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Abstract

This paper analyzes the distribution of cycle lengths in turbo decoding and low-density par-
ity check (LDPC) graphs. The properties of such cycles are ofsignificant interest in the context
of iterative decoding algorithms which are based on belief propagation or message passing. We
estimate the probability that there exist no simple cycles of length less than or equal tok at a
randomly chosen node in a turbo decoding graph using a combination of counting arguments
and independence assumptions. For large block lengthsn, this probability is approximately

e−
2k−1

−4
n , k ≥ 4. Simulation results validate the accuracy of the various approximations. For

example, for turbo codes with a block length of 64000, a randomly chosen node has a less than
1% chance of being on a cycle of length less than or equal to 10, but has a greater than 99.9%
chance of being on a cycle of length less than or equal to 20. The effect of the “S-random” per-
mutation is also analyzed and it is shown that while it eliminates short cycles of lengthk < 8, it
does not significantly affect the overall distribution of cycle lengths. Similar analyses and sim-
ulations are also presented for graphs for LDPC codes. The paper concludes by commenting
briefly on how these results may provide insight into the practical success of iterative decoding
methods.

1 Introduction

Turbo codes are a new class of coding systems that offer near optimal coding performance while re-
quiring only moderate decoding complexity [1]. It is known that the widely-used iterative decoding
algorithm for turbo codes is in fact a special case of a quite general local message-passing algorithm
for efficiently computing posterior probabilities in acyclic directed graphical (ADG) models (also
known as “belief networks”) [2, 3]. Thus, it is appropriate to analyze the properties of iterative-
decoding by analyzing the properties of the associated ADG model.

In this paper we derive analytic approximations for the probability that a randomly chosen node
in the graph for a turbo code participates in a simple cycle oflength less than or equal tok. The
resulting expressions provide insight into the distribution of cycle lengths in turbo decoding. For
example, for block lengths of 64000, a randomly chosen node in the graph participates in cycles of
length less than or equal to 8 with probability 0.002, but participates in cycles of length less than or
equal to 20 with probability 0.9998.

In Section 2 we review briefly the idea of ADG models, define thenotion of aturbo graph (and
the related concept of apicture), and discuss how the cycle-counting problem can be addressed
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Figure 1: The ADG model for aK = 6,N = 12, rate 1/2 turbocode.

by analyzing how pictures can be embedded in a turbo graph. With these basic tools we proceed
in Section 3 to obtain closed-form expressions for the number of pictures of different lengths. In
Section 4 we derive upper and lower bounds on the probabilityof embedding a picture in a turbo
graph at a randomly chosen node. Using these results, in Section 5 we derive approximate expres-
sions for the probability of no simple cycles of lengthk or less. Section 6 shows that the derived
analytical expressions are in close agreement with simulation. In Section 7 we investigate the effect
of the S-random permuter construction. Section 8 extends the analysis to LDPC codes and com-
pares both analytic and simulation results on cycle lengths. Section 9 contains a discussion of what
these results may imply for iterative decoding in a general context and Section 10 contains the final
conclusions.

2 Background and Notation

2.1 Graphical Models for Turbo-codes

An ADG model (also known as a belief network) consists of a both a directed graph and an asso-
ciated probability distribution over a set of random variables of interest.1 There is a 1-1 mapping
between the nodes in the graph and the random variables. Loosely speaking, the presence of a di-
rected edge from nodeA to B in the graph means thatB is assumed to have a direct dependence
on A (“ A causesB”). More generally, if we identifyπ(A) as the set of allparents of A in the
graph (namely, nodes which point toA), thenA is conditionally independent of all other variables

1Note that “ADG” is the more widely used terminology in the statistical literature, whereas the term belief network or
Bayes network is more widely used in computer science; however, both frameworks are completely equivalent.
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(nodes) in the graph (except forA’s descendants) given the values of the variables (nodes) inthe
setπ(A). For example, a Markov chain is a special case of such a graph,where each variable has
a single parent. The general ADG model framework is quite powerful in that it allows us to sys-
tematically model and analyze independence relations among relatively large and complex sets of
random variables [4].

As shown in [2, 3, 5], turbo codes can be usefully cast in an ADGframework. Figure 1 shows the
ADG model for a rate 1/2 turbo code. The U nodes are the original information bits tobe coded, the
S nodes are the linear feedback shift register outputs, the Xnodes are the codeword vector which is
the input to the communication channel, and the Y nodes are the channel outputs. The ADG model
captures precisely the conditional independence relations which are implicitly assumed in the turbo
coding framework, i.e., the input bits U are marginally independent, the state nodes S only depend
on the previous state and the current input bit, and so forth.

The second component of an ADG model (in addition to the graphstructure) is the specification
of a joint probability distribution on the random variables. A fundamental aspect of ADG models
is the fact that this joint probability distribution decomposes into a simple factored form. Letting
{A1, . . . ,An} be the variables of interest, we have

p(A1, . . . ,An) =
n
∏

i=1

p (Ai|π(Ai)) , (1)

i.e., the overall joint distribution is the product of the conditional distributions of each variableAi

given its parentsπ(Ai). (We implicitly assume discrete-valued variables here andrefer to distribu-
tions; however, we can do the same factorization with density functions for real-valued variables, or
with combinations of densities and distributions).

