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Gauges and Gauge Transformations for Uncertainty
Description of Geometric Structure with

Indeterminacy
Kenichi Kanatani, Senior Member , IEEE , and Daniel D. Morris

Abstract— This paper presents a consistent theory for de-
scribing indeterminacy and uncertainty of three-dimensional
(3-D) reconstruction from a sequence of images. First, we
give a group-theoretical analysis of gauges and gauge transfor-
mations. We then discuss how to evaluate the reliability of
the solution that has indeterminacy and extend the Cramer-
Rao lower bound to incorporate internal indeterminacy. We
also introduce the free-gauge approach and define the normal
form of a covariance matrix that is independent of particular
gauges. Finally, we show simulated and real-image examples
to illustrate the effect of gauge freedom on uncertainty de-
scription.

Index Terms—Computer vision, Cramer-Rao lower bound,
gauge transformation, geometric indeterminacy, statistical
estimation, uncertainty description.

I. Introduction

RECONSTRUCTING the three-dimensional
(3-D) shape of the scene from a sequence of images

is one of the central themes of computer vision [1], [2], [5],
[6]. It was originally motivated toward industrial applica-
tions such as automatic manufacturing and inspection by
robots, autonomous robots and land vehicles, and military
uses such as autonomous surveillance and reconnaissance.
Recently, interest in media and Internet applications has
been quickly growing: visually presenting 3-D shapes of
real objects through Internet, generating virtual images by
embedding graphics objects in real scenes or real objects
in graphics scenes, and machine understanding of the video
content for intelligent communications to name a few.

There is, however, another important application of com-
puter vision: accurately measuring the 3-D shape using
camera images for objects for which measurement is oth-
erwise difficult, typical examples being 3-D measurement
of urban architectural scenes and ancient archaeological
structures [15]. One hurdle in such tasks is the need to
address the accuracy quantitatively, but this has not at-
tracted much attention in the past. Typically, the accuracy
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has been evaluated empirically by simulated and real-image
experiments or analytically by first order error propagation
[23]. This, however, hides an important fact: 3-D recon-
struction from images involves indeterminacy.

There are two sources of indeterminacy in parameter-
ized 3-D shape reconstruction. One is the inherent phys-
ical indeterminacy caused by a loss of information during
projection onto the camera; e.g., scale is indeterminate
for a perspective camera. The second source is the over-
parameterization of the problem: more than the minimal
number of parameters are included for simplicity as well
as symmetry of representation; e.g., a shape model with a
vector representing each point specifies the absolute orien-
tation and translation of the object though these may be
indeterminate.

These indeterminacies can be removed by imposing nor-
malization constraints; e.g., we can fix the coordinate origin
to a particular point of the object and normalize the size
of something to unit length. But then the fixed or normal-
ized parameters have no uncertainty by definition, and the
uncertainty of all other parameters is altered.

This fact makes it difficult to evaluate the performance
of a 3-D reconstruction algorithm or compare it with an-
other. For example, if simulation results are in good agree-
ment with the true structure, one is tempted to claim that
the method is accurate. This agreement, however, may be
merely due to the normalization involved. For instance,
the computed object shape and the true shape may agree
well if the object size is normalized to unity, but they may
not agree well if the camera displacement is normalized to
unity. This kind of arbitrary or unfair evaluation of 3-D
reconstruction algorithms has been found in many demon-
strations.

The basic message of this paper is that we cannot speak
of the uncertainty of a particular parameter in absolute
terms unless it is invariant to normalization conditions.
While uncertainty modeling has been a recent subject of
research [13], [19], [23], the effects of normalization condi-
tions have mostly been ignored.

In this paper, we call transformations of parameters
caused by changing normalization conditions gauge trans-
formations and particular choices of normalization gauges;
these terms are borrowed from physics, but their meanings
are not directly related to those in physics. Only very re-
cently have these concepts come to be recognized as play-
ing an important role in 3-D reconstruction from images
[8], [10], [11], [13].
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In the following, we present a consistent theory for de-
scribing indeterminacy and uncertainty of 3-D reconstruc-
tion from images. First, we give a formal description of the
3-D reconstruction problem by combining Lie group the-
ory and the statistical estimation theory. We then extend
the Cramer-Rao lower bound to incorporate internal inde-
terminacy. Finally, we introduce the free-gauge approach
and define the normal form of a covariance matrix that
is independent of particular gauges. We show simulated
and real-image examples to illustrate the effect of gauge
freedom on uncertainty description.

Our analytical tool is local linear approximation, a stan-
dard technique in differential geometry: we introduce local
coordinates and project perturbations of quantities onto
tangent spaces, assuming that the noise is small.

II. Parametric Reconstruction of 3-D Shape

We take 3-D reconstruction to mean the computation of
the parameters that describe the 3-D shape and motion of
an object from its camera images. In this paper, we focus
on the feature-based approach: we track the motion of eas-
ily identifiable feature points, such as corners and markers,
over a sequence of images and compute their 3-D positions
using the knowledge of the camera projection model [15],
[20].

Suppose we track N rigidly moving feature points over M
images. Let (xκα, yκα) be the image coordinates of the αth
point in the κth frame. Here, we adopt the camera-centered
description, assuming that an object is moving in the scene
relative to a stationary camera, but the subsequent analysis
is essentially the same if we view the camera as moving and
taking images of a stationary scene.

We identify the camera coordinate system with a global
reference frame and fix an arbitrary object coordinate sys-
tem to the object. Let tκ and {iκ, jκ, kκ} be, respectively,
its origin and orthonormal basis vectors in the κth frame.
Let (sα1, sα2, sα3) be the coordinates of the αth feature
point with respect to the object coordinate system. We
define

Rκ =
(

iκ jκ kκ

)
, sα =


 sα1

sα2

sα3


 . (1)

Since {iκ, jκ, kκ} are a right-handed orthonormal basis,
Rκ is a rotation matrix. We call {tκ, Rκ} the motion
parameters and {sα} the shape vectors.

III. Camera Imaging Geometry

The 3-D positions of the tracked feature points are recon-
structed by inverting the camera imaging equations, which
we describe in this section.

