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Abstract—Dynamic resource allocation is an important means
to increase thesum capacityof fading multiple-access channels
(MACs). In this paper, we consider vector multiaccess channels
(channels where each user has multipledegrees of freedom) and
study the effect of power allocation as a function of the channel
state on the sum capacity(or spectral efficiency) defined as the
maximum sum of rates of users per unit degree of freedom at
which the users can jointly transmit reliably, in an informa-
tion-theoretic sense, assuming random directions of received
signal. Direct-sequence code-division multiple-access (DS-CDMA)
channels and MACs with multiple antennas at the receiver are two
systems that fall under the purview of our model. Our main result
is the identification of a simple dynamic power-allocation scheme
that is optimal in a large system, i.e., with a large number of users
and a correspondingly large number of degrees of freedom. A
key feature of this policy is that, for any user, it depends on the
instantaneous amplitude of channel state of that user alone and
the structure of the policy is “water-filling.” In the context of
DS-CDMA and in the special case of no fading, the asymptotically
optimal power policy of water-filling simplifies to constant power
allocation over all realizations of signature sequences; this result
verifies the conjecture made in [28]. We study the behavior of the
asymptotically optimal water-filling policy in various regimes of
number of users per unit degree of freedom and signal-to-noise
ratio (SNR). We also generalize this result tomultiple classes, i.e.,
the situation when users in different classes have different average
power constraints.

Index Terms—Code-division multiple access (CDMA), linear
minimum mean-square error (MMSE) receivers, multiple an-
tenna systems, power control, spectral efficiency, sum capacity,
water-filling.

I. INTRODUCTION

T HE focus of this paper is vector multiple-access channels
(MACs); these are multiple-access channels with multiple

degrees of freedom. Two common examples of such channels
are direct-sequence code-division multiple-access (DS-CDMA)
and a MAC with multiple antennas at the receiver. The number
of degrees of freedom in the DS-CDMA model is the processing
gain and in the antenna model it is the number of received an-
tennas at the receiver. Thesignal directionat the receiver of any
user in the CDMA model is its receivedspreading sequenceand
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in the antenna model it is the vector of path gains from the user
to the different antennas at the receiver. A central problem in this
vector multiple-access fading channel is how to carry out power
allocation to increase thespectral efficiencyof the channel. In
this paper, we assume that the signal directions of the users are
random (but known at both the transmitter and receiver) and
study power allocation policies that aim to maximize the rates at
which users can reliably communicate (in aninformation-theo-
retic sense). One fundamental performance measure of a MAC
issum capacity(equivalently, spectral efficiency), defined as the
maximum sum of rates of users per unit degree of freedom at
which the users can transmit reliably. Our focus in this paper
will be to identify simple power allocation policies that allow
users to communicate at rates (these are long-term rates aver-
aged over the fading process) such that the sum of rates is arbi-
trarily close to the Shannon limit.

Allocation of resources (power, bandwidth, bit rates) in the
context of specific multiple-access schemes such as time-divi-
sion multiple access (TDMA), frequency-division multiple ac-
cess (FDMA), and code-division multiple access (CDMA), with
the performance criterion typically being the signal-to-interfer-
ence (SIR) ratio of the users at the receiver, is studied in [5], [8],
[10], [29], [23]. In the context of information-theoretic power
control, existing literature focuses mainly on scalar channels.
For the single-user scenario, [7] identifies water-filling to be the
optimal power allocation as a function of the fading state. This
allocation maximizes the rate at which the user can communi-
cate reliably, the rate being averaged over the fading process. In
the multiuser scenario, [11] studies power allocation strategies
of the users as a function of the fading state to maximize the
sum of rates at which the users can jointly communicate. It is
shown there that the power policy that allows users to achieve
sum capacity has the property that only the user with the best
channel at any time transmits (if at all) with positive power and
the users themselves adopt a water-filling strategy with respect
to their fading states. This paper focuses on vector multiple-ac-
cess fading channels. Our main results can be summarized as
follows.

1) In the DS-CDMA model, we assume that the spreading
sequences of the users are random and each user expe-
riences independent frequency flat fading. We consider
both long and short signature sequence models: short
signature sequences get repeated every symbol interval
while many symbols are transmitted over one duration
of a long signature sequence. Our main result is the
identification of a simple power allocation policy that
is asymptotically optimal (the asymptotic is in the
regime of a large number of users and correspondingly
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large processing gain). This policy iswater-filling for
each user and depends solely on the amplitude of that
user’s instantaneous fading amplitude. We show that the
water-filling policy is asymptotically optimal for both
the long and the short signature sequence models.

2) In the multiantenna model, we assume independent fre-
quency flat fading from the users to the antenna array at
the receiver. The fading from any user to one of the an-
tennas can be considered to have two components: first,
a slowly varying component due to distance loss, shad-
owing effects, and geographical features and second, a
fast varying component due to constructive and destruc-
tive addition of the various multiple paths at the antenna.
Our main result is that a water-filling power policy that,
for any user, depends only the slow fading component of
the fading channel from that user to the antenna array is
asymptotically optimal (the asymptotic is in the number
of users and the correspondingly large number of an-
tennas at the receiver).

In the scenario when the slow fading component can be con-
sidered constant in the time scale of communication, the water-
filling policy simplifies to a constant power allocation policy
(this policy transmits a constant power regardless of the realiza-
tion of fast fading amplitudes of the users). Thus, asymptotically
there is no gain in having channel side information at the users.
In the multiple-antenna scenario, this result is in sharp contrast
from the point of view of the scalar MAC result in [11]. The
scalar multiple-access result shows that the gain in spectral ef-
ficiency by allowing side information of the channel states to
all the users [the optimal way to use this side information is to
allocate positive power only to the user with the best channel
(if at all)] is significantly higher than the spectral efficiency ob-
tained by not allowing any side information (and thus allocating
constant powers to the users at all fading states). From our re-
sults, we conclude that if there are sufficiently many degrees of
freedom (antennas in this case), the gain in spectral efficiency
by having side information at the transmitters vanishes.

In other related work on vector MACs, [16] and [30] study
the allocation of signature sequences to achieve sum capacity
in nonfading channels as a function of the average power con-
straints of the users. In [9], the authors study the sum capacity of
CDMA systems with random long signature sequences in non-
fading channels. In [28], the authors study the sum capacity of
CDMA systems with random long signature sequences for a
wide variety of receiver structures: optimal joint detection re-
ceivers, linear minimum mean-square error (MMSE) receivers,
matched filter receivers, and decorrelator receivers. They as-
sume that the users are received at the same power and the
channel has no fading. In the special case of constant flat fading
in the DS-CDMA long signature sequence model, our main re-
sult simplifies to constant power allocation over all realizations
of signature sequences and fading states; this verifies the con-
jecture made in [28]. The effect of frequency flat fading on the
spectral efficiency of DS-CDMA with random long signature
sequences and a wide variety of receiver structures is studied in
[19]. Recent results on information —theoretic power control
in nonergodic scalar fading channels are in [3]. A comprehen-

sive tutorial of information-theoretic study of fading channels is
given in [2].

In Section II, we outline the DS-CDMA fading-channel
model, formulate the problem, and precisely state our main re-
sults. In Section III, we heuristically derive the structure of the
optimal power allocation strategy and see that it is water-filling.
This section outlines the key ideas in the identification of
asymptotic optimality of the water-filling strategy and allows
the more casual reader to gain insight into our result without
entering the technicalities required for the formal proof. In
Section IV, we develop the mathematical machinery and some
preliminary results required for the proof of our main result. In
Section V, we first give the simpler proof for the no-fading case
and then give the formal proof in the general case of fading
channels. In Section VI, we study various regimes of number of
users and signal-to-noise ratio (SNR) and analyze the behavior
of the optimal policy in those regimes. We also discuss natural
extensions when there are differentclassesof users; users
in different classes have different average power constraints.
In Section VII, we demonstrate our results by simulating the
different power allocation strategies and plot the corresponding
sum capacities achieved for flat and Rayleigh fading channels
under a wide range of loading of users and SNR. In Section
VIII, we turn to the multiple-antenna model, the other example
of a vector MAC. We conclude the paper in Section IX with
some summarizing remarks and suggestions for future work.

II. M ODEL, PROBLEM FORMULATION, AND MAIN RESULTS

A. Model

We consider a single cell in a symbol synchronous CDMA
channel and focus on the uplink. There areusers in the system
and a single receiver. The processing gain isand represents
the number of degrees of freedom of the MAC. Throughout this
paper we assume that where is a fixed positive
number. This assumption simplifies the analysis and notation,
though only as along with some mild re-
strictions allows us to derive all the asymptotic results obtained
(asymptotic in ) in this paper. Following standard notation
(see [27, Sec. 2.1]), the baseband received signal in one symbol
interval can be expressed as

(1)

A word about our notation throughout this paper. We use lower
case letters for scalars, bold face lower case letters for vectors
(with components), and upper case for matrices. The super-
script tilde on the channel fading statesand indicates the
quantity is from the complex field. In (1), the indexrepre-
sents time and the received signalis regarded as a vector in

. Here is the received signature sequence of userre-
garded as a vector in . We consider both long and short sig-
nature sequences (short signature sequences get repeated every
symbol interval while many symbols are transmitted over one
duration of a long signature sequence). Thus, in the long sig-
nature sequence model is an independent realization for
every time and in the short signature sequence it is fixed for all
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time. We model the signature sequences as having random inde-
pendent and identically distributed (i.i.d.) entries (the choice and
relevance of this model are discussed in [23] and [28]). Here,

is the complex fading or path gain from userto the single
base station (receiver). The baseband model of (1) represents
frequency flat fading which is the appropriate model when the
sampling rate is not large enough for the multiple paths to be
resolved. We write the amplitude squared of this complex path
gain by . Henceforth, we refer to as the path gain
and explicitly say “complex path gain” when referring to.
The user symbols are represented by the real-valued random
variables . is an additive white complex Gaussian process
with variance . Each user has an average power constraint.
Our assumptions on the path gainsare conventional (see [22,
Sec. 2] and [7], for example). We assume that
is a sequence of i.i.d. stationary and ergodic processes; let us
denote the (common) stationary distribution of the amplitude
squared of the complex fading process bywhich has finite
first and second moments.

