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Asymptotically Optimal Water-Filling in Vector
Multiple-Access Channels

Pramod ViswanatiMember, IEEEDavid N. C. TseMember, IEEEand Venkat Anantharanfellow, IEEE

Abstract—Dynamic resource allocation is an important means in the antenna model it is the vector of path gains from the user
to increase thesum capacityof fading multiple-access channels to the different antennas at the receiver. A central problem in this

(MACs). In this paper, we consider vector multiaccess channels actor myltiple-access fading channel is how to carry out power
(channels where each user has multiplelegrees of freedojnand

study the effect of power allocation as a function of the channel aII_ocatlon to increase thepectral _efﬂmen_cy)f _the channel. In
state on the sum capacity(or spectral efficiency defined as the this paper, we assume that the signal directions of the users are
maximum sum of rates of users per unit degree of freedom at random (but known at both the transmitter and receiver) and
which the users can jointly transmit reliably, in an informa-  study power allocation policies that aim to maximize the rates at
tion-theoretic sense, assuming random directions of received ik ysers can reliably communicate (iniaformation-theo-
signal. Direct-sequence code-division multiple-access (DS-CDMA) fi One fund tal f fa MAC
channels and MACs with multiple antennas at the receiver are two _re ic sense). ) ne L_m amental per orm_ar_wce measu_re ora
systems that fall under the purview of our model. Our main result IS Sum capacityequivalently, spectral efficiency), defined as the
is the identification of a simple dynamic power-allocation scheme maximum sum of rates of users per unit degree of freedom at
that is optimal in a large system, i.e., with a large number of users which the users can transmit reliably. Our focus in this paper
and a correspondingly large number of degrees of freedom. A i he 10 identify simple power allocation policies that allow
key feature of this policy is that, for any user, it depends on the t icate at rat th | ¢ t
instantaneous amplitude of channel state of that user alone and users to Commun_lca e at rates (these are long-term ra e_s ave_r-
the structure of the policy is “water-filing.” In the context of ~ aged over the fading process) such that the sum of rates is arbi-
DS-CDMA and in the special case of no fading, the asymptotically trarily close to the Shannon limit.

optimal power policy of water-filling simplifies to constant power Allocation of resources (power, bandwidth, bit rates) in the

allocation over all realizations of sighature sequences; this result o ; ; i
o ! . ' context of specific multiple-access schemes such as time-divi-
verifies the conjecture made in [28]. We study the behavior of the X b

asymptotically optimal water-filling policy in various regimes of sion multiple access (TDMA)_' frequgncy-dmsmn multiple ap-
number of users per unit degree of freedom and signal-to-noise €€SS (FDMA), and code-division multiple access (CDMA), with
ratio (SNR). We also generalize this result tanultiple classesi.e., the performance criterion typically being the signal-to-interfer-
the situation when users in different classes have different average ence (SIR) ratio of the users at the receiver, is studied in [5], [8],
power constraints. [10], [29], [23]. In the context of information-theoretic power
Index Terms—Code-division multiple access (CDMA), linear control, existing literature focuses mainly on scalar channels.
minimum mean-square error (MMSE) receivers, multiple an-  For the single-user scenario, [7] identifies water-filling to be the
tenna systems, power control, spectral efficiency, sum capacity, ontimal power allocation as a function of the fading state. This
water-filling. - - - .
allocation maximizes the rate at which the user can communi-
cate reliably, the rate being averaged over the fading process. In
|. INTRODUCTION the multiuser scenario, [11] studies power allocation strategies

HE focus of this paper is vector multiple-access channdlt the users as a f_unction of the fadi_ng state to ma>_<imize the
T (MACs); these are multiple-access channels with multip m of rates at which the users can jointly communicate. !t is
degrees of freedonTwo common examples of such channel"oWN therg that the power policy that allows users to achieve
are direct-sequence code-division multiple-access (DS—CDM%;m capacity h"?‘s the propgrty. that onIy. the user with the best
and a MAC with multiple antennas at the receiver. The numb annel at any time transmits (if at all) \,N'th positive power and
of degrees of freedom in the DS-CDMA model is the processirﬁ € USErs themselves adppt a water-filling strategy with 'respect
gain and in the antenna model it is the number of received 4 their fa_ldmg states. This paper focuses on vector mulﬂp_le-ac-
tennas at the receiver. Thiggnal directionat the receiver of any cess fading channels. Our main results can be summarized as
user in the CDMA model is its receivespreading sequenand follows.

1) In the DS-CDMA model, we assume that the spreading

, . , . sequences of the users are random and each user expe-
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large processing gain). This policy igater-filling for sive tutorial of information-theoretic study of fading channels is
each user and depends solely on the amplitude of thgaten in [2].

user’s instantaneous fading amplitude. We show that theln Section Il, we outline the DS-CDMA fading-channel
water-filling policy is asymptotically optimal for both model, formulate the problem, and precisely state our main re-
the long and the short signature sequence models.  sults. In Section Ill, we heuristically derive the structure of the

2) In the multiantenna model, we assume independent fRptimal power allocation strategy and see that it is water-filling.
quency flat fading from the users to the antenna arrany'iS section outlines the key ideas in the identification of
the receiver. The fading from any user to one of the aRSymptotic optimality of the water-filling strategy and allows
tennas can be considered to have two components: fitkye more casual reader to gain insight into our result without
a slowly varying component due to distance loss, shag@idtering the technicalities required for the formal proof. In
owing effects, and geographical features and secondSgction IV, we develop the mathematical machinery and some
fast varying component due to constructive and destrueteliminary results required for the proof of our main result. In
tive addition of the various multiple paths at the antenn&ection V, we first give the simpler proof for the no-fading case
Our main result is that a water-filling power policy thatand then give the formal proof in the general case of fading
for any user, depends only the slow fading component ghannels. In Section VI, we study various regimes of number of
the fading channel from that user to the antenna arrayy§ers and signal-to-noise ratio (SNR) and analyze the behavior
asymptotically optimal (the asymptotic is in the numbe?f the optimal policy in those regimes. We also discuss natural
of users and the correspondingly large number of afXtensions when there are differeciassesof users; users
tennas at the receiver). in different classes have different average power constraints.

) ) In Section VII, we demonstrate our results by simulating the
In the scenario when the slow fading component can be cQ{ifferent power allocation strategies and plot the corresponding
sidered constant in the time scale of communication, the watg[mm capacities achieved for flat and Rayleigh fading channels
filling policy simplifies to a constant power allocation policy nder a wide range of loading of users and SNR. In Section
(this policy transmits a constant power regardless of the realizgy| we turn to the multiple-antenna model, the other example
tion of fast fading amplitudes of the users). Thus, asymptoticallf 5 vector MAC. We conclude the paper in Section IX with

In the multiple-antenna scenario, this result is in sharp contrast

from the pqint of view of the scalar MAC resul_t ir_1 [11]. The . M ODEL, PROBLEM FORMULATION, AND MAIN RESULTS

scalar multiple-access result shows that the gain in spectral ef-

ficiency by allowing side information of the channel states t§- Model

all the users [the optimal way to use this side information is to We consider a single cell in a symbol synchronous CDMA

allocate positive power only to the user with the best channglannel and focus on the uplink. There &fe@isers in the system

(if at all)] is significantly higher than the spectral efficiency oband a single receiver. The processing gaiVisnd represents

tained by not allowing any side information (and thus allocatingie number of degrees of freedom of the MAC. Throughout this

constant powers to the users at all fading states). From our paper we assume thaf = |aV | wherea is a fixed positive

sults, we conclude that if there are sufficiently many degreesmfimber. This assumption simplifies the analysis and notation,

freedom (antennas in this case), the gain in spectral efficierteyugh onlyK /N — « asN — oc along with some mild re-

by having side information at the transmitters vanishes. strictions allows us to derive all the asymptotic results obtained
In other related work on vector MACs, [16] and [30] studyasymptotic inN) in this paper. Following standard notation

the allocation of signature sequences to achieve sum capagiige [27, Sec. 2.1]), the baseband received signal in one symbol

in nonfading channels as a function of the average power canterval can be expressed as

straints of the users. In [9], the authors study the sum capacity of p

CDMA systems with random long signature sequences in non- -

fading cﬁ/annels. In [28], the autk?orsgstudy the gum capacity of y(n) = in(”)si(”)hi(”) +w(n). @

CDMA systems with random long signature sequences for a =t

wide variety of receiver structures: optimal joint detection reA word about our notation throughout this paper. We use lower

ceivers, linear minimum mean-square error (MMSE) receiversse letters for scalars, bold face lower case letters for vectors

matched filter receivers, and decorrelator receivers. They &aith N components), and upper case for matrices. The super-

sume that the users are received at the same power andsitript tilde on the channel fading statesand h indicates the

channel has no fading. In the special case of constant flat fadingantity is from the complex field. In (1), the indexrepre-

in the DS-CDMA long signature sequence model, our main reents time and the received sigmais regarded as a vector in

sult simplifies to constant power allocation over all realizations”. Heres;(n) is the received signature sequence of uger

of signature sequences and fading states; this verifies the cgarded as a vector iRY. We consider both long and short sig-

jecture made in [28]. The effect of frequency flat fading on theature sequences (short signature sequences get repeated every

spectral efficiency of DS-CDMA with random long signaturesymbol interval while many symbols are transmitted over one

sequences and a wide variety of receiver structures is studiedimation of a long signature sequence). Thus, in the long sig-

[19]. Recent results on information —theoretic power controlature sequence modegl(n) is an independent realization for

in nonergodic scalar fading channels are in [3]. A compreheavery timen and in the short signature sequence it is fixed for all
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time. We model the signature sequences as having random inglewly than the data rate, so that the tracking of the channel vari-
pendent and identically distributed (i.i.d.) entries (the choice amations can be done accurately and the number of bits required
relevance of this model are discussed in [23] and [28]). Herfey feedback is negligible compared to that required for trans-
h; is the complex fading or path gain from useo the single mitting information. By a power allocation policy, we mean a
base station (receiver). The baseband model of (1) represduatxtion from the fading states and signature sequences of the
frequency flat fading which is the appropriate model when thesers to the nonnegative reals. We let

sampling rate is not large enough for the multiple paths to be

resolved. We write the amplitude squared of this complex path Piz (h1, ..., hg, S) — RT

i del ) T . i
gain by ;== h;h;. Henceforth, we refer @, as the path gain denote a power allocation policy for useand call the tuple

and explicitly say “complex path gain” when referring /. P — (P1, ... Pi) a power allocation policy. We say that the

The user symbols are represented by the real-valued random . S . o
. : L . . ower allocation policy i$easibleif for everyrealization of the
variablesz;. w is an additive white complex Gaussian process

. ; 9 . Signature sequences the average power allocated to each user

with variances=. Each user has an average power constfint . )
: = ; (over the fading process of the users) is no more fidror-
Our assumptions on the path gainsare conventional (see [22, ) . : o
K mally, the set of feasible allocations for a fixed realization of
Sec. 2] and [7], forexample). We assume thidt; (n) }rentie, . :
. . k . - Signature sequenceésis
is a sequence of i.i.d. stationary and ergodic processes; let
def

(sjg vare of fﬁZTQ"n?S?eSt?QﬂZ%5'522'2‘%'0”h-(fhtﬁif e T AP P

u x fadi wvhi ini .
first and second moments. E[Pihy, ooy e, $)|S] < pVi=1,... K}

Now, for every power allocation policf € F1(S), define the

B. Problem Formulation quantity
We first consider short signature sequences. Here the signa-
ture sequences, once chosen, are fixed and repeated over e@%\*y(?’ 5) ’
symbol interval. We model the signature sequence of user, , 1 ) 5 K .
ass; = ﬁ(vil, ..., vn)t where{v;} is a collection of ~3 E llogdet| I+o Zhisisipi(hl’ coes by SYILS]
i.i.d. random variables with zero mean, variadicand bounded =t 4)
fourth moment. These random variables are independent of the
fading processegh;(n) tnc. Both the random variablgs:i;}  Comparing with (3),Coun (P, S) can be interpreted as the
and{;} are defined on the same probability space,($ayu), (random, since it depends on the specific realization of the
and we writeE[X] to meanf, X du forany X in L*(, ). signature sequences) sum capacity of the MAC with powers
Conditioned on one sample point or realization of signatuggiocated according to polic®. The following proposition
sequences, sasf, - .., 8x (we write.S = [s1, ..., sk]) the characterizes sum capacity when transmitters also have perfect
channel model in (1) becomes knowledge of the fading states.