Suppose a point (X, Y, Z) with respect to the camera co-
ordinate system is projected to a point (x, y) on the image
plane. We write this mapping as Π: R3 → R2 (R denotes
the set of real numbers) and call it the camera model . The
mapping Π may be different from frame to frame. A point
with object coordinates (sα1, sα2, sα3) is a point Rκsα +tκ

with respect to the camera coordinate system in the κth

frame. Hence, the image coordinates (xακ, yακ) are ex-
pressed as a function of tκ, Rκ, and sα in the form(

xακ

yακ

)
= Πκ[Rκsα + tκ], (2)

where Πκ is the camera model for the κth frame. We call
the mapping Pκ: SO(3) × R3 × R3 → R2 the projection
model for the κth frame, where SO(3) denotes the group
of 3-D rotations.

Example 1: For an orthographic camera, we identify the
xy plane with the image plane and the z-axis with the
optical axis of the lens. A point (X, Y, Z) in the scene is
projected onto an image point (x, y) such that x = X and
y = Y . The projection model is given by(

xακ

yακ

)
= Π(Rκsα + tκ), (3)

where Π =
(

1 0 0
0 1 0

)
. If we incorporate the effect of

scale change due to translations in the the depth orienta-
tion in the form(

xακ

yακ

)
= µκΠ(Rκsα + tκ), (4)

we obtain the weak perspective (or scaled-orthographic)
camera model [14].

Example 2: For a perspective (or pinhole) camera, we
identify the origin O with the center of the lens and the
z-axis with its optical axis. A point (X, Y, Z) in the scene
is projected onto an image point (x, y) such that x = fX/Z
and y = fY/Z, where f is a constant called the focal length.
The projection model is given by(

xακ

yακ

)
= fκΠ[Rκsα + tκ], (5)

where fκ is the focal length for the κth frame. The opera-
tion Π is defined by

Π




 X

Y
Z




 =

(
X/Z
Y/Z

)

(not defined for Z = 0). The projection model of a more
general projective camera is(

xακ

yακ

)
= Π[Kκ(Rκsα + tκ)], (6)

where Kκ is an upper triangular matrix called the camera
matrix of the κth frame. We can parameterize the camera
matrix K in the form

K =


 f −f cot θ u0

0 f/α sin θ v0

0 0 1


 , (7)

where (u0, v0) is the principal point (the point that corre-
sponds to the optical axis orientation in the image). The
constants f , θ, and α are called the focal length, the skew
angle, and the aspect ratio, respectively [2].
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IV. Parameter Space

Now that the camera model for a single point in a single
image has been defined, we extend it to all features in all
images. We stack the two-dimensional (2-D) vector (2) for
all the M frames vertically and define a 2M -dimensional
vector pα so that the image motion of the αth point can
be identified with a single point pα in a 2M -dimensional
space R2M , which we call the data space.

Let θ be a vector that stacks the shape vectors {sα},
the motion parameters {tκ, Rκ}, and the parameters that
specify the camera models {Πκ} for all the frames verti-
cally. We denote the domain of θ by M and call it the
parameter space, which is a manifold in general. The im-
age motion pα is a function of the parameter vector θ

pα = Pα[θ], (8)

which defines the projection model of the “2M -dimensional
camera”.

Example 3: For the orthographic camera model, the vec-
tor θ has dimension 6M +3N (the rotation matrix Rκ and
the translation vector tκ both have three degrees of free-
dom). Topologically, the parameter spaceM is homeomor-
phic to the direct product1 of R3M+3N and M copies of
SO(3):

M∼=
M︷ ︸︸ ︷

SO(3) × · · · × SO(3)×R3M+3N . (9)

V. Statistical Noise Model

In real applications, the feature points can be determined
only to a finite accuracy due to image digitization. More-
over, they are corrupted by unknown elements due to un-
modeled aspects of the imaging process and the image pro-
cessing operations for feature detection. We model this
uncertainty as follows.

Let p̄α be the true value of pα, and write pα = p̄α+∆pα.
We assume that the noise term ∆pα is a Gaussian random
variable; it may not be independent for different images,
and its distribution may be different from point to point.
We define their covariance matrices by

V [pα, pβ] = E[∆pα∆p>
β ], (10)

where E[ · ] denotes expectation.
In practical applications, the absolute magnitude of im-

age noise is very difficult to predict a priori, but its geo-
metric characteristics such as homogeneity/inhomogeneity
and isotropy/anisotropy can be predicted relatively eas-
ily. For example, if we use template matching for finding
corresponding points, the uncertainty of matching is char-
acterized by the variation in the matching residual around
the detected point [3], [12], [17], [18]. Hence, we assume
that V [pα, pβ] is known up to scale and decompose it into

1If algebraic operations are defined among the elements of M so
that M becomes a Lie group, the symbol × is often called the semi-
direct product. Here, however, we view M simply as a manifold and
do not define operations among its elements.

the known normalized covariance matrix V0[pα, pβ] and an
unknown noise level ε as follows [6]:

V [pα, pβ ] = ε2V0[pα, pβ]. (11)

This decomposition can be defined arbitrarily but is fixed
once for all.

Define 2M × 2M matrices Wαβ , α, β = 1, ..., N , by
 W 11 · · · W 1N

...
...

W N1 · · · W NN




=


 V0[p1, p1] · · · V0[p1, pN ]

...
...

V0[pN , p1] · · · V0[pN , pN ]




−1

.(12)

An optimal solution is obtained by maximum likelihood es-
timation, often referred to as bundle adjustment [22]: we
minimize

J(θ) =
N∑

α,β=1

(pα − Pα[θ], Wαβ(pβ − Pβ[θ])), (13)

where and throughout this paper we denote the inner prod-
uct of vectors a and b by (a, b). The global minimum of
this function provides us with our optimal shape and mo-
tion estimates.

VI. Gauge Transformations

In general, the solution that minimizes J(θ) is not
unique. Rather, there is a continuum of shape and mo-
tion parameters that all achieve the same global minimum.
There are two sources of this indeterminacy:

Frame indifference: Absolute translations and orienta-
tions of objects cannot be determined uniquely.

Projection insensitivity: Different 3-D configurations
can be projected to the same image.

If there exists a transformation g of the parameter space
M such that

J(θ) = J(gθ), ∀θ ∈M, (14)

we call g a gauge transformation. The set of all such trans-
formations forms a group G, which we call the group of
gauge transformations or the gauge group for short.

