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Strong Converse and Stein’s Lemma

in the Quantum Hypothesis Testing

Tomohiro Ogawa and Hiroshi Nagaoka∗

Abstract

The hypothesis testing problem of two quantum states is treated. We show
a new inequality between the error of the first kind and the second kind, which
complements the result of Hiai and Petz to establish the quantum version of Stein’s
lemma. The inequality is also used to show a bound on the first kind error when the
power exponent for the second kind error exceeds the quantum relative entropy, and
the bound yields the strong converse in the quantum hypothesis testing. Finally,
we discuss the relation between the bound and the power exponent derived by Han
and Kobayashi in the classical hypothesis testing.
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1 Introduction

Let H be a Hilbert space which represents a physical system in interest. We suppose
dimH < ∞ for mathematical simplicity. Let B(H) be the set of linear operators on H
and put

S(H)
def
= {ρ ∈ B(H) | ρ = ρ∗ ≥ 0,Tr ρ = 1},

which is the set of density operators on H.
We treat the problem of hypothesis testing a null hypothesis ρ ∈ S(H) versus an al-

ternative hypothesis σ ∈ S(H). Here, we assume Im ρ ⊂ Im σ. To consider an asymptotic
situation, suppose that either ρ⊗n ∈ S(H⊗n) or σ⊗n ∈ S(H⊗n) is given. The problem is
to decide which hypothesis is true, and the decision is given by a two-valued quantum
measurement {An, 1− An} (An ∈ B(H⊗n), 0 ≤ An ≤ 1), where An corresponds to the ac-
ceptance of ρ⊗n and 1−An corresponds to the acceptance of σ⊗n. We call An ∈ B(H⊗n)
(0 ≤ An ≤ 1) a test in the sequel.

∗The authors are with the Graduate School of Information Systems, University of Electro-
Communications, 1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan. (E-mail: ogawa@hn.is.uec.ac.jp,
nagaoka@is.uec.ac.jp)
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For a test An, define the error probability of the first kind and the second kind by

αn(An)
def
= Tr ρ⊗n(1−An),

βn(An)
def
= Tr σ⊗nAn,

respectively. We see that αn(An) is the error probability of the acceptance of σ⊗n when
ρ⊗n is true and βn(An) is the error probability of the converse situation. Since we can not
have αn(An) and βn(An) arbitrarily small simultaneously, we will make βn(An) as small
as possible under the constraint αn(An) ≤ ε. In other words, the problem is to examine
the asymptotic behavior of the following quantity:

β∗
n(ε)

def
= min{βn(An) |An ∈ B(H⊗n), 0 ≤ An ≤ I, αn(An) ≤ ε}.

Concerning β∗
n(ε), Hiai and Petz [1] showed

lim sup
n→∞

1

n
log β∗

n(ε) ≤ −D(ρ||σ), (1)

and

−
1

1− ε
D(ρ||σ) ≤ lim inf

n→∞

1

n
log β∗

n(ε), (2)

where

D(ρ||σ)
def
= Tr ρ(log ρ− log σ),

is the quantum relative entropy. As for (2), they used the monotonicity of the quantum
relative entropy [2, 3] as follows:

D(ρ⊗n||σ⊗n)

≥ αn(An) log
αn(An)

1− βn(An)
+ (1− αn(An)) log

1− αn(An)

βn(An)

= −h(αn(An))− αn(An) log(1− βn(An))− (1− αn(An)) log βn(An)

≥ − log 2− (1− αn(An)) log βn(An),

where h(x) is the binary entropy. Thus it holds that

(1− αn(An))
1

n
log βn(An) ≥ −

log 2

n
−D(ρ||σ), (3)

which immediately yields (2). Note that (3) also leads the weak converse property, which
means that if βn(An) ≤ e−nr (r > D(ρ||σ)) then αn(An) does not go to zero as n→ ∞.