K R Proposition 2.1: The sum capacity of the fading Gaussian
y(n) = Z zi(n)h;(n)8; +w(n). (2) vector MAC conditioned on a particular realization of the sig-
i=1 nature sequences (s&Y in (2) when both the users and the re-

. ceiver can perfectly track the fading state and know the signature
We assume that all the signature sequences (once Chosen)s@&%ences is

known to both the receiver and all the users. We also assume
that the receiver has perfect side information, i.e., has perfet(;(;pt(s): sup  Coum(P, S)

knowledge of the fading gains at each channel use. For the situ- PCFL(S)
ation when the transmitter has no knowledge of the fading gains - 1 E
and the signature sequences are fixed te;be. ., sy, the sum _peflp(s) 2N
capacity of the MAC in (2) is K
, X . [logdet <I+202h18i8$7)i(h1, .oy b, S)) S] .
_ - — -2 e ql i=1
v E [103 det <I + po ; hzszsz> S] . () (5)

The capacity region for single degree of freedom fading chaf-version of the coding theorem in the above proposition ap-
nels with no information of the fading state at the transmitter feared as [22, Theorem 2.1], another version of the above re-
given in [17] and the intuitive idea behind the proof is given isult for a single-user fading channels is in [7] and we omit the
[6] so we omit the proof of (3). proof. For generakb, no closed-form solution to the optimiza-
Our interest is in the situation when the transmitter also hien problem in (5) is known. We discuss algorithmic computa-
perfect knowledge of fading gains. In practice, this knowledg®ns that get close to the solution in Section VII.
is obtained by the receiver measuring the channels and feedingn the notation of [21], the MAC with short signature se-
back the information to the transmitters (users). Implicit in thiguences in (2) representsanergodicchannel and the Shannon
model is the assumption that the channel varies much maapacity of the channel is zero; however small the sum rate the
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users attempt to communicate at, there is a nonzero probabilitye Shannon sum capacity of the MAC (recall the channel
that the realized signature sequences will render the channelnredel in (1)) with perfect side information at both the trans-
capable of supporting the rates reliably. Motivated by the amitters and the receiver is given by

proach in [21] and [12] to such channels, we study the tradeoff

between thesupportable ratendoutage probability Formally, Uffl‘t)‘:f sup L[E

the supportable sum ratg at an outage probability is the PeFy) 2N

maximum sum rate at which the users can communicate reli- K

ably with sum rateR for all realizations of signature sequences . [logdet <]+Z o 2h;8;8Pi(hy, ..., hy, S))]
but a sefS whose total probability is less thanIn our notation, =1

the supportable rati;"") is defined as 9)

This result was observed in [28, Sec. 3]. FoE J-“Q(N) defining

R:(N) = sup {R P[Copt(s) 2 R] Z 1 - CL} : (6) the quantity

For a family of valid power allocations (power allocations for@sum(p)

each realization of the signature sequences), define the quantity . K
dérﬁ E [logdet <I+Z J_thsisﬁﬂ(hl, cees By, S))]

R, ({PseFi(S)}ts)=sup{R: P[Ccum(Ps, S)>R]|>1—a} =1

(7)

and interpreting it as the supportable rate with outage prOtQﬁﬁich can be interpreted as the sum capacity of the fading MAC

bility at mosta wher_1 thg power allocation policy for the S19M3ith random long signature sequences when powers are allo-
ture sequence realizatighis Ps, we have

cated using the policf, from (9) and (10) it follows that

(10)

R:(AT) = sup Ra({PS}S)- (8) 622;) = sup Csum(P)- (11)
{PsCF1(S)}s PcFN

One of the main aims of this paper is to characterize the family the case of long signature sequences, we are interested in
of optimal power allocation policies that “achieves” the maxeharacterizing power allocation policies that are optimal in the
imum supportable rate in (8). Our demonstration of a simpéense of achieving sum capacity equaltg,:.
power policy (that does not depend on the actual realization ofA word about our notation is in order here. We use the su-
signature sequences and hence the family of power allocatigesscript’V only when the emphasis on the dependence on the
reduces to a single power allocation) that has the supportabjstem size is warranted. For example, the supersitigbes
rate asymptotically (inV) equal to the optimaRZ(N) is one of not appear orC,,,, which is afunctionthat takes arguments
our main results. P e ]:2(N) and thus the system sizé is implicitly contained

We now turn to long signature sequences. Here, many sym+the argumen®. On the other hand, we do use the superscript
bols are transmitted over one period of the signature sequen¥eon C,,. Which is a positive number.
Thus, the simplifying assumption that the signature sequences
are independent copies of identically distributed sequences fr Main Results

everychannel use is made. Formally, we define The main focus of this paper is in characterizing optimal
power allocation policies in two different settings. First, for the
1 long signature sequence model we are interested in the power
si(n) = \/_N allocation policy as a function of the realization of signature
sequences and fading states subject to an average power con-
where{v;;(n)} arei.i.d. random variables with zero mean, varistraint that maximizes sum capacity of the MAC in (1). In the
ancel, and finite fourth moment. We retain the assumptiosecond setting, we wish to characterize a family of power allo-
that both the receiver and the transmitters (users) have complgdtions as a function of the fading states of the users subject to
side information, namely, they have perfect knowledge of theh average power constraint that maximize the supportable rate
signature sequences and fading gains at all times. As befaesome fixed outage probability. Our main result is the iden-
power allocation policies are maps from signature sequencgigation of a simple power allocation policy which is almost
and fading states of the users to the nonnegative reals. A poligtimal for both the short and long signature sequence models.
P = (P1, ..., Px) is feasible if for every uset, the average We state this result formally below. Consider the power alloca-
(over signature sequences and fading states of the usé?sjof tion policies
no more tharp. Let the set ofeasible power allocation policies

(vir(n), ..., vin(n))

(V) 1 1\t .
be denoted by, /. Formally, we have P (he, .., by, S) <X — /ii,fhf,) Vi=1,...,K
(N) _ (12)
Fy ' ={P:E[Pi(h1, ..., kg, S)]| < pand where we have used the notatipn)* to indicatemax{x, 0}.

Pi(h1, ..., hx, S)>20Vi=1...K}. The constan3;, is the limiting the SIR of a unit received
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power user using the linear MMSE estimator in a large system 3) For a single-user fading channel, it is intuitive (observe
(large processing gain and correspondingly large number of the structure of the optimal power allocation policy in
users) with random signature sequences when all other users (13)) that in high SNR (as? — 0) the loss in sum ca-
are following the power allocation policy above in (12). The pacity by using a constant power (equalpoallocation

formal definition and proof of existence of this quantity is policy as compared to the sum capacity by using the op-
in Sections 1ll and IV. In (12), the constant (Kuhn—Tucker timal water-filling policy becomes negligible. In the gen-
coefficient) X is chosen such thd[P}{(h;)] = p. Observe eral multiple-user scenario, we show that the policy (12)

that this policy does not depend on the signature sequences at high SNR converges and the limiting policy is the con-

of the users and for any user depends only on the fading state stant power allocation policy far < 1. Thus, the cor-

of that user at that instant (in the special case when there is rect extension of the single-user high-SNR result is that
no fading this implies that this policy is a static allocation of whene (the ratio of users to processing gain) is less than
powers equal t@ independent of the signature sequences).  unity, the gain in sum capacity in a large system (large
This power allocation policy isvater-filling and generalizes processing gain) by using an optimal strategy over con-
the strategy of [7] for single-user fading channels. To see this  stant power allocation goes to zero at high SNR. On the
generalization, recall the optimal power allocation policy for other hand, there is a strict loss in using constant power

the single-user case from [7] allocation when there are more users than the processing
gain, even in the limit of high SNR. We also give an intu-
1 o2\* itive explanation of this fact.
P(h) = <X - 7) (13) 4) We have been able to extend our results, on the asymptotic

optimality of the water-filling power allocation, to the

where L is the SIR seen by a unit received power user in the ~ Scenario of multipleclassesn the situation of long sig-
system (there is only one user in this scenario). Now the gener-  nature sequences. Users in different classes have different

alization is apparen3: , replacesl /o> average power constraints. The asymptotically optimal
We show that the water-filling policy of (12) is a “good” strategy still has the basic structure of the water-filling
power allocation policy for both the long and the short sig-  Policy (12) but users in different classes have different

nature sequence models. We also analyze its behavior in var- threshold levels for their water-filling policies.

ious regimes of the number of users per unit processing gain

and background noise variance. We enumerate our main resultS||| 4 eurisTIC DERIVATION OF THE ASYMPTOTICALLY

below. We emphasize that these results are truarigrdistri- OPTIMAL POWER ALLOCATION STRATEGY

bution of the random variables; that satisfies the property of . ) ) ) _

zero mean, unit variance and bounded fourth moment, and amI,n this section, we first restrict ourselves to long signature

stationary fading distributiod” with bounded first and second S€duences channel model and motivate the reason why we can
moments. expect asymptotically the water-filling structure (12) of the op-

timal power allocation policy. Toward this end, we proceed in
1) Consider the case of long signature sequences. With lafg following order: we first review the water-filling power al-
signature sequences we show that asymptotically tReation policy (identified in [7]) for a single user in a (scalar)
water-filling strategy is optimal and identify the gap infading channel. Then, we show the relation of sum capacity to
sum capacity to be of the order 8f 2 whereV isthe  |inear MMSE (LMMSE) estimation of users along with succes-
processing gain of the system. Formally sive decoding. We then arrive at a heuristic expression for the
optimal power policy in the multiuser scenario.
o™ (ow) <0 <L> We begin with the single-user, single degree of freedom sce-
opt sumt N A nario. Now, the received baseband signal in any channel use is
(analogous to (1))
Note that because of the simplicity of the water-filling
policy, the notation becomes somewhat deceptive: in this y(n) = h(n)z(n) +w(n)
equationCy.,m, (P*!) does depend otV .

2) Consider now the case of short signature sequences. 3}ere {2() }ncn s the complex fading process assumed to
main result in this scenario is be stationary and ergodic. As before, we denote the amplitude

squared process By:(n)},, having a stationary distributiof

with bounded first and second momenig(n) is an additive
+o(1). white complex Gaussian noise process with variarficéVe as-

sume that the receiver and the transmitter have perfect channel
ThUS, in a |arge System the Supportab'e rate using tﬁ@e information, i.e., the fad|ng galh§ are pel’fecﬂy known to
water-filling strategy is within a factofl — a) of the both the transmitter and the receiver. The transmitter has an av-
optimal supportable rate. We are interested in very sm&flage power constraipt Then, ([7, Theorem 2.1]) the capacity
values ofa (typically, @ could be10—3 or 10~%) and thus ©f the channel is
f[he water-filling stfategy achieves a supportable rate thata1 = A 1 E [log <1 n hP(h) )} (14)
is close to the optimal rate. {P>0: E[P(h)]<F} 2

Ra (ow)

Ra wi <R*(N) <
(P < By < T

o2
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and the power allocation that achieves the maximum aboveg28, Sec. 2] or [27, Ch. 6]) the SIR of the LMMSE estimate of
“water-filling” (refers to the visualization of this scheme) this fictitious K + 1 user isBx+16h; where
-1

\ 1 o2\" K
P (h) = <X - 7) (15) [3[(_1_1 = SE 0'2_[—‘,- ZSjSE»pjhj 8. (19)

wherel is a constant (the Kuhn—Tucker coefficient for the con- =t

cave function maximization in (14)) that is chosen such th_g{ov_v, the rate achieved by this fictitious user being decoded first
E[P*(h)] = p. Observe that zero power is transmitted whel$ Simply
the fading is below the threshold, o2, 1
We now turn to the multiuser multiple degrees of freedom R= oN log(1 4+ 68k +1hq)
scenario. We first restrict our attention to the case when the
signature sequences and the fading gains are fixed (to Moeeressy 1, is the SIR of the LMMSE estimate of the ficti-

81,...,8 and hy, ..., hg, respectively). Let the userstious usetK + 1. This expression is consistent with the expres-
have average power constraipis ..., px. Then the channel sion for the increase in sum capacity in (18).
model (1) focusing on one symbol interval is Recall the expression of the sum capa@@t) for the long
K signature sequence model as an optimization problem in (9)
Y= Z x:8:h; +w. (16) 6(]\7) def sup i E
—1 opt - N
= PEFs
The sum capacity of this channel was explicitly calculated in (4) K
as a function of the signature sequences and the user average - [log det <I+Za‘2hisis$7%(h1, b, S))]
power constraints as i=1
1 K (20)
C(p1, ..., pr) = = logdet <I + Z a_Qsisﬁpihf) . In Proposition 4.2, we show that this is a concave maximization
2N ; . " i .
i=1 problem and in Proposition 4.5 that the maximum is actually

Th te tuples in th i . . I(l? achieved. Thus, there exists a Kuhn—Tucker coefficient 0
€ rate tuples n the capacily region are in general achievggy, ynat 5 necessary and sufficient condition for the optimality

by jointly demodulating the USErs from the received sigpal ?f a power allocation policyP* is that for every realization of
We focus on the following specific structure of demodulation %1 hy, S the optimal policyP* (if positive) satisfies the
R 1

the users’ symbols from the received siggaFix an ordering following constraints:
of the users. For every symbol interval, following the ordering '
of the users, users are successively decoded (by estimating the( Clpy, ..., ng)) (P*(hi, ..., hic, S)) = A

symbols by the LMMSE receiver, and the estimate is used to \ 9pi

decode that user) and the received signal is stripped off the de- VisuchthatP}(hy, ..., kg, S) >0 (21)
coded users. The LMMSE receiver for uggsrovides theop- P

timal linear estimate of the usérsymbolz; from the received <_ Clp1, ..., pK)> (P*(h1, ..., hi, S)) =A< 0
vectory. It was observed in [26] that this scheme allows the 9p;

users to transmit reliably at a sum rate equal to the sum capacity vjsuchthatP; (hy, ..., hi, S) =0. (22)

of the system! We use this to interpret an increase in sum Cqow (21) can be written as

pacity by an increase in the power of one user. Let the average .

power constraint of one user (say ugdre increased b§. Then s K ,
the increase in sum capacity [defined in (17)] is 8| o® T+ s8h;Pi(hy, ... hie, S) | sihi =\
j=1
C(plv "'7pi717pi+67 Di+1, ~~~7PK)—C(p17 ~~~7PK) \V/iSUChthaW;(hl,...,hK,S)>0 (23)

-1
K

1
= Wlog 1+ 6h;st |01 + Zsjsz'pjhj s; | (18)
i=1

by using the expression (18) for the increase in the sum capacity
by an increase in power of one user in the derivation of (23).
Here X is the Kuhn—Tucker coefficient (the formal existence

where we used the matrix inversion lemma and definition is in Proposition 4.4) and is chosen such that the
ALzt A-L average power constraint of the users is met. Application of the
(A+zz’)y P =A"1 - 1o 24 1 matrix inversion lemma to (23) yields
whenever the terms exist. We can interpret this increase in s (1, - -, fuc, S)

capacity as the rate of a fictitious user (numbefied- 1) with +

average powef, fading gaink;, and signature sequenggthat

is decoded first and then stripped off. It can be shown that (see _ | 1 _ 1
- —1
1n fact, a stronger statement is claimed in [26]. By changing the ordering of t{ o ot} D% : e
the users, this scheme allows the users to transmit reliably at rate tuples cor- si\o I+/Z431 8j h Pj (hayeooshie, S) ) sil
responding to all the vertices of the capacity region of the channel in (16), by el

appropriately choosing the ordering of the decoding. vi=1,...,.K. (24)
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The special case dV = 1 (in this case there is no spreadind MMSE estimate of any (every) user converges almost surely
ands; = 1) is easily handled. Observe that the choice in a large system to a constant, which we deynote@bEvery
L o2\t b N N choice of3 results in a unique asymptotic SIRof the users
Pi(hi, ..., hg)= (X_E) ’ i=max{hy, ..., hx} giving rise to the mag — /. Sinceg;,; denotes the asymp-
0, else totic SIR of the LMMSE estimate of any user, it follows thi&;
Vi=1,...,Kk Mmustbe the fixed point of the map— /3. Thus, if we assume

is a solution to (21) (equivalently, (24)) and (22). Thus, the otr-]e existence of the unique fixed pplﬂ:(,f and mft_ar (heur|§t|—_
. . S . cally) that the power policy (27) which asymptotically satisfies
timal power allocation policy in the scalar multiple-user ca

) N : .
is to allow only the best user to transmit and this user f0||OV\}§e Kuhn—Tugkgr conditionsis close to an optimal power pol!cy,
- T . . we have heuristically seen the asymptotic structure of an optimal
the water-filling policy; this was first observed in [11]. Even ower allocation policy. The nontrivial fact that the map- 4
the caseV = 2 is quite involved (simple solutions exist onIyIo policy. P>

o ) . . has a unique positive fixed point will follow from Lemma 4.10
under simplifying assumptions on the entries of the signature . : : .
: . Ip Section IV. We also show that there is a simple expression that
sequences). In general, there is no closed-form expression fqr : : . . .
relates this unique fixed poirtt}; to the corresponding and

the optimal power allocation in (24) and the authors in [25] Ole_ropose a fixed-point iteration algorithm to compute the quan-

sign interior po!nt methods that find a.pprOX'mate solutions c|)ties 3% and the corresponding. In the next section, we de-
(24). However, in an effort to get more insight into the structure w : .

of the optimal power allocation policy we look into the regim(\e/eIOp the mathematpal appara_tus required to prgsent the formal
of large & and largel. We begin with the following interpreta- proof of the asymptotic optimality of the water-filling power al-

tion of the structure of the optimal power policy (24). Defininglsoecc"’;itgonn policy that we have only developed heuristically in this
—1 .