To specify the full joint distribution, it is sufficient to specify the individual conditional distribu-
tions. Thus, if the graph is sparse (few parents) there can beconsiderable savings in parameterization
of the model. From a decoding viewpoint, however, the fundamental advantage of this factorization
is that it permits the efficient calculation of posterior probabilities (or optimal bit decisions) of inter-
est. Specifically, if the values for a subset of variables areknown (e.g., the received codeword vector
Y) we can efficiently compute the posterior probability for the information bits Ui = 1, 1≤ i ≤ N.
The power of the ADG framework is that there exist exact localmessage-passing algorithms which
calculate such posterior probabilities. These algorithmstypically have time complexity which is
linear in the diameter of the underlying graph times a factorwhich is exponential in the cardinality
of the variables at the nodes in the graph. The algorithm is provably convergent to the true posterior
probabilities provided the graph structure does not contain any loops (a loop is defined as a cycle
in the undirected version of the ADG, i.e., the graph where directionality of the edges is dropped).
The message-passing algorithm of Pearl [6] was the earliestgeneral algorithm (and is perhaps the
best-known) in this general class of “probability propagation” algorithms. For regular convolutional
codes, Pearl’s message passing algorithm applied to the convolutional code graph structure (e.g., the
lower half of Figure 1) directly yields the BCJR decoding algorithm [7].

If the graph has loops then Pearl’s algorithm no longer provably converges, with the exception
of certain special cases (e.g., see [8]). A “loop” is any cycle in the graph, ignoring directionality
of the edges. The turbocode ADG of Figure 1 is an example of a graph with loops. In essence, the
messages being passed can arrive at the same node via multiple paths, leading to multiple “over-
counting” of the same information.

A widely used strategy in statistics and artificial intelligence is to reduce the original graph
with loops to an equivalent graph without loops (this can be achieved by clustering variables in a
judicious manner) and then applying Pearl’s algorithm to the new graph. However, if one applies

3
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Figure 2: The cyclic graph structure underlying the turbo code of Figure 1

this method to ADGs for realistic turbo codes the resulting graph (without loops) will contain at
least one node with a large number of variables. This node will have cardinality exponential in
this number of variables, leading to exponential complexity in the probability calculations referred
to above. In the worst-case all variables are combined into asingle node and there is in effect no
factorization. Thus, for turbo codes, there is no known efficient exact algorithm for computing
posterior probabilities (i.e., for decoding).

Curiously, as shown in [2, 3, 4], the iterative decoding algorithm of [1] can be shown to be
equivalent to applying the local-message passing algorithm of Pearl directly to the ADG structure
for turbo codes (e.g., Figure 1), i.e., applying the iterative message-passing algorithm to a graph
with loops. It is well-known that in practice this decoding strategy performs very well in terms of
producing lower bit error rates than any virtually other current coding system of comparable com-
plexity. Conversely, it is also well-known that message-passing in graphs with loops can converge
to incorrect posterior probabilities (e.g., [9]). Thus, wehave the “mystery” of turbo decoding: why
does a provably incorrect algorithm produce an extremely useful and practical decoding algorithm?
In the remainder of this paper we take a step in understandingmessage-passing in graphs with loops
by characterizing the distribution of cycle-lengths as a function of cycle length. The motivation is as
follows: if it turns out that cycle-lengths are “long enough” then there may be a well-founded basis
for believing that message-passing in graphs with cycles ofthe appropriate length are not suscepti-
ble to the “over-counting” problem mentioned earlier (i.e., that the effect of long loops in practice
may be negligible). This is somewhat speculative and we willreturn to this point in Section 9. An
additional motivating factor is that the characterizationof cycle-length distributions in turbo codes
is of fundamental interest by itself.

2.2 Turbo Graphs

In Figure 1 the underlying cycle structure is not affected bythe X and Y nodes, i.e., they do not
play any role in the counting of cycles in the graph. For simplicity they can be removed from
consideration, resulting in the simpler graph structure ofFigure 2. Furthermore, we will drop the
directionality of the edges in Figure 2 and in the rest of the paper, since the definition of a cycle in
an ADG is not a function of the directionality of the edges on the cycle.

To simplify our analysis further, we initially ignore the nodes U1, U2, . . ., to arrive at aturbo
graph in Figure 3 (we will later reintroduce the U nodes). Formally, a turbo graph is defined as
follows:

4
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Figure 3: The underlying turbo graph for Figure 2.
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Figure 4: A simple cycle in Figure 3 and the corresponding picture (a) The simple cycle, (b) The
same simple cycle, untangled, and (c) The corresponding picture.

1. There are two parallel chains, each havingn nodes. (For real turbo codes,n can be very large,
e.g.n = 64,000.)

2. Each node is connected to one (and only one) node on the other chain and these one-to-one
connections are chosen randomly, e.g., by a random permutation of the sequence{1,2, . . . , n}.
(In Section 7 we will look at another kind of permutation, the“S-random permutation.”)

3. A turbo graph as defined above is anundirected graph. But to differentiate between edges
on the chains and edges connecting nodes on different chains, we label the former as being
directed (from left to right), and the latterundirected. (Note: this has nothing to do with
directed edges in the original ADG model, it is just a notational convenience.) So an internal
node has exactly three edges connected to it: one directed edge going out of it, one directed
edge going into it, and one undirected edge connecting it to anode on the other chain. A
boundary node also has one undirected edge, but only one directed edge.

Given a turbo graph, and a randomly chosen node in the graph, we are interested in:

1. counting the number of simple cycles of lengthk which pass through this node (where a
simple cycle is defined as a cycle without repeated nodes), and

2. finding the probability that this node is not on a simple cycle of lengthk or less, fork =
4,5, . . . (clearly the shortest possible cycle in a turbo graph is 4).