Example 4: If the object coordinate system is rotated by
R around its origin and then translated by t = (t1, t2, t3)>,
where t and R are defined with respect to the original
object coordinate system, the shape vectors {sα} and the
motion parameters {tκ, Rκ} are transformed in the form

s′
α = R>(sα − t), t′κ = Rκt + tκ, R′

κ = RκR. (15)

Example 5: For the orthographic camera model, we see
from (3) that if {sα} and {tκ, Rκ} are a solution, so are
{sα} and {tκ+dκk, Rκ} for all dκ ∈ R, where and through-
out this paper we let k = (0, 0, 1)>. We also see from (3)
that if {sα} and {tκ, Rκ} are a solution, so are {−sα} and
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{−Jtκ, JRκ}, where J = diag(−1,−1, 1) (180◦ rotation
around the Z-axis). The two solutions are mirror images
of each other; this ambiguity is known as the Necker cube
phenomenon. For the perspective camera model, we see
from (5) that if {sα} and {tκ, Rκ} are a solution, so are
{ssα} and {stκ, Rκ} for all scale s 6= 0. Negative scaling
produces mirror images.

VII. Infinitesimal Gauge Generators

We now provide a local description of our gauge transfor-
mation. An element γ ∈ G close to the identity element of
G is called an infinitesimal gauge transformation. It maps
θ in the form

γθ = θ + D(θ) + · · · , (16)

where D( · ) is a vector operator called the infinitesimal
gauge generator of γ. The set of such generators is a linear
space2 , which we denote by Dθ(M). It can be proved
that for every element D( · ) ∈ Dθ(M) there exists a gauge
transformation γ that has D( · ) as its generator [4]. If the
linear space Dθ(M) of gauge generators is r-dimensional,
G is an r-dimensional Lie group. We call the dimension r
the degree of gauge freedom.

Example 6: The rotation around a unit vector l by a
small angle ∆Ω is written to a first approximation in the
form I + ∆Ω × I, where I denotes the unit matrix and
we let ∆Ω = ∆Ωl. Throughout this paper, the product
a ×A of a three-dimensional vector a and a 3× 3 matrix
is defined to be the matrix whose columns are the vector
products of a with each of the columns of A. We also
define A× a to be A(a× I)>, the matrix whose rows are
the vector products of a with each of the rows of A. For
the orthographic camera model, the following generators
define an infinitesimal transformation:

D(sα) = −∆Ω × sα −∆t,

D(tκ) = Rκ∆t + ∆dκk, D(Rκ) = −Rκ ×∆Ω. (17)

The operator D( · ) is linearly parameterized by ∆Ω, ∆t,
and {∆dκ}, implying that the linear space Dθ(M) is
(M + 6)-dimensional. For the perspective camera model,
the following generators define an infinitesimal transforma-
tion:

D(sα) = −∆Ω × sα −∆t + ∆ssα,

D(Rκ) = −Rκ ×∆Ω, D(tκ) = Rκ∆t + ∆stκ. (18)

The linear space Dθ(M) is seven-dimensional (7-D); it is
parameterized by ∆Ω, ∆t, and ∆s.

VIII. Gauges

The existence of gauge freedom implies that there exists
a smooth manifold in the parameter spaceM such that any
point θ of it gives a solution for the same data. In order
to disambiguate the solution, we define another manifold

2By introducing a product called commutator , we can make this
linear space an algebra, which is isomorphic to the Lie algebra L(G)
of G.

that intersects the manifold at a single point. The formal
description is as follows.

We say that two values θ and θ′ are geometrically equiv-
alent and write θ ∼ θ′ if there exists an element g ∈ G such
that θ′ = gθ. This implies that the true parameter space is
not M but the quotient space M/G of M with respect to
this equivalence relation. Let Mθ be an element of M/G,
i.e., a subset of M consisting of all points geometrically
equivalent to θ:

Mθ = {θ′ |θ′ ∼ θ}
(
= {gθ | g ∈ G}

)
. (19)

If the degree of gauge freedom is r,Mθ is an r-dimensional
submanifold of M called the leaf associated with θ. The
parameter space M is filled with leaves. Such a space is
called a foliation or a foliated manifold .

A natural way to choose a unique value of θ for each leaf
is to assign r equations

c1(θ) = 0, ..., cr(θ) = 0. (20)

Each equation removes one degree of gauge freedom. We
call these equations a gauge condition, or a gauge for short,
if the following are satisfied:

1. They are algebraically independent, defining a sub-
manifold C of codimension r inM; we call C the gauge
manifold .

2. The gauge manifold C intersects all leaves Mθ

transversally3 with each connected component at a
single point.

3. For any θ ∈ Mθ and θC = C ∩ Mθ, there exists a
unique element g ∈ G such that θC = gθ.

Hereafter, we use the terms “gauge” and “gauge manifold”
interchangeably, denoting both by C. Introducing a gauge
arbitrarily, we can find a solution θ that minimizes (13)
uniquely for each connected component of the leafMθ, but
we cannot distinguish two solutions that belong to disjoint
components4 .

Example 7: For the orthographic camera model, we can
choose the origin of the object coordinate system at the
centroid of the feature points, align the axis orientation to
the first camera frame, and let the Z-components of the
translation tκ be all zeros:

N∑
α=1

sα = 0, R1 = I , (k, tκ) = 0. (21)

We call this the standard gauge. This can be extended to
the weak perspective camera model by adding

N∑
α=1

‖sα‖2 = 1. (22)

For the perspective camera model, we define the the stan-
dard gauge as follows:

R1 = I, t1 = 0, ‖t2‖ = 1. (23)
3Intuitively, two manifolds intersect transversally if one is not tan-

gent to the other [16].
4This occurs, for example, for the two mirror image solutions de-

scribed in Example 5.
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Example 8: If we differentiate (13) with respect to tκ,
let the result be zero, and solve the resulting equation,
we can express tκ in terms of the remaining parameters.
Substituting it into J(θ), we obtain a function of the re-
maining parameters; we call this description the reduced
model . Similarly, we can eliminate {sα} and express J(θ)
in terms of the motion parameters {tκ, Rκ} alone; we call
this description the epipolar model .