Recall the key features of this policy: the policy is inde-
Bids) [ o1+ s;85h;Pi(hy, ..., b, S)| 8 (25) pendent of the realization of the signature sequences and for
JFi each user the policy is water-filling over the fading process of
and observing thaB;h; P (hi, ..., hi, S) is the (random) that usemlone We use this structure to show that water-filling
SIR of the LMMSE estimate of usérwhen powers are allo- power allocation performs very “close” to the optimal policy
cated according t®* and substituting in (24), we arrive at theeven for the short signature sequences model. Toward this end,
following structure of an optimal power policy: we make some observations of the limiting sum capacity when
1 1 \7F using power allocation policies of the type above, i.e., power
Pri(he, -0 hi, S) = <X - ﬁihi> (26)  allocation policies of the formP?: (hy, ..., hi, S) — g(h;)
Here 3; is the (random) SIR of the LMMSE estimate of use/N€rég is a nonnegative bounded function. We observe that
i when all users are allocating powers optimally. Let us cog4m capacity with this policy converggmintwisein a large
sider the performance of power allocations that have the strf¥Stem and we make this precise below.
ture that for any user the policy depends only on the fading gainproposition 3.1:
for that user, i.e.P; is of the form(hy, ..., Ay, S) — g(h;) < K ) .
- 65111117

for every uset whereg is some bounded nonnegative function— log det | I + Z o 2s;8thig(hy)
into the reals. In this situation, [23, Theorem 3.1] shows that t i=1

(random) SIR of any user (say, user 1 to be specific) converges asN — oo. (28)
pointwise in a large system. Using our notation we can make this
statement precised, from (25) with P¥(hy, ..., hg, S) = HereCf,, is a positive nonrandom quantity and the proof is

g(h;) converges almost surely {8fh; asN — oo. The pos- found in Appendix A. For the special case whien= 1 a.s.
itive constani3;; depends on, the background noise variance2nd g(-) = p (this is the no fading case with equal received
o2, and the functior itself and [23, Theorem 3.1] identifigs; ~ POwers for every user), there is a closed-form expression for
to be the unique positive solution of a fixed-point equation (if%um @nd [28, eq. 9] gives an explicit expression. In general,
general, there is no known closed-form solutiof9. Thus, in there is no anWF‘ closed-form expression o hoyvever,

a large system (larg®&y and correspondingly largk), we see [18] and [19] give some expressions to compUgg,,,. With the

that the power allocation power allocation beingP?¢ recall the supportable ratg, (P9)
+ at outage probability defined in (7) as the largest rate such that
Pr (1 hic, S)E gwi(hi) ! ! 27
P (b ey b, S)=gwi(hi)= X Bk (27) P [Coun(P?, S) > R] > 1 — a. (29)

satisfies the Kuhn-Tucker conditions in (24) asymptoticallythe reader will observe that we have replaced the family of
Here 3%, is a positive constant with the following structurepower allocations in (7) by the single power allocati@hsince
When every user uses a power allocation policy of this forrit}? is independent of the realization of the signature sequences.

namely It follows that
+ Val 2E CSUIH(PQ7 S) - égum
Pi: (hlv ey hKv S) = <§ - /32) RG(PQ) zcgum - [ a ]
for some positive reall (and A chosen such that the average > 0%, —o(1),  using Proposition3.1.  (30)

power, averaged over the fadingpis an application of the cen- Thus, the supportable rate using the power allocaf$nis
tral result [23, Theorem 3.1] shows that the (random) SIR of tlesymptotically close to the limiting sum capacity with power
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allocation’?¢. Combined with the formal result of the asympBy definition ® € J:Q(N). Then
totic optimality of the water-filling strategy, we use this result_ A

in Section V to show that the water-filling strategy is also cIoseO sum (P) «
to the optimal power allocation with short signature sequences._ % E [log ot <I+a—2 Z hisisPilhe, ... hic, S)ﬂ
IV. MATHEMATICAL PRELIMINARIES izl
In this section, we introduce some preliminary results and :% E [108‘(16'0 <I+0_2 Zsisﬁhiﬂ‘(hl, ooy by, S)
the mathematical background needed for the formal deriva- i=1

tion of our main result: asymptotic optimality of the water- s .
filling strategy. We begin with the scenario of long signature + o bh1sy1s]
sequences. Since our main focus is on understanding the opti-

mization problem (9) we begin with some simple observations = C,,,..(P) + 1 E

about its structure and its solution. 2N 560(P)
[ resmines)
A. Properties of Optimal Power Allocations _[ L+ Au(P)hiP(ha,. .. hi, S)
The optimization problem in (9) is on an infinite-dimensional -~ Coum(P). (32)
set (a closed ball in a Banach space) of valid power allocatioRgre 3, (P)h, P(hy, ..., kg, S) is the (random) SIR of the

and it is not clear priori if the supremum in (9) is actually | MMSE estimate of user 1 when all users are using the power
achieved. In this section, we show that the supremum is acfélicy 7 [an explicit expression fob,(P) is given in (42)] and

ally attained and characterize the set of the optimal power all@?2) follows from the matrix inversion lemma [as in (18)]. Thus,
cations. We proceed via a series of propositions. the sum capacity can always be increased by defining a power

1) Our first step is to show that the optimization problerAllocation policy thatis pointwise bigger and meets the average
in (9) is well defined. Formally, we have the followingPOWer constraint with equality and the proof of the proposition
proposition the proof of which is given in Appendix B. IS complete. O

4) The following proposition allows us to use Lagrange mul-
tipliers in this maximization of a concave functiaN. is
fixed below.

Proposition 4.1: For everynN, 55)1;? < aK,., whereK, is a
constant independent 6f andc.

2) We next show that the functi@i,,,.,(P) is concave. Con-

sider the following proposition. Proposition 4.4: There exists (a Kuhn—Tucker coefficient)

A > 0 such that
Proposition 4.3: For every deterministity, ..., hx andS,

the map from the positive orthantRI* to the nonnegative reals ~opt — Pi?’“
K 0
1 ) + K
. . - r .h.e.e" — )\
C: (p1y ..o, PK) — oN [logdet <I+cf szhzszsz>] . Csmn(P)_—Z(lE[Pi(hl’ ..y hie, $)]-D)
=t 2N
(31) (33)
is concave. Furthermore, §f;3;8¢, i = 1,..., K} are linearly where
independent, thef is strictly concave.
. N , FNL 1pp, > 0
This result is quite well known. It can be derived from [4; © = | .
Theorem 16.8.1]. A different proof is available in [32]. andP € L*(hy, ..., hi, S)Vi=1,...,K}. (34)
3) We observe that the power allocation policies that are ffollows from Proposition 4.2 that the MaRuu,: 7y — R,

interest always meet the average power constraint witlefined by (10) is concave. sine&?) defined in (112) is the

opt

equality. Formally, we have the following result. maximum ofC....., a concave function over a convex &,
Proposition 4.3: the claim abov(e;i)n Propqs.ition.4.4 unld have been completely
—(N) _ standard hadr;"" been finite-dimensional ([14, Sec. 28] is the
Copt = Sup Coum(P)- classical reference). HoweveF," is infinite-dimensional and

(V) =7 i= < . . . . . .
Pery OHEPil=pi=t, ., K hence this claim needs a formal proof, which is supplied in Ap-

Proof: The following (elementary) proof provides an oppendix C.
erational interpretation of increasing the average power of one

user. ConsideP € J-"Q(N) andE[Py(hy, ..., hi, )| =7 — 6 5) We now use the prev_io_u_s pro_p(()%tipns to_show that the
for some positives. Consider the power allocation policy supremum in the definition of’;,; in (9) is actually
. achieved by a valid power allocation policy. We state this
Pi(ha, - hie, §) =Pi(ha, .. b, S) 46 formally in the following proposition and also identify
and the structure of this optimal power allocation policy. The

X problem sizeN is fixed below and the proof is in Ap-
P =P, fori=2,..., K. pendix D.
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Proposition 4.5: There exists a power allocation poligy € Theorem 4.7:Let P* achieve the maximum in (9). Then
J-“Q(M such tha@ggt) = Coum(P*). Furthermore, for almost Vi = 1,..., K
every realization ok, ..., hy andsS, any optimal power allo- Pr(hi, ..., hg, S) < K, as.
. . . . def Ty
gatlon for this reqhz_atlon, denote_d by="P; (h1, ..., hi, S), where K, is some universal constant that does not depend on
i =1,..., K, satisfies the equations N
+ .
This theorem is proved in Appendix E. Using this, the sum
« |1 1 capacity can be written as
P =0y -1 65)]1\);) = max Cyium(P). (40)
s | 21+ > s;8th;p; 8;h; Pery™
J#i Here
Vi=1,...,K (35) ]:?EM
Where)\ iS the same as that giVen in Proposition 4.4. { 7) satisfies properties (36) and (39) }
6) Itis clear from the symmetry in the problem that the op- - " Pi(hys oo b, S) €00, Kplas. Vi=1.. K |

timal power policiesP;, ..., P} are symmetric with re- (41)
spect to the signature sequences and the fading gains. One
simple symmetry is given by Proposition 4.3 which alB. Limiting SIR of LMMSE Estimates

lows us to write In this section we review some recent results about the
E[P;(hi, ..., hx, S)]=p Vi=1...K. (36) asymptotic behavior of SIR of the LMMSE estimate in a
Another type of symmetry is in the formal statement belowrandom spreading environment. Fix a power allocation policy
P e J—“?EN). Associated with the LMMSE estimate of user
1 symbol z; (estimated from the received sign#l) is the
performance measure SIR defined as the ratio of the power

Proposition 4.6: Let P* achieve the maximum in (9). Then
for every permutationr, the power allocation policy defined by

Pi(ha, o5 hi, 815 -0, 8K) of the signal to the power of the interference in the estimate.
dof ;(71) (hw(l), vy iy 8x(1yy - sﬁ(K)) Recalling (19), we have that the (random) SIR of the LMMSE
Vi—1.. Kk estimateofuseris 3;(P)h;P;(hi, ..., hi, S) where
also achieves the maximum in (9). -
Proof: For every permutation Bi(P) =8t |o°] + Zhjsjsj%’j(hl, ceey hg, S) 8;
Usum(Pﬂ—) JF
1 K Vi=1...K. (42)
=—E |logdet I+a‘22hisis$7>;’(h1, cooy e, S) The SIR israndom since it depends on the particular realizations
2N ; ) )
i=1 of the signature sequences and fading. We further focus our at-
. K \ . tention on the following class of power allocation polici@sis
=5 E[logdet| I+o Z e (i) 87 (087 () P (i) independent of the signature sequences and has the structure
=1

Pilhi, ooy hie, YL PIha, ..., hi, S) = g(hs)
(s -+ s (i) Br(1ys -+ 8(ic) for eachi¢ = 1,...,K whereg is a nonnegative func-
tion bounded bykK,. Denote the corresponding SIRs of
(37) the LMMSE estimates (defined in (42)) of the users as
—Coum(P¥) (38) B1(P9), ..., Bk (P9). Then itis straightforward to see that

where (38) follows from the observation that the random varl-'€ random variables (79), ..., Sk (P)

ables are permuted (by) in (37) and by the hypothesis that are identically distributed.  (43)
hi, ..., hx are exchangeable amsg, ..., sx i.i.d. Thiscom- In a large system, the central result of [23] shows that the
pletes the proof of the proposition. L (random) SIRs converge almost surely to a deterministic

constant. Focusing on user 1 alone (without loss of generality),

We conclude by an appeal to the concavity of the rap., .
y PP y we have the following formal result.

in Proposition 4.2 that an optimal power allocation propérty
has the symmetry property below. For every permutatian$ Lemma 4.8 ([23, Theorem 3.1]):

andvi =1,... K, Br(PY) 22 3%, asN — oo (44)
Pi(hy; oo hie, 81, .00, 8K) where 3; is the unique positive solution to the integral fixed-
= P;:(z) (hﬂ.(l), ceey hﬂ.(;(), 8x(1)) -+ s Sﬂ.(;()) . (39) point equation - /3/ (I )
. . . gl
7) From the structure of the optimal power allocation polic p=1- a/ —— = dF(h). 45
) p p policy f Tt Bhe(h) (h) (45)

in (35), it follows that the allocations are bounded from
above. We need the following technical result that shows Recall thatZ" is the (same) marginal distribution of the fading
that the allocations araniformly bounded from above gainsh;, ..., hx. Convergence of; (P?) in measure first ap-
(uniform in V). peared as [23, Theorem 3.1] and the pointwise convergence (a
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natural extension) follows as a consequence of the main resbik existence of this quantity;,;. From (45),5%; is the unique
in [20] which shows that the empirical distribution of the eigenpositive solution to the integral fixed-point equation
values of the matri{jﬁl s;s8th; almost surely converge in dis- . 1 1A\t

alue i=1 $i8! msfh(——T) dF(h)
tribution to a nonrandom limit. 295 1 _ a/ WETAA Bk

