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Permutations Preserving Divisibility

Robert J. McEliece, Fellow, IEEE, Claude Le Dantec, Member, IEEE,
and Philippe M. Piret, Member, IEEE

Abstract—We give a proof of a theorem on the common divisibility of
polynomials and permuted polynomials (over GF(2)) by a polynomial
( ).

Index Terms—Divisibility, permuted polynomials, self-termination,
trellis, turbo codes.

I. INTRODUCTION

Let

g(x) = 1 +

m�1

i=0

gix
i + xm

be a fixed polynomial over GF(2) and letAn(g) be the set of polyno-
mials

a(x) =

n�1

i=0

aix
i

of formal degreen� 1 over GF(2) that are divisible byg(x). Let also
�: ZZZn ! ZZZn: i! �(i) be a permutation and, for anya(x) 2 An(g),
define

a�(x) =

n�1

i=0

aix
�(i): (1)

In [1], a theorem (which generalizes [2], [3]) is given without proof,
that characterizes those permutations� such thata�(x) 2 An(g) for
all a(x) 2 An(g). In this correspondence, we give a proof of this
statement.

II. PERMUTATIONS AND DIVISIBILITY

For anyg(x) with a nonzero constant term, it is well known that
there exists someN0(g) (= N0), such thatg(x) dividesxN �1 if and
only if N is a multiple ofN0. Let us first assume thatn is a multiple
of N0: n = MN0. We associate to anya(x) of formal degreen � 1,
the two-variable polynomial

b(y; z) =

N �1

j=0

bj(y)zj

with

bj(y) =

M�1

i=0

aiN +jy
i:

Obviously, one hasa(x) = b(xN ; x).
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Lemma 1: The polynomiala(x) is in An(g) if and only if g(x) is
a divisor ofb(1; x).

Proof: b(1; x) is the residue ofa(x) mod xN �1, andg(x) is
a factor ofxN � 1.

Lemma 2: If i � j mod N0, then any� that preservesAn(g) (for
(1)) satisfies�(i) � �(j) mod N0.

Proof: xi + xj (resp.,x�(i) + x�(j)) is divisible byg(x) if and
only if i � j (resp.,�(i) � �(j)) modN0.

For j = 0; . . . ; N0 � 1, let �j : i 7! �j(i) be an arbitrary per-
mutation of the coefficients ofbj(y) and for� = (�0; . . . ; �N �1),
denote bya(x) 7! a�(x) the permutation of the coefficients ofa(x) =
b(xN ; x) induced by the action of thoseN0 permutations�j on the
correspondingN0 polynomialsbj(y).

Lemma 3: Any such� preservesAn(g):

a(x) 2 An(g)) a�(x) 2 An(g):

Proof: Check that such a� does not modifyb(1; x) and apply
Lemma 1.

The set of all those� is a group (denoted byS).
Let �: j 7! �(j) be an arbitrary permutation off0; . . . ; N0 � 1g

and let it permute the coefficientsbj(y) of b(y; z):

b(y; z) 7! b�(y; z) =
j

b�(j)(y)zj :

Denote bya(x) 7! a�(x) the permutation of the coefficients ofa(x) =
b(xN ; x) induced by this�, and byAut (g; N0) the automorphism
(permutation) group of the binary cyclic codeC of lengthN0 generated
by g(x).

Lemma 4: Any such� preservesAn(g) if and only if it is an element
of Aut (g; N0).

Proof: By definition, if � =2 Aut (g; N0), there exists a polyno-
mial a(x) of degree� N0 � 1 that is a multiple ofg(x) while a�(x)
is not a multiple ofg(x). Conversely, any� 2 Aut (g; N0) preserves
the divisibility of b(1; x) by g(x). Then apply Lemma 1.

In the sequel, the groupAut (g; N0) is denoted byR.
As an easy consequence, one obtains the following theorem.

Theorem 5: Any permutation � of f0; . . . ; n � 1g leaves
An(g) invariant if and only if it can be written as a finite product
� = �1�1�2�2�3�3 � � �, where all�s are inS and all�r are inR.