B. Problem Formulation

We first consider short signature sequences. Here the signa-
ture sequences, once chosen, are fixed and repeated over every
symbol interval. We model the signature sequence of user
as where is a collection of
i.i.d. random variables with zero mean, variance, and bounded
fourth moment. These random variables are independent of the
fading processes . Both the random variables
and are defined on the same probability space, say ,
and we write to mean for any in .

Conditioned on one sample point or realization of signature
sequences, say (we write ) the
channel model in (1) becomes

(2)

We assume that all the signature sequences (once chosen) are
known to both the receiver and all the users. We also assume
that the receiver has perfect side information, i.e., has perfect
knowledge of the fading gains at each channel use. For the situ-
ation when the transmitter has no knowledge of the fading gains
and the signature sequences are fixed to be , the sum
capacity of the MAC in (2) is

(3)

The capacity region for single degree of freedom fading chan-
nels with no information of the fading state at the transmitter is
given in [17] and the intuitive idea behind the proof is given in
[6] so we omit the proof of (3).

Our interest is in the situation when the transmitter also has
perfect knowledge of fading gains. In practice, this knowledge
is obtained by the receiver measuring the channels and feeding
back the information to the transmitters (users). Implicit in this
model is the assumption that the channel varies much more

slowly than the data rate, so that the tracking of the channel vari-
ations can be done accurately and the number of bits required
for feedback is negligible compared to that required for trans-
mitting information. By a power allocation policy, we mean a
function from the fading states and signature sequences of the
users to the nonnegative reals. We let

denote a power allocation policy for userand call the tuple
a power allocation policy. We say that the

power allocation policy isfeasibleif for everyrealization of the
signature sequences the average power allocated to each user
(over the fading process of the users) is no more than. For-
mally, the set of feasible allocations for a fixed realization of
signature sequencesis

Now, for every power allocation policy , define the
quantity

(4)

Comparing with (3), can be interpreted as the
(random, since it depends on the specific realization of the
signature sequences) sum capacity of the MAC with powers
allocated according to policy . The following proposition
characterizes sum capacity when transmitters also have perfect
knowledge of the fading states.

Proposition 2.1: The sum capacity of the fading Gaussian
vector MAC conditioned on a particular realization of the sig-
nature sequences (say) in (2) when both the users and the re-
ceiver can perfectly track the fading state and know the signature
sequences is

(5)

A version of the coding theorem in the above proposition ap-
peared as [22, Theorem 2.1], another version of the above re-
sult for a single-user fading channels is in [7] and we omit the
proof. For general , no closed-form solution to the optimiza-
tion problem in (5) is known. We discuss algorithmic computa-
tions that get close to the solution in Section VII.

In the notation of [21], the MAC with short signature se-
quences in (2) represents anonergodicchannel and the Shannon
capacity of the channel is zero; however small the sum rate the
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users attempt to communicate at, there is a nonzero probability
that the realized signature sequences will render the channel in-
capable of supporting the rates reliably. Motivated by the ap-
proach in [21] and [12] to such channels, we study the tradeoff
between thesupportable rateandoutage probability. Formally,
the supportable sum rate at an outage probability is the
maximum sum rate at which the users can communicate reli-
ably with sum rate for all realizations of signature sequences
but a set whose total probability is less than. In our notation,
the supportable rate is defined as

(6)

For a family of valid power allocations (power allocations for
each realization of the signature sequences), define the quantity

(7)
and interpreting it as the supportable rate with outage proba-
bility at most when the power allocation policy for the signa-
ture sequence realizationis , we have

(8)

One of the main aims of this paper is to characterize the family
of optimal power allocation policies that “achieves” the max-
imum supportable rate in (8). Our demonstration of a simple
power policy (that does not depend on the actual realization of
signature sequences and hence the family of power allocations
reduces to a single power allocation) that has the supportable
rate asymptotically (in ) equal to the optimal is one of
our main results.

We now turn to long signature sequences. Here, many sym-
bols are transmitted over one period of the signature sequence.
Thus, the simplifying assumption that the signature sequences
are independent copies of identically distributed sequences for
everychannel use is made. Formally, we define

where are i.i.d. random variables with zero mean, vari-
ance , and finite fourth moment. We retain the assumption
that both the receiver and the transmitters (users) have complete
side information, namely, they have perfect knowledge of the
signature sequences and fading gains at all times. As before,
power allocation policies are maps from signature sequences
and fading states of the users to the nonnegative reals. A policy

is feasible if for every user, the average
(over signature sequences and fading states of the users) ofis
no more than . Let the set offeasible power allocation policies
be denoted by . Formally, we have

and

The Shannon sum capacity of the MAC (recall the channel
model in (1)) with perfect side information at both the trans-
mitters and the receiver is given by

(9)

This result was observed in [28, Sec. 3]. For defining
the quantity

(10)

which can be interpreted as the sum capacity of the fading MAC
with random long signature sequences when powers are allo-
cated using the policy , from (9) and (10) it follows that

(11)

In the case of long signature sequences, we are interested in
characterizing power allocation policies that are optimal in the
sense of achieving sum capacity equal to .

A word about our notation is in order here. We use the su-
perscript only when the emphasis on the dependence on the
system size is warranted. For example, the superscriptdoes
not appear on which is afunction that takes arguments

and thus the system size is implicitly contained
in the argument . On the other hand, we do use the superscript

on which is a positive number.

C. Main Results

The main focus of this paper is in characterizing optimal
power allocation policies in two different settings. First, for the
long signature sequence model we are interested in the power
allocation policy as a function of the realization of signature
sequences and fading states subject to an average power con-
straint that maximizes sum capacity of the MAC in (1). In the
second setting, we wish to characterize a family of power allo-
cations as a function of the fading states of the users subject to
an average power constraint that maximize the supportable rate
at some fixed outage probability. Our main result is the iden-
tification of a simple power allocation policy which is almost
optimal for both the short and long signature sequence models.
We state this result formally below. Consider the power alloca-
tion policies

(12)
where we have used the notation to indicate .
The constant is the limiting the SIR of a unit received
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power user using the linear MMSE estimator in a large system
(large processing gain and correspondingly large number of
users) with random signature sequences when all other users
are following the power allocation policy above in (12). The
formal definition and proof of existence of this quantity is
in Sections III and IV. In (12), the constant (Kuhn–Tucker
coefficient) is chosen such that . Observe
that this policy does not depend on the signature sequences
of the users and for any user depends only on the fading state
of that user at that instant (in the special case when there is
no fading this implies that this policy is a static allocation of
powers equal to independent of the signature sequences).
This power allocation policy iswater-filling and generalizes
the strategy of [7] for single-user fading channels. To see this
generalization, recall the optimal power allocation policy for
the single-user case from [7]

(13)

where is the SIR seen by a unit received power user in the
system (there is only one user in this scenario). Now the gener-
alization is apparent: replaces .

We show that the water-filling policy of (12) is a “good”
power allocation policy for both the long and the short sig-
nature sequence models. We also analyze its behavior in var-
ious regimes of the number of users per unit processing gain
and background noise variance. We enumerate our main results
below. We emphasize that these results are true forany distri-
bution of the random variables that satisfies the property of
zero mean, unit variance and bounded fourth moment, and any
stationary fading distribution with bounded first and second
moments.

1) Consider the case of long signature sequences. With long
signature sequences we show that asymptotically the
water-filling strategy is optimal and identify the gap in
sum capacity to be of the order of where is the
processing gain of the system. Formally

Note that because of the simplicity of the water-filling
policy, the notation becomes somewhat deceptive: in this
equation, does depend on .

2) Consider now the case of short signature sequences. Our
main result in this scenario is

Thus, in a large system the supportable rate using the
water-filling strategy is within a factor of the
optimal supportable rate. We are interested in very small
values of (typically, could be or ) and thus
the water-filling strategy achieves a supportable rate that
is close to the optimal rate.

3) For a single-user fading channel, it is intuitive (observe
the structure of the optimal power allocation policy in
(13)) that in high SNR (as ) the loss in sum ca-
pacity by using a constant power (equal to) allocation
policy as compared to the sum capacity by using the op-
timal water-filling policy becomes negligible. In the gen-
eral multiple-user scenario, we show that the policy (12)
at high SNR converges and the limiting policy is the con-
stant power allocation policy for . Thus, the cor-
rect extension of the single-user high-SNR result is that
when (the ratio of users to processing gain) is less than
unity, the gain in sum capacity in a large system (large
processing gain) by using an optimal strategy over con-
stant power allocation goes to zero at high SNR. On the
other hand, there is a strict loss in using constant power
allocation when there are more users than the processing
gain, even in the limit of high SNR. We also give an intu-
itive explanation of this fact.

4) We have been able to extend our results, on the asymptotic
optimality of the water-filling power allocation, to the
scenario of multipleclassesin the situation of long sig-
nature sequences. Users in different classes have different
average power constraints. The asymptotically optimal
strategy still has the basic structure of the water-filling
policy (12) but users in different classes have different
threshold levels for their water-filling policies.