In this paper, we will show a fundamental inequality, which complements (1) by Hiai
and Petz to show the quantum version of Stein’s lemma (see e.g. [4], p.115). We will also
show a bound on 1− αn(An) under the exponential-type constraint βn(An) ≤ e−nr. The
bound leads to the strong converse property [5, 6] in the quantum hypothesis testing, i.e.,
if βn(An) ≤ e−nr (r > D(ρ||σ)) then αn(An) goes to one as n → ∞. Finally, we discuss
the relation with the result of Han and Kobayashi [6] in the classical hypothesis testing.
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2 A Fundamental Bound on the Error Probabilities

In this section, we show a fundamental inequality between the error probabilities of the
first kind and the second kind.

Let λ be a real number and

ρ⊗n − enλσ⊗n =
∑

j

µn,jEn,j, (4)

be the spectral decomposition. Define a test Xn,λ by

Xn,λ
def
=

∑

j∈Dn

En,j,

where Dn = {j |µn,j ≥ 0}. Then, the following lemma holds, which corresponds to the
quantum version of the Neyman-Pearson lemma (see [7], p.108).

Lemma 1 For any test An, we have

Tr (ρ⊗n − enλσ⊗n)Xn,λ ≥ Tr (ρ⊗n − enλσ⊗n)An. (5)

Proof:

Tr (ρ⊗n − enλσ⊗n)An =
∑

j

µn,jTrEn,jAn

≤
∑

j∈Dn

µn,jTrEn,jAn

≤
∑

j∈Dn

µn,jTrEn,j

= Tr (ρ⊗n − enλσ⊗n)Xn,λ.

Theorem 1 For any test An and any λ ∈ R, we have

1− αn(An) ≤ e−nϕ(λ) + enλβn(An), (6)

where

ϕ(λ)
def
= max

0≤s≤1
{λs− ψ(s)}, (7)

ψ(s)
def
= log Tr ρ1+sσ−s. (8)

Here, note that ϕ(λ) is the Legendre transformation of a convex function ψ(s) (see
Fig. 1 and 2). Putting A = log ρ− log σ − ψ′(s), the convexity of ψ(s) is verified as

ψ′(s) = e−ψ(s) Tr ρ1+sσ−s(log ρ− log σ),

ψ′′(s) = e−ψ(s) Tr ρ1+sAσ−sA

= e−ψ(s) Tr
(

ρ
1+s

2 Aσ− s

2

) (

ρ
1+s

2 Aσ− s

2

)∗

> 0.
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Observing that ψ(0) = 0 and ψ′(0) = D(ρ||σ), we can see that if λ > D(ρ||σ) then
ϕ(λ) > 0. It is important to note that for any λ satisfying D(ρ||σ) ≤ λ ≤ ψ′(1), we have

s∗ = argmax
0≤s≤1

{λs− ψ(s)} ⇐⇒ ψ′(s∗) = λ. (9)

Proof of Theorem 1: Define probability distributions pn = {pn,j} and qn = {qn,j} by

pn,j = Tr ρ⊗nEn,j , qn,j = Tr σ⊗nEn,j.

From (4), we have µn,jTrEn,j = pn,j − enλqn,j, and hence,

Dn = {j | 0 ≤ ∀s ≤ 1, e−nλspsn,jq
−s
n,j ≥ 1}.

Thus, we obtain

Tr ρ⊗nXn,λ =
∑

j∈Dn

Tr ρ⊗nEn,j

=
∑

j∈Dn

pn,j

≤
∑

j∈Dn

pn,j · e
−nλspsn,jq

−s
n,j

≤ e−nλs
∑

j

p1+sn,j q
−s
n,j

≤ e−nλsTr (ρ⊗n)1+s(σ⊗n)−s,

where we used the monotonicity of the quantum f -divergence [8] for an operator convex
function f(u) = u−s (0 ≤ s ≤ 1) (see e.g. [9], p.123). Therefore, we have

Tr ρ⊗nXn,λ ≤ exp [−n{λs− ψ(s)}] ,

and hence,

Tr ρ⊗nXn,λ ≤ e−nϕ(λ),

by taking the maximum. Now, from (5), the theorem is proved as follows:

1− αn(An) = Tr ρ⊗nAn

≤ Tr (ρ⊗n − enλσ⊗n)Xn,λ + enλTr σ⊗nAn

≤ Tr ρ⊗nXn,λ + enλTrσ⊗nAn

≤ e−nϕ(λ) + enλβn(An).