IX. Estimators

Our goal is to construct a function θ̂({pα}) of the data
{pα} that approximates θ as closely as possible. Such a
mapping θ̂: R2MN →M is called an estimator of θ. The
solution θ̂ that minimizes (13) is called the maximum like-
lihood estimator . However, we cannot speak of the “true
solution” θ; we can only speak of the “true leaf”Mθ, since
any two points on it are geometrically equivalent. We can
make the solution unique by imposing a gauge C; let us
denote the resulting solution by θC. An estimator that
satisfies a gauge C is denoted by θ̂C . We assume that if
noise does not exist, the estimator θ̂C coincides with the
value θC ∈ Mθ ∩ C that satisfies the gauge C and belongs
to the true leafMθ.

Let TθC (M) be the tangent space to M at θC . This is
an n-dimensional linear space, where and in the remainder
of this paper n is the dimension of the parameter vector θ
and r is the degree of gauge freedom, i.e., the dimension
of the linear space Dθ(M) of gauge generators. Let TθC(C)
be the tangent space to the gauge manifold C at θC ; it
is an (n − r)-dimensional subspace of TθC(M). Assuming
that noise is very small so that the distribution of θ̂C can
be identified with the distribution over the tangent space
TθC(C), we define the covariance matrix of the estimator
θ̂C by

V [θ̂C] = E[(θ̂C − θC)(θ̂C − θC)>]. (24)

This is an n× n singular matrix of rank n− r; its range is
the tangent space TθC(C).

Since the covariance matrix is defined in the tangent
space TθC(M), it suffices to introduce coordinates to
TθC(M) locally rather than to the parameter spaceM glob-
ally.

Example 9: For the reduced orthographic model, let
{ŝα} and {R̂κ} be estimators of {sα} and {Rκ}, respec-
tively, under gauge C. Since the shape vectors represent
displacements, they constitute an additive group. Hence,
the deviation from sα is measured by the difference ∆sα =
ŝα − sα. Rotations, on the other hand, constitute a multi-
plicative group. Hence, the deviation from Rκ is measured
by the quotient R̂κR>

κ , which is a small rotation. Let lκ be
its axis (unit vector) and ∆Ωκ the angle of rotation around
it. If we put ∆Ωκ = ∆Ωκlκ, the estimator R̂κ is expressed
to a first approximation in the form

R̂κ = Rκ + ∆Ωκ ×Rκ. (25)

We can view {∆sα} and {∆Ωκ} as local coordinates5 of
the tangent space TθC(M). The covariance matrix of {ŝα}
and {R̂κ} is defined by

V [θ̂C] =


 E[∆s1∆s>

1 ] · · · E[∆s1∆Ω>
M ]

...
...

E[∆ΩM∆s>1 ] · · · E[∆ΩM∆Ω>
M ]


 . (26)

X. Gauge Invariants

Recall that the indeterminacy of the solution is due to
the over-parameterization of the model and the loss of in-
formation during projection. Suppose there is a quantity
that takes the same value everywhere on the leaf Mθ as-
sociated with solution θ. This quantity is uniquely deter-
mined in spite of the indeterminacy of the solution.

Formally, a function I: M → R is gauge invariant if

I(gθ) = I(g′θ) (27)

for all g and g ′ that belong to the same connected compo-
nent of the gauge group G. It follows that a function I is
a gauge invariant if and only if it is invariant to infinitesi-
mal gauge transformations. Let γ be an infinitesimal gauge
transformation, and D( · ) its generator. Gauge invariance
implies

I(θ) = I(γθ) = I(θ + D(θ) + · · ·)
= I(θ) + (∇θI, D(θ)) + · · · . (28)

Let {D1( · ), ..., Dr( · )} be an arbitrary basis of the linear
space Dθ(M) of gauge generators. The corresponding vec-
tors D1(θ), ..., Dr(θ) are the basis of the tangent space
Tθ(Mθ) to the leafMθ associated with θ. (28) implies that
(∇θI, Di(θ)) = 0, i = 1, ..., r. Conversely, these differential
equations generate a gauge invariant by integration. Thus,
we have the following theorem (the superscript ⊥ denotes
orthogonal complement):

Theorem 1: A function I: M → R is a gauge invariant
if and only if

∇θI ∈ Tθ(Mθ)⊥ (29)

for all θ.

XI. Equivalence of Covariance Matrices

Not only is the value of a gauge invariant unique, but
its covariance is also uniquely obtainable given the covari-
ance of the measured data. In contrast, the covariance of a
quantity that depends on gauges cannot be uniquely spec-
ified: we have many possible “geometrically equivalent”
covariances that correspond to the same measurement co-
variance. In this section, we derive a geometric equivalence
relationship between covariance matrices. This permits us
to test whether or not covariances of one parameter under
different gauges correspond to the same underlying mea-
surement covariance.

5They correspond to the Lie algebra of the parameter space M if
it is viewed as a Lie group. See footnote 1.
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Let θ̂C and θ̂C′ be estimators of θ with respect to differ-
ent gauges C and C′, respectively, and let V [θ̂C ] and V [θ̂C′ ]
be their respective covariance matrices. We say that the co-
variance matrices V [θ̂C ] and V [θ̂C′ ] are geometrically equiv-
alent if the uncertainty of any gauge invariant is the same
whichever covariance matrix we use. Let I(θ) be a gauge
invariant. Its variance is to a first approximation

V [I] = E[(∇θI|θC , ∆θC)2]
= (∇θI|θC , E[∆θC∆θ>

C ]∇θI|θC)

= (∇θI|θC , V [θ̂C ]∇θI|θC), (30)

where ∆θC = θ̂C − θC .
Let θC and θC′ be the true values (the values we would

have in the absence of noise) of θ̂C and θ̂C′ , respectively.
Since θC and θC′ both belong to the true leave Mθ, there
exists a gauge transformation g ∈ G such that θC = gθC′ .
This transformation of M induces a linear mapping from
the tangent space TθC′ (M) at θC′ to the tangent space
TθC(M) at θC; each is described with respect to a local co-
ordinate system. The mapping is symbolically denoted by
∂θC/∂θC′ and called the Jacobian matrix from TθC′ (M) to
TθC(M). Then, θ̂C′ = θC′ + ∆θC′ is geometrically equiva-
lent to θ̂C = θC+(∂θC/∂θC′ )∆θC′ to a first approximation.
Hence,

V [I] = (∇θI|θC ,
∂θC
∂θC′

V [θ̂C′ ]
( ∂θC

∂θC′

)>
∇θI|θC). (31)

After subtracting (31) from (30), Theorem 1 implies that
V [θ̂C] and V [θ̂C′ ] are geometrically equivalent if and only
if

(u,
(
V [θ̂C ]− ∂θC

∂θC′
V [θ̂C′ ]

( ∂θC
∂θC′

)>)
u) = 0 (32)

for all u ∈ TθC(Mθ)⊥. This means that TθC (Mθ)⊥

is contained in the null space of the symmetric matrix

V [θ̂C] −
(
∂θC/∂θC′

)
V [θ̂C′ ]

(
∂θC/∂θC′

)>
. In other words,

its range is contained in TθC(Mθ), in which all eigenvectors
for nonzero eigenvalues lie.

