds on the cardinality of zonal codes. One such bound
for zonal codes will be presented in the next subsection.

THEOREM 30.

T'(wl,nl,wg,n2,d)
< Az(ni+ne —1,1=2d/r*, yp,vH),

Tl(w17n17w27n27d) = ]-7

ifd < r?
ifd>r?

where

. <20 >
arcsin [ — (njws — nowy)
r

YL =
. 2c
Yy = arcsin 7(n1w2 —nawi + pny1 + pna)
1
¢ (120)
ning(ny + na)
, def 2\/(101 + wa)(n1 + na — w1 — wo) (121)
ni + na
and p is as defined in (97).
Proof: Let n = ny + ny and w = wy; + wz. Then

Q( (n,w)) is a subset of the (n — 1)-dimensional sphere,
whose radius r; and center ¢; are given by (19)—(20). Every
codeword x of a doubly-bounded-weight code belongs to
2 (n,w) and, in addition, satisfies a constraint on x - uy
given in (3). To translate this constraint into a constraint in
Euclidean space, we first define a normalized “north pole”
vector e in the (n — 1)-dimensional subspace that contains
QA (n,w)). A vector v € R” belongs to this subspace if
and only if (v —¢;) -1 =0. Thus we take

def

e = cnu; —cnil

where u; is given by (4) and ¢ is given by (120). Notice
that (e — ¢1) - 1 = 0 and the constant ¢ in (120) is chosen
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so that |le||*> = 1. From (17) and (97), it follows that any
x € ' (wy,n1,ws,nz) satisfies

ny —2w; < Qx) u; <ny — 2w +2p (122)

and (16) shows that

n—2w = ni+ng — 2w, — 2ws

We create the Euclidean code

@ dt {9($) -

" : mE%'(w1,n1,w2,n2)} (123)

where r = 7y is given by (121). It is obvious from the nor-
malization in (123) that ||y||> = 1 and y -1 = 0 for all
Yy € €, and the fact that

y-e <

sinyr, < sin vy

follows from (122). This proves that %, and every sub-
set thereof, is a zonal code. To complete the proof, the
maximum cosine is obtained from (10) with dg = 2v/d. B

ExAMPLE 14. It follows from Theorem 31 (as shown in
Example 15) that
Az(26,41/176, arcsin(47/88), arcsin(11/16)) = 14

Thus Theorem 30 implies that 77(1,11,10,16,10) < 14.
Similarly, Theorems 30 and 31 yield 7'(6,11,4,5,8) < 8.
This example continues in Example 13. O

C. A Bound on Zonal Codes

In this subsection, an upper bound on the cardinality
of zonal codes is presented. The proof is deferred to Ap-
pendix B. The principal application of this bound is in con-
junction with Theorem 30.

THEOREM 31. If 0 < v, < yg < /2, then

Az(n,s,vL,vu) < F, if ya > e (124)

Az(n,s,ve,ya) = 1, if s < —cos2yp (125)

Az(n,s,vL,vym) = 1+ L if s=sinyr, yg =7/2 (126)

Az(n,s,vr,va) = L, otherwise (127)
where
def

F = min {AZ(nasa’YGa’YH)+L’

Ag <n -1, 5T Smhr SyH s1n'yH> }, if s < cos (yw —vL)
COS YL, COSYH
def

F = AZ(nasa’YG:’yH)+L7 ifS}COS(')/H—’YL)
t
e def T+ v, — 2arctan SCOb L (128)
p— H 2
cos? vy,

Although F' in (124) depends on the value of Az(-), the
foregoing theorem yields a finite bound on Az(n,s,vyr,vH)
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for any 0 < vz, < v < 7/2 and —1 < s < 1. Typically,
case (124) would be applied recursively, each time increas-
ing 7q, until one of the other cases holds.

EXAMPLE 15. Consider n = 26 and s = 41/176. Then
for v = arcsin(47/88) and yg = arcsin(11/16), we obtain

Yo = m—arcsin(13828) > g

Since none of (124)—(126) is applicable, we conclude that
(127) must hold. Thus

41 . . -3
Ay <26, Tm,arcsm(%),arcsm(%)) =L = Ag (25, H)

which, from Example 1, is equal to 14. This example con-
tinues in Example 14. O

We point out that the bound of Theorem 31 depends
on Ag(n,s), the maximum possible cardinality of a spher-
ical code ¢ € ®g (S (n),v/2—-2s). For s < 0, the
value of Ag(n,s) is known exactly (see (11)—(13)) and
this is the case where we have found Theorem 31 to be
most useful; through Theorem 30 and one of the paths in
Figure 1, numerous upper bounds on A(n,d,w) were im-
proved. For s > 0, we have used Levenshtein’s upper
bound [40], which resulted in some additional improve-
ments for 7' (w1, n1, wa, na, d) at the expense of higher com-
plexity. However, these improvements did not propagate to
A(n,d,w) or T'(wi,n1,ws,ns,d), for n =nq +ns < 28.