3 The Quantum Stein’s Lemma

Theorem 2 For any 0 ≤ ε < 1, it holds that

lim
n→∞

1

n
log β∗

n(ε) = −D(ρ||σ). (10)
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Proof: From (1) by Hiai and Petz, we have only to show that

lim inf
n→∞

1

n
log β∗

n(ε) ≥ −D(ρ||σ). (11)

Let An be an arbitrary test which satisfies αn(An) ≤ ε. From (6), we have

1− ε ≤ 1− αn(An) ≤ e−nϕ(λ) + enλβn(An),

and hence,

βn(An) ≥ e−nλ(1− ε− e−nϕ(λ)).

By taking the minimum, we obtain

β∗
n(ε) ≥ e−nλ(1− ε− e−nϕ(λ)). (12)

Now, let λ = D(ρ||σ) + δ (δ > 0), then ϕ(λ) > 0 and 1 − ε − e−nϕ(λ) > 0 for sufficiently
large n. Thus, (12) yields

1

n
log β∗

n(ε) ≥ −λ+
1

n
log(1− ε− e−nϕ(λ)),

and hence,

lim inf
n→∞

1

n
log β∗

n(ε) ≥ −D(ρ||σ)− δ.

Since δ > 0 is arbitrary, the theorem has been proved.

4 Strong Converse

Theorem 3 For any test An, if

lim sup
n→∞

1

n
log βn(An) ≤ −r, (13)

then

lim sup
n→∞

1

n
log(1− αn(An)) ≤ −ϕ(λ∗), (14)

where λ∗ is a real number which satisfies ϕ(λ∗) = r − λ∗. Moreover, ϕ(λ∗) is represented

as

ϕ(λ∗) = max
0≤s≤1

{

s

1 + s
r −

1

1 + s
ψ(s)

}

. (15)

Proof: For all δ > 0, there exists n0 such that

βn(An) ≤ e−n(r−δ), ∀n ≥ n0,
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from (13). Putting λ = λ∗ in (6), we have

1− αn(An) ≤ e−nϕ(λ
∗) + e−n(r−λ

∗−δ), ∀n ≥ n0,

and hence,

lim sup
n→∞

1

n
log(1− αn(An)) ≤ −ϕ(λ∗) + δ.

Since δ > 0 is arbitrary, (14) has been proved.
To show (15), suppose that ψ′(0) ≤ r ≤ 2ψ′(1) − ψ(1) firstly (see Fig. 2), and s∗

attains the maximum in the equation

u(r)
def
= ϕ(λ∗) = max

0≤s≤1
{sλ∗ − ψ(s)} = r − λ∗.

Then, taking (9) into account, u(r) is represented parametrically as

u(r) = s∗ψ′(s∗)− ψ(s∗), (16)

where, r = (s∗ + 1)ψ′(s∗)− ψ(s∗). (17)

By using (17) to eliminate ψ′(s∗) from (16), we have

u(r) =
s∗

s∗ + 1
r −

1

s∗ + 1
ψ(s∗).

On the other hand, let

g(s)
def
=

s

s+ 1
r −

1

s+ 1
ψ(s),

then we have

g′(s) =
1

(s+ 1)2
{r + ψ(s)− (1 + s)ψ′(s)} .

To examine the sign of g′(s), put h(s)
def
= r + ψ(s) − (1 + s)ψ′(s), and we have h′(s) =

−(1+ s)ψ′′(s) ≤ 0, which indicates that the sign of g′(s) changes at most once. Therefore
g(s) takes its maximum at s = ŝ if and only if

r + ψ(ŝ)− (1 + ŝ)ψ′(ŝ) = 0.