Intuitively, this means that V [θ̂C] and V [θ̂C′ ] differ only
in directions orthogonal to the leafMθ. Since the Jacobian
matrix ∂θC/∂θC′ is introduced merely for comparing them
in the same local coordinate system, this is a symmetric
relation between the gauges C and C′. We introduce the
notation

V [θ̂C ] ≡ V [θ̂C′ ] mod Mθ

for this relation and conclude as follows:

Theorem 2: Covariance matrices V [θ̂C] and V [θ̂C′ ] for
different gauges are geometrically equivalent if and only if

V [θ̂C ] ≡ V [θ̂C′ ] mod Mθ. (33)

Example 10: For the reduced orthographic model, the
parameter space M is locally parameterized by {{∆sα},
{∆Ωκ}}. The Jacobian matrix ∂θ ′/∂θ is defined as a
linear mapping from {{∆sα}, {∆Ωκ}} at {{sα}, {Rκ}}
to {{∆s′

α}, {∆Ω′
κ}} at {{s′

α}, {R′
κ}} given the gauge

transformation {R, t} that maps {{sα}, {Rκ}} to {{s′
α},

{R′
κ}}. From (15), we obtain

∆s′
α = R>∆sα, ∆Ω′

κ = ∆Ωκ. (34)

The latter results from R′
κ + ∆Ω′

κ ×R′
κ = (Rκ + ∆Ωκ ×

Rκ)R = RκR + ∆Ωκ × RκR′ = R′
κ + ∆Ωκ × R′

κ. The
Jacobian matrix has the form

∂θ′

∂θ
= diag(R>, ..., R>, I, ..., I), (35)

where diag(A, ..., B) denotes the block diagonal matrix
with A, ..., B as its diagonal blocks in that order.

XII. Equivalence of Estimators

Assume that we have obtained an estimate of the solu-
tion parameter under a particular gauge. We would like to
identify which perturbations of it are geometrically equiv-
alent, i.e., which perturbations would correspond to the
same perturbation of the image data. In this section,
we define an oblique projection onto the gauge manifold
and show that all perturbations that project onto identical
points are geometrically equivalent.

Let θ̂C be an estimator of θ with respect to a gauge C.
To a first approximation, the deviation ∆θC = θ̂C − θC
can be identified with an element in TθC(C). Let ∆θ ∈
TθC(M) be an arbitrary vector. To a first approximation,
θC + ∆θ is geometrically equivalent to θ̂C = θC + ∆θC if
and only if ∆θ−∆θC ∈ TθC (Mθ) (Fig. 1). Since {D1(θC),
..., Dr(θC)} are the basis of TθC(Mθ), this condition is
equivalent to the existence of r numbers x1, ..., xr such
that ∆θC = ∆θ +

∑r
i=1 xiDi(θC) or

∆θC = ∆θ + UθCx, (36)

where we let x = (x1, ..., xr)> and define

U θC =
(

D1(θC) · · · Dr(θC)
)
. (37)

If the gauge C is defined by r equations c1(θ) = 0, ..., cr(θ)
= 0, the tangent space TθC(C) is the orthogonal complement
of the linear space spanned by {∇θc1|θC , ... ∇θcr|θC}. It
follows that (∇θci|θC , ∆θC) = 0 for i = 1, ..., r. From (36),
we have

V >
θC∆θ + V >

θCU θCx = 0, (38)

where we have defined

V θC =
( ∇θc1|θC · · · ∇θcr|θC

)
. (39)

Eliminating x from (36) and (38), we obtain

∆θC = ∆θ −UθC(V >
θCU θC)−1V >

θC∆θ = Q C
θC∆θ, (40)

where
QC

θC = I −UθC(V >
θCU θC)−1V >

θC , (41)

which defines an (oblique) projection onto TθC(C) along
TθC(Mθ) (Fig. 1). Thus, we have
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Fig. 1. Oblique projection onto the tangent space to C.

Theorem 3: An estimator θ̂C is geometrically equivalent
to θC + ∆θ to a first approximation if and only if

θ̂C = θC + QC
θC∆θ. (42)

Example 11: For the reduced orthographic model, the
standard gauge (21) is expressed in the local coordinates
{∆sα} and {∆Ωκ} in the form

N∑
α=1

∆sα = 0, ∆Ω1 = 0. (43)

This means that the six basis vectors of the tangent space
to the standard gauge manifold C are the columns of the
3(M + N )× 6 matrix

V θ =
(

I · · · I O O · · ·O
O · · · O I O · · ·O

)>
. (44)

Combining (17) and (25), we can write R̂κ = Rκ +D(Rκ)
as ∆Ωκ×Rκ = −Rκ×∆Ω, which is equivalent to ∆Ωκ =
Rκ∆Ω. Hence, the gauge generator is expressed in terms
of the local coordinates {∆sα} and {∆Ωκ} in the form

D(θ) = Uθ

(
∆Ω
∆t

)
,

U θ =
( −s1 × I · · · −sN × I R>

1 · · · R>
M

−I · · · −I O · · · O

)>
.

(45)
If {sα} and {Rκ} satisfy the standard gauge (21), we have

Q C
θ = I −




I/N · · · I/N s1 × I O · · · O
...

...
...

...
...

I/N · · · I/N sN × I O · · · O
O · · · O I O · · · O
O · · · O R2 O · · · O
...

...
...

... · · · ...
O · · · O RM O · · · O




.