5



2.3 Embedding “Pictures”

To assist our counting of cycles, we introduce the notion of a“picture.” First let us look at Figure
4(a), which is a single simple cycle taken from Figure 3. Whenwe untangle Figure 4(a), we get
Figure 4(b). If we omit the node labels, we have Figure 4(c) which we call apicture.

Formally, a picture is defined as follows:

1. It is a simple cycle with a single distinguished vertex (the circled one in the figure).

2. It consists of both directed edges and undirected edges.

3. The number of undirected edgesm is even andm > 0.

4. No two undirected edges are adjacent.

5. Adjacent directed edges have the same direction.

We will use pictures as a convenient notation for counting simple cycles in turbo graphs. For
example, using Figure 4(c) as a template, we start from node S1

1 in Figure 3. The first edge in the
picture is a directed forward edge, so we go from S1

1 along the forward edge which leads us to S1
2.

The second edge in the picture is also a directed forward edge, which leads us from S12 to S1
3. The

next edge is an undirected edge, so we go from S1
3 to S2

1 on the other chain. In the same way, we
go from S2

1 to S2
2, then to S11, which is our starting point. As the path we just traversed starts from

S1
1 and ends at S11, and there are no repeated nodes in the path, we conclude thatwe have found a

simple cycle (of length 5) which is exactly what we have in Figure 4(a).
We can easily enumerate all the different pictures of length4,5, ...,2n, and use them as tem-

plates to find all the simple cycles at a node in a turbo graph. This approach is complete because
any simple cycle in a graph has a corresponding picture. (To be exact, it has two pictures because
we can traverse it in both directions.)

The process of finding a simple cycle using a picture as a template can also be thought of as
embedding a picture at a node in a turbo graph. This embedding may succeed, as in our example
above, or it may fail, e.g., we come to a previously-visited node other than the starting node, or we
are told to go forward at the end of a chain, etc. Using pictures, the problem of counting the number
of simple cycles of lengthk can be formulated this way:

• Count the number of different pictures of lengthk,

• For each distinct picture, calculate the probability of embedding it in a turbo graph at a ran-
domly chosen node.

3 Counting Pictures

We wish to determine the number of different pictures of length k with m undirected edges. First,
let us define two functions:

C(a, b) = the number of ways of pickingb disjoint edges (i.e., no two edges are adjacent to each
other) from a cycle of lengtha, with a distinguished vertex and a distinguished clockwise
direction.

P(a, b) = the number of ways of pickingb independent edges from a path of lengtha, with a
distinguished endpoint.
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These two functions can be evaluated by the following recursive equations:

C(a, b) = P(a − 1, b) + P(a − 3, b − 1) (2)

P(a, b) = P(a − 1, b) + P(a − 2, b − 1) (3)

and the solutions are

P(a, b) =

(

a − b + 1
b

)

(4)

C(a, b) =

(

a − b − 1
b − 1

)

+

(

a − b
b

)

(5)

Thus, the number of different pictures of lengthk and withm undirected edges, 0< m ≤ n
2 (and

m is even), is given by

N(k,m) = 2m

((

k − m − 1
m − 1

)

+

(

k − m
m

))

/2

= 2m−1 k
k − m

(

k − m
m

)

(6)

where 2m is the number of different ways to give directions to the directed edges. The division
by two occurs because the direction of the picture is irrelevant. Because of them undirected edges,
there arem segments of directed edges, with one or more edges in a segment; the edges within a
segment must have a common direction (property 4 of a picture).

4 The Probability of Embedding a Picture

In this section we derive the probabilityPn(k,m) of embedding a picture of lengthk and withm
undirected edges at a node in a turbo graph with chain lengthn.

4.1 Whenk = 2m

Let us first consider a simple picture where the directed edges and undirected edges alternate (so
k = 2m) and all the directed edges point in the same (forward) direction.

Let us label the nodes of the picture asX1,X2,Y1,Y2, X3,X4,Y3,Y4,. . .,
Xm−1,Xm,Ym−1,Ym. We want to see if this picture can be successfully embedded,i.e. if the above
nodes are a simple cycle. Let us call the chain on whichX1 residesside 1, and the opposite chain
side 2. The probability of successfully embedding the picture atX1 is the product of the probabilities
of successfully following each edge of the picture, namely,

• X1 → X2. This will fail if X1 is the right-most node on side 1. Sop = 1− 1
n .

• X2 → Y1. Herep = 1.

• Y1 → Y2. This will fail if Y1 is the right-most node on side 2. Sop = 1− 1
n .

• Y2 → X3. X3 is the “cross-chain” neighbor ofY2. As there is already a connection between
X2 andY1, X3 cannot possibly coincide withX2; but it may coincide withX1 and make the
embedding fail. This gives usp = 1− 1

n−1.

7



More generally, if there are 2s visited nodes on side 1, thens of them already have their
connections to side 2. So from a node on side 2, there are onlyn − s nodes on side 1 to go to,
s of which are visited nodes. Sop = 1− s

n−s .

• X3 → X4. Here we have two previously visited nodes (X1,X2). When there are 2s previously-
visited nodes, the unvisited nodes are partitioned into up to s segments, and after we come
from side 2 to side 1, if we fall on the right-most node of one ofthe segments, the embedding
will fail: either we go off the chain, or we go to a previously-visited node. In this way, we
have 1− s+1

n−2s ≤ p ≤ 1− 1
n−2s .

• · · ·

• Ym−1 → Ym.