This is nothing but the condition (17), and hence, we obtain u(r) = max0≤s≤1 g(s).
In the other cases, it is clear that

ϕ(λ∗) =
1

2
r −

1

2
ψ(1) = g(1) = max

0≤s≤1
g(s), if r ≥ 2ψ′(1)− ψ(1),

and

ϕ(λ∗) = 0 = g(0) = max
0≤s≤1

g(s), if r ≤ ψ′(0).
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It should be noted that (15) corresponds to the representation which Blahut [5] derived,
in the classical hypothesis testing (i.e., when ρ and σ commute), concerning the power
exponent for αn(An) when r < D(ρ||σ). We can easily see that if r > D(ρ||σ) then
ϕ(λ∗) > 0 (see Fig. 2). Hence, the following corollary holds.

Corollary 1 For any test An, if

lim sup
n→∞

1

n
log βn(An) < −D(ρ||σ), (18)

then αn(An) goes to one exponentially.

5 Relation with the Classical Hypothesis Testing

In this section, we discuss the relation between ϕ(λ∗) and the power exponent derived by
Han and Kobayashi [6] in the classical hypothesis testing.

Let p and q be probability distributions on a finite set X , a null hypothesis and an

alternative hypothesis respectively. And define αn(An)
def
= pn(Ac

n) and βn(An)
def
= qn(An),

where pn and qn are the i.i.d. extensions of p and q, and An ⊂ X n is an acceptance region
of pn. Blahut [5] proved that if βn(An) ≤ e−nr (r > D(p||q)) then αn(An) tends to one as
n → ∞ for all An ⊂ X n. Although Blahut showed that 1 − αn(An) converges at one in
the polynomial order, Han and Kobayashi [6] proved a stronger result. Putting

α∗
n(r)

def
= min{αn(An) | An ⊂ X n, βn(An) ≤ e−nr},

they derived the power exponent for 1− α∗
n(r), namely, they proved

lim inf
n→∞

1

n
log(1− α∗

n(r)) = −ũ(r), (19)

where

ũ(r)
def
= min

p̂:D(p̂||q)≤r
{D(p̂||p) + r −D(p̂||q)} . (20)

As remarked in Han and Kobayashi [6], when r > D(p||q) is not so large, the minimum
of (20) is attained with equality, which we suppose here. Applying the method used in
Appendix, (20) is rewritten as

ũ(r) = max
s≥0







s

1 + s
r −

1

1 + s
log

∑

j∈X

p1+sj q−sj







. (21)

Moreover, when r > D(p||q) is sufficiently small, (21) yields

ũ(r) = max
0≤s≤1







s

1 + s
r −

1

1 + s
log

∑

j∈X

p1+sj q−sj







,

which corresponds to (15).
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It is interesting to observe that in the quantum case we have

min
ρ̂:D(ρ̂||σ)≤r

{D(ρ̂||ρ) + r −D(ρ̂||σ)} = max
s≥0

{

s

1 + s
r −

1

1 + s
ψ(s)

}

,

where we put

ψ(s) = logTr e(1+s) log ρ−s log σ.

By the Golden-Thompson inequality (see e.g. [9], p.261), we can see that ψ(s) ≥ ψ(s)
and the equality holds if and only if ρ and σ commute. Thus, we have

min
ρ̂:D(ρ̂||σ)≤r

{D(ρ̂||ρ) + r −D(ρ̂||σ)} ≥ ϕ(λ∗). (22)

6 Concluding Remarks

So far we have shown the fundamental inequality, and seen that the quantum Stein’s
lemma and the strong converse in the quantum hypothesis testing are obtained as appli-
cations of the inequality.

In the classical hypothesis testing, ũ(r) is shown to be the optimal exponent. However,
whether ϕ(λ∗) in the quantum hypothesis testing is optimal or not is left open.