VI. BOUNDS ON T(wl,nl,wg,n2,d)

Doubly-constant-weight codes were introduced by John-
son [37] and, independently, by Levenshtein [39] in the
early seventies. Both Johnson [37] and Levenshtein [39]
used these codes as a tool to obtain sharper bounds for
constant-weight codes, although the specific methods de-
rived in [37] and [39] differ from each other. Best, Brouwer,
MacWilliams, Odlyzko, and Sloane [8] gave a linear pro-
gramming bound for doubly-constant-weight codes. They
also applied this and other bounds for doubly-constant-
weight codes to sharpen the linear programming bound for
constant-weight codes (cf. Proposition 15).

In this section we list all known bounds on doubly-
constant-weight codes, including several new ones. An-
other useful bound is given in Section III-B as Corollary 6.

A. Elementary Bounds

As for A(n,d,w) and T'(wy,n1,ws,ne,d), we begin the
exposition of bounds for doubly-constant-weight codes with
some straightforward equalities, given without proof.

THEOREM 32.

T(wy,n1,wa,n2,d) = T(wz,ns,wi,ny,d)

T(w17n17w27n27 ) T(nl—wl,nl,w2,n2,d)
T(0,n1,wa,n2,d) = A(na,d,ws)
T(wi,n1,0,n2,d) = A(ni,d,w:)

T(w17n17w27n27

= () ()
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.o W2 w1
if — < —
UP) ny

T(w17n17w27n27 2’11}1 + 2’[1}2)

Il
o
HE
_

{@J ot
wa no ni
T(w17n17w27n27d+1)7

if d is odd
if d > 2wy + 2wy

T(w17n17w27n272w1 + 2’11}2) =

T(w17n17w27n27d) =

T(wlan17w23n27d) = 17

The first two equalities in Theorem 32 are the two basic
“reflection operations” for doubly-constant-weight codes.
Alternating these operations generates an eightfold sym-
metry in the 7' domain, and thereby partitions this do-
main into eight octants. Thus for all sets of parameters
(w1,n1,ws,n9,d), there exists another set that belongs to
a given octant and has the same 7T value. For the sake of
brevity, all the theorems in this section are given only for
parameters within the octant where n; < no, w1 < ny/2,
and wy < na/2.

ExXAMPLE 16. From Theorem 32, we have

T(11,11,11,16,10) = T(0,11,11,16,10) = A(16,10,11)
Recall that A(16,10,11) = 3, as was shown in Example5.

This example continues in Example 8. O

The following theorem consists of four inequalities, all
of which can potentially improve upon an upper bound for
doubly-constant-weight codes. Hence, all four inequalities
should be considered, even when the parameters are con-
fined to one octant only.

THEOREM 33.

T(wl,nl,w2,n2,d) < T'(wl,nl,wQ,ng,d) (130)

T(wl,nl,w2,n2,d) < T'(m — wl,nl,wg,ng,d) (131)

T(wy,ny,wa,n2,d) < T'(w1,n1,ns — wa,na,d) (132)
T(wl,nl,w2,n2,d) < T'(nl—wl,nl,n2—w2,n2,d)

(133)

Proof: A (wy,n1,w2,n2) C A (wy,ny,ws,ne). |

EXAMPLE 17. We have

T(10,11,10,16,10) < 77(1,11,10,16,10) < 13
where the last inequality comes from Example13. This
example continues in Example 8. |

EXAMPLE 18. Combining (130) with (110) yields

T(wi,n1,w2,n2,d) < A(n1 +n2, d, w1 +ws)

Of course, this is also immediately clear from the defini-
tion of T'(wy,n,ws,ne,d). This trivial bound, which was
known to Levenshtein [39] in 1971, nevertheless updates
some of the best known specific upper bounds for doubly-
constant-weight codes. For example, T'(2,6,5,15,10) < 13,
an improvement from 15 in [8]. O
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In analogy with (111), the inequalities in Theorem 33
can be improved upon in some cases, which is our next
theorem.

THEOREM 34.