III. H EURISTIC DERIVATION OF THE ASYMPTOTICALLY

OPTIMAL POWER ALLOCATION STRATEGY

In this section, we first restrict ourselves to long signature
sequences channel model and motivate the reason why we can
expect asymptotically the water-filling structure (12) of the op-
timal power allocation policy. Toward this end, we proceed in
the following order: we first review the water-filling power al-
location policy (identified in [7]) for a single user in a (scalar)
fading channel. Then, we show the relation of sum capacity to
linear MMSE (LMMSE) estimation of users along with succes-
sive decoding. We then arrive at a heuristic expression for the
optimal power policy in the multiuser scenario.

We begin with the single-user, single degree of freedom sce-
nario. Now, the received baseband signal in any channel use is
(analogous to (1))

where is the complex fading process assumed to
be stationary and ergodic. As before, we denote the amplitude
squared process by having a stationary distribution
with bounded first and second moments. is an additive
white complex Gaussian noise process with variance. We as-
sume that the receiver and the transmitter have perfect channel
side information, i.e., the fading gains are perfectly known to
both the transmitter and the receiver. The transmitter has an av-
erage power constraint. Then, ([7, Theorem 2.1]) the capacity
of the channel is

(14)
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and the power allocation that achieves the maximum above is
“water-filling” (refers to the visualization of this scheme)

(15)

where is a constant (the Kuhn–Tucker coefficient for the con-
cave function maximization in (14)) that is chosen such that

. Observe that zero power is transmitted when
the fading is below the threshold .

We now turn to the multiuser multiple degrees of freedom
scenario. We first restrict our attention to the case when the
signature sequences and the fading gains are fixed (to be

and , respectively). Let the users
have average power constraints . Then the channel
model (1) focusing on one symbol interval is

(16)

The sum capacity of this channel was explicitly calculated in (4)
as a function of the signature sequences and the user average
power constraints as

(17)
The rate tuples in the capacity region are in general achieved
by jointly demodulating the users from the received signal.
We focus on the following specific structure of demodulation of
the users’ symbols from the received signal. Fix an ordering
of the users. For every symbol interval, following the ordering
of the users, users are successively decoded (by estimating the
symbols by the LMMSE receiver, and the estimate is used to
decode that user) and the received signal is stripped off the de-
coded users. The LMMSE receiver for userprovides theop-
timal linear estimate of the usersymbol from the received
vector . It was observed in [26] that this scheme allows the
users to transmit reliably at a sum rate equal to the sum capacity
of the system.1 We use this to interpret an increase in sum ca-
pacity by an increase in the power of one user. Let the average
power constraint of one user (say user) be increased by. Then
the increase in sum capacity [defined in (17)] is

(18)

where we used the matrix inversion lemma

whenever the terms exist. We can interpret this increase in sum
capacity as the rate of a fictitious user (numbered ) with
average power, fading gain , and signature sequencethat
is decoded first and then stripped off. It can be shown that (see

1In fact, a stronger statement is claimed in [26]. By changing the ordering of
the users, this scheme allows the users to transmit reliably at rate tuples cor-
responding to all the vertices of the capacity region of the channel in (16), by
appropriately choosing the ordering of the decoding.

[23, Sec. 2] or [27, Ch. 6]) the SIR of the LMMSE estimate of
this fictitious user is where

(19)

Now, the rate achieved by this fictitious user being decoded first
is simply

where is the SIR of the LMMSE estimate of the ficti-
tious user . This expression is consistent with the expres-
sion for the increase in sum capacity in (18).

Recall the expression of the sum capacity for the long
signature sequence model as an optimization problem in (9)

(20)

In Proposition 4.2, we show that this is a concave maximization
problem and in Proposition 4.5 that the maximum is actually
achieved. Thus, there exists a Kuhn–Tucker coefficient
such that a necessary and sufficient condition for the optimality
of a power allocation policy is that for every realization of

the optimal policy (if positive) satisfies the
following constraints:

such that (21)

such that (22)

Now (21) can be written as

such that (23)

by using the expression (18) for the increase in the sum capacity
by an increase in power of one user in the derivation of (23).
Here is the Kuhn–Tucker coefficient (the formal existence
and definition is in Proposition 4.4) and is chosen such that the
average power constraint of the users is met. Application of the
matrix inversion lemma to (23) yields

(24)
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The special case of (in this case there is no spreading
and ) is easily handled. Observe that the choice

if

else

is a solution to (21) (equivalently, (24)) and (22). Thus, the op-
timal power allocation policy in the scalar multiple-user case
is to allow only the best user to transmit and this user follows
the water-filling policy; this was first observed in [11]. Even
the case is quite involved (simple solutions exist only
under simplifying assumptions on the entries of the signature
sequences). In general, there is no closed-form expression for
the optimal power allocation in (24) and the authors in [25] de-
sign interior point methods that find approximate solutions to
(24). However, in an effort to get more insight into the structure
of the optimal power allocation policy we look into the regime
of large and large . We begin with the following interpreta-
tion of the structure of the optimal power policy (24). Defining

(25)

and observing that is the (random)
SIR of the LMMSE estimate of userwhen powers are allo-
cated according to and substituting in (24), we arrive at the
following structure of an optimal power policy:

(26)

Here is the (random) SIR of the LMMSE estimate of user
when all users are allocating powers optimally. Let us con-

sider the performance of power allocations that have the struc-
ture that for any user the policy depends only on the fading gain
for that user, i.e., is of the form
for every user where is some bounded nonnegative function
into the reals. In this situation, [23, Theorem 3.1] shows that the
(random) SIR of any user (say, user 1 to be specific) converges
pointwise in a large system. Using our notation we can make this
statement precise: from (25) with

converges almost surely to as . The pos-
itive constant depends on , the background noise variance

, and the function itself and [23, Theorem 3.1] identifies
to be the unique positive solution of a fixed-point equation (in
general, there is no known closed-form solution to). Thus, in
a large system (large and correspondingly large ), we see
that the power allocation

(27)

satisfies the Kuhn–Tucker conditions in (24) asymptotically.
Here is a positive constant with the following structure.
When every user uses a power allocation policy of this form,
namely

for some positive real (and chosen such that the average
power, averaged over the fading, is), an application of the cen-
tral result [23, Theorem 3.1] shows that the (random) SIR of the

LMMSE estimate of any (every) user converges almost surely
in a large system to a constant, which we denote by. Every
choice of results in a unique asymptotic SIRof the users
giving rise to the map . Since denotes the asymp-
totic SIR of the LMMSE estimate of any user, it follows that
must be the fixed point of the map . Thus, if we assume
the existence of the unique fixed point and infer (heuristi-
cally) that the power policy (27) which asymptotically satisfies
the Kuhn–Tucker conditions is close to an optimal power policy,
we have heuristically seen the asymptotic structure of an optimal
power allocation policy. The nontrivial fact that the map
has a unique positive fixed point will follow from Lemma 4.10
in Section IV. We also show that there is a simple expression that
relates this unique fixed point to the corresponding and
propose a fixed-point iteration algorithm to compute the quan-
tities and the corresponding. In the next section, we de-
velop the mathematical apparatus required to present the formal
proof of the asymptotic optimality of the water-filling power al-
location policy that we have only developed heuristically in this
section.

Recall the key features of this policy: the policy is inde-
pendent of the realization of the signature sequences and for
each user the policy is water-filling over the fading process of
that useralone. We use this structure to show that water-filling
power allocation performs very “close” to the optimal policy
even for the short signature sequences model. Toward this end,
we make some observations of the limiting sum capacity when
using power allocation policies of the type above, i.e., power
allocation policies of the form
where is a nonnegative bounded function. We observe that
sum capacity with this policy convergespointwisein a large
system and we make this precise below.

Proposition 3.1:

as (28)

Here is a positive nonrandom quantity and the proof is
found in Appendix A. For the special case when a.s.
and (this is the no fading case with equal received
powers for every user), there is a closed-form expression for

and [28, eq. 9] gives an explicit expression. In general,
there is no known closed-form expression for ; however,
[18] and [19] give some expressions to compute . With the
power allocation being recall the supportable rate
at outage probability defined in (7) as the largest rate such that

(29)

The reader will observe that we have replaced the family of
power allocations in (7) by the single power allocationsince

is independent of the realization of the signature sequences.
It follows that

using Proposition 3.1. (30)

Thus, the supportable rate using the power allocationis
asymptotically close to the limiting sum capacity with power
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allocation . Combined with the formal result of the asymp-
totic optimality of the water-filling strategy, we use this result
in Section V to show that the water-filling strategy is also close
to the optimal power allocation with short signature sequences.

IV. M ATHEMATICAL PRELIMINARIES

In this section, we introduce some preliminary results and
the mathematical background needed for the formal deriva-
tion of our main result: asymptotic optimality of the water-
filling strategy. We begin with the scenario of long signature
sequences. Since our main focus is on understanding the opti-
mization problem (9) we begin with some simple observations
about its structure and its solution.

A. Properties of Optimal Power Allocations

The optimization problem in (9) is on an infinite-dimensional
set (a closed ball in a Banach space) of valid power allocations
and it is not cleara priori if the supremum in (9) is actually
achieved. In this section, we show that the supremum is actu-
ally attained and characterize the set of the optimal power allo-
cations. We proceed via a series of propositions.

1) Our first step is to show that the optimization problem
in (9) is well defined. Formally, we have the following
proposition the proof of which is given in Appendix B.

Proposition 4.1: For every , , where is a
constant independent of and .

2) We next show that the function is concave. Con-
sider the following proposition.

Proposition 4.3: For every deterministic and ,
the map from the positive orthant in to the nonnegative reals

(31)

is concave. Furthermore, if are linearly
independent, then is strictly concave.