• Ym → X1. p = 1
n−m

2
. This final step (Ym → X1) completes the cycle.

Multiplying these terms, we arrive at

1
n − m

2

s=m
2

∏

s=0

[(

1−
s

n − s

)(

1−
s + 1
n − 2s

)]2

≤ Pn(k,m) (7)

≤
1

n − m
2

s=m
2

∏

s=0

[(

1−
s

n − s

)(

1−
1

n − 2s

)]2

For largen and smallm, the ratio between the upper bound and the lower bound is close to 1.
For example, whenn = 64,000 andm = 10 the ratio is 1.0005.

4.2 The general case

The above analysis can be extended easily to the general casewhere:

• The directed edges in the picture are not constrained to be unidirectional.

• k ≥ 2m. (Because them undirected edges cannot be adjacent to each other, the totalnumber
of edgesk must be≥ 2m.)

When k = 2m, no two directed edges are adjacent. Equivalently, there are m segments of
directed edges, and in each segment, there is only one edge. When k > 2m, we still havem
segments of directed edges, but there is more than one edge ina segment. Suppose for 1≤ i ≤ m,
the ith segment of side 1 hasai edges, and theith segment of side 2 hasbi edges.Pn(k,m) is given
by:

1
n − m

2

s=m
2

∏

s=0

[(

1−

∑s
i=1 ai

n − s

)(

1−
s + 1

n −
∑s

i=1(ai + 1)

)(

1−

∑s
i=1 bi

n − s

)(

1−
s + 1

n −
∑s

i=1(bi + 1)

)]

≤ Pn(k,m) (8)

≤
1

n − m
2

s=m
2

∏

s=0

[(

1−

∑s
i=1 ai

n − s

)(

1−
1

n −
∑s

i=1(ai + 1)

)(

1−

∑s
i=1 bi

n − s

)(

1−
1

n −
∑s

i=1(bi + 1)

)]

8



From
m
∑

i=1

ai +
m
∑

i=1

bi = k − m,

1 ≤ ai, bi ≤ 1+ (k − 2m),

s
∑

i=1

ai +
s
∑

i=1

bi ≤ 2s + (k − 2m),

and

s ≤
s
∑

i=1

ai,
s
∑

i=1

bi ≤ s + (k − 2m)

we can simplify the bounds in Equation 8 to

1
n − m

2

s=m
2

∏

s=0

[(

1−
s + k − 2m

n − s

)(

1−
s + 1

n − (2s + k − 2m)

)]2

≤ Pn(k,m) (9)

≤
1

n − m
2

s=m
2

∏

s=0

[(

1−
s

n − s

)(

1−
1

n − 2s)

)]2

The ratio between the upper bound and the lower bound is stillclose to 1. For example, when
n = 64,000, k = 10,m = 4, the ratio is 1.0003. Given that the bounds are so close in the range of
n, k, andm of interest, in the remainder of the paper we will simply approximatePn(k,m) by the
arithmetic average of the upper and lower bound.

5 The Probability of No Cycles of Lengthk or Less

In Section 3 we derivedN(k,m), the number of different pictures of lengthk with m undirected
cycles (Equation (6)). In Section 4 we estimatedPn(k,m), the probability of embedding a picture
(with lengthk andm undirected edges) at a node in a turbo graph with chain lengthn (Equation
(9)). With these two results, we can now determine the probability of no cycle of lengthk or less at
a randomly chosen node in a turbo graph of lengthn.

Let P(Lk) be the probability that there are no cycles of lengthk at a randomly chosen node in a
turbo graph. Thus,

P(no cycle of length ≤ k) = P(Lk,Lk−1, . . . ,L4)

=
k
∏

i=4

P(Li | Li−1, . . . ,L4)

≈
k
∏

i=4

P(Li) (10)

In this independence approximation we are assuming that at any particular node the event “there are
no cycles of lengthk” is independent of the event “there are no cycles of lengthk − 1 or lower.”
This is not strictly true since (for example) the non-existence of a cycle of lengthk − 1 can make

9



certain cycles of lengthk impossible (e.g., consider the casek = 5). However, these cases appear
to be relatively rare, leading us to believe that the independence assumption is relatively accurate to
first-order.

Now we estimateP(Lk), the probability of no cycle of lengthk at a randomly chosen node.
Denote the individual pictures of lengthk aspic1,pic2,. . ., and letpici mean that theith picture fails
to be embedded.

P(Lk) = P(pic1, pic2, . . .)

=
∏

i

P(pici | pici−1, . . . , pic1)

≈
∏

i

P(pici)

=

m≤ k
2

∏

m>0,m even

(1− Pn(k,m))N(k,m) (11)

Here we make a second independence assumption which again may be violated in practice. The
non-existence of embedding of certain pictures (the event being conditioned on) will influence the
probability of existence of embedding of other pictures. However, we conjecture that this depen-
dence is rather weak and that the independence assumption isagain a good first-order approxima-
tion.

6 Numerical and Simulation Results

6.1 Cycle Length Distributions in Turbo Graphs

We ran a series of simulations where 200 different turbo graphs (i.e., each graph has a different
random permuter) of lengthn = 64000 are randomly generated. For each graph, we counted the
simple cycles of lengthk = 4,5, . . . ,20, at 100 randomly chosen nodes. In total, the cycle counts at
20000 nodes are collected to generate an empirical estimateof the trueP(no cycle of length ≤ k).
The theoretical estimates are derived by using the independence assumptions of Equations (10) and
(11). Pn(k,m) is calculated as the arithmetic average of the two bounds in Equation (9).