To get a better feel for this result, consider the special case o LB h (; 4 )+
when there is no fading (we just take = 1 a.s.) andg = p WETAA Ak

a.s. Let us denote this static power allocation policybyrhen o0 A
Lemma 4.8 particularizes to =1- 04/ <1 - [*—h> dF(h). (56)
T\ a.s. k f— )‘/'B:zr wi
M(P) == F"(p, ). (46) Furthermore, by the average power constrairit ofi the power
Itis easily verified from (45) that*(p, «) is the unique positive allocation in (55), we have another equation relatirand 3 ;.
solution of the fixed-point equation ifi Denoting the ratio;>- by h.:, the fading threshold level below
2B=1-a s (47) Which no power is transmitted, we see that the average power
1+pp3 constraint in our notation yields
and hence?* (p, «) is the positive root of the quadratic equa- HM(hyy)
tion (in ) (this was first observed in [27, eq. (6.62)] for binary i = 1 4 BHM (ko) g (57)
fandom signature sequences) hereHM (1) is the “harmolrﬁg(rirbltggtr; c{;f ) with respect
2 22— L whnhere 1) | 1, OO
7 /3-p-—|— /3(7 +pla—1)-1=0 (48) {0 the distribution™ defined as
and can be explicitly written out as - dF(B) ~1
. l—a 1 (1-a)? 1+4a 1 HM(h)“‘g(l—F(h))</ +> - (58)
AP, o) = 202 _§+ 4ot + 2pc? + 452 (49) " h
P P P Observe thati M (h) > h,Vh € [0, o). Continuing from
C. Variations Around the Mean of Limiting SIR (56), we have - h
For the power allocation policf?, we saw in Lemma 4.8 o84 =1— Oc/ <1 - %) dF(h) (59)
that the SIR of any user converges pointwise. Our first simple ethr !
observation is that this convergence hold€.fnas well =1— ol — Flhm)) + (1 = Fhow)) (60)
-1 HM (hypy)
/31 (Pg) ISi 02.[ + Z hijSE»g(hj) 81; =1- a(l - F(hthr)) Ta
il : (1= Flhaw))” (61)
from (42)  (50) 1—F(hyy) + /ﬁ,f]_)HM(hthr)
o2 XK where (59) uses the definition f;,, asg%, (60) follows from
<o ’sis = N vaz (51) our notation of harmonic mean in (5@5 and we used (57) in
i=1 (61). Comparing (61) with (47) we see théf, is equal to
E[(81(P9))?] < Co™* (52) g (B2, a1l = F(haw))), the SIR of the LMMSE es-
where(] is a constant independent &f. It now follows from timate 0% a unit power user in a large system with all other users
(44) and the dominated convergence theorem that received at constant power equal%@% and number of
BL(P9) L7, Be. (53) Usersper unit processing gain equaktd — F(h.y,; ). Thusg:,
. . . i has an explicit form as given in (49). Substituting this structure
The following result investigates the variation around the mean . O e
of the limiting SIR (without loss of generality, focusing only o Of A3y in (57), we see that our claim is verified if we can show
user 1), ' "he existence of a solutiol,,, satisfying (57). Denoting
remma 4. c2 = 1 BHM) g éjﬁﬁ({?) a(l - F(h))) |
E[(0P) - 5)°] < 32 (54) 1=F9 7 1= ¢

N

where(; is some constant independent/éf h €0, 00) (62)

we have to show thdi;y,, is the unique positive fixed point of

K. The following lemma investigates the fixed pointskofind

D. Existence o, identifies a convergent fixed-point iteration scheme; the proof is
found in Appendix G. From this, we conclude the existence of

G uniques’ . with the properties derived in Section 111

wi

The lemma is proved in Appendix F.

In Section 11, we derived heuristically the asymptotic stru
ture of the optimal power allocation policy to be (from (27))
1 1 + Lemma 4.10: X has a unique positive fixed pointy,,. Fur-
Pii(hy, ..., hi, S) — gws(hi) = <X - W) (55) thermore, a fixed-point iteration & from small enougtt con-
wi've
whereg;,; was the limiting SIR of the LMMSE estimate when'€798S (et
users adopt the above power allocation policy &igla constant ~ For completeness, we would like to mention that there is a
chosen such that the average of the power allocation (averasjgorter” way of seeing the existence @f; from (56) and the

with respect to the fading statistics) is equapbt®/e now prove average power constraint on the water-filling policy in (55). The
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constraint that the average power of the water-filling policy irlere P is any power allocation such th&; > 0 a.s. and

(55) bep is simply p* is the positive root of the quadratic equation in (48). Ob-
0o 1 1 serve thatL is just the sum of’,,,,, and a linear functional and
/ <_ - — ) dF(h) = p. (63) henceis also a concave function (Proposition 4.2). Furthermore,
Moz \A - Beh L(P) = Coum(P) over]-"ém [see (41)]. Recall our earlier no-
Comparing this with (56) we arrive at tation (from SeCt'O(?V)'V) thaP is the power policy that maxi-
mizesCs,um OVErF; . Fix a realization of signature sequences
2B =1 — ap). S. Let (recall earlier notation from the statement of Proposi-
tion 4.5
Combining this with (63), itis straightforward to see that there is )
a unique solution foA andg; ;. However, our “slightly longer” pi EPHS) Vi=1,...,K.

derivation of the existence ¢f ; culminating in the expression

/3*(7)11112{((&15)7 a(l—F(hy))) seems to suggest the followingUSing the concavity of the mag (Proposition 4.2) in the first

physical interpretation fog?: it is the same SIR as would beStep (64), we arrive at

seen by a unit power user in a hypothetical system with the samg( P —C@. ..., D)
ratio of users to processing gainand with all the users fol- L 1; ;C Y
lowing the “truncated channel inversion” power policy < - T 64
. _i:lapi(p,---,p) (pi =) (64)
) I 2 1T —
(h1, .y b, S) {(;L | “ | X K '
| | oW ese = oy 28 | +) 88| si(p —D) (65)
whereh.y, is the fixed point of the magC given by Lemma i=1 j=1
4.10 and\ is some constant chosen such that the average power 1 X 3:(P)
constraint is met. =Y 2 _(pf—p) (66)
2N 1+ 5(P)B
V. PROOF OFMAIN RESULT where we used (18) to arrive at (65) (also see (134) and (135)

In this section we formally prove the asymptotic optimality? the proof of Proposition 4.5). We arrive at (66) by using the
of the water-filling power allocation strategy heuristically idend€finition of 5;(77) from (42) (the quantity’;(7)p denotes the
tified earlier in Section III. The proof is quite involved and fodrandom) SIR of the LMMSE estimate of uséwhen all the
pedagogical reasons we first focus on the scenario when thepg"S are transmitting at constant power equg) &nd the ma-
is no fading. In this simple case of no fading, the water-fillin§1X inversion lemma. Averaging both sides of (66), we arrive at
power allocation reduces to the simple constant power allocar (p+y _ 1,

: ; . ; . (P*) — L(P)
tion policy and the proof of this scenario contains several of the

K =
key elements of the general proof while being easy to follow. < L Z E [( pi l P ) (PF(S) - ﬁ)}
T 2N~ 1+8,(Pp 1+p5p)" "
A. No-Fading Scenario (67)
This is the case wheh, = 1 and we begin with the long K (D %
signature sequences channel model. < f—]f, > E [(1 /313(?% ] fﬁ*‘)} (68)
1) Long Signature Sequence Channel Modétrr this i=1 +A:(P)p p
scenario, the authors in [28] conjectured that asymptotically the ~ KK, E [( B1(P) B )} (69)
optimal power allocation policy is to allocate equal powersto =~ 2N 1+6(P)p 1+
all users independent of signature sequences. The water-filling KK, _ .
strategy identified earlier indeed simplifies to the constant = 9N E [|/31(7’) -p H (70)
power allocation when there is no fading. Our first main aK,Cy
result is to show the asymptotic optimality of constant power = N (71)

allocation formally and, furthermore, to identify the loss in sum

capacity to be of the order af V. Recall our notation that the Where (68) follows from Theorem 4.7, (69) from (43), (70) fol-
policy of static allocation of equal powers is denotedfy ~ |0WS from the fact that the map — 7 is contractive, and
(71) follows from (46) and Lemma 4.9. Observing that
Theorem 5.1:For the no-fading, long signature sequence

channel model L(P*) = Coum(P")
N = and
I N (CL) — Coum(P)) < 0. o
IJI\P_S)BOP \/_ ( opt ( )) o0 L(P) _ OSUIH(P)
Define the functionl. (the “Lagrangian”) as the theorem follows. O
. K 2) Short Signature Sequence Channel Modéle now turn
L: P Coum(P) — <L p *_> Z E[P;(S) — 7]. our attention to the short signature sequences model while re-
2N 1+ p*p P taining the assumption of no fading. Our main result is that the
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constant power allocation policy is near optimal in terms of thia the proof of the no-fading situation and the heuristic deriva-
supportable rate at a given low outage probability value. Rectdin of the water-filling strategy. Let us denote the water-filling
our definition of B, (7?) in (29) and the notation dP as the strategy of (55) by

constant power allocation policy. The formal result is below and N
¥ve conclude thatin alarge systgmthe constant powerallocatlog;vr: (hay oo by S) o gup(hi) i* < 1 i) '
etches supportable rate which is optimal up to a fattor a). e Ve P
Typical values of; that are of interest in this framework are very _ (78)
small and thus the supportable rate with static power allocatigcall thatsy; = /3*(%%1’:))7 o1 = F(hue))) and the

is very close to the Opt|ma| Supportab|e rate for |am.e threshold hinr below which no power is transmitted is the
unique fixed point oflC in (62). The formal statement of the

Theorem 5.2:In the no-fading, short signature sequencgsymptotic optimality of the water-filling polic?™ that also
channel model identifies the order of the loss in sum capacity is below.

) Theorem 5.3:
R < B < Py gy, (72) o
- limsup VN (ngt) - Csum(PWf)) < 00
N—oo
Proof: The supportable rate at outage probabifityith i ) .
static power allocation satisfies Proof: Define the functionl (the “Lagrangian”) as
3 h K
el W hr _
R*(]\") < IE [COPt(S)] (73) L: 7) = Csuxn(P) - 57]\; Z IE[PZ(hla R h’[&’? S) - p]
@ T l1-a i=1
U(JV) 1 X + wi
< Jopt (74) toN Z E [1(0; <honey Brchine — hifBi(P™)
“1l-—a i=1
Usum(ﬁ)‘i‘O(\/lA—T) ./Pi(hb LR hK7 S)] (79)
< 1—a (75) whereP is any power allocation such th& > 0 a.s. Observe

Cg)llﬂl + 0(1
<

L thatL is just the sum o€, and a linear functional and hence
)+0 (\/]T) is also a strictly concave function. Recall our notation from Sec-

= 1—a (76) tion IV of P* that maximize< ., over]-"?EN). We proceed by
_ the following steps.
R,(P)+0O (ﬁ) +o(1) _
< (77) 1) We show thaf.(P**) is close toL(7*) for large enough
l-a N. Formally
where (73) follows from the definition of? in (6) and the . wi 1
Markov inequality, (74) is from the definition &, in (9) and |L(P )= L(P )| <O \/—N ) (80)
the fact that the power allocation poli®&defined as (and so as o
to be measurable if) 2) We show thatL(P*) > Cyum(P*) for large enoughv.
Formally
Pihs ooy b ) o Ps(hs oo ) liminf(L(P*) — Coum(P*)) > 0. (81)
for somePs € F1(S5) N—eo

Combining the observation that P™f) = Cj,., (P*!) with the

belongs to7-"2(N) ¥ S, we used Theorem 5.1 in (75), (76) come >
from Proposition 3.1 witly being the constant function equal to§W0 steps above proves the theorem. We first show (80) and then

_ ! : (81).
p, and, finally, (77) follows from (30). Thus we arive at (42). Analogous to (64), for every realization of fading gains

Hence in a large system, the static constant power allocatibn ..., hx and signature sequencés we have from the
fetches supportable rate which is optimal up to a fator a). concavity of the mag’ (Proposition 4.2) that
Typical values of; that are of interest in this framework are very
small and thus the supportable rate with static power allocatio”(P*(h1, ..., hx, §)) = C(P™(hy, ..., hx, S))

is very close to the optimal supportable rate for laige K oC .
< ;a—pi(%’ (hi, ..., hi))
A(Pr(hi, ooy b, S) = P (he, o, b, ) (82)

B. General Fading Case

We now turn to the general scenario with flat fading and first K WD (o Wil
consider the long signature sequences model. The proof of the — 1 Z PP )hi(P (h, - 'r' ! hKV’VfS) il (h”))_
asymptotic optimality of the water-filling strategy is subtler than 2N~ 1+ Bi(PYOR P (i)
in the no-fading situation but the essential ideas are contained (83)
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In (83) we have emphasized the fact tiit! is only a function Consider the case
of h;. Using our notation in (78) and averaging both sides of

(83), we arrive at

L(?’?*) (7’7va)
1 K
S9SN ; E
Bi(PYDh
. |:1{hi>h¢1,r} <(1 ¥ ﬁz(PWf)hngf(hz)) ﬁwfhthr>
~(Pi(hy, oo, b, S) - gwf(hi))} . (84)

In (84) we used the fact (by definition) that

gwf(hi)l{hg<hthr} =0
Continuing from (84)

(P*) (ow)
KK
- 2N
/jl(PVVf)hl :|
NP jw h ily
[{/1>lthr} (14 BL(PYDYhigwe(h1)) el

(85)
where we used (43) and Theorem 4.7. By definitj@fy, is equal
to 3; . and thus from Lemma 4.8 we have

/jl(PWf) . /VVf? asN — oo.
By definition of g (recall (78)) we get

1 8% h
{h1>hne P wilbl
= 3 h 11"1 3 Ythr 86
Tt A gae(hy) et G (69)
Using the fact that the map —
(85) yield
* W aK W
L(P*) = L(P™) £ P B [ sh,y [Br(P™) = ]
_ aCK,(E[pT)?
—_— 87
< W (87)

where we used Lemma 4.9 and the Cauchy—Schwartz inequality

to arrive at (87). We have thus shown (80).