This result is quite well known. It can be derived from [4,
Theorem 16.8.1]. A different proof is available in [32].

3) We observe that the power allocation policies that are of
interest always meet the average power constraint with
equality. Formally, we have the following result.

Proposition 4.3:

Proof: The following (elementary) proof provides an op-
erational interpretation of increasing the average power of one
user. Consider and
for some positive . Consider the power allocation policy

and

for

By definition . Then

(32)

Here is the (random) SIR of the
LMMSE estimate of user 1 when all users are using the power
policy [an explicit expression for is given in (42)] and
(32) follows from the matrix inversion lemma [as in (18)]. Thus,
the sum capacity can always be increased by defining a power
allocation policy that is pointwise bigger and meets the average
power constraint with equality and the proof of the proposition
is complete.

4) The following proposition allows us to use Lagrange mul-
tipliers in this maximization of a concave function. is
fixed below.

Proposition 4.4: There exists (a Kuhn–Tucker coefficient)
such that

(33)

where

and (34)

It follows from Proposition 4.2 that the map
defined by (10) is concave. Since defined in (11) is the

maximum of , a concave function over a convex set ,
the claim above in Proposition 4.4 would have been completely
standard had been finite-dimensional ([14, Sec. 28] is the
classical reference). However, is infinite-dimensional and
hence this claim needs a formal proof, which is supplied in Ap-
pendix C.

5) We now use the previous propositions to show that the
supremum in the definition of in (9) is actually
achieved by a valid power allocation policy. We state this
formally in the following proposition and also identify
the structure of this optimal power allocation policy. The
problem size is fixed below and the proof is in Ap-
pendix D.



VISWANATH et al.: ASYMPTOTICALLY OPTIMAL WATER-FILLING IN VECTOR MULTIPLE-ACCESS CHANNELS 249

Proposition 4.5: There exists a power allocation policy
such that . Furthermore, for almost

every realization of and , any optimal power allo-
cation for this realization, denoted by ,

, satisfies the equations

(35)

where is the same as that given in Proposition 4.4.

6) It is clear from the symmetry in the problem that the op-
timal power policies are symmetric with re-
spect to the signature sequences and the fading gains. One
simple symmetry is given by Proposition 4.3 which al-
lows us to write

(36)

Another type of symmetry is in the formal statement below.

Proposition 4.6: Let achieve the maximum in (9). Then
for every permutation , the power allocation policy defined by

also achieves the maximum in (9).
Proof: For every permutation

(37)

(38)

where (38) follows from the observation that the random vari-
ables are permuted (by) in (37) and by the hypothesis that

are exchangeable and i.i.d. This com-
pletes the proof of the proposition.

We conclude by an appeal to the concavity of the map
in Proposition 4.2 that an optimal power allocation property
has the symmetry property below. For every permutation
and ,

(39)

7) From the structure of the optimal power allocation policy
in (35), it follows that the allocations are bounded from
above. We need the following technical result that shows
that the allocations areuniformly bounded from above
(uniform in ).

Theorem 4.7:Let achieve the maximum in (9). Then

a.s.

where is some universal constant that does not depend on
.

This theorem is proved in Appendix E. Using this, the sum
capacity can be written as

(40)

Here

satisfies properties (36) and (39)

(41)

B. Limiting SIR of LMMSE Estimates

In this section we review some recent results about the
asymptotic behavior of SIR of the LMMSE estimate in a
random spreading environment. Fix a power allocation policy

. Associated with the LMMSE estimate of user
symbol (estimated from the received signal) is the

performance measure SIR defined as the ratio of the power
of the signal to the power of the interference in the estimate.
Recalling (19), we have that the (random) SIR of the LMMSE
estimate of user is where

(42)

The SIR is random since it depends on the particular realizations
of the signature sequences and fading. We further focus our at-
tention on the following class of power allocation policies:is
independent of the signature sequences and has the structure

for each where is a nonnegative func-
tion bounded by . Denote the corresponding SIRs of
the LMMSE estimates (defined in (42)) of the users as

. Then it is straightforward to see that

The random variables

are identically distributed. (43)

In a large system, the central result of [23] shows that the
(random) SIRs converge almost surely to a deterministic
constant. Focusing on user 1 alone (without loss of generality),
we have the following formal result.

Lemma 4.8 ([23, Theorem 3.1]):

as (44)

where is the unique positive solution to the integral fixed-
point equation

(45)

Recall that is the (same) marginal distribution of the fading
gains . Convergence of in measure first ap-
peared as [23, Theorem 3.1] and the pointwise convergence (a
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natural extension) follows as a consequence of the main result
in [20] which shows that the empirical distribution of the eigen-
values of the matrix almost surely converge in dis-
tribution to a nonrandom limit.

To get a better feel for this result, consider the special case
when there is no fading (we just take a.s.) and
a.s. Let us denote this static power allocation policy by. Then
Lemma 4.8 particularizes to

(46)

It is easily verified from (45) that is the unique positive
solution of the fixed-point equation in

(47)

and hence is the positive root of the quadratic equa-
tion (in ) (this was first observed in [27, eq. (6.62)] for binary
random signature sequences)

(48)

and can be explicitly written out as

(49)

C. Variations Around the Mean of Limiting SIR

For the power allocation policy , we saw in Lemma 4.8
that the SIR of any user converges pointwise. Our first simple
observation is that this convergence holds inas well

from (42) (50)

(51)

(52)

where is a constant independent of. It now follows from
(44) and the dominated convergence theorem that

(53)

The following result investigates the variation around the mean
of the limiting SIR (without loss of generality, focusing only on
user 1).

Lemma 4.9:

(54)

where is some constant independent of.

The lemma is proved in Appendix F.

D. Existence of

In Section III, we derived heuristically the asymptotic struc-
ture of the optimal power allocation policy to be (from (27))

(55)

where was the limiting SIR of the LMMSE estimate when
users adopt the above power allocation policy andis a constant
chosen such that the average of the power allocation (average
with respect to the fading statistics) is equal to. We now prove

the existence of this quantity . From (45), is the unique
positive solution to the integral fixed-point equation

(56)

Furthermore, by the average power constraint ofon the power
allocation in (55), we have another equation relatingand .
Denoting the ratio by , the fading threshold level below
which no power is transmitted, we see that the average power
constraint in our notation yields

(57)

where is the “harmonic mean of with respect
to the distribution ” defined as

(58)

Observe that , . Continuing from
(56), we have

(59)

(60)

(61)

where (59) uses the definition of as , (60) follows from
our notation of harmonic mean in (58) and we used (57) in
(61). Comparing (61) with (47) we see that is equal to

, the SIR of the LMMSE es-
timate of a unit power user in a large system with all other users
received at constant power equal to and number of
users per unit processing gain equal to . Thus
has an explicit form as given in (49). Substituting this structure
of in (57), we see that our claim is verified if we can show
the existence of a solution satisfying (57). Denoting

(62)

we have to show that is the unique positive fixed point of
. The following lemma investigates the fixed points ofand

identifies a convergent fixed-point iteration scheme; the proof is
found in Appendix G. From this, we conclude the existence of
a unique with the properties derived in Section III.

Lemma 4.10: has a unique positive fixed point . Fur-
thermore, a fixed-point iteration of from small enough con-
verges to .

For completeness, we would like to mention that there is a
“shorter” way of seeing the existence of from (56) and the
average power constraint on the water-filling policy in (55). The
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constraint that the average power of the water-filling policy in
(55) be is simply

(63)

Comparing this with (56) we arrive at

Combining this with (63), it is straightforward to see that there is
a unique solution for and . However, our “slightly longer”
derivation of the existence of culminating in the expression

seems to suggest the following
physical interpretation for : it is the same SIR as would be
seen by a unit power user in a hypothetical system with the same
ratio of users to processing gainand with all the users fol-
lowing the “truncated channel inversion” power policy

if

else

where is the fixed point of the map given by Lemma
4.10 and is some constant chosen such that the average power
constraint is met.

V. PROOF OFMAIN RESULT

In this section we formally prove the asymptotic optimality
of the water-filling power allocation strategy heuristically iden-
tified earlier in Section III. The proof is quite involved and for
pedagogical reasons we first focus on the scenario when there
is no fading. In this simple case of no fading, the water-filling
power allocation reduces to the simple constant power alloca-
tion policy and the proof of this scenario contains several of the
key elements of the general proof while being easy to follow.

A. No-Fading Scenario

This is the case when and we begin with the long
signature sequences channel model.

1) Long Signature Sequence Channel Model:For this
scenario, the authors in [28] conjectured that asymptotically the
optimal power allocation policy is to allocate equal powers to
all users independent of signature sequences. The water-filling
strategy identified earlier indeed simplifies to the constant
power allocation when there is no fading. Our first main
result is to show the asymptotic optimality of constant power
allocation formally and, furthermore, to identify the loss in sum
capacity to be of the order of . Recall our notation that the
policy of static allocation of equal powers is denoted by.

Theorem 5.1:For the no-fading, long signature sequence
channel model

Define the function (the “Lagrangian”) as

Here is any power allocation such that a.s. and
is the positive root of the quadratic equation in (48). Ob-

serve that is just the sum of and a linear functional and
hence is also a concave function (Proposition 4.2). Furthermore,

over [see (41)]. Recall our earlier no-
tation (from Section IV) that is the power policy that maxi-
mizes over . Fix a realization of signature sequences

. Let (recall earlier notation from the statement of Proposi-
tion 4.5)

Using the concavity of the map (Proposition 4.2) in the first
step (64), we arrive at

(64)

(65)

(66)

where we used (18) to arrive at (65) (also see (134) and (135)
in the proof of Proposition 4.5). We arrive at (66) by using the
definition of from (42) (the quantity denotes the
(random) SIR of the LMMSE estimate of userwhen all the
users are transmitting at constant power equal to) and the ma-
trix inversion lemma. Averaging both sides of (66), we arrive at

(67)

(68)

(69)

(70)

(71)

where (68) follows from Theorem 4.7, (69) from (43), (70) fol-
lows from the fact that the map is contractive, and
(71) follows from (46) and Lemma 4.9. Observing that

and

the theorem follows.