The simulation results, together with the theoretical estimates are shown in Figure 5. The dif-
ference in error is never greater than about 0.005 in probability. Note that neither the sample-based
estimates nor the theoretical estimates are exact. Thus, differences between the two could be due
to either sampling variation or error introduced by the independence assumptions in the estimation.
The fact that the difference in errors is non-systematic (i.e., contains both positive and negative
errors) suggests that both methods of estimation are fairlyaccurate. For comparison, in the last col-

umn of the table we provide the estimated standard deviationσ̂P =
√

P̂(1− P̂)/N, whereP̂ is the
simulation estimate. We can see that the differences between Psimulation andPtheoretical are within
±σ̂P of Ptheoretical except for the last three rows wherePtheoretical is quite small. For largek we can
expect that the simulation estimate ofP̂ will be less accurate since we are estimating relatively rare
events. Thus, since our estimate of ˆσP is a function ofP̂, for largerk values any differences between
theory and simulation could be due entirely to sampling error.

Figure 6 shows a plot of the estimated probability that thereare no cycles of lengthk or less at
a randomly chosen node. There appears to be a “soft thresholdeffect” in the sense that beyond a
certain value ofk, it rapidly becomes much more likely that there are cycles oflengthk or less at a

10



k Psimulation Ptheoretical Difference σ̂P

4 0.999950 0.999938 0.000012 0.000056
5 0.999750 0.999781 -0.000031 0.000105
6 0.999450 0.999500 -0.000050 0.000158
7 0.999100 0.999063 0.000037 0.000216
8 0.998350 0.998189 0.000161 0.000301
9 0.996650 0.996227 0.000423 0.000434

10 0.992400 0.992034 0.000366 0.000629
11 0.983750 0.983886 -0.000136 0.000890
12 0.968400 0.968456 -0.000056 0.001236
13 0.938850 0.938643 0.000207 0.001697
14 0.881800 0.880781 0.001019 0.002291
15 0.775350 0.774188 0.001162 0.002957
16 0.600550 0.598375 0.002175 0.003466
17 0.358850 0.358868 -0.000018 0.003392
18 0.125850 0.129488 -0.003638 0.002374
19 0.015500 0.016782 -0.001282 0.000908
20 0.000150 0.000279 -0.000129 0.000118
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Figure 5: Theoretical vs. simulation estimates of the probability of no cycles of lengthk or less, as
a function ofk. Turbo graph chain lengthn = 64,000.
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Figure 6: Approximate probability of no cycles of lengthk or less, as a function ofk.

randomly chosen node. The location of this threshold increases asn increases (i.e., as the length of
the chain gets longer).

6.2 Large-Sample Closed-Form Approximations

Whenn is sufficiently large, (i.e.,n ≫ k), the probability of embedding a picture (Equation (9)) can
simply written as

Pn ≈
1
n

(12)

In this case, we do not differentiate between pictures with different numbers of undirected edges
The total number of pictures of lengthk is

Nk =

m≤ k
2

∑

m>0,m even

N(k,m)

=

m≤ k
2

∑

m>0,m even

2m−1 k
k − m

(

k − m
m

)

≈ 2k−2 (13)

The log probability of no cycle of lengthk is then

logP(Lk) ≈ log(1− Pn)
Nk ≈ 2k−2 log(1−

1
n
) ≈ −

1
n

2k−2, (14)
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Figure 7: Probability of no cycles of lengthk or less, including the U nodes (Figures 2) in the ADG
for turbo decoding, as a function ofk.

from which one has

logP(no cycle of length ≤ k) ≈ log





k
∏

i=4

P(Li)





≈
k
∑

i=4

(

−
1
n

2i−2
)

= −
2k−1 − 4

n
(15)

Thus, the probability of no cycle of lengthk or less is approximatelye−
2k−1

−4
n , k ≥ 4. This

probability equals 0.5 atk0.5 = log2(n log 2+4)+1, which provides an indication of how the curve
will shift to the right asn increases. Roughly speaking, to doublek0.5, one would have to square the
block-length of the code fromn to n2.

6.3 Including the U Nodes

Up to this point we have been counting cycles in the turbo graph (Figure 3) where we ignore the
information nodes,Ui. The results can readily be extended to include these U nodesby counting
each undirected edge (that connects nodes from different chains) as two edges.

Let m′ = m
2 , k′ = k − m

2 be the number of undirected edges and the cycle length, respectively,

when we ignore the U nodes. Fromm′ > 0, m′ even, m′ ≤ k′
2 , we havem > 0, m divisible by 4, m ≤

2k
3 .
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Figure 8: A cycle of length 8

Substituting these into Equation 11, we have

m′≤ k′

2
∏

m′>0,m′ even

(

1− Pn(k
′,m′)

)N(k′,m′)

=

m≤ 2k
3

∏

m>0,m divisible by 4

(

1− Pn

(

k −
m
2
,

m
2

))N(k−m
2 ,

m
2 )

(16)

Using Equation 16, we plot in Figure 7 the estimated probability of no cycles of lengthk or less
in the graph for turbo decoding which includes the U nodes (Figure 2). Not surprisingly, the effect is
to “shift” the graph to the right, i.e., adding U nodes has theeffect of lengthening the typical cycle.