(46)

It follows that the standard gauge (21) is enforced to the
local coordinates {∆sα} and {∆Ωκ} in the form

∆sα|S ← ∆sα − 1
N

N∑
β=1

∆sβ − sα ×∆Ω1,

∆Ωκ|S ←
{

0 κ = 1,
∆Ωκ −Rκ∆Ω1 κ = 2, ..., M,

(47)

where |S denotes quantities after the standard gauge is en-
forced. The intuitive meaning is that (43) are enforced by
subtracting from ∆sα the centroid of {∆sβ} and rotating
the frame back by −∆Ω1.

XIII. Covariance Transformations

Our oblique projection provides us with a convenient way
to transform covariances between different gauges. Let θ̂C
be an estimator of θ with respect to gauge C, and V [θ̂C] its
covariance matrix. Let θ̂C′ be a geometrically equivalent
estimator of θ with respect to another gauge C′, and write

θ̂C = θC + ∆θC , θ̂C′ = θC′ + ∆θC′ . (48)

The former is geometrically equivalent to θC′ +(
∂θC′/∂θ′

C
)
∆θC. According to Theorem 3, the estimators

θ̂C and θ̂C′ are geometrically equivalent if and only if ∆θC′

= QC′
θC′ (∂θC′/∂θC)∆θC. From this, we obtain the following

rule of transformation of the covariance matrix induced by
a change of the gauge:

Theorem 4: Let V [θ̂C] be the covariance matrix of es-
timator θ̂C under gauge C. For another gauge C′, the co-
variance matrix of the corresponding estimator θ̂C′ is given
by

V [θ̂C′ ] = Q C′
θC′

∂θC′

∂θC
V [θ̂C]

(∂θC′

∂θC

)>
Q C′>

θC′ . (49)

XIV. Unbiased Estimators

We have so far assumed that an estimator θ̂C under
gauge C takes the “true value” θC ∈Mθ ∩C in the absence
of noise. We now strengthen this condition: we require the
estimator θ̂C be “unbiased”. The formal definition is as
follows.

Let p({pα}; θ) be the probability density of the data
{pα} parameterized by θ. We define its score lθ by

lθ = ∇θ log p. (50)

The Fisher information matrix is defined by

Jθ = E[lθl>θ ], (51)

which is a symmetric positive semi-definite matrix. Note
that p({pα}; θ) is a gauge invariant and hence log p is also a
gauge invariant. According to Theorem 1, we see that lθ =
∇θ log p ∈ Tθ(Mθ)⊥. It follows that the Fisher information
matrix J θC has rank n− r, having the range Tθ(Mθ)⊥ and
the null space Tθ(Mθ).
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An estimator θ̂ under gauge C is unbiased if

E[θ̂C − θC ] = 0, (52)

where we are assuming that the deviation θ̂C−θC is so small
that it can be identified with an element in the tangent
space TθC(C). (52) is rewritten as∫

· · ·
∫

(θ̂C − θC)p({pα}; θC)dp1 · · ·pN = 0. (53)

This should hold for any θC ∈ C and hence for an arbi-
trary infinitesimal perturbation θC → θC + δθC for δθC ∈
TθC(C). After some manipulations using the identity ∇θp
= p∇θ log p, we conclude that(

E[(θ̂C − θC)l>θC ]− I
)
δθC = 0 (54)

should hold for an arbitrary vector δθC ∈ TθC(C) and hence
for δθC = QC

θCx ∈ TθC(C) for an arbitrary vector x. It
follows that (

E[(θ̂C − θC)l>θC ]− I
)
Q C

θC = O, (55)

which can be rewritten as

E[(θ̂C − θC)l>θC ] = Q C
θC , (56)

if we note that l>θCQC
θC = (QC>

θC lθC)> = l>θC . In fact, we see
that for an arbitrary vector x

(lθC −Q C>
θC lθC , x) = (lθC , x)− (Q C>

θC lθC , x)

= (lθC , x)− (lθC , Q C
θCx)

= (lθC , x−QC
θCx) = 0, (57)

because lθ ∈ Tθ(Mθ)⊥ and x −QC
θCx ∈ Tθ(Mθ).

XV. Cramer-Rao Inequality

We would like a bound on our parameter estimation ac-
curacy that takes into account the gauge freedom of the
parameters. To achieve this, we derive a generalized form
of the Cramer Rao lower bound [6], [7]. Using identity (56),
we obtain

E

[(
θ̂C − θC

lθC

)(
θ̂C − θC

lθC

)>]

=
(

V [θ̂C ] Q C
θC

QC>
θC Q C>

θC J θCQC
θC

)
, (58)

which is positive semi-definite by construction. Hence, the
following matrix should also be positive semi-definite:(

Q C
θC −Q C

θCJ−
θC

O Q C
θCJ−

θC

)(
V [θ̂C] Q C

θC
QC>

θC JθC

)
(

Q C>
θC O

−J−
θCQC>

θC J−
θCQ C>

θC

)
. (59)

Here, the superscript “−” denotes (Moore-Penrose) gen-
eralized inverse. Note that V [θ̂C ] has the range TθC(C)

M θ
θ

Qθ
C

Pθ

∆θ

(M )θ )C(T

C

⊥

* ∆θC
)θM(CθT

θT θ

Fig. 2. Orthogonal projection from the tangent space to C.

and hence QC
θCV [θ̂C ]QC>

θC = V [θ̂C ] . Using the identity
J−

θCJ θCJ−
θC = J−

θC , we see that the above matrix equals(
V [θ̂C]−Q C

θCJ−
θCQ C>

θC O

O QC
θCJ−

θCQ C>
θC

)
. (60)

Since this is positive semi-definite, so should Q C
θCJ−

θCQ C>
θC

be. Hence,

Theorem 5: For an estimator θ̂C under gauge C, the fol-
lowing inequality holds:

V [θ̂C ] � QC
θCJ−

θCQ C>
θC . (61)

Here, the inequality A � B for symmetric matrices A and
B means that A−B is positive semi-definite. We call the
right-hand side of (61) the Cramer-Rao lower bound under
gauge C.

XVI. Normal Form

So far, the covariance matrix of an estimators of θ is
defined for a particular gauge. We now show that it can
be defined independently of gauges. Let θ ∈ Mθ be an
arbitrary true value, and θ̂ its estimator under an arbi-
trary gauge. Since θ and θ̂ may have very different values
because of the gauge freedom, we cannot compare them di-
rectly. So, we apply an appropriate gauge transformation g
such that gθ̂ becomes the “closest” to θ and then evaluate
E[(gθ̂−θ)(gθ̂−θ)>]. The formal description is as follows.