2) Short Signature Sequence Channel Model:We now turn
our attention to the short signature sequences model while re-
taining the assumption of no fading. Our main result is that the
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constant power allocation policy is near optimal in terms of the
supportable rate at a given low outage probability value. Recall
our definition of in (29) and the notation of as the
constant power allocation policy. The formal result is below and
we conclude that in a large system the constant power allocation
fetches supportable rate which is optimal up to a factor .
Typical values of that are of interest in this framework are very
small and thus the supportable rate with static power allocation
is very close to the optimal supportable rate for large.

Theorem 5.2:In the no-fading, short signature sequence
channel model

(72)

Proof: The supportable rate at outage probabilitywith
static power allocation satisfies

(73)

(74)

(75)

(76)

(77)

where (73) follows from the definition of in (6) and the
Markov inequality, (74) is from the definition of in (9) and
the fact that the power allocation policydefined as (and so as
to be measurable in)

for some

belongs to , we used Theorem 5.1 in (75), (76) comes
from Proposition 3.1 with being the constant function equal to
, and, finally, (77) follows from (30). Thus we arrive at (72).

Hence in a large system, the static constant power allocation
fetches supportable rate which is optimal up to a factor .
Typical values of that are of interest in this framework are very
small and thus the supportable rate with static power allocation
is very close to the optimal supportable rate for large.

B. General Fading Case

We now turn to the general scenario with flat fading and first
consider the long signature sequences model. The proof of the
asymptotic optimality of the water-filling strategy is subtler than
in the no-fading situation but the essential ideas are contained

in the proof of the no-fading situation and the heuristic deriva-
tion of the water-filling strategy. Let us denote the water-filling
strategy of (55) by

(78)
Recall that and the
threshold below which no power is transmitted is the
unique fixed point of in (62). The formal statement of the
asymptotic optimality of the water-filling policy that also
identifies the order of the loss in sum capacity is below.

Theorem 5.3:

Proof: Define the function (the “Lagrangian”) as

(79)

where is any power allocation such that a.s. Observe
that is just the sum of and a linear functional and hence
is also a strictly concave function. Recall our notation from Sec-
tion IV of that maximizes over . We proceed by
the following steps.

1) We show that is close to for large enough
. Formally

(80)

2) We show that for large enough .
Formally

(81)

Combining the observation that with the
two steps above proves the theorem. We first show (80) and then
(81).

Analogous to (64), for every realization of fading gains
and signature sequences, we have from the

concavity of the map (Proposition 4.2) that

(82)

(83)
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In (83) we have emphasized the fact that is only a function
of . Using our notation in (78) and averaging both sides of
(83), we arrive at

(84)

In (84) we used the fact (by definition) that

Continuing from (84)

(85)

where we used (43) and Theorem 4.7. By definition,is equal
to and thus from Lemma 4.8 we have

as

By definition of (recall (78)) we get

(86)

Using the fact that the map is contractive, (86) and
(85) yield

(87)

where we used Lemma 4.9 and the Cauchy–Schwartz inequality
to arrive at (87). We have thus shown (80).

To show (81), fix . Using Lemma 4.9, we have from a
Chebyshev bound

(88)

Then, using properties (39) and (36) of and (43) we have

(89)

Consider the case

(90)

Using Theorem 4.7, (90) leads to

(91)
Then it follows from (89) that there exists a subsequence

such that

(92)

(93)

We used Holder inequality to arrive at (92) and Holder in-
equality again combined with the bound in (52) to arrive at
(93). We conclude from (90) and (93) that

and we have thus shown (81) (the notation of the superscript
in denotes that ). Now suppose (90) does
not hold and hence we have

(94)

We evaluate the integral in (89) over the two disjoint sets

and

As usual, denotes the indicator function over the set,
. We have

(95)

(96)

(97)
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where we used Theorem 4.7 in (95), (51) to derive (96), and (52)
combined with the Chebyshev bound of (88) in arriving at (97).
We also have

(98)

From (94), we have

(99)
Letting and combining (97)–(99) we have shown (81)
that

completing the proof.

The result regarding short signature sequences is completely
identical to the argument given in the situation of no fading.
Completely analogous to (72) we have

VI. OPTIMAL POWERALLOCATION AND SYSTEM PARAMETERS

In this section we study the behavior of the water-filling
power allocation strategy in different regimes of the system
parameters. In particular, we study the effects of the number
of users per unit processing gain and the variance of the
background noise on the water-filling strategy. This exercise
allows us to comment on the gain in sum capacity with dynamic
power allocation over the constant power allocation strategy.
We also generalize our results to the situation of multiple
classes: users in different classes have different average power
constraints.

A. Dependence on the Number of Users per Unit Processing
Gain

Recall the water-filling power allocation strategy defined in
(78)

(100)

Here is the level above which no power is transmitted and
is the SIR seen by a unit power user in a large system when

all the other users are using the power allocation strategy.
Following the heuristic derivation of the water-filling strategy,
intuitively one expects that whenis very small there are very
few users in a system with a very large processing gain and, thus,
the users are essentially orthogonal to each other and hence the
policy is very similar to the single-user water-filling strategy.
In the scenario with very large there are many users with es-
sentially the same signature sequence, and comparing with the
Knopp and Humblet strategy [11], we expect that users transmit
only when they have very good channels. In the following result
we make this intuitive observation precise:

Proposition 6.1: Recall , the water-filling power allo-
cation strategy (100), and the single-user water-filling strategy
(15). Then

and as (101)

and as (102)

The proof is found in Appendix H.

B. Dependence on SNR

We begin with the single-user situation. It is intuitive that
at high SNR (very low background noise variance), there
is so much power available that the water-filling strategy gains
very little over the static power allocation policy, namely, equal
power allocation over all fading states. This was observed in [7]
through simulation studies with Rayleigh and Nakagami fading
examples. We make this statement precise and use it to find the
structure of the water-filling strategy at high SNR in the general
multiuser scenario. Recall the single-user capacity formula from
(14)

and the optimal power allocation (water-filling) from (15) as

(103)

Proposition 6.2: For the single-user channel, at high SNR,
the optimal power allocation (103) converges to the constant
power policy and furthermore the loss in capacity by using the
constant power policy goes to zero. Formally, as

(104)

(105)

The proof is completely elementary. As , to meet the
average power constraint we must have . Thus, the
water-filling strategy converges to the static power allocation
strategy at high SNR showing (104). The gain with water-filling
strategy at any realization of the fading gainis

(106)



VISWANATH et al.: ASYMPTOTICALLY OPTIMAL WATER-FILLING IN VECTOR MULTIPLE-ACCESS CHANNELS 255

where we used the definition of as the single-user water-
filling policy in (15). Thus, by the dominated convergence the-
orem and (104), we have shown (105).

We now turn to the multiuser scenario. Based on the
single-user result above one guesses that whenis very small
at high SNR there is not much to gain by using the water-filling
strategy over the static power allocation policy of equal powers
at all fading states. The correct extension of this intuition to
the multiuser scenario is that when the number of users
is less than the degrees of freedom available and each user
can essentially null out the other users and we are back in the
single-user situation. If , this strategy fails and there will
be a strict loss with constant power allocation even at high SNR.
The precise statement is below and the proof is in Appendix I.

Proposition 6.3: For every , at high SNR (i.e., as ),

1) For , we have and . Furthermore,

2) For we have and .
Here is the unique positive fixed point of the map

In this case, there is a strict loss in sum capacity by using
the equal power allocation scheme.

We would like to give an intuitive explanation as to why this
result isa priori feasible. Recall that successive decoding using
the LMMSE receiver achieves sum capacity. At high SNR, the
LMMSE receiver behaves as adecorrelator[27, Ch. 5] and nulls
out the multiple-access interference. When , the entire
multiple-access interference can be nulled out and thus we are
back to the single-user channel situation and we have the result
that water-filling makes little difference compared to constant
power allocation in this situation. However, when , the
multiple-access interference is not completely nulled out and
the structure of the power strategy of the other users is still rele-
vant. Having provided this intuition, we now dispel another ex-
planation: at first sight, it might appear that asgrows large the
signature sequences of the users are orthogonal for and
are not orthogonal for and hence provide the intuition
for this result. However, as grows, the users are orthogonal
evenwhen . In fact, when the random variables are
Gaussian, a simple calculation shows that

as grows polynomially in and .