1}\m1nf E [Pr(h1, .., hics S)Linn<igny] = 0. (90)

Using Theorem 4.7, (90) leads to

liminf E (P} (h1, -, b, $))* 1, <o}
S Kp 1}\1}1}1&? |E [Pf(hl, ey hK, S)l{hlﬁhthr}]

=0. (91)
Then it follows from (89) that there exists a subsequence
{N,, }» such that

L(P*) - 6Sum (P*)

(87
Z—§[E [PaBLPYOYPE (e, -, hic, S) Ly <hone}]

a . 1
Z—§[E [(Pf(hy, ..o b, 80P Ly <hant)

E[(3:(P™)hn)?]” (92)
COLE[R2]3 i
_—%E [(Pf(Rh1, o, hic, 8))2 Ly <t ] -

(93)

We used Holder inequality to arrive at (92) and Holder in-
equality again combined with the bound in (52) to arrive at
(93). We conclude from (90) and (93) that

liminf L (P*(Ari’l)> — Csum (77*(]\7” ) >0

n—oo

and we have thus shown (81) (the notation of the supersdript
in P*™ denotes thaP*™) ¢ F™). Now suppose (90) does

T4+ IS contractive, (86) and ot hold and hence we have

lim inf E [Pi(hi, ... b, S)iny<hany] > 0. (94)

We evaluate the integral in (89) over the two disjoint sets

E{B(PY) 2 B+ o)}

To show (81), fixe > 0. Using Lemma 4.9, we have from aand

Chebyshev bound

]

/3 (PWf) / wi

P
/ wi

/3*2 2
2

|E|:|/3 ow
Zl—l—e} <

Cs
/3*f6\/_
Then, using properties (39) and (36)8f and (43) we have

(88)

K/va E

2N
AP
’ 1{h1§ht1,r} <hthr - #) Pr (h17 ooy I, S):| .
Wf

(89)

= Usmn (P*) + —

A B (PY) < Bl + ).

As usual,1 4. denotes the indicator function over the sét
1 = 1, 2. We have

h: 3 ow
[E[Pf(hl, ooy hie, S) <hthr—%)Hhéhm}l&}
Wf
Kphe -
2 — B E (P (95)
Wf
> - Kyl [E[sisllAl] (96)
/va
K,
_ hihr\gcl & (97)
ﬂ wi? 6/va\/_
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where we used Theorem 4.7 in (95), (51) to derive (96), and (32rehy,,, is the level above which no power is transmitted and

combined with the Chebyshev bound of (88) in arriving at (97} is the SIR seen by a unit power user in a large system when

We also have all the other users are using the power allocation straftfy
Following the heuristic derivation of the water-filling strategy,

hi By (P intuitively one expects that whemis very small there are very

T) Lihi<han) 1A2} few users in a system with a very large processing gain and, thus,
the users are essentially orthogonal to each other and hence the

>E [Pi(he, .y b, S)(hine — ha(14€)) policy is very similar to the single-user water-filling strategy.

In the scenario with very large there are many users with es-

sentially the same signature sequence, and comparing with the

=E[P;(he, -, hic, S)(here —h1) Ly <h 3 1ag] Knopp and Humblet strategy [11], we expect that users transmit

_ [7’;’{(/11, b 5)/111{h1§h“,r}1AZ] only when they have very good channels. In the following result

we make this intuitive observation precise:
> E[PL(h1, o b, ) (o = h)Ln, <hoy L] Proposition 6.1: Recall P*f, the water-filling power allo-
C3 cation strategy (100), and the single-user water-filling strategy
2 : (98) (15). Th
FIAN (15). Then

wi™

E|Pi(hy ..., hi, S) <hthr—

T(n <hon}14s)

— chi K <1 —
B | hyrand@i, 1 o2 asa | 0 (101)

W,

From (94), we have hine Tsup{h: F(h) <1} and@i; |0 asa T oo, (102)

wi

. . The proof is found in Appendix H.
1}\Irri)lcl>10f[E [Pl (hl, . hK, S)(hthr_hl)l{hlghthr}lflz] >0.

(99) B. Dependence on SNR

Lettinge = 1, and combining (97)—(99) we have shown (81) \we begin with the single-user situation. It is intuitive that
that at high SNR (very low background noise variane®, there
limint (L(P*) _ aum(P*)) >0 is so much power ava_ilable that the vv_ater-fil_ling strategy gains
7 very little over the static power allocation policy, namely, equal
o Ppower allocation over all fading states. This was observed in [7]
through simulation studies with Rayleigh and Nakagami fading
The result regarding short signature sequences is completgamples. We make this statement precise and use it to find the

identical to the argument given in the situation of no fadingtrycture of the water-filling strategy at high SNR in the general

completing the proof.

Completely analogous to (72) we have multiuser scenario. Recall the single-user capacity formula from
(14)
. wi _ 1 h h
R, (PY) < RZ(A) < M +o(1). max c(P)= max —E|log | 1+ P
1-a {P>0: E[P]<p} {P>0: E[P|<p} 2 o2
and the optimal power allocation (water-filling) from (15) as
0'2 0'2 +
P*(h) = < - —) . (103)
VI. OPTIMAL POWERALLOCATION AND SYSTEM PARAMETERS hwt R

In this section we study the behavior of the water-filling Proposition 6.2: For the single-user channel, at high SNR,
power allocation strategy in different regimes of the systethe optimal power allocation (103) converges to the constant
parameters. In particular, we study the effects of the numbgewer policy and furthermore the loss in capacity by using the
of users per unit processing gain and the variance of the constant power policy goes to zero. Formallypgds— 0

background noise? on the water-filling strategy. This exercise P2 (104)
allows us to comment on the gain in sum capacity with dynamic C(P*) — C(F) — 0. (105)

power allocation over the constant power allocation strategy.

We also generalize our results to the situation of multiple The proof is completely elementary. A8 — 0, to meet the
classes: users in different classes have different average posgirage power constraint we must hqgfg — p. Thus, the
constraints. water-filling strategy converges to the static power allocation

) . strategy at high SNR showing (104). The gain with water-filling
A. Dependence on the Number of Users per Unit Processmgtrategy at any realization of the fading gaifis

Gain 1 hP*(h) hp
m ; : ; —|log |1+ —log |1+ =
Recall the water-filling power allocation strategy defined in 2 a2 o2

(78) iy o
Lo G =)

2
+
2 (hiy ..., hi, S) = gwr(h))Z < — —) . 2
7 ? ? ’ & h h 1 o
wi thr ? —1 | 1 106
(100) 2%<+MM> (106)

IA
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where we used the definition & (/) as the single-user water-the asymptotic calculation is still water-filling (78) but now the

filling policy in (15). Thus, by the dominated convergence thekuhn—Tucker coefficient\ is different for users of different

orem and (104), we have shown (105). classes and is chosen such that the average power constraints
We now turn to the multiuser scenario. Based on there met. For any usérof classl, the policy is

single-user result above one guesses that whisnvery small +

at high SNR there is not much to gain by using the water-filling p+. <h1 o hewn S) — <i o1 ) (107)

strategy over the static power allocation policy of equal powers T LK At Bah

at all fading states. The correct extension of this intuition Whereﬁ* is the SIR of a unit power user in a large system
wl

itgelensqslilﬁzgrtizegzg?eisthoit ;v::;osml ;C;Ir;%'re]bg:]gfeujgzs Witp users adopting this power strategy and is the solution to the
; . ed-point equation (by an appeal to Lemma 4.8; analogous to
can essentially null out the other users and we are back in %))
single-user situation. i > 1, this strategy fails and there will
be a strict loss with constant power allocation even at high SNR.
h) dF(h). (108)

) . e : 2 ot < Oo At
The precise statement is below and the proof is in Appendix |. o3 =1 — Z &7 ~ 5
=1 A/ B wi

=1

Proposition 6.3: For everyNV, at high SNR (i.e., as? | 0),
1) Fora < 1, we havehy,, | 0 ands?, T co. Furthermore,

wi

Analogous to the continuation in Section Il for the single-class
case, we will sketch an argument that ensures the existence of

Coum(P") = Coum(P) — 0. the quantitiess” ; and\; and also demonstrates a simple fixed-
2) Fora > 1 we havehy,, | h, > 0andsl; 1 (l]_%h < oco. pointiteration algorithm that converges to the desired quantities.
Here#h, is the unique positive fixed point of the map  We will only discuss the major changes from the corresponding
) HM(h)(a(1 — F(h))— 1)t steps in Section Il Denotin@ﬁf;‘é‘ 2 the level below which
Ko: b a(l - F(h)) ) no power is transmitted by users oyfwglasanalogous to (57) we
In this case, there is a strict loss in sum capacity by usifigve, from the average power constraint on the power policy in
the equal power allocation scheme. (107), thathﬁfr is the solution to the fixed-point equation
We would like to give an intuitive explanation as to why this HM (h(l) )
result isa priori feasible. Recall that successive decoding using hﬁ) = “I“ ) (109)
the LMMSE receiver achieves sum capacity. At high SNR, the oy PHM(B)) o,
LMMSE receiver behaves aslacorrelatof27, Ch. 5] and nulls 1-F(nf) T

out the multiple-access interference. When< 1, the entire
multiple-access interference can be nulled out and thus we
back to the single-user channel situation and we have the re
that water-filling makes little difference compared to constant L.

power allocation in this situation. However, when> 1, the 0?85, =1— Zal (1 -F (hﬁfr))
multiple-access interference is not completely nulled out and
the structure of the power strategy of the other users is still rele- L (1 _F (h(z) )) 2
vant. Having provided this intuition, we now dispel another ex- + Z a fhr )
planation: at first sight, it might appear thatssgyrows large the —~ 1 _F (hgl)r) + B P HM (hgfr)
signature sequences of the users are orthogonal fér1 and

are not orthogonal forr > 1 and hence provide the intuitionIn the single class case we were able to observehatvas

for this result. However, a8/ grows, the users are orthogonakqual to the solution of a quadratic equation (47). The natural
evenwhena > 1. In fact, when the random variables; are extension is the following. Consider a system with processing

fgﬁntinuing from (108), analogous to (59)—(61), we have using
9) that

N
Il
-

(110)

Gaussian, a simple calculation shows that gain N whereK; users areeceivedwith the same powaer; for
max(s's;)? %2 l=1,...,L.ASN — o, assuming thaf — fqr every
7] clasdl, it follows from Lemma 4.8 that the asymptotic SIR of a
asK grows polynomially inV and N — oo. unit (received) power user is a positive constant{ p;, oy}l =
) 1,..., L) that satisfies the fixed-point equation (analogous to
C. Multiple Classes (47))
We now turn to a generalization of our model by allowing L
users to have different average power constraints. In particular, 0231 Z a1 B (111)
we assume that there ateclasse®f users; users in claghave 1+ Bor
average power constraipf for = 1,..., L. We assume that =t
the number of users of clagss K;“Z | Ny |). For the regime Comparing (110) with (111) we observe that
of large NV, a close observation of the heuristic derivation in
Section lll shows that much of the analysis remains valid also pHM (hﬁl)r) o
in this case. In particular, when there is no fading, the coftwt =8" o a (1_F(hthr)) pl=1,...,L|.
stant power policy is asymptotically optimal. In the general case 1-F (hthr>

of fading, the structure of the optimal power policy based on (112)
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Analogous to the fixed-point iteration of the map in (62) for

the single class scenario, we define the following maps for eac L Ko 16, Optimal — |
classl: K = 16, Constant -
= 32, Optimal 4—
0.8 |- K = 32, Constant - - |
Ki:(hyy ooy hp) =
HM(hy) 06 | .
1 P HM () e P HM () 1—F(h cl=1 L ) Coum
+ P e ({(PERY (= (b))} 1=, L) o _
(113)
It follows from (109) and (112) that o2 |
K (h(l), L h(L)) oS 0 - - . .
l thr thr thr 6 4 2 SN]%(dB) 2 4 6

Analogous to Lemma 4.10, we justify the existencelhﬁlr by
the following proposition. Fig. 1. No-fading scenario. Sum capcjic_ity is plotted with the optimal allocation
and the constant power allocation policies with= 32.
Proposition 6.4: Consider the fixed-point iteration

hl(())dér() \V/l:].L 0.7 T T T T

hi(n 4+ )= Ki(hi(n), ..., hp(n)) Vn>0,Vi=1...L el Waterfiling |

Constant +—

Then{h(n)}, is an increasing sequence that converges fo

foreachl = 1,..., L. 0.5 -

Thus {hﬁl)r} exist as the limits of the fixed-point iteration = Csum 04
above. We omit the proof of this proposition while pointing out

the replacement of the key observation (154) in the proof ¢ oy

Lemma 4.10: Forevery=1,...,L 02 F :
Ki(hy, ..., hr) o1 : l . ‘
2 6 -4 -2 0 2 4 6
> he— <_— + a,> Flhy b))+ ajp HM(hy) SNR(aB)
Pl il
f(h hl) Fig. 2. Rayleigh fading scenario witN' = 32 and X' = 16. Sum capacity
. — HM’(} 3 >1 in bits/s/Hz is plotted with the optimal allocation, asymptotically optimal
ph+ %Jf(h’ hy) water-filling allocation, and the constant power allocation policies.

—F(hy

where We assumed that the components of the signature sequences

def /°° < . ﬂ) are distributed as zero-mean Gaussian random variables with
FRy Ry 1 dF(h,). Bt i
ho variance — (our theoretical results show that the actual
distribution does not matter; so long as it has zero mean,
This also shows the uniqueness/gf.. The formal statement unit variance and bounded fourth moment). In Fig. 1 in the
of the optimality of this power allocation solution, analogous tgcenario of no fading, we plot sum capacity with the constant
Theorem 5.3, is given below and the key ideas of the proof gsgwer allocation and also with the optimal power allocation
all contained in the proof of Theorem 5.3. policy (this policy depends on the actual realization of the
Theorem 6.5: signature sequences, and was evaluated usingmihéet
o software, as explained at the end of the section). We observe
limsup VN (Uffgt) —Cam(PM 1=1, ..., L)) <oo. thatthere is very little difference in sum capacity between these
Ki=laN], N—eo two policies. ThusN = 32 is already large enough for the
difference to be very small. Assuming Rayleigh fading, Figs. 2
thd 3 plot sum capacity with three different power allocation
88Iicies: the asymptotically optimal water-filling policy, the
gﬁtimal power allocation policy (which is a function of the
alization of the signature sequences and fading), and the
constant power allocation policy, for different values of SNR
and number of users equalAy/2 and N, respectively. The first
observation from Figs. 2 and 3 is that the sum capacity with
In this section, we demonstrate the value of our theoretidhle asymptotically optimal policy of water-filling is already
results by simulating different power control strategies in ery close to that with the optimal policy even At = 32.
Rayleigh fading channel and plotting the corresponding suRurthermore, from Fig. 2 we observe that with the number
capacities achieved for various parameters of loading and SNIR.users per unit processing gain being small£ 0.5) the

hz

Extensions of the observations made in Section VI-B to t
multiple class scenario are natural. Constant power allocati
(equal top; for users of clas$) to the users incurs no loss in
sum capacity as compared to the water-filling scheme at hi
SNR if and only i oy < 1.