T('LU1,TL1,'LU2,TL2,26)
< T'(wy,n1,ws,n2,2min{d, wy,ns —wz}) — 1 (134)
T(w17n17w27n2725)

<T'(ny — wy,n1,w2,ns,2min{d, ny — wy,ny — wy})

—1 (135)
T(w17n13w27n2726)
< T'(w1,n1,n2 — wa,na, 2min{d, w,w2}) — 1 (136)

T(w17n13w27n2726)
<T'(ny —wy,n1,n2 — w2,ns, 2min{d, ny — wy, ws})
-1 (137)

Proof: Consider a code € € ®( (w1, n1,ws,ns),20)
and define ' < % U {c'}, where

¢ =(0,...,0,1,...,1). (138)
——— ——

ny +ng —w; —ws  witws

There are two cases, depending on whether w; + wy < n2
or not. It is easily verified that €' € ' (w1, n1, w2, n2) in
both cases. The minimum distance of ¢” is given by (112),
where

d(e,c') > 2w, if wy + ws < Ny (139)
d(C,CI) > 2ny — 2wo, if wy +ws = no (140)

or, equivalently,
d(e,c') > 2min{w;,ny — wsy} (141)

for all ¢ € €', which completes the proof of (134). The
bounds (135)—(137) follow from repeated application of the
first two equalities in Theorem 32. |

The following theorem is due to Levenshtein [39]. Note
that the right-hand sides are independent of n; and no,
respectively.

THEOREM 35.

A(’ng,d — 2’[1)1,11)2),
A(nlad - 2’11}2,11}1),

if d > 2w,
if d > 2w»

T'(wi,n1,w2,n2,d) <
T'(wi,n1,w2,n2,d) <

The following bounds, analogous to Theorems 9 and 28,
were first given by Johnson [37].

THEOREM 36.

T(wy,ni,ws,n2,d) < {ET(UH —-1,ng — 1,w2,n2,d)J )

w1

ifw, >0 (142)

17

T(w17n17w27n27d) g n T(w17n1 - 17w27n27d)J ’
L1 — w1
ifw < ny (143)
T(w17n17w27n27d) g ET(wlanla’IU?_l)n?_l)d)J ’
L W2
ifwy >0 (144)
T'(wr,n1,ws,n2,d) < o T(wy,n1,wa, 2 — Ld)J )
L2 — W2

if wy < N2 (145)

REMARK. Bounds analogous to (142) and (145) do not
exists for doubly-bounded-weight codes, since the number
of ones in the heads and the number of zeros in the tails
are not lower-bounded in this case.

B. Linear Programming

A distance distribution can be defined for doubly-
constant-weight codes, whose components are indexed by
two variables. We refer the reader to [8] for more details.
Based on this distribution, the following linear program-
ming bound was given in [8].

THEOREM 37.

T(w17n17w27n2726) <

wi;  ws
1+ |max Z Z Agi,gj

1=ig j=jo

where ip = max{0,0 — w2} and jo = max{0,6 — i}. The
set of optimization variables consists of all As;»; for which
0<i<w, 0<j < wy, and i+ j > 0, while the maxi-
mization is carried out over all sets of these variables that
satisfy As;oj > 0 and Proposition 38.

The main set of constraints for this linear programming
bound is given by the following proposition [8].

ProrosiTION38. For all k=0,... ,wy and for all
= 0, e, Wa,
w1 w2
ZQ(kaianlawl) Z a(l, jyn2, w2)Asin; > —1
i=ig Jj=jo

where q is defined by (56) and ig, jo are as in Theorem 37.

C. Specific Bounds

To the best of our knowledge, the only specific upper
bound for doubly-constant-weight codes has been reported
in [31], namely T'(1,6,6,15,10) < 7. This was later identi-
fied as a typographical error in [17].

D. Redundant Bounds

We now list bounds on doubly-constant-weight codes
that were evaluated but did not yield any competitive val-
ues within the studied range of parameters.

The bounds [39, eq.(8)] and [37, eq.(19)], which despite
disparate notation are completely equivalent, are inferior
to Corollary 6. The bounds [39, eq.(11)] and [37, eq.(20)]
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TABLE VI
BounDs ON A(n, 14, w)

n w

8 9 10 11 12 13 14
16 25
17 25

22 35 glo 45 45
23 35 310 410 410

24 310 410 510 65 610

25 310 55 610 710 810

26 || 4° 65 85 10° 135 145

27 || 410 610 95 1310 19 — 2010 275

28 || 410 75 1110 215 285 285 547

are also equivalent to each other, and they are precisely
what one gets by combining Theorems 29 and 33.

Theorem 3 is a strong bound, but only when s < 0. This
special case is Corollary 6. When s > 0, Theorem 3 can be
evaluated using the bound of Levenshtein [40] for A(n, s).
This, however, does not improve upon the values obtained
through Theorems 32-37 within the studied range of pa-
rameters.

VII. THE TABLES

This section contains tables of the best known bounds
on A(n,d,w), which were obtained using the results pre-
sented in this paper. The authors would appreciate hear-
ing of any improvements to the tables. To conserve space,
our tables of upper bounds for T'(wi,ni,ws,n2,d) and
T(wy,n1,ws,ne,d) are published electronically only [3].
On the same web site [3], we will also keep record of any
updates or corrections that are brought to our attention.