C. Multiple Classes

We now turn to a generalization of our model by allowing
users to have different average power constraints. In particular,
we assume that there areclassesof users; users in classhave
average power constraint for . We assume that
the number of users of classis ). For the regime
of large , a close observation of the heuristic derivation in
Section III shows that much of the analysis remains valid also
in this case. In particular, when there is no fading, the con-
stant power policy is asymptotically optimal. In the general case
of fading, the structure of the optimal power policy based on

the asymptotic calculation is still water-filling (78) but now the
Kuhn–Tucker coefficient is different for users of different
classes and is chosen such that the average power constraints
are met. For any userof class , the policy is

(107)

where is the SIR of a unit power user in a large system
with users adopting this power strategy and is the solution to the
fixed-point equation (by an appeal to Lemma 4.8; analogous to
(56))

(108)

Analogous to the continuation in Section III for the single-class
case, we will sketch an argument that ensures the existence of
the quantities and and also demonstrates a simple fixed-
point iteration algorithm that converges to the desired quantities.
We will only discuss the major changes from the corresponding
steps in Section III. Denoting , the level below which
no power is transmitted by users of class, analogous to (57) we
have, from the average power constraint on the power policy in
(107), that is the solution to the fixed-point equation

(109)

Continuing from (108), analogous to (59)–(61), we have using
(109) that

(110)

In the single class case we were able to observe thatwas
equal to the solution of a quadratic equation (47). The natural
extension is the following. Consider a system with processing
gain where users arereceivedwith the same power for

. As , assuming that for every
class , it follows from Lemma 4.8 that the asymptotic SIR of a
unit (received) power user is a positive constant

that satisfies the fixed-point equation (analogous to
(47))

(111)

Comparing (110) with (111) we observe that

(112)
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Analogous to the fixed-point iteration of the map in (62) for
the single class scenario, we define the following maps for each
class :

(113)

It follows from (109) and (112) that

Analogous to Lemma 4.10, we justify the existence of by
the following proposition.

Proposition 6.4: Consider the fixed-point iteration

Then is an increasing sequence that converges to
for each .

Thus exist as the limits of the fixed-point iteration
above. We omit the proof of this proposition while pointing out
the replacement of the key observation (154) in the proof of
Lemma 4.10: For every

where

This also shows the uniqueness of . The formal statement
of the optimality of this power allocation solution, analogous to
Theorem 5.3, is given below and the key ideas of the proof are
all contained in the proof of Theorem 5.3.

Theorem 6.5:

Extensions of the observations made in Section VI-B to the
multiple class scenario are natural. Constant power allocation
(equal to for users of class) to the users incurs no loss in
sum capacity as compared to the water-filling scheme at high
SNR if and only if .

VII. N UMERICAL EXAMPLES

In this section, we demonstrate the value of our theoretical
results by simulating different power control strategies in a
Rayleigh fading channel and plotting the corresponding sum
capacities achieved for various parameters of loading and SNR.

Fig. 1. No-fading scenario. Sum capacity is plotted with the optimal allocation
and the constant power allocation policies withN = 32.

Fig. 2. Rayleigh fading scenario withN = 32 andK = 16. Sum capacity
in bits/s/Hz is plotted with the optimal allocation, asymptotically optimal
water-filling allocation, and the constant power allocation policies.

We assumed that the components of the signature sequences
are distributed as zero-mean Gaussian random variables with
variance (our theoretical results show that the actual
distribution does not matter; so long as it has zero mean,
unit variance and bounded fourth moment). In Fig. 1 in the
scenario of no fading, we plot sum capacity with the constant
power allocation and also with the optimal power allocation
policy (this policy depends on the actual realization of the
signature sequences, and was evaluated using the
software, as explained at the end of the section). We observe
that there is very little difference in sum capacity between these
two policies. Thus is already large enough for the
difference to be very small. Assuming Rayleigh fading, Figs. 2
and 3 plot sum capacity with three different power allocation
policies: the asymptotically optimal water-filling policy, the
optimal power allocation policy (which is a function of the
realization of the signature sequences and fading), and the
constant power allocation policy, for different values of SNR
and number of users equal to and , respectively. The first
observation from Figs. 2 and 3 is that the sum capacity with
the asymptotically optimal policy of water-filling is already
very close to that with the optimal policy even at .
Furthermore, from Fig. 2 we observe that with the number
of users per unit processing gain being small ( ) the



VISWANATH et al.: ASYMPTOTICALLY OPTIMAL WATER-FILLING IN VECTOR MULTIPLE-ACCESS CHANNELS 257

Fig. 3. Rayleigh fading scenario withN = 32 andK = 32. Sum capacity
in bits/s/Hz is plotted with the optimal allocation, asymptotically optimal
water-filling allocation, and the constant power allocation policies.

Fig. 4. Rayleigh fading scenario withN = 16 and SNR= 5 dB. Sum
capacity is plotted with the optimal allocation, asymptotically optimal
water-filling allocation, and the constant power allocation policies versus
number of users.

difference in sum capacity by using one of these two policies as
compared with the constant power allocation policy (constant
for all fading levels and realizations of signature sequences) is
fairly small. Proposition 6.3 predicts that the penalty in sum
capacity by using the constant power allocation policy grows
with the number of users per unit processing gain. We observe
this behavior in Fig. 4 where we have plotted sum capacity
for fixed SNR (5 dB) versus the number of users: while there
is very little difference in sum capacity between the optimal
power allocation and water-filling policies, the penalty by
using constant power allocation policy grows with the number
of users.

Even though closed-form solutions are not known for the op-
timal power allocation policy (these depend, in general, on the
instantaneous realizations of the signature sequences and fading
gains), we can compute numerically the sum capacity with the
optimal power allocation. We used the softwaremaxdet avail-
able in [34] to arrive at the optimal power allocation; the soft-
ware provides an interior point algorithm to solve the determi-
nant maximization problem

(114)

where

We obtained sum capacity at power prices by aver-
aging the scaled (by ) maximal value of the optimization
problem above (114). Sum capacity is then the smallest value
over all power prices (the corresponding prices are known as
“equilibrium power prices” or Kuhn–Tucker coefficients; this
is from standard Lagrange theory in convex analysis—see [14,
Corollary 28.4.1]). From the proof of Theorem 5.3, we have
a good guess for the Kuhn–Tucker coefficients:

. Theactualpower prices were found by a line
search. The solution to the optimization problem (114) with the
equilibrium power prices gives the optimal power allocation and
thus we arrive numerically at sum capacity with the optimal
power allocation policy.

The spectral efficiency increases withfor fixed SNR and
increases with SNR for fixed . This is clear from the struc-
ture of the successive decoding receiver. Every additional user
can be decoded first and thus the spectral efficiency always in-
creases with the number of users. However, with other types
of receivers [in particular, a bank of linear receivers (the linear
MMSE, decorrelator and matched filter)], the spectral efficiency
does not increase monotonically withfor a given SNR. The
variation of spectral efficiency with loadingfor a given SNR is
plotted in [19], along with a discussion of the spreading coding
tradeoff.

VIII. M ULTIPLE-ANTENNA SYSTEMS

In the multiple-antenna model, a baseband model for a syn-
chronous multiple-access antenna array channel is

(115)

Here denotes the time of channel use, is the trans-
mitted symbol of user at time , and is an -dimen-
sional vector of received symbols at the antenna elements

of the array at the receiver. The vector represents
the channel from theth user to the antenna array at time.
The scalar captures the slowly varying component of the
fading channel—this depends on the distance from the user to
the antenna array and geographical features and thus depends on

the user alone. The vector is the fast varying component
of the fading channel and is due to the constructive and destruc-
tive addition of the various multiple paths at the antenna array.
Our assumption is that the antennas are spaced far enough apart
(the spacing is at least half a wavelength and depends on the
scattering environment) and thus the fast fading components are
statistically independent at different antenna elements. We will

assume that and are independent complex
stationary and ergodic processes. As in Section II-A, we denote
the amplitude-squared process of by and as-
sume that the stationary distribution (denoted by) of this sta-
tionary, ergodic process has bounded first and second moments.
Analogously, we assume that the random variables have
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zero mean, unit variance, and bounded fourth moment. Since we
have assumed that spacing between the antennas is large enough
to allow the fast-fading component of the channel to be inde-
pendent, we have introduced a penalty term in the model
(115). If the number of antennas is small (say 5 or 10), then

can be taken to be identity. But as the number of antennas
increases, . In (115), is an additive white proper
complex Gaussian noise process. As in the DS-CDMA model,
we are interested in coherent communication, i.e., the receiver
is able to perfectly track the fading channel and we allow feed-

back of the channel states to the users. Defining , by
analogy to the DS-CDMA long signature sequence model and
results of Section II-B, we arrive at the following expression
for the (long-term) sum capacity of the multiple antenna MAC
[analogous to (9) and (10)]:

(116)

Some remarks about this expression are in order: the power
allocation policy depends on both the slow-fading com-
ponents and the fast-varying components

and the sum capacity with the power
allocation policy in nats per second per antenna is written
as . The sum capacity of the MAC is [as in (9)]
the supremum over all valid power allocation policies. The
difference in the expression for sum capacities when compared
to that of the CDMA model is that the received power is
scaled by . The quantity captures the physical
consequence of the fact that as becomes too large, either
the size of the antenna forces the received power to become
constant (since the spacing between the antennas are at least
half the wavelength apart) or the distance from the antennas to
the users increases (allowing us to retain the size of the antenna
array) forcing the total received power to become constant. One
natural assumption on the behavior of is that

This says that the total received power with multiple antennas is
at least as much as that in the one-antenna case and the increase
in received power is no more than linear in the number of an-
tennas. When the scenario is identical to that of the
DS-CDMA model and we have the asymptotic optimality result
of Theorem 5.3. When , we are in the regime of
high SNR for the DS-CDMA model and can expect the results
of Proposition 6.3 to be useful here. We state this result formally
below and relegate the proof to Appendix J.

Theorem 8.1:We consider two limiting behaviors of .

Fig. 5. Sum capacity in bits/s with one antenna at the receiver is plotted versus
number of users at a fixed SNR level of 5 dB with both the optimal and constant
power allocations.