VII. NUMERICAL EXAMPLES
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where L(pl, ..oy, PK, )\1, . )\K)

K K
Waterfilling — dof t, Di _
Optimal < - = logdet | I + 88— | + Ai(pi — D).
Constant —— 8 < ; e o? ; z(pz p)

1.2 -

We obtained sum capacity at power prices . .., Ax by aver-
7 aging the scaled (by/2/N) maximal value of the optimization
problem above (114). Sum capacity is then the smallest value
over all power prices (the corresponding prices are known as
“equilibrium power prices” or Kuhn—Tucker coefficients; this
is from standard Lagrange theory in convex analysis—see [14,
: ! Corollary 28.4.1]). From the proof of Theorem 5.3, we have
4 6 a good guess for the Kuhn—Tucker coefficientg: = --- =

Ak = Bishiae. Theactual power prices were found by a line

search. The solution to the optimization problem (114) with the
Fig. 3. Rayleigh fading scenario with = 32 and X = 32. Sum capacity equilibrium power prices gives the optimal power allocation and
in bits/s/Hz is plotted with the optimal allocation, asymptotically 0pt|ma{huS we arrive numerically at sum capacity with the optimal
water-filling allocation, and the constant power allocation policies.

power allocation policy.

The spectral efficiency increases withfor fixed SNR and

08
CS’U/ITI,

0.6

0.4

0.2

:\ |

0
SNR(B)

4 ; ; i . : , . increases with SNR for fixed:.. This is clear from the struc-
. de;ﬁﬁ > 4 ture of the successive decoding receiver. Every additional user
Constant ~— can be decoded first and thus the spectral efficiency always in-

Crum MMSE, decorrelator and matched filter)], the spectral efficiency

does not increase monotonically withfor a given SNR. The

. variation of spectral efficiency with loadingfor a given SNR is
plotted in [19], along with a discussion of the spreading coding
tradeoff.

3r 7 creases with the number of users. However, with other types
05 L i of receivers [in particular, a bank of linear receivers (the linear
1 | L L

05 1 I I |
0 20 40 60 80 100 120 140 160 180
Number of users VIIl. M ULTIPLE-ANTENNA SYSTEMS

In the multiple-antenna model, a baseband model for a syn-

Fig. 4. Rayleigh fading scenario with- = 16 and SNR= 5 dB. Sum chronous multiple-access antenna array channel is
capacity is plotted with the optimal allocation, asymptotically optimal
water-filling allocation, and the constant power allocation policies versus

K
number of users. y(n) = d(N) Z zi(n)hs (n)ﬁ{(n) + w(n). (115)
=1

difference in sum capacity by using one of these two policies B2re n denotes the time of channel usen) is the trans-
compared with the constant power allocation policy (constant , X . .
: L ; mitted symbol of usei at timen, andy(n) is an N-dimen-
for all fading levels and realizations of signature sequences)_is .
. " . . sional vector of received symbols at thhé antenna elements
fairly small. Proposition 6.3 predicts that the penalty in sum

. > = f
capacity by using the constant power allocation policy growy the array at the receiver. The vectai(n)h; (n) represents
with the number of users per unit processing gain. We obsef{}¢ channel from theth user to the antenna array at time
this behavior in Fig. 4 where we have plotted sum capacify'€ Scalaw; (n) captures the slowly varying component of the
for fixed SNR (5 dB) versus the number of users: while thef@ding channel—this depends on the distance from the user to
is very little difference in sum capacity between the optimdf'€ antennaarray and geyp)graphlcal features and thus depends on
power allocation and water-filling policies, the penalty byhe user alone. The vecthf (n) is the fast varying component
using constant power allocation policy grows with the numb@f the fading channel and is due to the constructive and destruc-
of users. tive addition of the various multiple paths at the antenna array.
Even though closed-form solutions are not known for the ofUr assumption is that the antennas are spaced far enough apart
timal power allocation policy (these depend, in general, on tf&e spacing is at least half a wavelength and depends on the
instantaneous realizations of the signature sequences and fagRgjtering environment) and thus the fast fading components are
gains), we can compute numerically the sum capacity with tptatistically independent at different antenna elements. We will
optimal power allocation. We used the softwaraxdet avail- assume thafh?(n)}, and{ﬁf(n)}n are independent complex
able in [34] to arrive at the optimal power allocation; the sofistationary and ergodic processes. As in Section II-A, we denote
ware provides an interior point algorithm to solve the determihe amplitude-squared process{éf(n)} by {h;(n)} and as-
nant maximization problem sume that the stationary distribution (denoted)yof this sta-
tionary, ergodic process has bounded first and second moments.
}?%L(pl’ sy PR ALy oo AK) (114) Analogously, we assume that the random variahlgs) have
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Zero mean, unit variance, and bounded fourth moment. Since\

have assumed that spacing between the antennas is large enc 45 ' ' ' O' el
to allow the fast-fading component of the channel to be inde 4t Constant © -
pendent, we have introduced a penalty tei(fV) in the model
(115). If the number of antennas is small (say 5 or 10), the
d(N) can be taken to be identity. But as the number of antenni c 3r
increasesd(N) — 0.In (115),w(n) is an additive white proper ™™ 45|
complex Gaussian noise process. As in the DS-CDMA mode
we are interested in coherent communication, i.e., the receiv

is able to perfectly track the fading channel and we allow feec 3
back of the channel states to the users. Defigirg \/Lwhf by L , ! . K
analogy to the DS-CDMA long signature sequence model ar 0 5 10 15 20 %

Number of Users

results of Section 1I-B, we arrive at the following expressior

for the (long-term) sum capacity of the multiple antenna MAC

[analogous to (9) and (10)]: Fig.5. Sum capacity in bits/s with one antenna at the receiver is plotted versus
number of users at a fixed SNR level of 5 dB with both the optimal and constant
power allocations.

5041)(5\) Y osup CLL(P) 1) Case 1d?(N)N — 1: Define the water-filling policy
PeF{Y +
. K Py, (hé,ﬁf,vy‘)Hi< ! —i)
© oqup ——E [log det <I+d2(N)NZo‘2hf§i§ZPi Co By \hine B
PcF) i=1 whereg; andhy,, are as defined in Section IV-D. Then
“(h3, ..., R, S))] . (116) limsup VN (5;11)(5\) - aﬁml(Pva)) < oo, (117)
N—oo
2) Case 2d*(N)N — oc:
Some _remark_s about this expression are in order:_ the power a) Supposer < 1. Then
allocation policy P depends on both the slow-fading com- P
ponents A, ..., k% and the fast-varying components lim (Cfp(t’\) - Cﬁml(P)) =0. (118)
S = L[l ..., k)] and the sum capacity with the power e . - .
VN LT o TR b) Supposer > 1. Define the water-filling policy

allocation policy” in nats per second per antenna is written
as C2 . (P). The sum capacity of the MAC is [as in (9)]
the supremum over all valid power allocation policies. The
difference in the expression for sum capacities when compared
to that of the CDMA model is that the received power is
scaled byd*(IV).V. The quantityd*(N) captures the physical lim (a?p(t/\) _ch m(ﬁwr)) —0 (119)
consequence of the fact that &5 becomes too large, either N—oo

the size of the antenna forces the received power to becom%

. . tbserve from the proof of Proposition 6.3 tiigtdecreases
constant (since the spacing between the antennas are at Iteas N
. Zéro asy decreases taé and thus the policy®™* becomes
half the wavelength apart) or the distance from the antennaﬁ(%o . :
) . . . he constant power allocation policy asdecreases td. The-
the users increases (allowing us to retain the size of the antenna : !
. . orem 8.1 poses a contrasting picture from the context of the re-
array) forcing the total received power to become constant. Osr,]lﬁts for the case ol = 1, the single-antenna scenario. When
natural assumption on the behaviord{ V) is that ' '

there is only one antenna, the optimal power allocation policy
is to let only the user with the best channel amplitude transmit
<d*(N)< 1. and for that user to follow the water-filling power policy [11].
This policy was also seen (in Section IlIl) directly from (35)
This says that the total received power with multiple antennas'ri]s.PrOposmon 4.5 that the optimal power policies satisfy. The

at least as much as that in the one-antenna case and the incrg‘%‘lmeIn sum capacity by following this strategy over the sub-

) ; . . : gptimal policy of constant power allocation to the users at all
in received power is no more than linear in the number of a

fading levels can be substantial;
o 1 C g levels can be substantial; the larger the number of users,
tennas. Wher"(1V) =  the scenario is identical to that of theﬁpe larger this gain. Fig. 5 plots the sum capacity with both these

DS-CDMA model and we have the asymptotic optimality re‘Supower policies assuming i.i.d. Rayleigh fading from the users to

o ; .
Eif -thoergTo?.ti.evghse-?:[()xl\Nm: doeT:';\Vr:s i;?] 'g)fhgcrﬁ%';nf(a;);&he single antenna. We can see that with an increasing number
9 P 3 users, the gain in sum capacity is widening. This gain stems

of Proposition 6.3 to be useful here. We state this result formal Y m two factors: channel state feedback followed by an appro-

below and relegate the proof to Appendix J. priate power allocation policy and the fact that there are multiple
Theorem 8.1:We consider two limiting behaviors @f(N).  users. However, when there is a substantial number of antennas,

+
Hwit . s o f K — 1 1
P (R}, ;Y j) — aph, <_ho - _hf>

whereh, is as defined in Proposition 6.3. Then

1
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of (9)] is considered in [25] where the authors derive interior

T T T T

14k K = 10, Optimal — point algorithms that converge to the optimal allocation; these
sl ﬁilféycg;‘tsf;‘g '_?‘_‘_ algorithms have worst case polynomial (M, the system
K =15, Constant ©J- - size) run-time complexity. A software routine that implements
or 7 the ellipsoidal algorithms for determinant maximization is
Com  8f . available in [34].
6l | To get some insight into the nature of the optimal power allo-
cation policy, we have considered in this paper the regime of
i ) large number of antennas and large number of users. In this
2F . regime, our main result is the identification of an asymptotically
0 | , . . optimal simplewater-filling power policy This identification is
-6 4 SN}%(dB) 2 4 6 very appealing in practice, due to its simplicity and the com-

putation requirements to implement it are practically nil. Fur-
thermore, the policy depends only on the slow-fading compo-
Fig.6. Sum capacity in bits/s with five antennas at the receiver is plotted verdi@nt and thus is robust to channel measurements and delay in
the SNR of the users with both the optimal and constant power allocations. faedback to the users. Also, fading statistics can be estimated
and used to adaptively compute the threshold level of the water-

the gain that is obtained by feeding back the fast-fading coffling strategy using the fixed-point iteration outlined in the
ponent vanishes, and the water-filling power policy that utilizéPer. We have also shown that the gap in sum capacity be-
only the slow-fading component performs just as well. In Fig. &veen this water-filing policy and the optimal policy is of the
we plot the sum capacity as a function of the SNR of the use¥der of v for large N (uniformly for all ratios of users to
when following the optimal policy as well as when following thétnténnas, SNR levels, and channel fading distributions). For the
constant power allocation policy. In practice, a small number pual channel fading statistics such as Rayleigh fading, our sim-
antennas is considered practical at the receiver (to validate S{ftion studies suggest that this gap is negligible even for very
assumption that the paths from any user to each antenna hgfi@!! values oV (N = 5 in our example). Another possible
independent fading, the antennas have to be at least half a w&g€ime is to fix the number of antennas (to N and let the
length apart, and this generally implies a strict restriction on tfgimber of users grow large. In this scenario, itis clear that some
number of antennas given the size of the receiver). We assufhdhe IV users will have almost orthogonal channel gains and
N = 5 antennas for our simulations which consider the cadde policy that allows only these almost noninterfering users to
when the slow-fading component can be assumed to be cansmit will be far superior to a policy that lets all users transmit

stant in the time scale of communication. In this simulation, wePhstant power at all times.

assumed further that each componerﬁfé(fn) is i.i.d. complex In this paper, in the context of the multiple-antenna model
Gaussian with zero mean and variaricaVe observe that the V€ have referred to the number of antennas asitigzees of

loss in sum capacity with the constant power allocation polié erm Anothe_:jwiy t?j hﬁve de|g|r_|e es Orf] frgedom 1S ]f? CO(T_
as compared to the optimal power allocation policy is very mi hunicate in a wide-band channel. Here the degrees of freedom

imal even when is very small (¥ = 5 in this simulation ex- come in number of frequency bins across which the fading
ample) channel can be considered to be independent. In this case, the

sum capacity of the channel increases without bound as the
bandwidth of the wide-band channel increases. Reference [22,
Sec. 7] has considered the nature of optimal power control in
The central problem addressed in this paper is the chacalar multiple-access frequency-selective fading channels and
acterization of the optimum power allocation strategy ian analogous exercise can be carried out in our vector MAC
vector multiple-access frequency flat-fading channels. Thase. In particular, in the multiple-antenna context and when
common examples of such channels are uplinks of DS-CDMAe slow-fading component can be considered to be constant
channels and MACs with multiple antennas at the receivewer the time scale of communication, the policy of constant
For concreteness, the discussion in this section will refer power at all times equally spread over the entire bandwidth is
the multiple-antenna system. The power allocation strateggymptotically optimal (in the regime of large number of users
considered is of theentralizedtype, i.e., each of the transmit-and antennas).
ters is assumed to be provided with perfect side informationin this paper, we have considered additive white Gaussian
(regarding the channel fading states alf users). The sum noise as modeling thermal noise and out of cell interference. In
capacity is our fundamental figure of merit to be optimizedcenarios when the out-of-cell interference can be statistically
by appropriately allocating powers to the users as a functiameasured, the appropriate model of the additive noise is a col-
of the channel states subject to an average power constraiméd Gaussian process. The effect of colored noise on the sum
While the structure of the optimal power allocation policies isapacity and the appropriate power control is studied in [31]. A
very simple in the case of a single antenna, there is no knowatural extension of the problem formulation in this paper is to
closed form to the optimal power allocation policies for finiteeharacterize power policies that maximize any linear functional
number of users and multiple antennas. In fact, exactly tho§the rates at which the users can jointly reliably transmit. This
optimization problem [a finite-dimensional generalized versigoroblem was addressed and solved in [22] for multiple-access