Most of the theorems in this paper yield upper
bounds that depend on A(n,d,w), T'(wy,n1,ws,na,d), or
T (w1,n1,ws,ns,d). However, these entities are in general
not known exactly. This problem is easily overcome by
substituting any upper bound for the exact value. This
strategy of obtaining upper bounds based on other bounds
yields a complicated pattern of dependencies, as shown in
Figure 1. To provide each theorem with the best possible
input, the loops in this figure were evaluated iteratively
until a steady state was reached.

The tables also reference the number of the theorem
from which each bound was obtained. Although, in many
cases, the same bound can be obtained using more than one
method, we mention only one method for each bound. In
this regard, we have given precedence to universal methods
(as opposed to methods applicable to certain parameters
only), to analytical methods (as opposed to computerized
search methods), and to relatively simple methods. We
have also tried to keep the total number of methods used
in the production of the tables at a minimum.

Tables I-VI give upper and lower bounds on A(n,d,w)
for all n < 28 and all even d < 14. For each n and d, w
ranges from d/2+1to [n/2]. The values of A(n,d, w) for w
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outside this interval or for odd d are given by Theorem 8.
Finally, for n < 28 and d = 16 or 18, exact values of
A(n,d,w) are given in [17].

All the lower bounds in Tables I-VI are taken from
http://wuw.research.att.com/"njas/codes/Andw/ —
an updated and extended version of [17]. Boldface indi-
cates updates to the upper bounds in the tables of [34]
and http://www.research.att.com/ ™ njas/codes/Andw/.
Those tables cover n < 24 for d < 10 and n < 27 ford = 12.
Superscripts refer to theorem numbers in this paper.

One can conclude that most progress since similar tables
were last published has been made for d > 8. Out of the 23
unresolved instances for d = 8 in [17,34], 14 have now been
updated. For d = 10, 10 out of 18 instances are updated,
of which 2 are settled exactly. The corresponding numbers
for d = 12 and d = 14 are, respectively, 6 out of 13 with
3 exact values and 3 out of 3 with 2 exact values.

APPENDIX A
ERRATA IN EARLIER WORK

As pointed out in [37], there exist errors in some of the
published literature on constant-weight codes. Thus John-
son [37] provides a list of known errata. A similar but more
extensive list, covering more recent literature, was included
in [17]. In this section, we supplement these two lists with
many newly discovered errata, and also comment on some
of the known ones. We do not, however, list all errata
previously reported.

The bounds A(9,4) < 20, A(10,4) < 39, A(11,4) < 82,
and A(12,4) < 154, which were claimed by Wax [55], can-
not be obtained by the methods proposed in [55]. This was
proved in [8]. In fact, no useful contributions remain today
from the Wax [55] bound.

Johnson [35] claimed without proof that A(15,6) < 127,
A(16,6) < 248, A(14,6,5) < 27, and A(16,6,5) < 40. These
are incorrect, as these bounds do not agree with the exact
values that are well known today [42, pp.674,686].

The following corrections relate to the well-known paper
of Best, Brouwer, MacWilliams, Odlyzko, and Sloane [8].
In [8, legend of Table ITA], “¢ From Theorem 9 ... ” and
“f From Theorem 6 ... ” should both be replaced by a ref-
erence to the unnamed theorem immediately before [8, Sec-
tionIV-A]. In the legend to the same Table ITA of [8], the
reference “? See [31], [34]” does not apply for A(12,6,5) and
A(13,6,5); see Example3 and Theorem 21 in the present
paper. To quote [17], all the linear programming bounds
for d = 10 in [8, TableIID] should “be regarded with sus-
picion” until further checks are made. Our checks and
Honkala’s [34] toghether verify all of these bounds. There
are three more errors in [8, TableITI], in addition to the five
errors reported in [17]. The bounds 7'(2,5,7,16,10) < 30
and T'(3,6,7,16,10) < 60 originate from the known error
T(2,4,7,16,10) < 18, which was corrected in [17]. Our
best upper bounds in these cases are T'(2,5,7,16,10) < 31
and T'(3,6,7,16,10) < 62. In [8, TableIIIC], the value of
T(3,8,3,7,10) should be 3, not 2. Also, in the last two
lines of [8, p.85], “B;” should be “A;”, while “/\(’;’)” in [8,
Theorem 20] should be “A(%)”.
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TABLE I
BounDs ON A(n,4,w)