For the purposes of investigating the properties of the message-passing algorithm, the relevant
nodes on a cycle may well be those which are directly connected to a Y node (for example, the
U nodes in a systematic code and any S nodes which are producing a transmitted codeword). The
rationale for including these particular nodes (and not including nodes which are not connected to
a Y node) is that these are the only “information nodes” in thegraph that in effect can transmit
messages that potentially lead to multiple-counting. It ispossible that it is only the number of
these nodes on a cycle which is relevant to message-passing algorithms. Thus, for a particular code
structure, the relevant nodes to count in a cycle could be redefined to be only those which have an
associated Y. The general framework we have presented here can easily be modified to allow for
such counting.

Note also that various extensions of turbo codes are also amenable to this form of analysis. For
example, for the case of a turbo code with more than two constituent encoders, one can generalize
the notion of a picture and count accordingly.

7 The “S-random” permutation

In our construction of the turbo graph (Figure 3) we use a random permutation, i.e. the one-to-one
connections of nodes from the two chains are chosen randomlyby a random permutation. In this
section we look at the “S-random” permutation [10], a particular semi-random construction.

Formally, the S-random permutation is a random permutationfunction f (·) on the sequence
1,2, . . . , n such that

∀i, j :| i − j |≤ S =⇒ | f (i) − f (j) |≥ S (17)
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Prob(no cycle of lengthk or less)
for turbo graph (n = 64000)

Random S-random permutation
k permutation S = 10 S = 20 S = 50 S = 100
4 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9998 1.0000 1.0000 1.0000 1.0000
6 0.9995 1.0000 1.0000 1.0000 1.0000
7 0.9991 1.0000 1.0000 1.0000 1.0000
8 0.9984 0.9996 0.9998 0.9998 0.9998
9 0.9967 0.9983 0.9987 0.9987 0.9984

10 0.9924 0.9949 0.9945 0.9956 0.9950
11 0.9838 0.9890 0.9891 0.9877 0.9887
12 0.9684 0.9739 0.9765 0.9736 0.9748
13 0.9389 0.9460 0.9503 0.9449 0.9478
14 0.8818 0.8877 0.8920 0.8904 0.8913
15 0.7754 0.7804 0.7847 0.7858 0.7833
16 0.6006 0.6114 0.6014 0.6121 0.6006
17 0.3589 0.3671 0.3629 0.3731 0.3647
18 0.1259 0.1315 0.1289 0.1360 0.1330
19 0.0155 0.0146 0.0164 0.0184 0.0183
20 0.0002 0.0004 0.0003 0.0004 0.0008

Table 1: Simulation-based estimates of the probability of no cycle of lengthk or less, comparing the
standard random construction with the S-random construction.

The S-random permutation stipulates that if two nodes on a chain are within a distanceS of each
other, their counterparts on the other chain cannot be within a distanceS of each other. This restric-
tion will eliminate some of the cycles occurring in a turbo graph with a purely random permutation.
For example, there cannot be any cycles in the graph of lengthk =4, 5, 6 or 7. Thus, the S-random
construction disallows cycles of lengthk for k < 8. However, from Section 6 we know that these
short cycles (k < 8) occur relatively rarely in realistic turbo codes. In Figure 8, we show a cycle of
lengthk = 8. As long as the distances of| YZ | and| BC | are large enough (> S), cycles of lengths
k ≥ 8 are possible for anyS.

We simulated S-random graphs and counted cycles in the same manner as described in Section
6, except that the random permutation was now carried out in the S-random fashion as described in
[10]. The results in Table 1 show that changing the value ofS does not appear to significantly change
the nature of the cycle-distribution. The S-random distributions of course have zero probability for
k < 8, but fork ≥ 8 the results from both types of permutation appear qualitatively similar, with a
small systematic increase in the probability of a node not having a cycle of lengthk for the S-random
case (relative to the purely random permutation). As the cycle-lengthk increases, the difference
between the S-random and random distributions narrow. For relatively short cycles with values ofk
between 8 and 12 (say) the difference is relatively substantial if one considers the the probability of
having a cycle of length less than or equal tok. For example, fork = 10 andS = 100, the S-random
probability is 0.0050 while the probability for the random permuter is 0.0076 (see Table 1).

In [11, 12] it was shown (empirically) that the S-random construction does not have an “error
floor” of the form associated with a random graph, i.e., the probability of bit error steadily decreases
with increasing SNR for the S-random construction. The improvement in bit error rate is attributed
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Figure 9: Graph structure of Low-Density Parity Check Codes: dv = 3, dc = 6, n = 10.

to the improved weight distribution properties of the code resulting from the S-random construction.
From a cycle-length viewpoint the S-random construction essentially only differs slightly from the
random construction (e.g., by eliminating the relatively rare cycles of lengthk = 4,5,6 and 7). Note,
however, that because two graphs have very similar cycle length distributions does not necessarily
imply that they will have similar coding performance. It is possible that the elimination of the very
short cycles combined with the small systematic increase inthe probability of not having a cycle of
lengthk or less (k ≥ 8), may be a contributing factor in the observed improvementin bit error rate,
i.e., that even a small systematic reduction in the number ofshort cycles in the graph may translate
into the empirically-observed improvement in coding performance.

8 Low-Density Parity Check Codes

LDPC codes are another class of codes exhibiting characteristics and performance similar to turbo
codes [13, 14]. Like turbo codes, the underlying ADG has loops, rendering exact decoding in-
tractable. Once again, however, iterative decoding (aka message-passing) works well in practice.
Recent analyses of iterative decoding for LDPC codes have assumed that there are no short cycles
in the LDPC graph structure [15, 16]. Thus, as with turbo codes, it is again of interest to investigate
the distribution of cycle lengths for realistic LDPC codes.