It is obvious thatR \ S only contains the identity and that for any
(�; �) there is some(�0; �0) such thata��(x) = a� � (x). Hence any
� in Theorem 5 may be written in a unique way as� = �� (or as
� = �0�0). The set of those products� = �� is a group which is often
called the semidirect product ofR andS. See [4, pp. 20-25] for further
comments.

In the more general case, wheren is not a multiple ofN0 (n =
MN0 + r with 1 � r � N0 � 1), the first r polynomialsbj(y)
have formal degreeM and the lastN0 � r ones have formal degree
M � 1. Define thenSr as the set of all� = (�0; . . . ; �N �1) where,
for j � r � 1, �j acts on polynomials of degreeM , and forj �
r, �j acts on polynomials of degreeM � 1. Define alsoRr as the
subset of the elements ofAut (g; N0) that preserve (as a set) ther
first components ofC. For example, withg(x) = 1 + x2 + x3 and
r = 5, the permutations(04)(12) and(0421)(56) are in the subsetR5

ofR, while (051)(324) is inR but not inR5. The detailed proof of the
following corollary is omitted.
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Corollary 6: Forn=MN+r, any permutation� of f0; . . . ; n�1g
leavesAn(g) invariant if and only if it can be written as�= �� with
� 2 Sr and� 2Rr .

III. A PPLICATION TO TURBO CODES

Theorem 5 and Corollary 6 characterize which turbo code inter-
leavers are spontaneously “self-terminating,” (see also [6]). Some of
them seem to be very good [5] but it is not yet clear whether this self-ter-
minating property does imply some loss in the performances at high
signal-to-noise ratio.
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Weak Keys in the McEliece Public-Key Cryptosystem

Pierre Loidreau and Nicolas Sendrier, Member, IEEE

Abstract—We show that it is possible to know whether the secret Goppa
code of an instance of the McEliece public-key cryptosystem was chosen
with a binary generator polynomial. Furthermore, whenever such a weak
key is used, we present an attack which can be completed, for codes of
length 1024 and dimension 524, with a large, but feasible amount of com-
putation.

Index Terms—Automorphism group of a code, Goppa codes, McEliece
cryptosystem, support splitting algorithm.

I. INTRODUCTION

In this correspondence, we consider the security of the McEliece
public-key cryptosystem [1]. In this system, the public key is a gen-
erator matrix of a linear code. The encryption consists in choosing a
codeword in this code to which an error vector of a given weight is
added. The decryption is the decoding of these errors. The trap is the
knowledge of a decoder for the public code. The security of the cryp-
tosystem lies in the following two assumptions:

• the parameters of the public code are large enough to avoid de-
coding by a general purpose decoder;

• it is difficult to build a fast (polynomial-time) decoder from the
knowledge of the public code alone.

The issues regarding the first assumption were investigated at length
in [2]–[4]. Here we deal with attacks related to the second assumption.
In the original construction of the McEliece system, the secret code�
is picked in a family of binary Goppa codes of lengthn = 2m and
error-correcting capabilityt wherem = 10 andt = 50. The public
code is obtained by permuting the coordinates of�.

The support splitting algorithm [5] allows the computation of the
permutation between two equivalent binary linear codes. Hence, this
algorithm can be used to derive an attack by enumerating all the Goppa
codes with suitable parameters. Because of the huge number of Goppa
codes, this attack remains unrealistic (for McEliece parameters it can
be roughly estimated at10130 years on a workstation). However, sub-
families of Goppa codes can be recognized—the weak keys—thanks to
their particular structure. Namely, by applying the support splitting al-
gorithm to Goppa codes with a binary generator polynomial one detects
their nontrivial automorphism group. This allows an attack by enumer-
ating the Goppa codes with such a property. Once again, this attack re-
mains unfeasible since it would require an unreasonable computation
time (about105 years on a workstation). Still, there is a way to greatly
reduce its complexity by constructing the much shorter (length about
n=m) projected idempotent subcode. We present a nontrivial lower
bound for this subcode. From this bound we deduce the nontriviality
of the code whenever the generator polynomial is binary. Finally, we
show how to modify the attack by using the properties of the projected
idempotent subcode. With half size parameters (m = 9, t = 28) our
implementation of the attack ran 15 min on a standard workstation. For
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