1) Case 1: : Define the water-filling policy

where and are as defined in Section IV-D. Then

(117)

2) Case 2: :

a) Suppose . Then

(118)

b) Suppose . Define the water-filling policy

where is as defined in Proposition 6.3. Then

(119)

Observe from the proof of Proposition 6.3 thatdecreases
to zero as decreases to and thus the policy becomes
the constant power allocation policy asdecreases to. The-
orem 8.1 poses a contrasting picture from the context of the re-
sults for the case of , the single-antenna scenario. When
there is only one antenna, the optimal power allocation policy
is to let only the user with the best channel amplitude transmit
and for that user to follow the water-filling power policy [11].
This policy was also seen (in Section III) directly from (35)
in Proposition 4.5 that the optimal power policies satisfy. The
gain in sum capacity by following this strategy over the sub-
optimal policy of constant power allocation to the users at all
fading levels can be substantial; the larger the number of users,
the larger this gain. Fig. 5 plots the sum capacity with both these
power policies assuming i.i.d. Rayleigh fading from the users to
the single antenna. We can see that with an increasing number
of users, the gain in sum capacity is widening. This gain stems
from two factors: channel state feedback followed by an appro-
priate power allocation policy and the fact that there are multiple
users. However, when there is a substantial number of antennas,
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Fig. 6. Sum capacity in bits/s with five antennas at the receiver is plotted versus
the SNR of the users with both the optimal and constant power allocations.

the gain that is obtained by feeding back the fast-fading com-
ponent vanishes, and the water-filling power policy that utilizes
only the slow-fading component performs just as well. In Fig. 6,
we plot the sum capacity as a function of the SNR of the users
when following the optimal policy as well as when following the
constant power allocation policy. In practice, a small number of
antennas is considered practical at the receiver (to validate our
assumption that the paths from any user to each antenna have
independent fading, the antennas have to be at least half a wave-
length apart, and this generally implies a strict restriction on the
number of antennas given the size of the receiver). We assume

antennas for our simulations which consider the case
when the slow-fading component can be assumed to be con-
stant in the time scale of communication. In this simulation, we
assumed further that each component of is i.i.d. complex
Gaussian with zero mean and variance. We observe that the
loss in sum capacity with the constant power allocation policy
as compared to the optimal power allocation policy is very min-
imal even when is very small ( in this simulation ex-
ample).

IX. CONCLUSION

The central problem addressed in this paper is the char-
acterization of the optimum power allocation strategy in
vector multiple-access frequency flat-fading channels. The
common examples of such channels are uplinks of DS-CDMA
channels and MACs with multiple antennas at the receiver.
For concreteness, the discussion in this section will refer to
the multiple-antenna system. The power allocation strategy
considered is of thecentralizedtype, i.e., each of the transmit-
ters is assumed to be provided with perfect side information
(regarding the channel fading states ofall users). The sum
capacity is our fundamental figure of merit to be optimized
by appropriately allocating powers to the users as a function
of the channel states subject to an average power constraint.
While the structure of the optimal power allocation policies is
very simple in the case of a single antenna, there is no known
closed form to the optimal power allocation policies for finite
number of users and multiple antennas. In fact, exactly this
optimization problem [a finite-dimensional generalized version

of (9)] is considered in [25] where the authors derive interior
point algorithms that converge to the optimal allocation; these
algorithms have worst case polynomial (in, the system
size) run-time complexity. A software routine that implements
the ellipsoidal algorithms for determinant maximization is
available in [34].

To get some insight into the nature of the optimal power allo-
cation policy, we have considered in this paper the regime of
large number of antennas and large number of users. In this
regime, our main result is the identification of an asymptotically
optimal simplewater-filling power policy. This identification is
very appealing in practice, due to its simplicity and the com-
putation requirements to implement it are practically nil. Fur-
thermore, the policy depends only on the slow-fading compo-
nent and thus is robust to channel measurements and delay in
feedback to the users. Also, fading statistics can be estimated
and used to adaptively compute the threshold level of the water-
filling strategy using the fixed-point iteration outlined in the
paper. We have also shown that the gap in sum capacity be-
tween this water-filling policy and the optimal policy is of the
order of for large (uniformly for all ratios of users to
antennas, SNR levels, and channel fading distributions). For the
usual channel fading statistics such as Rayleigh fading, our sim-
ulation studies suggest that this gap is negligible even for very
small values of ( in our example). Another possible
regime is to fix the number of antennas (to be) and let the
number of users grow large. In this scenario, it is clear that some
of the users will have almost orthogonal channel gains and
the policy that allows only these almost noninterfering users to
transmit will be far superior to a policy that lets all users transmit
constant power at all times.

In this paper, in the context of the multiple-antenna model
we have referred to the number of antennas as thedegrees of
freedom. Another way to have degrees of freedom is to com-
municate in a wide-band channel. Here the degrees of freedom
come in number of frequency bins across which the fading
channel can be considered to be independent. In this case, the
sum capacity of the channel increases without bound as the
bandwidth of the wide-band channel increases. Reference [22,
Sec. 7] has considered the nature of optimal power control in
scalar multiple-access frequency-selective fading channels and
an analogous exercise can be carried out in our vector MAC
case. In particular, in the multiple-antenna context and when
the slow-fading component can be considered to be constant
over the time scale of communication, the policy of constant
power at all times equally spread over the entire bandwidth is
asymptotically optimal (in the regime of large number of users
and antennas).

In this paper, we have considered additive white Gaussian
noise as modeling thermal noise and out of cell interference. In
scenarios when the out-of-cell interference can be statistically
measured, the appropriate model of the additive noise is a col-
ored Gaussian process. The effect of colored noise on the sum
capacity and the appropriate power control is studied in [31]. A
natural extension of the problem formulation in this paper is to
characterize power policies that maximize any linear functional
of the rates at which the users can jointly reliably transmit. This
problem was addressed and solved in [22] for multiple-access
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fading channels with a single degree of freedom. The extension
of this result to multiple degrees of freedom remains an impor-
tant open problem.

APPENDIX A
PROOF OFPROPOSITION3.1

We first recall a special case of the central result of [20] re-
garding the convergence of the empirical distribution of eigen-
values of random Hermitian matrices. Let be the empirical
distribution function of the eigenvalues of
(there are eigenvalues). Then converges almost surely in
distribution to a deterministic distribution where the Stieltjes
transform of satisfies the fixed-point equation

Here the Stieltjes transform of a distribution functionis de-
fined as

It also follows from [20] that the support of is bounded above
by some . Applying Theorem 1.1 and its corollary of [1] to
our case, we obtain

for all large

Thus we have that

(120)

We now show convergence to in the first moment. We
have

(121)

(122)

where (121) follows from the Hadamard inequality and (122)
follows from the fact that is bounded above by . Since

the proposition follows from the pointwise convergence result
above (120) and the dominated convergence theorem.

APPENDIX B
PROOF OFPROPOSITION4.1

We have

(123)

where the derivation of these inequalities is completely straight-
forward. Using Jensen inequality conditionally on , we
have from (123) that

(124)

where the set is defined as

Now, for every we have

(125)

where we used Jensen inequality in the derivation of the last
but one step. Now combining (125) and (124) we have shown
Proposition 4.1 by denoting .

APPENDIX C
PROOF OFPROPOSITION4.4

We fix throughout this proof. From Proposition 4.1 we
know that is finite. Recall the definition of from

(34). Define functions from to the nonnega-
tive reals as follows:

We first observe that the functions are finite on the domain
. Now, by definition of , the system of equations

has no solution . Consider the following claim:

not all zero such that

(126)
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Suppose this is true. Our first observation is that since
is impossible for all . Thus,

dividing throughout by , (126) can be rewritten as

and hence

(127)

By the symmetry among the users, it follows from (127) that for
every permutation we have

(128)

Observe that the map on the positive orthant of

is concave (the supremum of linear functionals). Defining
and using in (128) the concavity of the map above

we arrive at

(129)

Now we have for every that

Since we have for every

(130)

Combining (129) and (130) the proof is complete. It remains
now to show (126). To see this, define

It is seen that is a convex nonempty set in and
. By the separation theorem for convex sets ([14, The-

orem 11.3]) there exist , not all zero and real such
that

(131)

(132)

Now (132) implies that and . Fix
. Since is finite for every we

have for every that

and substituting this in (131) we have

Since this is true for every arbitrary , we have shown (126).
This completes the proof of Proposition 4.4.

APPENDIX D
PROOF OFPROPOSITION4.5

Fix one realization of fading gains and signature
sequences . Since the map in (31) is concave, any tuple of
powers (denoted by ) that maximizes

(133)

in the positive orthant of has the following structure:

(134)

(135)

The derivation of (135) from (134) is completely analogous
to that of (24). If the realization is such that

is a linearly independent set thenis
strictly concave and the solution in (135) is unique.
In general, the solution set is a nonempty convex set.

We now construct a power allocation policy that is equal
to at the realization . If there are
no point masses in the distribution and in the common
distribution of then with probability one we have

are linearly independent and is strictly con-
cave. In this case, the tuple is uniquely defined
almost everywhere (the value depends on the realization of
fading gains and signature sequences). In this scenario, we
define the power allocation for every user as

(136)
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If there are point masses in and the common distribution
of such that there is a positive probability of

being linearly dependent, then on these realiza-
tions, the solution set is closed and convex and
we select any of these points to be at that realization of
fading gains and signature sequences. Since there is ambiguity
in only on point masses, we still have a measurable
function of for each . More gen-
erally, we can appeal to general measurable selection theorems
([33] is a good review on these results; [33, Theorem 3.1] is
relevant to our case) to select a measurablethat satisfies the
property (135) at almost every realization of fading gains and
sequences. Since for (almost) every realization of fading states
and signature sequences is the maximizer of the map in
(133), it follows from Proposition 4.4 that

(137)

where maps to the reals as

Furthermore, it follows for any that

for not satisfying (135) on realizations

of positive measure. (138)

Thus, if we can show the existence of a power allocation policy
where the supremum of (9) is achieved, the claim

of this proposition follows from Proposition 4.3 and (138). We
now show the existence of such a power allocation policy.

