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Permutations Preserving Divisibility

Robert J. McEliecgFellow, IEEE Claude Le DantedMember, IEEE
and Philippe M. PiretMember, IEEE

Abstract—We give a proof of a theorem on the common divisibility of
polynomials and permuted polynomials (over GK2)) by a polynomial

g(=x).
Index Terms—DPivisibility, permuted polynomials, self-termination,
trellis, turbo codes.

|. INTRODUCTION
Let

m—1

W) =1+ Y gt 40"

=0

be a fixed polynomial over GR2) and let4, (g) be the set of polyno-
mials

n—1

a;x

=0

of formal degreex — 1 over GF(2) that are divisible by(z). Let also
m Z, — Z,:i— 7(i) be apermutation and, for anyx) € A, (g),
define

a™(x) = Z a;x (1)

=0
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Lemma 1: The polynomiak(x) is in A, (g) if and only if g(x) is

a divisor ofb(1, z).
Proof: (1, ) is the residue of(x) mod 20

a factor ofz™o — 1.

—1,andg(z) is

Lemma 2: If i = j mod No, then anyr that preserved,, (g) (for
) Sa'[ISerS7T( ) = 7(j) mod No.
Proof: 2 + 2 (resp.2™® + 2™) is divisible byg(x) if and
only if i = j (resp.,m(i) = «(j)) mod No.

Forj = 0,..., No — 1, leto;: i — o;(i) be an arbitrary per-
mutation of the coefficients df’ (y) and fore = (oo, .... oNg—1),
denote byi(z) — a” () the permutation of the coefficients @fz) =
b(«™°, 2) induced by the action of thos¥, permutationsr; on the
correspondingVo polynomialsh’ (y).

Lemma 3: Any suche preservesi, (g):
a(z) € An(9)-

Proof: Check that such a does not modifyb(1, =) and apply
Lemma 1.

A, (g)= a”(a) €

The set of all those is a group (denoted by).
Letp: j + p(j) be an arbitrary permutation ¢b, ...
and let it permute the coefficient$(y) of b(y, 2):

Z bP(J) (y)= I

Denote by: () — () the permutation of the coefficients ofx) =
b(2™No, #) induced by thig, and byAut (g, Ny) the automorphism
(permutation) group of the binary cyclic codeof lengthNy generated

,No —1}

by, z) = b(y, 2) =

In [1], a theorem (which generalizes [2], [3]) is given without proofby g(x).

that characterizes those permutatiansuch that.™ (x) € A, (g) for

all a(z) € A,(g). In this correspondence, we give a proof of this

statement.

Il. PERMUTATIONS AND DIVISIBILITY

For anyg(x) with a nonzero constant term, it is well known thathe divisibility of b(1, «

there exists somd&,(g) (= No), such thay(z) dividesz™ — 1 if and
only if NV is a multiple of Ny. Let us first assume that is a multiple
of No: n = M Ny. We associate to any(«:) of formal degreen — 1,
the two-variable polynomial

No—1

D= Yy
=0

with

M—1

Z (L,‘,NO +‘jyz .

=0

b(« No, x).

b (y) =
Obviously, one has(z) =

Manuscript received July 31, 2000; revised September 1, 2000.

R. J. McEliece is with the Department of Electrical Engineering, Californi
Institute of Technology, Pasadena, CA 91103 USA (e-mail: im@systems. c

tech.edu).

Lemma 4: Any suchp preservest,, (g) ifand only if itis an element
fAAut( g, [Vo).

Proof: By definition, if p ¢ Aut (g, No), there exists a polyno-
mial a(z) of degree< Ny — 1 that is a multiple ofy(z) while a”(x)
is not a multiple ofg(x). Conversely, any € Aut (g, No) preserves
') by g(«). Then apply Lemma 1.

In the sequel, the groupput (g, No) is denoted byR.
As an easy consequence, one obtains the following theorem.

Theorem 5: Any permutationw of {0,...,n — 1} leaves
A, (g) invariant if and only if it can be written as a finite product
T = 0o1p102p203p3 - -+, where allos are inS and allp,- are inR.

It is obvious thatR N S only contains the identity and that for any
(p, o) there is somép’, ¢') such that”” (x) = a” * (x). Hence any
7 in Theorem 5 may be written in a unique wayas= po (or as
7 = ¢'p’). The set of those products= po is a group which is often
called the semidirect product & andS. See [4, pp. 20-25] for further
comments.

In the more general case, whereis not a multiple of Ny (n =
MNo 4+ r with 1 < » < Ny — 1), the firstr polynomialst’ (y)
have formal degred/ and the lastV, — r ones have formal degree
M — 1. Define thenS™ as the set of alk = (o0, ..., on,—1) Where,
rj < r — 1, 0; acts on polynomials of degre¥, and for; >
, 0; acts on polynomlals of degre — 1. Define alsoR" as the
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first components of’. For example, withy(z) = 1 + 2 + 2% and
5, the permutationd)4)(12) and(0421)(o6) are in the subseR”®
of R, whlle( )51)(324) isin R but not inR>. The detailed proof of the
following corollary is omitted.
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Corollary 6: Forn= M N+r, any permutatiorr of {0, ..., n—1} Weak Keys in the McEliece Public-Key Cryptosystem

leavesA,, (g) invariant if and only if it can be written as = op with
cES andp € R'. Pierre Loidreau and Nicolas Sendristember, IEEE

I1l. A PPLICATION TO TURBO CODES Abstract—We show that it is possible to know whether the secret Goppa
) . ~code of an instance of the McEliece public-key cryptosystem was chosen
Theorem 5 and Corollary 6 characterize which turbo code integith a binary generator polynomial. Furthermore, whenever such a weak

leavers are spontaneously “self-terminating,” (see also [6]). Someke¥ is used, we present an attack which can be completed, for codes of
them seem to be very good [5] butit is not yet clear whether this self-té‘?[‘tgtth 1024 and dimension 524, with a large, but feasible amount of com-
minating property does imply some loss in the performances at hiBHa on.

signal-to-noise ratio. Index Terms—Automorphism group of a code, Goppa codes, McEliece
cryptosystem, support splitting algorithm.
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permutation between two equivalent binary linear codes. Hence, this

algorithm can be used to derive an attack by enumerating all the Goppa
codes with suitable parameters. Because of the huge number of Goppa
codes, this attack remains unrealistic (for McEliece parameters it can
be roughly estimated aD'*® years on a workstation). However, sub-
families of Goppa codes can be recognized—the weak keys—thanks to
their particular structure. Namely, by applying the support splitting al-
gorithm to Goppa codes with a binary generator polynomial one detects
their nontrivial automorphism group. This allows an attack by enumer-
ating the Goppa codes with such a property. Once again, this attack re-
mains unfeasible since it would require an unreasonable computation
time (aboutl0® years on a workstation). Still, there is a way to greatly
reduce its complexity by constructing the much shorter (length about

n/m) projected idempotent subcode. We present a nontrivial lower

bound for this subcode. From this bound we deduce the nontriviality

of the code whenever the generator polynomial is binary. Finally, we
show how to modify the attack by using the properties of the projected
idempotent subcode. With half size parametets=£ 9, t = 28) our

implementation of the attack ran 15 min on a standard workstation. For
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