The graph structure of regular LDPC codes is shown in Figure 9(an LDPC graph). In this
bipartite graph, at the bottom aren variable nodes v1, v2, . . . , vn, and at the top are thew check
nodes c1, c2, . . . , cw. For the regular random LDPC construction each variable node has degreedv,
each check node has degreedc (obviouslyndv = wdc), and the connectivity is generated in a random
fashion.

Using our notion of apicture, we can also analyze the distribution of cycle lengths in LDPC
graphs as we have done in turbo graphs. Obviously, here the cycle length must be even.

We define a picture for an LDPC graph as follows. Recall that ina turbo graph, the edges in a
picture are labeled asundirected, forward, or backward. For an LDPC graph, we label an edge in
a picture by a numberi between 1 anddv (or between 1 anddc) to denote that this edge is thei-th
edge coming from a node.

First consider the probability of successfully embedding apicture of lengthk = 2m at a ran-
domly chosen node in an LDPC graph.

Pembed(k = 2m) = 1 · (1−
1
dc

) · (1−
1
dv

)
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The number of different pictures of lengthk = 2m is

N(k = 2m) =
1
2

dm
c dm

v (18)

Finally, the probability of no cycle of lengthk = 2m at a randomly chosen node in a LDPC
graph is:

Prob(no cycle of length k = 2m or less)

≈
k
∏

i=4,i even

Prob(no cycle of length i) (19)

≈
k
∏

i=4,i even

(1− Pembed(i))
N(i)

where we make the same two independence assumptions as we didfor the turbo code case.
We ran a number of simulations in which we randomly generated200 different randomly gen-

erated LDPC graphs and counted the cycles at 100 randomly chosen nodes in each. We plot in
Figures 10 and 11 the results of the simulation and the theoretical estimates from Equation 19 for
n = 15000 and 63000.

From the simulation results we see that the LDPC curve is qualitatively similar in shape to the
turbo graph curves earlier but has been shifted to the left, i.e., there is a higher probability of short
cycles in an LDPC graph than in a turbo graph, for the specific parameters we have looked at here.
This is not surprising since the branching factor in a turbo graph is 3 (each node is connected to 3
neighbors) while the average branching factor in an LDPC graph (as analyzed withdc = 5, dv = 3)
is 4.

Existing theoretical analyses of the message-passing algorithms for LDPC codes rely on the
assumption that none of the cycles in the underlying graph are short [e.g., 15, 16]. In contrast, here
we explicitly estimate the distribution on cycle lengths, and find (e.g., Figure 10 and 11) that there
is a “soft threshold” effect (as with turbo graphs). For example, forn = 15000, dv = 3, dc = 5, the
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Figure 10: The probability of no cycles of lengthk or less in an LDPC graph withn = 15000, as a
function ofk.
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Figure 11: The probability of no cycles of lengthk or less in an LDPC graph withn = 63000, as a
function ofk.
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k P(Lk)P(Lk+1) P(Lk,Lk+1) Difference
1 1.000000 1.000000 0.000000
2 1.000000 1.000000 0.000000
3 0.999950 0.999950 0.000000
4 0.999750 0.999750 0.000000
5 0.999500 0.999500 0.000000
6 0.999350 0.999350 0.000000
7 0.998900 0.998900 0.000000
8 0.997551 0.997550 0.000001
9 0.994007 0.994000 0.000007

10 0.986988 0.987050 -0.000062
11 0.975836 0.975850 -0.000014
12 0.954670 0.954500 0.000170
13 0.910886 0.910800 0.000086
14 0.826067 0.825350 0.000717
15 0.681002 0.679800 0.001202
16 0.460932 0.463650 -0.002718
17 0.213367 0.212600 0.000767
18 0.046814 0.046650 0.000164
19 0.002129 0.001350 0.000779

Table 2: Testing the independence betweenLk andLk+1 in turbo graphs with chain lengthn =
64000.

simulation results in Figure 10 illustrate that the probability is about 50% that a randomly chosen
node participates in a simple cycle of length 9 or less.

The independence assumptions clearly are not as accurate inthe LDPC case as they were for the
turbo graphs. Recall that we make two separate independenceassumptions in our analysis, namely
that

1. the event that there is no cycle of lengthk is independent of the event that there are no cycles
of lengthk − 1 or lower, and

2. the event that a particular picture cannot be embedded at arandomly chosen node is indepen-
dent of the event that other pictures cannot be embedded.

We can check the accuracy of the first independence assumption readily by simulation. We ran
a number of simulations to count cycles in randomly generated turbo and LDPC graphs. From the
simulation data, we estimate the marginal probabilitiesP(Lk), and the joint probabilitiesP(Lk,Lk+1).
To test the accuracy of our independence assumption, we compare the product of the estimated
marginal probabilities with the estimated joint probability.

Table 2 provides the comparison for turbo graphs forn = 64000. The products of the marginal
probabilities are quite close to the joint probabilities, indicating that the independence assumption
leads to a good approximation for turbo graphs. Table 3 givesa similar results for LDPC, i.e.,
the independence assumption appears quite accurate here also. Thus, we conclude that the first
independence assumption (that the non-occurrence of cycles of lengthk is independent of the non-
occurrence of cycles of lengthk − 1 of less) appears to be quite accurate for both turbo graphs and
LDPC graphs.
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k P(L2k)P(L2k+2) P(Lk,Lk+1) Difference
1 0.999542 0.999542 0.000000
2 0.995460 0.995458 0.000002
3 0.963715 0.963708 0.000007
4 0.746716 0.746771 -0.000055
5 0.097712 0.097333 0.000379

Table 3: Testing the independence betweenLk andLk+1 in LDPC graphs withn = 63000, dv =
3, dc = 5.