19

n w
3 4 5 6 7 8 9

6 45

7 75

8 85 145

9 129 18°
10 139 30° 367
11 179 359 669
12 209 519 80 — 84° 1329
13 269 659 123 — 132° 166 — 182°
14 289 91° 169 — 1829 278 — 3089 325 — 3649
15 359 1059 237 — 27113 389 — 4559 585 — 6602
16 379 140° 315 — 3369 615 — 722° 836 — 1040° 1170 — 13207
17 || 44° 156 — 157° 441 — 4769 854 — 9529 1416 — 1753° 1770 — 22107
18 48° 1989 518 — 5659 1260 — 14289 2041 — 2448° 3186 — 3944° 3540 — 44209
19 579 2289 692 — 7529 1620 — 17899 3172 — 38769 4667 — 58149 6726 — 83269
20 609 2859 874 — 9129 2304 — 25069 4213 — 51119 7730 — 96909 10039 — 129209
21 709 3159 1071 — 11979 2856 — 31929 6156 — 75189 10753 — 13416° 16897 — 226109
22 739 3859 1386° 3927 — 43899 8252 — 10032° 16430 — 20674° 25570 — 32794°
23 839 418 —419° 17719 53139 11638 — 14421° 23276 — 288429 40786 — 528339
24 889 4989 1895 — 20119 70849 15656 — 182167 34914 — 43263° 59387 — 76912°
25 || 1009 5509 2334 — 2490° 7772 — 83799 21106 — 25300° 46872 — 56925° 88748 — 1201757
26 || 1049 6509 2670 — 2860° 10010 — 10790° 26920 — 31122° 65364 — 82225° 128050 — 164450°
27 || 1179 7029 3276 — 3510° 12012 — 12870° 35510 — 41618° 87709 — 105036° 186058 — 246675°
28 || 1219 8199 3718 — 3931° 15288 — 16380° 44747 — 51480° 121403 — 145663° 260224 — 326778°
n w

10 11 12 13 14

20 13452 — 16652°
21 20188 — 27132°
22 36381 — 497429 39688 — 542647

23 57436 — 75426° 73794 — 1040067

24 96496 — 1267999 116937 — 164565 146552 — 2080127

25 || 140605 — 192280° 196449 — 288179° 228901 — 3428437

26 || 218905 — 312455° 315700 — 454480° 398381 — 6243877 425950 — 6856867

27 || 330347 — 444015° 510571 — 7669357 675262 — 1022580° 778872 — 1296803°

28 || 502068 — 690690° 806303 — 1130220° 1154541 — 1789515° 1400118 — 2202480° 1520224 — 25936067

In [42, p. 689], the values of A(16,10,7) and A(16,10,9)
should be 4, not 3. The linear programming bounds for
d = 10 are as unreliable in [42] as in [8]; see above.

The foregoing comments on [42] apply to [31] as well.
In addition, “[13, (29)]” in [31, p.40, line 32] should be
“[13, (27)]” and “[5, TableIITA]” three lines later should
be “[3, TableIITA]”.

In [17, TableIll], “A(23,10,7) = 217 should be
“A(23,10,7) = 20” and the corresponding entries in [17,
TablesI-D and XVI] should give 20 as an exact value
[49]. The value A(21,10,8) = 21 in [17, TableI-D] is
not explained in [17, TableIII]. It appears possible that
[17, TableI-D] was wrong in stating that the value for
A(21,10,8) was exact rather than a lower bound [49].
Also, T(2,4,7,16,10) > 19 [17, p. 1359, line 11] should
be T(2,4,7,16,10) < 19 and “line 3” [17, p. 1360, line 13]
should be “line 23”.

Finally, in [1, eq.(3)], “<” should be “>".

As demonstrated by this list of errata, and by the lists
in [37] and [17], it is very difficult to collect a large number
of bounds without introducing some errors. We would wel-
come reports of any corrections and updates to this work.

APPENDIX B
PRrROOF OF THEOREM 31

In this appendix, we prove the bound on the cardinality
of zonal codes given as Theorem 31 in Section V-C. We dis-
tinguish between two cases: vy < 7/2 and yg = 7 /2. Up-
per bounds for these two cases will be derived separately in
Lemmas 43 and 44, respectively. These two lemmas, along
with the lower bound of Lemma45, yield Theorem 31.

Throughout this appendix, s denotes the maximum co-
sine between points of a zonal code, as defined in (10).
Thus -1 < s < 1.

We will make use of the function f(-) and the angle ¢,
defined as follows. For any —7/2 < o, 8 < /2

def S —sinasinf

= 146
o) 2oy (146)
and for any v, € (0,7/2) the angle?
t
o] L 1, — 2 arctan seoton (147)

2We intentionally avoid the inverse cotangent, since there is no
uniform agreement on the definition of arccot « for z < 0.
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TABLE II

BounDs ON A(n,6,w)
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n w
4 5 6 7 8 9