IX. CONCLUSION
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fading channels with a single degree of freedom. The extension APPENDIX B
of this result to multiple degrees of freedom remains an impor- PROOF OFPROPOSITION4.1
tant open problem. We have

APPENDIX A O = Coun(P*)

PrROOF OFPROPOSITION3.1

We first recall a special case of the central result of [20] re-

K
1
S5N ; Ellog(1 + o 28ts;h;PF (b1, ..., hi, S))]
garding the convergence of the empirical distribution of eigen- i=

K

values of random Hermitian matrices. L@&#, be the empirical 1 [ ( —2.t (1)
S : ; ; <— E E |log(1 hiP;
distribution function of the eigenvalues &F " | s;s'hig(h;) 2N =~ P(fggm s\t amh
(there are@V eigenvalues). The@ y converges almost surely in
distribution to a deterministic distributiag&* where the Stieltjes (hes oo hugy S))}
transformm(>) of G* satisfies the fixed-point equation K
) . P a = 5N 1na(XV>IE[log(l—l—a_QsislhlPl(hl, ooy b, S
m(z) = g () dF (R vzech. e (123)
—Z+ Oéf 14+hg(l)ym(z)

Here the Stieltjes transform of a distribution functi6his de- where the derivation of these inequalities is completely straight-

fined as forward. Using Jensen inequality conditionally bp, s;, we
have from (123) that
() :/ L dG(N) =(N) _
malz) = [N oW Copt < 5 sup {Ellog(1+ 0~ s a1 Plhisis)]} (124)
CF2

It also follows from [20] that the support 6¥* is bounded above

by somekK ;. Applying Theorem 1.1 and its corollary of [1] towhere the sef; is defined as

our case, we obtain Fo2{P: h1s{s; — Ry, E[P(h18{81)] < p}.
P[GN(K,) = 1for all largeN] = 1. Now, for everyP € F; we have
Thus we have that Eflog(1 + 0~ %s181h1P(h18181))]
1 K ) \ S 10g2 + [E[log(2a_2h1833177(h13531))]
N logdet | I+ Z 07"8;8;h;g(h;) < 2log 2 + log(E[o2h1 8! 81]) + log(E[P(h,18:51)])
=t < 2log 2 4 log(o 2E[h]p) (125)

1 . —2
o Q/bg(l +A0T) dGr (V) where we used Jensen inequality in the derivation of the last

as 1 log \o=2) dCH N but one step. Now combining (125) and (124) we have shown
3 og(1+Ao™7) dG*(A) Proposition 4.1 by denoting. =log 2+ 3 log(c ~2E[h4]p). O
Lg 6gu111' (120)
We now show convergence G2, in the first moment. We
have APPENDIX C
1 K PROOF OFPROPOSITION4.4
: 25 6t} )
oy logdet <I + Z" slsihzg(hl)> We fix N throughout this proof. From Proposition 4.1 we
=1

know thatC') is finite. Recall the definition of?—"éN) from

K opt h
<= > log(1+ 0™ hig(hi)s!s;) (121) (34). Define functionsfo, ..., fx from FN to the nonnega-
2N tive reals as follows:

K fO: 7) = U(N) - Usum(P)

1
< =) log(1+o0 2K slsh; opt
3 21 osisif) EP)-7 .
i=1 it P ——— Vj=1,...,K.
K X 2N
< 2NZ—2 Zszsihi (122) We first observe that the functionfs are finite on the domain
=1 F$% Now, by definition ofﬁffgg, the system of equations

where (121) follows from the Hadamard inequality and (122)

follows from the fact thay is bounded above hi(,. Since fo(P) <0, Au(P) <0, fie(P) <0

K has no solutiorP € F¢™. Consider the following claim:
% 3 stegh 2 0By
=1

3o, A1, ..., Ax = 0, notall zero such that
K
the proposition follows from the pointwise convergence result Z Aifi(P)>0 YPe ]_—éN)_ (126)
above (120) and the dominated convergence theorem. [ —0
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Suppose this is true. Our first observation is thatZ 0 since It is seen thaC’; is a convex nonempty set RE+ andCp N
E]’.‘Zl A f;(P) > 0 is impossible for allP € ]—"é]\‘). Thus, Cs # ¢. By the separation theorem for convex sets ([14, The-

dividing throughout by, (126) can be rewritten as orem 11.3]) there existo, ..., Ak, notall zero and real such
that
e, - ) (V) K
Csum(P) — Z Ai(E[P;] =) < Co VP eF, Z Ay > a VzeC) (131)
j=1 ,
and hence
K d Amj<a VzeCh (132)

Cgprt) 2 sup Usum(rp) - Z )\JW (127)
PeFs™) j=1 Now (132) implies that: > 0 and); > 0Vj = 0... K. Fix

() ince f-(P) is fini o
By the symmetry among the users, it follows from (127) that fdr < ?:0 - Since f; (? is finite for every;j = 0,..., K we
every permutatiom we have ave for every: > 0 that

o™ s (fo(P)+e ..., fx(P)+¢) € Oy
opt = P i . L
Per™ and substituting this in (131) we have
K
_ Py ;
Cou(P) = ﬁ([E[Pj(hl, ki, S)]-P) y - S NP+ 20 We>0, VP e
Jj=1 j
(128)  Since thisis true for every arbitragy> 0, we have shown (126).
. . Thi letes th fof P ition 4.4. O
Observe that the map on the positive ortharRéf IS compietes the proot of Froposition
K APPENDIX D
(iiy oo pr) = sup Q Caum(P) = ’“‘_N PROOF OFPROPOSITION4.5
Pery™ i=1 Fix one realization of fading gainis , ..., hx and signature
sequences. Since the mag in (31) is concave, any tuple of
(E[Pj(h1, ..., hi, S)]— D) powers (denoted bip7, ..., p})) that maximizes
Y K
is concave (the supremum of linear functionals). Defining Clpy, - pr) = 557 (0 = D) (133)
e f‘zl A; and using in (128) the concavity of the map above =1
we arrive at in the positive orthant dR” has the following structure:
aC N
o) > su — (D7, - D) = A (134)
P = {P: P;>0 \113:1,...,1(} { 2N Z Ipi +
(E[Pi (b e, S)]—TJ)}- e !
(3 )\ —1
(129) SE <O’2_[+ ESjS}hj])j) 8;h;
i
Now we have for every\ > 0 that Vi=1,...,K. (135)
V) () The derivation of (135) from (134) is completely analogous
Copi < Coum(P ~oN Z - YPeEFR. 1o that of (24). If the realizatiothy, ..., hy, S is such that
{h;s;8t,1=1,..., K} is alinearly independent set théhis
stnctly concave and the solutigr, .. ., pj, in (135) is unique.

i (N) (N)
SinceF,” " C Fo " we have for everp > 0 In general, the solution set is a nonempty convex set.

\ K We now construct a power allocation policy that is equal
N < sup { Coum(P) — N Z [P,] - . (130) topi, ..., pf atthe realizatiomhy, ..., hx, S. If there are

opt

PerM no point masses in the distributioA” and in the common
dlstnbutlon ofw;; then with probability one we havgh;s;s

Combining (129) and (130) the proof is complete. It remains_ , K} are linearly independent and is strictly con-

now to show (126). To see this, define cave. In this case, the tuples, .., pi) is uniquely defined

Cn = { y - almost everywhere (the value depends on the realization of
L= F = V0 - MK fading gains and signature sequences). In this scenario, we
IP e ]_—éN) S £(P)<m;, Vi=0... K} define the power allocatio®; for every uset as

Ca={z=(no, ..., k)i <0, ¥j=0...K}. Pr(hy, .. hic, S) = pr. (136)
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If there are point masses il and the common distribution < sup Ly(P) < L;\(P*A)
of v; such that there is a positive probability éf;s;s!, PeF™M

L =1,...,K} peing linearly depen_dent, then on these realiza- _c (P*i)

tions, the solution sefpy, ..., pj ) is closed and convex and — Ysum

we select any of these points to B at that realization of \yhere we have used the hypothesis thd®**) = 7 in the
fadlng gains and §|gnature sequences. Since there is ambigy’yiyation of the last step. Thus

in P* only on point masses, we still hav@" a measurable .

function of by, ..., hy, S foreachi = 1,..., K. More gen- Uffg? = Coum(P™). (140)
erally, we can appeal to general measurable selection theorems . )
([33] is a good review on these results; [33, Theorem 3.1] ¥e il now show thath must equal (proposed by Proposi-
relevant to our case) to select a measuratighat satisfies the tion 4.4) anchompIete the proof. By the concavitylof, for
property (135) at almost every realization of fading gains ar®ly P € F§™) that does not satisfy (35) on realizations (of
sequences. Since for (almost) every realization of fading staf@ding gains and signature sequences) with positive probability

and signature sequenc® is the maximizer of the map in measure, we havk,(P) < Lx(P*). Using (140) and Proposi-

(133), it follows from Proposition 4.4 that tion 4.4 we arrive ah = . It only remains to show the claimin
. (139). We only show this for the case wheéris strictly concave
Cﬁ,f,g) =LA(P*) = sup La(P) (137) foralmost every realization df;, ..., hx, S. The extension to
PeFy™ the general case when there are realizations of positive measure
(N which lead to nonstrict concavity @f is not pursued here. Fix
whereL maps7y™ - to the reals as 0 < a < band arealization o, ..., hg, S. We first observe
B \ K that the map
L)\.PHCsum(P) IN izl([E[PZ(hb ey h[g7 S)] p). G;ur—>(p?b7 7pZH)
K
Furthermore, it follows for any? FQ(N) that def arg max C(p1, ..., px) — s (p; — D)
o o o pi>0,i=1...K 2N ~
LA(P) < Cop for P not satisfying (135) on realizations is continuous for every realization éf, ..., hx, S such that

of positive measure.  (138) ¢ i gtrictly concave. For such realizatior s invertible and

Thus, if we can show the existence of a power allocation poli¢§® have [from (35)]
P e J-“Q(M where the supremum of (9) is achieved, the claim K

of this proposition follows from Proposition 4.3 and (138). We st { 521 + Z hipitsist| sihj=p Vi=1...K.
now show the existence of such a power allocation policy. i—1

-1

Fix a realizationhy, ..., hx, S and considep?, ..., pf _ _ (141)
defined in (135). Since each of tip is bounded from above Fix @ < p < b and considey, — p in [a, b] asn — oo.
(by A1) it follows that P* & ]_—éN) and furthermore Observe thgt the |rr_1age.¢ifz, b] under@ in the positive or-
thant ofR” is contained in the boj0, a=!] x --- x [0, a™!].
E[Pi(h1, ..., hx.S)]=---=E[Pr(h1, ..., hx, S)] 27  Furthermore, the image is closed (using (141)) and thus com-
i * *pl, H
for eachi = 1,..., K. We used Proposition 4.3 in the obserpaCt' Now consider the sequen@, ™, ..., Py )Jn>1inthe

compactimagé&[a, b]. There exists a subsequer@é*: },,>1
and somg: € [a, b] andp*# such thatp*#» — p*™*. From
the continuity of the inverse off (using (141)) we arrive at
w;, — p. By hypothesisy,, — p and thusy = [ allows us

6(/\;) = Ly(P*) = Coun(P"). to conclude that7(1.,,) — G(p) showing the continuity of7.

o Thus, for almost every realization, we have shown continuity of

Fix 1+ > 0 and let us denote the (measurably selected) pow&r Fix ¢ > 0 and by Egoroff’s theorem ([15, Theorem 3.6.23]),
allocation policyP** which maximized.,, in F§". In the pre- we have uniform continuity of the map
vious notation?* maximizesL . We begin with the following o o
claim for any0 < a < b: p (pr" s P

on a setf such thatP[(hy, ..., hx, S) € €] < 5. Hence,

vation thatE[P;] cannot be less thgmfor anyi = 1,..., K.
From (137) we conclude that if we can show tEgP;| = 7,
we have proved the claim of this proposition that

: E[P{*(hi, ..., hx, S)]is continuous on: € [a, b]. ‘
g: = B[P (I s 5] w [a(lslg) there existsiy such that n > ng, we have or€
. 1
Suppqse that this is true. Noy{..) < and thus ag: — oo [P*n — PRy, L b, S) < < (142)
we arrive atg(y1) — 0. From Propositions 4.4 and 4.3 we have, 2
for everyp > 0, that there existg,, > 0 such thaly(x,) > p.  Then

Using (139), giverp we have such thatg(A) = p. Observe . .
that |g(ten) — g(p)| SE[[P™H — P*H]
N _ < o _ DA }
Cg];t) = sup Csum(P) S sup LS\ < 2 + lEHP P |1{(h17 b S)QS}]
pEJ:Z(N) 7)67:2(N> <€ \V/TLZTLO
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where we used (142) in the last step and the fact for evety we recognize from (130) thaty (p) > > o)y w > 0. By

opt ?

p < bthatP** < o=t in the second step. Sineds arbitrary, definition of A(), from (33) we conclude that

we have completed the proof of (139). O N _ )
gN (A( ‘)) = it g (1) = Cop - (147)
APPENDIX E o _
PROOF OFTHEOREM 4.7 Now supposénfy AN = 0. Then there is a subsequence

. . ) {in }n such thalim,, .o A=) = 0 and an integen, such that
Fix the processing gai&v and _the numbe_r_ of usel® = M) < i forall m > no. By definition, we arrive at
N |. From the argument following Proposition 4.4 and (135)

we know that any optimal power allocation has the following C(zn) — g ()\(in)) >0 o 1 o« (148)
structure: Tn = sum —)\(in) 5 .