Since assumption 2 is the only other approximation being made in the analysis of the LDPC
graphs, we can conclude that it is this approximation which is less accurate (given that the approx-
imation and simulation do not agree so closely overall for LDPC graphs). Recall that the second
approximation is of the form:

P(Lk) = P(pic1, pic2, . . .)

=
∏

i

P(pici | pici−1, . . . , pic1)

≈
∏

i

P(pici)

This assumption can fail for example when two pictures have the first few edges in common. If one
fails to be embedded on one of these common edges, then the other will fail too. So the best we can
hope from this approximation is that because there are so many pictures, these dependence effects
will cancel out. In other words, we know that

P(pici) 6= P(pici | pici−1, . . . , pic1)

but we hope that
P(pic1, pic2, . . .) ≈

∏

i

P(pici).

One possible reason for the difference between the LDPC caseand the turbo case is as follows.
For turbo graphs, in the expression for the probability of embedding a picture,

Pn(k,m) ≈
1

n − m
2

s=m
2

∏

s=0

[(

1−
s

n − s

)(

1−
1

n − 2s)

)]2

the term 1
n−m

2
is the most important, i.e., all other terms are nearly 1. So even if two pictures share

many common edges and become dependent, as long as they do notshare that most important edge,
they can be regarded as effectively independent.

In contrast, for LDPC graphs, the contribution from the individual edges to the total probability
tends to be more “evenly distributed.” Each edge contributes a

(

1− 1
dc

)

term or a
(

1− 1
dv

)

term.
No single edge dominates the right hand side of

Pembed(k = 2m) =
1

n − 1

(

1−
1
dc

)m (

1−
1
dv

)m−1 m−2
∏

i=0

[(

1−
i

n − 1

)(

1−
i

c − 1

)]

,

and, thus, the “effective independence” may not hold as in the case of turbo graphs.
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9 Connections to Iterative Decoding

For turbo graphs we have shown that randomly chosen nodes arerelatively rarely on a cycle of
length 10 or less, but are highly likely to be on a cycle of length 20 or less (for a block length of
64000). It is interesting to conjecture about what this may tell us about the accuracy of the iterative
message-passing algorithm in this context.

It is possible to show that there is a well-defined “distance effect” in message propagation for
typical ADG models [17]. Consider a simple model where thereis a hidden Markov chain consisting
of binary-valuedSi state nodes, 1≤ i ≤ N. In addition there is are observedYi, one for each stateSi

and which only depend directly on each stateSi. p(Yi|Si) is a conditional Gaussian with meanSi and
standard deviationσ. One can calculate the effect of any observedYi on any hidden nodeSj, j > i,
in terms of the expected difference betweenp(Sj|Yj, . . . ,Yi+1) andp(Sj|Yj, . . . ,Yi), averaged across
many observations of theY ’s. This average change in probability, from knowingYi, can be shown
to be proportional toe−|i−j|, i.e., the effect of one variable on another dies off exponentially as a
function of distance along the chain. Furthermore, one can show that as the channel becomes more
reliable (σ decreases), the dominance of local information over information further away becomes
stronger, i.e.,Yi has less effect on the posterior probability ofSj on average.

The exponential decay of information during message propagation suggests that there may exist
graphs with cycles where the information being propagated by a message-passing algorithm (using
the completely parallel, or concurrent, version of the algorithm) can effectively “die out” before
causing the algorithm to double count. Of course, as we have seen in this paper, there is a non-zero
probability of cycles of lengthk ≥ 4 for realistic turbo graphs, so that this line of argument is
insufficient on its own to explain the apparent accuracy of iterative decoding algorithms.

It is also of interest to note that that iterative decoding has been empirically observed to converge
to stable bit decisions within 10 or so. As shown experimentally in [5], even beyond 10 iterations
of message-passing there are still a small fraction of nodeswhich typically change bit decisions.
Combined with the results on cycle length distributions in this paper, this would suggest that it
is certainly possible that double-counting is occurring atsuch nodes. It may be possible to show,
however, that any such double-counting has relatively minimal effect on the overall quality of the
posterior bit decisions.

10 Conclusions

The distributions of cycle lengths in turbo code graphs and LDPC graphs were analyzed and sim-
ulated. Short cycles (e.g., of lengthk ≤ 8) occur with relatively low probability at any randomly
chosen node. As the cycle length increases, there is a threshold effect and the probability of a cycle
of lengthk or less approaches 1 (e.g., fork > 20). For turbo codes, as the block lengthn becomes
large, the probability that a cycle of lengthk or less exists at any randomly chosen node behaves

approximately ase−
2k−1

−4
n , k ≥ 4. The S-random construction is shown to eliminate very short

cycles and for larger cycles results in only a small systematic decrease in the probability of such
cycles. For LDPC codes the analytic approximations are lessaccurate than for the turbo case (when
compared to simulation results). Nonetheless the distribution as a function ofk shows qualitatively
similar behavior to the distribution for turbo codes, as a function of cycle lengthk. In summary,
the results in this paper demonstrate that the cycle lengthsin turbo graphs and LDPC graphs have
a specific distributional character. We hope that this information can be used to further understand
the workings of iterative decoding.
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