Define a gauge manifold C∗ such that (i) it passes through
θ and (ii) the tangent space Tθ(C∗) to C∗ coincides with the
orthogonal complement Tθ(Mθ)⊥ of Tθ(Mθ). We call the
covariance matrix V [θ̂

∗
C] of the estimator θ̂C∗ under that

gauge the normal form and denote it by V ∗[θ̂] (Fig. 2).
The normal form is defined for all values that belong to
the leaf Mθ of true values.

Let θ̂C be an estimator equivalent to θ̂C∗ defined under
another gauge C that also passes through θ. Let V [θ̂C] be
its covariance matrix. According to Theorem 4, the normal
form V ∗[θ̂] is given by

V ∗[θ̂] = P θV [θ̂C]P >
θ , (62)
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where P θ denotes the (orthogonal) projection onto
Tθ(Mθ)⊥ (Fig. 2). It has the expression

P θ = I −Uθ(U>
θ U θ)−1U>

θ , (63)

where Uθ is the n×n matrix consisting of D1(θ),..., Dr(θ)
as its columns (see (37)). Conversely, V [θ̂C ] is given in
terms of its normal form V ∗[θ̂] in the form

V [θ̂C] = Q C
θ V ∗[θ̂]QC>

θ . (64)

In general, we have

Theorem 6: Let θ̂C be an estimator defined under a
gauge C, and V [θ̂C ] its covariance matrix. Its normal form
at an arbitrary point θ ∈ Mθ is

V ∗[θ̂] = P θ
∂θ

∂θC
V [θ̂C ]

( ∂θ

∂θC

)>
P>

θ . (65)

Conversely, V [θ̂C ] is given in terms of its normal form at θ
∈ Mθ in the form

V [θ̂C] = Q C
θC

∂θC
∂θ

V ∗[θ̂]
(∂θC

∂θ

)>
Q C>

θC . (66)

In sum, the normal form and an arbitrary form can be
transformed from one to the other via the orthogonal pro-
jection P θ (see (63)) and the oblique projection QC

θC (see
(41)). They are computed from the matrix UθC (see (37))
and the matrix V θC (see (39)). The former is defined by
the gauge transformation G alone via (16); the latter by
the gauge C given by (20) alone.

In practice, however, we can automatically obtain the
normal form if we adopt the “free-gauge approach”, which
we describe shortly. This is based on the following obser-
vation. Recall that the Cramer-Rao lower bound given by
(61) is defined for every true value θ that belongs to the
true leaf Mθ for any given gauge C. If the gauge C hap-
pens to be such that Tθ(C) = Tθ(Mθ)⊥, (61) can be read as
giving a lower bound on the covariance matrix of θ̂ in the
normal form. But if Tθ(C) = Tθ(Mθ)⊥, then Q C

θC = P θ and
the Fisher information matrix J θ has the range Tθ(Mθ)⊥.
Thus, we obtain the following Cramer-Rao inequality:

Theorem 7: For any estimator θ̂, the following inequality
holds for the normal form of its covariance matrix:

V ∗[θ̂] � J−
θ . (67)

XVII. Numerical Optimization

The question remains as to how to numerically obtain the
optimal estimator under a given gauge. Newton-type op-
timization is attractive for its quadratic convergence prop-
erty, but at the same time the solution should satisfy the
required gauge condition. In this and the next section, we
consider various Newton-type optimization methods that
impose gauge conditions.

The function J given by (13) has the following Taylor
expansion in the neighborhood of the true value θ̄C under
gauge C:

J(θ̄C+∆θ) = J̄ +(∇θ J̄ , ∆θ)+
1
2
(∆θ,∇2

θJ̄∆θ)+· · · . (68)

The bars in the expressions J̄ , ∇θJ̄ , and ∇2
θJ̄ mean that

they are evaluated at the true value θ = θ̄C . Here, ∆θ is
identified with an element of the tangent space Tθ̄C(M) at
θ̄C and hence described in terms of the local coordinates of
Tθ̄C(M) (e.g., the vector ∆Ω for rotation R; see Example
9).

Ignoring terms of order O(ε3) and higher, differentiating
(68) with respect to ∆θ, letting the result be zero, and sub-
stituting an estimate θC for the true value θ̄C, we obtain

∇θJ +∇2
θJ∆θ = 0. (69)

Since the rank of the Hessian ∇2
θJ is n − r, this equation

has infinitely many solutions. Here, two alternatives exist.
One is to combine (69) with the r equations

(∇θc1|θ, ∆θ) = 0, ..., (∇θcr |θ, ∆θ) = 0, (70)

which constrain ∆θ to be in the tangent space Tθ(C). The
resulting simultaneous linear equations can determine ∆θ
uniquely. An alternative method is to compute an arbi-
trary solution of (69) first. For example, we can choose
the one that has the minimum norm ‖∆θ‖. The solution
is obtained by using the (Moore-Penrose) generalized in-
verse. Then, we impose the gauge C by replacing ∆θ by
Q C

θ ∆θ according to Theorem 3 (see (47)). Thus, we have

∆θ = −Q C
θ ∇2

θJ
−∇θJ. (71)

Whichever method we use, the parameter θ is updated
in the form

θ ← exp(∆θ)θ, (72)

where exp( · ) is the exponential mapping from the tangent
space Tθ̄C(M) to M to the parameter space M itself6 :
it is defined in such a way that exp(∆θ)θ is in M and
equal to θ + ∆θ to a first approximation. Application of
this mapping is necessary because θ + ∆θ may not be in
M exactly. In addition, we further need a higher order
adjustment to enforce the gauge C exactly, because (69) is
a first order approximation and hence θ may not be in C
exactly.

Example 12: For translation, the exponential mapping
acts in the form

exp(∆t)t = t + ∆t. (73)

For rotation, we have

exp(∆Ω)R =
(
cos ∆ΩI+(1−cos ∆Ω)ll>+sin ∆Ωl×I

)
R,

(74)
where ∆Ω = ‖∆Ω‖ and l = ∆Ω/‖∆Ω‖. The right-hand
side is equal to R + ∆Ω×R to a first approximation (see
(25)). The matrix exp(∆Ω) is a rotation by angle ‖∆Ω‖
around axis ∆Ω. The above expression is known as the
Rodrigues formula [4].