8 210

9 35
10 55 6°
11 65 115
12 95 125 22°
13 135 1821 269
14 145 2820 4920 4271
15 155 429 7020 69 — 78°
16 209 48° 1129 109 — 1389 120 — 15020
17 || 202! 689 112 — 136° 166 — 234° 184 — 28320
18 229 69 — 729 132 — 20213 243 — 3499 260 — 42820 304 — 42570
19 || 252! 76 — 83° 172 — 228° 338 — 52020 408 — 73414 504 — 78920
20 309 84 — 100° 232 — 2769 462 — 651° 588 — 110714 832 — 136320
21 319 108 — 1269 269 — 3509 570 — 8289 774 — 169514 1184 — 236420
22 || 37° 132 — 136° 319 — 462° 759 — 1100° 1139 — 22779 1792 — 377520
23 || 40° 147 — 170° 399 — 521° 969 — 15189 1436 — 31629 2271 — 58199
24 429 168 — 192° 532 — 680° 1368 — 17867 1882 — 45549 3041 — 8432°
25 509 2109 700 — 800° 1900 — 2428° 2590 — 55819 4127 — 12620
26 || 52° 2609 9109 2600 — 2971° 3532 — 7891° 5703 — 16122°
27 || 54° 260 — 2807 1170° 35109 4786 — 10027° 7727 — 23673°
28 639 280 — 302° 1170 — 1306° 46809 6315 — 12285° 10313 — 31195°

n w

10 11 12 13 14

20 944 — 142170
21 1454 — 270220
22 2182 — 441620 2636 — 506470
23 2970 — 752120 3585 — 795320
24 4200 — 1218614 5267 — 14682° 5616 — 159062V
25 6036 — 1903714 7960 — 2463020 9031 — 305877
26 8695 — 2889314 12037 — 42081320 14836 — 5020420 15977 — 61174°
27 12368 — 435297 18096 — 6607920 23879 — 8457420 27553 — 9108020
28 || 17447 —637561% 20484 — 10423120 40188 — 14211714 49462 — 16422020 52995 — 16974077

The angle v was already defined in (128) of Theorem 31.
Here, we point out that this definition is motivated by the
following property. As will be shown in Lemma 42, for v
as defined in (128) and (147), we have

f(s,v0,70) = f(s,71,76)

Also note that as s decreases from 1 to sin-yz, the angle
v¢ increases monotonically from 7y, to w/2. The following
lemma gives some important bounds on v¢g.

LEMMA 39. If's < sin+yr, then vg > vy +arccoss > /2.
If s = sin~yy, then yg = 7y, + arccoss = 7/2. If s > sin~yy,
then v < 7y, + arccoss < m/2.

Proof: Follows by rewriting (147) as

tan arcsin s

N arccos(—s))

Yo = 7r+'yL—Qarctan< .
tan yr, 2

|

The next three lemmas will be proved independently of

each other, and then combined in Lemma43. The main

idea of the following lemma is that the “latitudes” of points

in a zonal code are bounded by a function of vz and s,
rather than by vy, providing s is within a certain range.

LEMMA 40. If —yg < vy < v < /2, then

Az(n,s,vr,ya) = Az(n,s,yr, ™ — 1, — arccoss),
if —cos2vyr <5< —cos(vr +vH)
(148)
Az(n,s,yr,ya) = 1, ifs < —cos2yyg (149)

Proof: Consider a zonal code € with |¢| > 2, and
let  and y be two arbitrary points in €. Now x, y, and
the north pole vector e form a spherical triangle with sides
arccosT - e, arccosy - e, and arccosz - y. The triangle
inequality for spherical triangles [46, p. 75] implies that

arccosx - e arccosx -y — arccosy - e

VoV

T
arccos s — (5 — 7L)
or, equivalently,

arcsine -e < 7 — 1y, — arccos s (150)

If s < —cos2yy, then (150) yields « - e < sin~yy, which is
a contradiction. Thus, in this case, ¥ cannot contain two
or more points, which proves (149). If s > — cos(yr + vm)
or if v, + vg < 0, then the inequality (150) is weaker than

r-e < sinyg (151)
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TABLE IIT
BouNDs ON A(n, 8,w)