Fix a realization and consider
defined in (135). Since each of the is bounded from above
(by ) it follows that and furthermore

for each . We used Proposition 4.3 in the obser-
vation that cannot be less thanfor any .
From (137) we conclude that if we can show that ,
we have proved the claim of this proposition that

Fix and let us denote the (measurably selected) power
allocation policy which maximizes in . In the pre-
vious notation, maximizes . We begin with the following
claim for any :

is continuous on
(139)

Suppose that this is true. Now and thus as
we arrive at . From Propositions 4.4 and 4.3 we have,
for every , that there exists such that .
Using (139), given we have such that . Observe
that

where we have used the hypothesis that in the
derivation of the last step. Thus

(140)

We will now show that must equal (proposed by Proposi-
tion 4.4) and complete the proof. By the concavity of, for
any that does not satisfy (35) on realizations (of
fading gains and signature sequences) with positive probability
measure, we have . Using (140) and Proposi-
tion 4.4 we arrive at . It only remains to show the claim in
(139). We only show this for the case whenis strictly concave
for almost every realization of . The extension to
the general case when there are realizations of positive measure
which lead to nonstrict concavity of is not pursued here. Fix

and a realization of . We first observe
that the map

is continuous for every realization of such that
is strictly concave. For such realizations,is invertible and

we have [from (35)]

(141)
Fix and consider in as .
Observe that the image of under in the positive or-
thant of is contained in the box .
Furthermore, the image is closed (using (141)) and thus com-
pact. Now consider the sequence in the
compact image . There exists a subsequence
and some and such that . From
the continuity of the inverse of (using (141)) we arrive at

. By hypothesis, and thus allows us
to conclude that showing the continuity of .
Thus, for almost every realization, we have shown continuity of

. Fix and by Egoroff’s theorem ([15, Theorem 3.6.23]),
we have uniform continuity of the map

on a set such that . Hence,
there exists such that , we have on

(142)

Then
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where we used (142) in the last step and the fact for every
that in the second step. Sinceis arbitrary,

we have completed the proof of (139).

APPENDIX E
PROOF OFTHEOREM 4.7

Fix the processing gain and the number of users
. From the argument following Proposition 4.4 and (135)

we know that any optimal power allocation has the following
structure:

Here the notation emphasizes the dependence of (the
Kuhn–Tucker coefficient) on . Thus we have

a.s.

and if we can show that

the proof is complete. We now show that is uniformly
lower-bounded (uniform in ). Denote (static) power alloca-
tions that allocate constant power (say) for every realization
of the fading and signature sequence by . The sum ca-
pacity with this static power allocation converges pointwise to
a nonzero constant in a large system. Formally

as (143)

Using results about eigenvalues of large random matrices, we
show a more general version of this result in Proposition 3.1
and has an explicit expression (given in [28]). It also
follows from this result that as . Some
simple monotonicity properties of and are as fol-
lows:

whenever

for each fixed (144)

whenever (145)

We fix such that

(146)

where is equal to defined in the
proof of Proposition 4.1. Defining the function on the positive
reals

we recognize from (130) that . By
definition of , from (33) we conclude that

(147)

Now suppose . Then there is a subsequence
such that and an integer such that

for all . By definition, we arrive at

(148)

In (148), the power allocation allocates constant power
equal to for every realization of signature sequences and
fading states [recall notation from Section IV-B]. Furthermore

(149)

where we used (143) and (144). Combining (148), (149),
and (146) we arrive at a contradiction to Proposition 4.1.
Thus, the Kuhn–Tucker coefficient is uniformly (in )
lower-bounded and denoting the lower bound as the proof
is complete.

APPENDIX F
PROOF OFLEMMA 4.9

The essential ingredients of the proof are all contained in [24,
Lemmas 4.3 and 4.4] and we only indicate the key points of
departure. In particular, a close study of [24, Lemmas 3.2, 4.3
and 4.4] reveals that the statement made as Lemma 4.9 in this
paper is true for the situation when and . Below,
we hint at a broad outline of the generalization of the results
in [24] to the general case here. We use to
denote constants that are independent of.

Let where (recall notation from (50))

Let

and

where . Let and denote
and , respectively. In this notation, we need to prove that

(150)

We show (150) by the following sequence of bounds:

(151)

(152)

(153)
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We omit the sketch of the proofs of (151)–(153) in this paper for
brevity. The details of these results can be found in [32].

APPENDIX G
PROOF OFLEMMA 4.10

A key observation from the quadratic equation sat-
isfies (in (48)) is the following:

(154)
To see this, define

and

Now

(155)

(156)

(157)

where (156) follows from (155) and (47). Now the claim in
(154) follows directly from (157). The following statements
now follow from the key observation (154):

(158)

(159)

as (160)

If we have . Then it follows from
(160) and by the continuity of that has at least one fixed
point. We show that has a fixed point by explicit con-
struction of a sequence of points that converges to and
in the process uniqueness will follow. Consider the following
iteratively defined sequence . Let and

. We have

We show by induction that . Suppose
. Now, substituting and

it follows from (158) that

This shows that is an increasing bounded sequence
(bounded using (160) and recalling thatis continuous) and

hence for some in the support of and is
a fixed point of . Furthermore, for , it follows
from (159) that

and hence for all . Now suppose
and thus . We need to show that for small

enough we have and, thus, the fixed-point iteration
can start from such small enough nonzero. Substituting
in (154) we arrive at for some if we show that

as (161)

Observe that the integrand in (161) is the water-filling power
allocation policy in (15) and maximizes the single-user capacity
in (14). Suppose

for some constant . Then, we have

(162)

where we used a technique similar to that used in the proof of
Proposition 4.1 to derive the last step. Since can be made
arbitrarily large by choosing the average power constraint of the
power policy arbitrarily large and for every choice of the
corresponding single user capacity is achieved by the
water-filling policy of the form , we have a contradic-
tion to (162). Thus, there cannot be a uniform boundand we
have shown (161). This shows that is the unique fixed point
of and a fixed-point iteration from small enoughconverges
to .

APPENDIX H
PROOF OFPROPOSITION6.1

The proof is quite elementary. We first show (101). Recall the
map in (62) of which is the unique positive fixed point
(Lemma 4.10). Our first observation is that the mapas a func-
tion of (denoted by ) is strictly increasing pointwise with
increasing . Furthermore, for each, the map is contin-
uous.

Consider the following claim:

uniformly in as (163)

where

To see this claim, let us define

and
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Observe that

(164)

(165)

(166)

where (164) is by definition of in (49). We used the
simple inequality

and

to arrive at (165). It is straightforward now to verify that

(167)
which combined with the final upper bound in (166) shows the
claim in (163) that converges monotonically pointwise uni-
formly. It follows from (15) and the constraint on the average
power to be equal to that is the unique positive solution
of the following fixed-point equation:

(168)

From (168), we see that is the unique positive fixed point of
the map . We now claim that the fixed points of the maps
themselves decrease monotonically with decreasing. Let
denote the unique fixed point of the map . Fix . De-
fine sequences for as follows:

and . Then, from Lemma 4.10 it fol-
lows that as for . Thus, we
have for every and we conclude that

. Thus, is a decreasing sequence asis
decreasing and converges to, say,. Now

Taking limits as and using the continuity of the map
we have

(169)

Also, from (166) and (167), we have, for every

and taking limits as , the continuity of yields

(170)

Now (169) and (170) show that and thus
, the unique fixed point of .

Following the definition of in (48), we have

as (171)

Observing that for every

we have that decreases monotonically withimplies that
increases monotonically with. Since we had already ob-

served that the limit of is in (171), we have shown
(101). An identical argument now shows (102).

APPENDIX I
PROOF OFPROPOSITION6.3

The proof is not too different from that of Proposition 6.1. We
observe by definition of in (48) that, as

This implies that [as in (163)], as

As in the proof of Proposition 6.1, converges to the fixed
point of as , denoted by . When , we easily
identify and when that . The monotonicity
arguments follow easily. From the limiting values of and

we have for each userthat as and
when the limiting value of is different from that of
constant power allocation policy and thus there is a strict loss in
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sum capacity by using the constant power allocation policy as
compared to the water-filling strategy. It still remains to show
that when the gain in sum capacity with water-filling
strategy over constant power strategy goes to zero in high SNR.
We follow the proof of Proposition 6.2. Fix and the
processing gain. From the limiting values of and we
already have that as for every .
We establish a bound akin to (106) and appeal to the dominated
convergence theorem concluding the proof

(172)

(173)

where we used the bound that

by definition of the water-filling strategy (78) in (172) and the
Hadamard inequality [4, sec. 9.6.3] in (173). Analogous to the
proof of Proposition 3.1, an application of the dominated con-
vergence theorem completes the proof.

APPENDIX J
PROOF OFTHEOREM 8.1

The first case of is exactly identical to the
DS-CDMA setup and the result is the same as that in Theorem
5.3. The second case is very similar to the DS-CDMA setup at
high SNR and thus the result follows the behavior of the water-
filling policy in the DS-CDMA model at high SNR (formally
analyzed in Proposition 6.3). Below we will sketch a proof of
only the situation . Any optimal has
the structure shown in the equation at the bottom of the page
and Theorem 4.7 is still valid

for a possibly different constant than the one used in The-
orem 4.7. In this scenario, the SIR of userwith the constant
power allocation policy is given by where

Define the (Lagrangian) function

As in the proof of Theorem 5.1

(174)

Now

(175)

where satisfies the fixed-point equation (by an appeal to
Lemma 4.8)

It follows from this expression for and the hypothesis that
and that

as (176)

Using (175) and (176) in (174) we arrive at

The observation that and
completes the proof.
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