6Mathematically, this is a mapping from the Lie algebra of a Lie
group to the Lie group itself.
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Fig. 3. The gauge approach vs. the free-gauge approach.

XVIII. Free-Gauge Approach

If we carefully examine the origin of the indeterminacy
of the solution of (69), we find that gauges need not nec-
essarily be imposed at first. Instead, we may choose an
arbitrary solution ∆θ and update θ by (72) until the so-
lution converges. The gauge C is imposed at this stage.
We call this strategy, first discussed by Triggs [21], the
free-gauge approach. Evidently, computationally the most
convenient of the solutions of (69) is the minimum norm
solution (Fig. 3):

∆θ∗ = −∇2
θJ

−∇θJ. (75)

It is easily seen that the maximum likelihood estimator
attains the Cramer-Rao lower bound to a first approxi-
mation under Gaussian noise [6]. Hence, we can approxi-
mately evaluate the Cramer-Rao lower bound by evaluating
Jθ at the computed estimate θ̂. If we ignore terms of order
O(ε3) and higher, the Fisher information matrix takes the
form

J θ|θ̂ =
1
2
∇2

θJ |θ̂. (76)

It follows that the free-gauge approach with the choice of
(75) allows us to obtain not only a maximum likelihood
solution θ̂ but also its covariance matrix in the normal
form as follows:

V ∗[θ̂] = −2
(
∇2

θJ |θ̂
)−

. (77)

The free-gauge approach is advantageous when the gauge
manifold C is “nearly parallel” to the leaves Mθ, θ ∈ M,
since the numerical solution must travel along a long path
to reach the solution leafMθ̄ if the trajectory is constrained
to be in C. The free-gauge approach allows trajectories
to intersect the individual leaves Mθ, θ ∈ M, “orthogo-
nally”, so the true leaf Mθ̄ is reached along the shortest
path (Fig. 3) [10], [11].

XIX. Numerical Simulation

Fig. 4 shows a decimated sequence of synthetic images of
a wire-framed cube with a significant amount of anisotropic
and inhomogeneous Gaussian noise. On each grid point is

1 3 5

7 9 11

Fig. 4. A decimated sequence of synthetic images with uncertainty
ellipses. On bottom left is the true object shape; on bottom right
is an optimal 3-D reconstruction with uncertainty ellipsoids.

centered the uncertainty ellipse indicating
√

2 times the
standard deviation in each orientation. Here, the weak
perspective camera model (4) is assumed. The true object
shape is shown bottom left; on bottom right is an optimal
3-D reconstruction with uncertainty ellipsoids indicating
twice the standard deviation in each orientation (see [12],
[13] for the details of the computation).

Fig. 5(a) shows the predicted normal form of the covari-
ance matrix of all the parameters (the x, y, and z compo-
nents of all the shape vectors {sα}, the motion parameters
{tκ, Rκ} and the scales {µκ}); the value of each element
is displayed by its darkness. Fig. 5(b) is the description
for the standard gauge (see (21) and (22)) obtained by ap-
plying the transformation (66) to Fig. 5(a). We see that
these two descriptions are very different, yet the underly-
ing uncertainty is the same. Fig. 5(c) shows the empiri-
cal covariance matrix computed by a random noise Monte
Carlo simulation (400 runs) using the standard gauge. This
demonstrates that our theoretical prediction describes the
uncertainty very well.

XX. Real Image Example

Fig. 6(a),(b) shows two real images. Here, we assume the
perspective camera model (5) with unknown focal lengths.
Selecting feature points marked in the images by hand, we
reconstructed the 3-D structure by the method described
in [8], [9]. Fig. 6(c) is a side view of the reconstructed
points; wire-frames consisting of some of them are shown.
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Fig. 5. (a) Predicted normal covariance. (b) Covariance description for the standard gauge. (c) Monte Carlo simulation for the standard
gauge.

(a) (b) (c)

Fig. 6. (a),(b) Real images of an indoor scene. (c) 3-D reconstruction with uncertainty ellipsoids.

On each reconstructed point is centered the uncertainty
ellipsoid defined by the covariance matrix. All ellipsoids
look like thin needles, indicating that the uncertainty is
very large along the depth orientation.

This description is deceptive, however. This description
is based on the standard gauge (21): the world coordinate
system coincides with the first camera frame and the cam-
era translation is normalized to unit length. This gauge
hides the fact that the uncertainty is mostly due to the
camera translation, not the object shape.

For example, if we take the centroid of the polyhedral ob-
ject as the coordinate origin and normalize the root-mean-
square distance to the vertices from the centroid to unit
length, we obtain the description shown in Fig. 7(a). By
construction, the uncertainty is almost symmetric with re-
spect to the centroid. This description is better than Fig. 6
for seeing that the object shape has very little uncertainty.

Fig. 7(b) is the uncertainty description for yet another
gauge: one of the object vertex is taken to be the coordinate
origin, another is taken to be (1,1,0), and a third one is
on the XY plane. By definition, the two points have no
uncertainty.

These examples visualize the fact that uncertainty of
individual quantities has no absolute meaning. Absolute
meaning can be given only to gauge invariants. Typical
gauge invariants are ratios of lengths and angles of lines.
The ratio of two sides of the polyhedral objects and the
angle they make are listed in Table I along with their true
values and rough estimates of their theoretical standard
deviations. Only by evaluating the uncertainty of gauge
invariants in this way can we describe the degree of uncer-
tainty in absolute terms.

XXI. Concluding Remarks

We have presented a consistent theory for describing in-
determinacy and uncertainty of 3-D reconstruction from
a sequence of images. We have given a group-theoretical
analysis of gauge transformations and gauges and extended
the Cramer-Rao lower bound to incorporate internal inde-
terminacy. We also introduced the free-gauge approach
and defined the normal form of a covariance matrix that is
independent of particular gauges. Finally, we showed sim-
ulated and real-image examples to illustrate the effect of
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(a) (b)

Fig. 7. Gauge dependence of uncertainty description. (a) Normal-
ization based on the centroid. (b) Normalization based on three
vertices.

gauge freedom on uncertainty description.
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