n w
5 6 7 8 9 10
10 25
11 210
12 35 45
13 310 410
14 410 75 85
15 6° 10 15°
16 610 16° 165 30°
17 710 175 2421 349
18 910 219 33 — 39° 46 — 54° 48— 687
19 125 289 52 — 579 78 — 929 88 — 114°
20 16° 40° 809 130 — 142° 160 — 19520 176 — 228°
21 215 569 1209 2109 280 — 32020 336 — 39921
22 2121 779 176° 3309 280 — 49314 616 — 64120
23 235 77 — 809 2539 5069 400 — 79620 616 — 11092!
24 245 78 — 929 253 — 274° 7599 640 — 11434 960 — 163920
25 309 100° 254 — 3289 759 — 856° 829 — 1610'% 1248 — 244820
26 3021 130° 257 — 3719 760 —1066° 883 — 2160'* 1519 — 371920
27 || 31 —32° 130 —135% 278 —500° 766 —1252° 970 — 2914!* 1597 — 526020
28 339 130 — 1499 296 — 540° 833 — 1750° 1107 — 3895° 1820 — 736820
n w
11 12 13 14
22 672 — 76620
23 1288 — 132820
24 1288 — 218820 257620
25 1662 — 357520 2576 — 416920
26 1988 — 531520 3070 — 683420 3588 — 716477
27 2295 — 783720 3335 — 1054720 4094 — 1199120
28 || 2756 — 1193914 4916 — 1729920 4805 — 2173920 6090 — 2326820
TABLE IV
BouNDs ON A(n, 10,w)
n w
6 7 8 9 10
12 25
13 25
14 210 210
15 35 35
16 310 45 410
17 310 55 6°
18 410 65 95 10°
19 410 85 1210 195
20 510 1010 1721 205 385
21 75 1311 215 27 — 359 38 — 429
22 75 1621 24 — 339 35 — 519 46 — 7321
23 85 2021 33 — 46° 45 — 8120 54 — 117°
24 910 245 38 — 60° 56 — 11920 72 — 17120
25 || 1010 28 — 32° 48 — 759 72 — 15820 100 — 26220
26 135 28 — 36'* 54 —104° 91 — 21420 130 — 410°
27 || 1410 36— 48'% 66 —1219 118 — 29920 162 — 5779
28 || 1610 37 — 56° 78 — 1687 132 — 376° 210 — 82120
n w
11 12 13 14
22 46 — 8171
23 65 — 13520
24 95 — 22320 122 — 24720
25 125 — 38820 132 — 464°
26 168 — 58120 195 — 72820 210 — 86977
27 222 — 90020 351 — 128920 405 — 146020
28 || 286 — 143420 365 — 198120 756 — 243820 790 — 2629%°

21
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TABLE V

BounDs oN A(n,12,w)

n w
7 8 9 10 11 12 13 14

14 25

15 25

16 25 210

17 210 210

18 35 35 47

19 || 3° 310 45
20 || 310 55 55 6°
21 || 310 55 75 75
22 45 6° 85 11% 12°
23 || 410 ¢l0 1010 1610 23%
24 || 410 95 165 245 245 46°
25 || 510 105 255 28 — 3820 36 — 42° 50°
26 || 50 13% 26° 33 — 4820 39 — 6921 54 — 8321 58 — 9271
27 || 60 1510 399 39 — 6521 54 — 1002 82 —140%0 86 — 15620
28 || 85 191 39 —4520 499920 65 —-149%0 84— 19920 99 — 24520 172 — 2657

which follows directly from the definition of a zonal code.
On the other hand, for v, > —vg and for s in the range
specified in (148), the bound (150) is stronger than (151),
which completes the proof of the lemma. |

The main idea of the following lemma is the construction
of spherical codes from zonal codes. This makes it possible
to use bounds for spherical codes in the case of zonal codes.

LEMMA 41. For all —7/2 < v, < yg < 7/2 and for s in
the range — cos 2y, < s < cos(yg — Y1), we have

AZ(nasa’YLa’YH) <AS (n_17 f(Saaaﬁ)>

max
YL La,B<YH

Proof: Let € = {x1,2,... ,xrp} be azonal code, and
let e be its north pole vector. For i = 1,2,..., M, we let
v; = arcsin x; - e denote the “latitudes” of the points of €.
Consider the code s = {yy,Y,,- ..,y }, Where

y, % TiZ e (152)
CO87;

fori =1,2,...,M. It is easy to verify that ||y,|| = 1 and

y; - e = 0 for all i. Furthermore y, -y; = f(x; - x;,7i,V;)

for all distinct 1 < 4,5 < M. Hence, %5 is a spherical code

in n — 1 dimensions with a maximum cosine given by
maxy, -y; = max f(z; x;,%,7;)
i#j i#]

f(s7a7/8)

< max
Yo <o,8<vH

The constraints on s in the statement of the lemma ensure
that —1 < max f(s,a, ) < 1. [ |

The next lemma is concerned with the maximization of
the function f(-) defined in (146).

LEMMA 42. For all 0 < v < yg < /2, we have

max f(saaaﬂ) = f(sa’YLa’YL)a If’YH < VG
YL <o, B<YH
max f(S,Oé,ﬁ) = f(sa'yLa'YH): if'yH Z G

YL La,B<YH

Proof: Regard f(s,a,f) as a function of «, keeping
s and 3 fixed. Since df /da is well-defined, the maximum

occurs either at an endpoint of the interval v, < a < vy or
at an interior point « for which df /da = 0 and d*f /da® <
0. By differentiating f(s, a, 8) twice with respect to o and
observing that 0 < 8 < 7/2, it is straightforward to verify
that the maximum does not occur at an interior point.
Hence, f(s,a,3) is maximum for either @« =y, or & = yp.
The same argument proves that the maximum occurs for
B = or B =yg. Thus the function f(s,a, ) attains its
global maximum at one of the four corners of the feasibility
region 77, < «, 8 < vg in the (a, 8)-plane.