Appendix

We show (21) for readers’ convenience. Here, we will derive (21) by the information
geometrical method (see e.g., [10]), although (21) can be shown by using the Lagrange
multiplier method as given in [5].

Suppose that r > D(p||q) is not so large that there exists a probability distribution of
the form:

p(s)j
def
= e−ψ̃(s)p1+sj q−sj , (j ∈ X , s > 0),

where, ψ̃(s)
def
= log

∑

j∈X

p1+sj q−sj ,

such that D(p(s)||q) = r. Note that

ψ̃′(s) = Ep(s)

[

log
p

q

]

def
= η(s),

ψ̃′′(s) = Ep(s)





(

log
p

q
− η(s)

)2


 > 0.

Firstly, we will show that for all probability distribution p̂ it holds that

D(p̂||q) = D(p(s)||q) =⇒ D(p̂||p) ≥ D(p(s)||p). (23)

To this end, suppose that there exists a probability distribution p̂ which satisfies D(p̂||q) =
D(p(s)||q) and

Ep(s)

[

log
p

q

]

< Ep̂

[

log
p

q

]

.
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Then, we have

D(p̂||q) = D(p̂||p(s)) +D(p(s)||q) +
∑

j∈X

(p̂j − p(s)j)(log p(s)j − log qj)

= D(p̂||p(s)) +D(p(s)||q) +
∑

j∈X

(p̂j − p(s)j)

(

(1 + s) log
pj

qj
− ψ̃(s)

)

= D(p̂||p(s)) +D(p(s)||q) + (1 + s)

(

Ep̂

[

log
p

q

]

− Ep(s)

[

log
p

q

])

> D(p(s)||q),

which contradicts with the assumption. Therefore, for all probability distribution with
D(p̂||q) = D(p(s)||q), we have

Ep(s)

[

log
p

q

]

≥ Ep̂

[

log
p

q

]

,

and hence, there exists t ≤ s such that

Ep(t)

[

log
p

q

]

= Ep̂

[

log
p

q

]

, (24)

since η(s) is continuous and monotone increasing. Now, from (24) and the Pythagorean
relation for the Kullback-Leibler divergence we have

D(p̂||q) = D(p̂||p(t)) +D(p(t)||q)

= D(p(s)||q). (25)

Using the Pythagorean relation one more times and from (25), (23) is proved as follows:

D(p̂||p)−D(p(s)||p) = D(p̂||p(t)) +D(p(t)||p)−D(p(s)||p)

= D(p(s)||q)−D(p(t)||q) +D(p(t)||p)−D(p(s)||p)

= {D(p(s)||q)−D(p(s)||p)} − {D(p(t)||q)−D(p(t)||p)}

= η(s)− η(t)

≥ 0.

Now, taking (23) into account, (20) is represented as

ũ(r) = min
s:D(p(s)||q)≤r

{D(p(s)||p) + r −D(p(s)||q)}

= min
s:D(p(s)||q)≤r

{r − η(s)} . (26)

Here, we can see that d(s)
def
= D(p(s)||q) is a monotone increasing function of s, which is

verified by d′(s) = (1+ s)ψ̃′′(s) > 0. Thus, the minimum of (26) is attained with equality,
and ũ(r) is represented parametrically as

ũ(r) = D(p(s)||p) = s η(s)− ψ̃(s),

where, r = D(p(s)||q) = (1 + s)η(s)− ψ̃(s).

This representation corresponds to (16) (17) and we obtain (21) by following the same
procedure as the proof of Theorem 3.
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Figure 1: The graph of ψ(s)

11



r − λ

0
λ

r

D(ρ||σ)

ϕ(λ)

λ∗ ψ′(1)

ϕ(λ∗) = r − λ∗

D(ρ||σ) 2ψ′(1)− ψ(1)

2ψ′(1)− ψ(1)

Figure 2: The graph of ϕ(λ)
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