Pr(h, hic, S) In (148), the power allocatioR( -~ ) allocates constant power

PG
+ equal to/\(z for every reahzatlon of signature sequences and
_ 1 1 fading states [recall notation from Section 1V-B]. Furthermore
AWV 85(02.[4- ESJSEhJPJ*(hl, .. ,hK,S))_ISZ‘hZ‘ . . 1 . /1
J# liminf Cuym <77 <—>> > liminf Coum <77 <:)>
Vi=1,..., K. n—o0 Alin) n—o0 Iz
o 1
Here the notatiom¥) emphasizes the dependence of (the =Clum <ﬁ) (149)

Kuhn—Tucker coefficienth on V. Thus we have
where we used (143) and (144). Combining (148), (149),

P < 1 as. and (146) we arrive at a contradiction to Proposition 4.1.
EAam Thus, the Kuhn—Tucker coefficient™™) is uniformly (in V)
and if we can show that lower-bounded and denoting the lower boundsgs* the proof
is complete. O
inf{)\(N);N > 0} w1 oy
N K, APPENDIX F

. . . PROOF OFLEMMA 4.9
the proof is complete. We now show that™’ is uniformly

lower-bounded (uniform inV). Denote (static) power alloca- The essential ingredients of the proof are all contained in [24,
tions that allocate constant power (sgyfor every realization Lemmas 4.3 and 4.4] and we only indicate the key points of
of the fading and signature sequence Bgp). The sum ca- departure. In particular, a close study of [24, Lemmas 3.2, 4.3
pacity with this static power allocation converges pointwise @1d 4.4] reveals that the statement made as Lemma 4.9 in this
a nonzero constant in a large system. Formally paper is true for the situation whén = 1 andg(-) = 1. Below,
we hint at a broad outline of the generalization of the results
Coum(P(p)) — C2,.(p) > 0, as N — oo.  (143) in[24] to the general case here. We Usg i = 2, 3, 4, 5 to

denote constants that are independen¥of
Using results about eigenvalues of large random matrices, wg gt /3(1\) _ StZ s; where (recall notation from (50))

show a more general version of this result in Proposition 3.1

andC?_ (p) has an explicit expression (given in [28]). It also ) \
follows from this result thaC,,, (p) — oo asp — co. Some Zi= | o' T+ sisthug(he)
simple monotonicity properties af.,,, andC?,  are as fol- I
lows: Let
Coum(P(p1)) > Coum(P(p2)) whenevep, > po [3(]\) v tt Z_ and /351\’) = %tl‘ Z1

for each fixedV. (144)

— (V) = (V) N
Cfmn(pl) > C:fmn(pQ) Wheneveml > D2 (145) WhereZ]\ Z +87 th g( ) Letﬁ andﬁ den0t£[3( )]
and[E[/3§ ], respectively. In this notation, we need to prove that
We fix 7z such that

; A2 C3
) E {(/39‘) - /sg) } < 2. (150)
[, <:> > oK, +0.5) (146)
iz We show (150) by the following sequence of bounds:
whereK_ is equal tdog 2 + 5 log(c~2E[h;]p) defined in the E (ﬁ(/\) [3(1\)) <G8 (151)
proof of Proposition 4.1. Defining the function on the positive L =N
reals
B Var (BY‘”) < % (152)
39
def - 4 —
gn(p) = sup Coum(P) — 5 (E[P;] -p) (N « Cs
peF(™ 2N 2:3 ! E[3V] - | <% (153)
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We omit the sketch of the proofs of (151)—(153) in this paper fédrencei(n) T Ay, fOr somehyy, in the support of” andhyy, is
brevity. The details of these results can be found in [32]. a fixed point of . Furthermore, fort € (A, oo), it follows
from (159) that
APPENDIX G R R
PROOF OFLEMMA 4.10 the =
—K(h) T K(h)

and hencel(h) < hfor all h € (A, 00). Now suppose
, HM(0) = 0and thusC(0) = 0. We need to show that for small
7 7 7 = h enoughh we havefC(h) > h and, thus, the fixed-point iteration
K(h) = h — 1-F(h)- — dF(h = ' : z
(h) 2 h = <ﬁh+a> < (h) /h () ( 0)> can start from such small enough nonzer&ubstitutingh =
(154) in (154) we arrive atC(/) > h for someh > 0 if we show that

A key observation from the quadratic equatjgi(p, «) sat-
isfies (in (48)) is the following:

To see this, define

_ . /1 1 .
gt PHM(R) ol - F(R). /} <Z ho> dF(ho) — 00, ash—0. (161)

(1—=F(h)
Now Observe that the integrand in (161) is the water-filling power
allocation policy in (15) and maximizes the single-user capacity
K(h) > h in (14). Suppose
<« HM(h) > h+ phB3*(p, & <71 1
HM(<73> , [ 7y ) e < s
— 5 h
25, @) (155) "o
p for some constank;. Then, we have
~ ~ o~ H]\l(h) h
HM(h)—h QP ——fz— _ Y 11
2 D > 1 156 = — 3 -2 —_
=0 7 + L HM}(LZ) o2 (156) C, user () 5 /}1 log <1 + hgo <7L h())) dF(ho)
Q HM() —h  HM®E) ~h <log2+ = 10%(0 *E[]Kg) YVh>0 (162)
g = =
hp HM(h)

N where we used a technique similar to that used in the proof of
o2 ~ A1 — F(h)) Proposition 4.1 to derive the last step. Siftg,..: can be made
— <ﬁ T a) <1 — F(h) - W) =1 (A57) arbitrarily large by choosing the average power constraint of the
power policyp arbitrarily large and for every choice @fthe
where (156) follows from (155) and (47). Now the claim in.orresponding single user capac@ uwser 1S achieved by the
(154) follows directly from (157). The following statementsyater-filling policy of the form(+ — ;)*, we have a contradic-
now follow from the key observation (154): tion to (162). Thus, there cannot be a uniform boufigand we
h . - have shown (161). This shows that,. is the unique fixed point
X(h) <l= K(h) <1 Vhzhzhesuw(F) (158) of k and a fixed-point iteration from small enougtconverges
t0 Ayt O

v

/ / s
! >1=— " >1 Vh>h>hesup(F) (159
K(h) K(h) APPENDIX H
K(h)y— 0, as h— o© (160) PROOF OFPROPOSITIONG.1

If HM(0) > 0 we havek(0) > 0. Then it follows from The proof is quite elementary. We first show (101). Recall the
(160) and by the continuity of that K has at least one fixed MapX in (62) of whichhy,. is the unique positive fixed point
point. We show thatC has a fixed point..,, by explicit con- (Lemma 4.10). Our first observation is that the idaps a func-
struction of a sequence of points that convergeédg and tion of « (denoted byC,,) is strictly increasing pointwise with

in the process uniqueness will follow. Consider the followin#\creasinga. Furthermore, for each, the mapk’,, is contin-
iteratively defined sequencgi(n)}nen. Let R(0) = 0 and UOUS. _ _

h(n) = K(h(n — 1)), n > 1. We have Consider the following claim:

h(1) = K(h(0)) > h(0) = 0. Ka(h) | Ko(h) uniformly inh € [0, co)asa | 0 (163)

We show by induction that(n) > h(n— 1) Supposé:(k) > where
h(k — 1)V k < n. Now, substituting: = h = h(n) andh =

h(n — 1) it follows from (158) that Ko h o — M)
1+ ra (h)
h(n)  hn) <1 1=F(l)
K(h(n))  h(n+1) = To see this claim, let us define
i i i i ¢ pHM .
This shows thaf{i(n)}, is an increasing bounded sequence _def D (h) and &% ol — F(R)).

(bounded using (160) and recalling thiétis continuous) and p= o2(1 - F(h))
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Observe that/ h € [0, o) rer) < 1) Thus,{h{)},, is a decreasing sequenceais
decreasing and converges to, Jay, Now ¥ «

(@) _ @\ > (@)
B 1'{]\4(}1)]5(1_0_2[3*(]50_27 d)) hthr = Ka (hthr) 2 Ko (hthr) .
(1+p)(1+o?pp*(po?, &)) Taking limits asv — 0 and using the continuity of the mag,
HM(h)p(1—0?p3*(po?, &)) we have
- ~\2
(1+p) ho > Ko(ho). (169)
_ HM(h)p
T 2(14p)? Also, from (166) and (167), we have, for every
2 , , K,o?
(@) (@) u
| a+ <1+1~ —\/<1+1~> +é <%—2+&> (164) Ko (hthr) 2 Ka (hthr) ~ T @
b b b )
K,o
:h(a) o Thu
o} 1-F(h) [ P )2 e T gy @
N 2p 14+p

and taking limits agx — 0, the continuity ofKC, yields

)
(
.<@+ <1+%)—\/ <1+%>2+d <§_2+a)> Kolho) > ho. (170)

Now (169) and (170) show thdi, = Ko(ho) and thushy =
& (3—2+d)+ R, the unique fixed point k.
b (165)  Following the definition of3*(p, ) in (48), we have

\/(1+%)2+d (2-2+4) pHM (1) )
(P ) — &

2 ~ 2 + 1-F h(a)
<al <L> 1+ <3—2+d> (166) ( thr)
2p \1+p P asa— 0. (171)
where (164) is by definition 0" (5, «) in (49). We used the Observing that for every
simple inequality +
[ 1 < 11 _
S -7
byt 3* (@) h
a—vVaZ-b< (2) Va>0 and a®>>1b Put hows
2 _
. . . _ we have thahgﬁr) decreases monotonically withimplies that
to arrive at (165). Itis straightforward now to verify that /3¢ increases monotonically with. Since we had already ob-
served that the limit of3%; is ¢—2 in (171), we have shown
def 7 2 2 AT (101). An identical argument now shows (102). O
K,= sup [—— 1+ =—-2+4+a < 00
hef0,00) 1+p D
(167) APPENDIX |
which combined with the final upper bound in (166) shows the PROOF OFPROPOSITIONG.3

claim in (163) that’,, converges monotonically pointwise uni-  The proof is not too different from that of Proposition 6.1. We
formly. It follows from (15) and the constraint on the averaggbserve by definition of* (p, @) in (48) that, asr®> — 0
power to be equal tp that /,r is the unique positive solution
of the following fixed-point equation: B*(p, o) — 1 ]
’ pla—1)F
HM(th)

1 po—2HM (hwe) ~
l—F(hW[)

hot = (168) This implies that [as in (163)], a8 — 0

aet HM(h)(a(1 — F(h)) — 1)*

K(h) — Ko(h) =
From (168), we see that,; is the unique positive fixed point of ol — F(h))

the mapky. We now claim that the fixed points of the ma(ﬁg As in the proof of Proposition 6.%, converges to the fixed
themselves decrease monotonically with decreasingth, ;- point of K, aso2 — 0, denoted byk,. Whena < 1, we easily
denote the unique fixed point of the m&R,. Fix a; > a1. D€~ jgentify b, = 0 and whenw > 1 thath, > 0. The monotonicity
fine Sequ%”fce{"’hi(”)}nzo fori =1, 2 as follows:;(0) = 0 arguments follow easily. From the limiting values /af.. and
andh;(n) = K, (hi(n — 1)). Then, from Lemma 4.10 it fol- 3*. we have for each userthat P}"!(h;)>%p ass? — 0 and
lows thath;(n) T hg‘ﬁ;) asn T oo fori = 1, 2. Thus, we whena > 1 the limiting value ofP*! is different from that of

haveh(n) < ha(n) for everyn > 0 and we conclude that constant power allocation policy and thus there is a strict loss in
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sum capacity by using the constant power allocation policy & a possibly different constadt),, than the one used in The-
compared to the water-filling strategy. It still remains to showrem 4.7. In this scenario, the SIR of ugewith the constant
that whena: < 1 the gain in sum capacity with water-filling power allocation policy is given bg; ()5 where

strategy over constant power strategy goes to zero in high SNR. -1

We follow the proof of Proposition 6.2. Fix < 1 andN the — def ;i o f5 St ~f

processing gain. From the I|m|t|ng values faf,, and 3, w Bi(P) = h; <_ +Pp ; hi hJ hJ ) h;.
a.s. _ J7

already have thaP'' *>p aso? — 0 for everyl < i < IC
We establish a bound akin to (106) and appeal to the dominateefine the (Lagrangian) function
convergence theorem concluding the proof K

1
LPHCSUIHP——_ E[Pi(hi, ..., R, S)] — D),
. (P) = 555 2 EPiL, o hie, ) =7)
<10g det <I +o72 Zszs h; 7’“’f>> Pe f-éN)'
=1
sisth; As in the proof of Theorem 5.1
< log det <I+ o ? Z 1Tt (172) 3, (P 1
_2N< < Pghin L(P LPY<ZE [(7/1( ) ——) P*S——}
W ~ — = f Y4
’ P -LP)<E (305 5) PSP
<1 EI: log <1 4 fisihi ) (173) ak, 1
= 57 < E —
2N = CREN -2 [1 + /31(7’)5}
K
1 oK, 1
< (. <—F { — } . (174)
= ONo2B" hen ; sisihi 2’ AP
Now
where we used the bound that i y o -1 ;
B1(P) = Ty v I T S I
PWf(h ) 1 d (N)N ot
e /ththr _1
il Al e
by definition of the water-filling strategy (78) in (172) and the >h ( +PZ hih ) 1
Hadamard inequality [4, sec. 9.6.3] in (173). Analogous to the J#l
proof of Proposition 3.1, an application of the dominated con- VN> N
vergence theorem completes the proof. O hl,n inf B (P) > B, v N, (175)
where 3}, satisfies the fixed-point equation (by an appeal to
APPENDIX J Lemma 4 8)
PROOF OFTHEOREM 8.1 )
The first case off2(N)N = 1 is exactly identical to the e f=1- Oé/ Bhath) dF(h).
d?(N1)Ny o 14 Bhg(h)

DS-CDMA setup and the result is the same as that in Theorem
5.3. The second case is very similar to the DS-CDMA setup 'étfo”OWS from this expression foi3, and the hypothesis that
high SNR and thus the result follows the behavior of the watef- (V)N — oc anda < 1 that

filling policy in the DS-CDMA model at high SNR (formally By, Too as NiToo. (176)
analyzed in Proposition 6.3). Below we will sketch a proof of ) )

only the situationy < 1. Any optimalP*(h;, ..., ki, S) has Using (175) and (176) in (174) we arrive at

the structure shown in the equation at the bottom of the page lim L(P*) — L(P) = 0.

and Theorem 4.7 is still valid N—eo

The observation that(P*) = CX) andL(P) = T4, (P)

opt

P <K, Vi=1,...,K, VN completes the proof. O

1

P;((hlv IRE) h;’v S):

> =

-1
i< +EMM%W%~h%®> h]
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