Since f(s,a,3) is a symmetric function of o and 8, we
have f(s,vm,vr) = f(s,75,vm)- Also, it is obvious that
f(s,vm,vm) < f(s,7p,7e) for all 0 < yp < ym < /2.
Thus it remains to compare f(s,vr,vr) and f(s,vL, V).
We factorize the difference. Omitting the tedious details,
the result can be written as

1 —cos(yw — L)
COS YL COSYH
T—YH+7L S)

f(ssve,vn) = f(s,ve, ) =

: ((1 — s) tan -y, tan 5

This expression is positive if and only if the last factor is
positive. The lemma now follows directly from the defini-
tion of y¢ in (147). [ ]

REMARK. It follows from Lemma 39 that f(s,vr,vL) >
f(s,ve,vm) for all vy < 7/2 whenever s < sin~yy,.

The next lemma combines Lemmas 4042 to summarize
the bounds that hold for yg < 7/2. There is an intentional
overlap between some of the cases in the lemma.

LEMMA43. If 0 < v, < v < 7/2, then

Az(n, 8,70, YH)
< Az(n,s,v6,vm) + As(n — 1, f(s,vL,71)),
if yu > va
As(n =1, f(s, 7L, vH)),

if s < cos(yg — 1) and yg > va
(154)

(153)
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As(n_laf(sa’YLa’yL))a
if s > —cos2yp and vyg < Yo

Az(n,s,vr,ya) = 1, ifs < —cos2yr,.
Proof: The bounds (154)—(155) follow from Lemmas
41-42. Note that v¢ < vm < 7/2 implies that s > sin~yy,
in view of Lemma 39. This, in turn, is a stronger condition
than s > — cos2yy,. Hence, the constraint s > — cos2vp,
in Lemma41 would be redundant in (154). Similarly, the
constraint s < cos(yg — ) in Lemma41 would be redun-
dant in (155). This is so because if s > cos(yy — v1,) and
Yo < 7Ya, then s > sinvyy, and s > cos(ya — 1), which
contradicts Lemma 39. The inequality (153) follows from

AZ(na 37’7L77G') + AZ(na 5770771[1)
(157)

AZ(n,S,')/L,’YH) <

if vy > ~vg, where the first term can be bounded using
(155). Finally, (156) follows directly from Lemma40. M
The next lemma gives upper bounds for v = 7/2.

LEMMA44. If 0 < v, < 7/2, then

Az(n,s,vL,m/2)
< AZ(naga'vaﬂ-/Q) + As(’n - 1af(55')/L7'YL));

if s > sinyg (158)
Az(n,s,vr,7/2) < As(n — 1, f(s,vL,7L)),

if —cos2y, < s <sinyg (159)
Az(n,s,vr,m/2) =1, if s < —cos2vyr. (160)

Proof: The bound (158) follows, if s > sin~y, from
(157) and (155). If s = sinyg, then for any v such that
T4 +yL/2 <y <7/2,

AZ(n7577L77T/2) < Az(n,s,’)/,ﬂ'/Q) + AZ(nasa’YLa’Y)

and (158) follows by applying (149) and (155), respectively,
to the two terms. To prove (159) and (160), we observe that
if s < sinyr, then

T — g —arccoss < w/2 < g

Letting yg = m/2 in Lemma 40 and using (155) to bound
Az(n,s,yL,m™ — v, — arccos s) completes the proof. [ |

The last component in the proof of Theorem 31 is a lower
bound, given in the next lemma. This lemma is the coun-
terpart to Lemma41: we now reverse the mapping in (152)
to construct zonal codes from spherical codes.

LEMMA 45. For all —m/2 < v, < yg < m/2 and all s in
the range s > — cos 27y, we have

Az(n,s,vr,vm) = As(n—1, f(s,vr,71))

Proof: Let s be a spherical code with maximum
cosine s' in an (n — 1)-dimensional subspace of R™. Let
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e € R” be a unit vector orthogonal to this subspace. For
any given v, we construct the code

¢ f y € €5}
It is easy to verify that ||z|| = 1 and x - e = sin~y;, for all

x € %. Furthermore x1 - x> < s for all distinct @1, x5 € ¥,
where

{ycosvyr +esinyy,

s = s'cos®yr, + sin?

or, equivalently, s' = f(s,yr,7vs). Hence € is a zonal code
and AZ(nasa’YLa’YH) 2‘45(”_17‘9’)‘ u
Theorem 31 now follows by combining Lemmas 43—45.
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