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An Information-Theoretic Approach for Design
and Analysis of Rooted-Tree-Based Multicast Key
Management Schemes
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Abstract—Recent literature presents several seemingly dif- [28], [29]. Use of cryptography is a practical approach for se-
ferent approaches to rooted-tree-based multicast key distribution curing multicast communications over an untrustworthy net-
schemes [6]-[8], [28], [29] that try to minimize the user key storage work medium [3], [18], [27]. When cryptography is used for se-

while providing efficient member deletion. In this paper, we show - icati . ting kev (SEK) i d
that the user key storage on rooted trees can be systematically CUring communications, a session-encrypting key (SEK) is use

studied using basic concepts from information theory. We show t0 encrypt the data.
that the rooted-tree-based multicast key distribution problem can Since the data is distributed to multiple receivers, in order to

be posed as an optimization problem that is abstractly identical reduce the amount of encryption at the sender node and to min-
to the optimal codeword length selection problem in information imize the amount of packets over the networks, every intended

theory. In particular, we show that the entropy of member deletion - : .
statisticsquantifies the optimal value of the average number of receiver as well as the sender should share an identical SEK. In

keys to be assigned to a member. We relate the sustainable keyorder to ensure that only the valid members of the group have ac-
length to statistics of member deletion event and the hardware bit cess to the communications, the SEK needs to be changed when-
generation rate. We then demonstrate the difference between the eyer: a) the lifetime of the SEK expires, b) there is a change in
key distribution on rooted trees and the optimal codeword-length membership of the group, or ¢) one or more members are com-
selection problem with an example of a key distribution scheme ised ’
that attains optimality but fails to prevent user collusion [7], [8]. promised. )
. ) , The SEK needs to be updated under membership change for
Index Terms—Collusion, entropy, member deletion, multicast e following reasons: a) when a new member joins, to ensure
securtty. that the new member has no access to the past communication of
the group and b) when a member departs or is deleted, to ensure
I. INTRODUCTION that the departed or deleted member does not have access to

ULTICAST is a preferred communication model WhertUture communications. .
an identical message has to be delivered to multip o Ensuring that only the valid members of the group have the

intended receivers [24]. Multicast communication reduc K at any given time instance is the key management problem

overheads of the sender as well as the network mediufhS€cU™® multicast communications [28], [29]

Many new real-time applications, such as stock quote updat%i_‘smce the group is distributed over the untrustworthy network,

Internet newscast, and distributed gaming, can all benefit fro enever the SEK is invalidated, there needs to be another set

multicast communication. Most of the commercial models wiff keys called dthe key-_enﬁryptlr;g k%yzl(zlf(EKs)hthat Ic':gn be ubs ed
have a single sender and multiple receivers. This is the mo gncrypt and transmit the update to the valid members

of interest in this paper. 0 lt_|he gml:ﬁ' K  brobl d o th bl
Ability to secure group communications from the rest of th ence, the key manageément problem reduces (o the problem

e . .
world is an important issue that needs to be addressed for % |s:tr|kiut|?g”tkt1r<]e KE'F;’ to thebmembers such thallt at anﬁ/ %lver:j
wide deployment of many multicast (also noted in literaturd '€ INstant all the valid members can be securely reached an

: Co dated with the new SEK
as restricted broadcast) applications [1], [6], [10], [25], [26 ,p . - . .
) app [L]. {61, {101, {251, { TJ DevelopingefficientKEK distribution algorithms and proto-
cols for secure multicast has been an active area of research for
. . . ) the past three years. Among several techniques that are avail-
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optimal KEKs to be updated by the group controller (GChe new SEK and KEK’. The GC then encrypts the SEK
under a member deletion is related to #r@ropy of member and KEK’ with KEK’ and transmits. This allows the new
deletion statistics We also show that the rooted-tree-baseshember to update the SEKand KEK’. Hence, the member
KEK distribution schemes in [28], [29] can be derived as in event requires two encryptions under GKMP. When a
max—min solution of our optimization. We also show wherenember is deleted, the current SEK and the KEK are known
the optimal codeword length selection problem and the KEt¢ the deleted member. Hence, the old group KEK cannot be
distribution problem differ by showing that the Kraft inequalityused to update the new SEK and group KEK. The GC has to
that is necessary and sufficient [9] for optimal codeword-lengthdividually contact every member and update the SEK and the
selection problem is only a necessary condition for the KEgroup KEK. Hence, under member deletion, the GC needs to
distribution problem. perform (N — 1) computations and communications whereas

We note that information theory has been used in the pasteieery member stores only three keys.
study various aspects of cryptographic problems [15], [16], [19], Another extreme of the key distribution is to genetlitesub-

[26]. However, to our knowledge, this is the first paper to use ttsets of members and assign a unique SEK to every subset. Every
basic results from information theory to analyze multicast kepember will need to store™—! SEKs. When a member is
distribution on the rooted trees. deleted, the index of the subset that contained all the valid mem-

The paper is organized as follows: Section Il presents a fgers exceptthe deleted member is identified and transmitted. All
view of the non-tree-based key distribution approaches for she members of that subset use the unique SEK of that subset
cure multicast communication and motivates the neecefidr and continue the communication. For this model, under member
cientsolutions. This section also shows that while the membeeletion, there is no need for update key encryption. When a new
addition can be handled well by these methods, the memimeember joins, the storage for every member goes up by a factor
deletion and illegal collaborations among members, called usértwo under this model.
collusion in the literature [11], [14], poses challenges as groupFrom the previous two examples, we note that there is a
size increases. Section Il presents rooted-tree-based KEK disdeoff between the update messages under member deletion
tribution schemes and shows how the member deletion is hamd the number of keys to be stored.
dledefficientlyby the rooted trees. Section IV presents the nec- In [20], a hierarchical clustering scheme was proposed to re-
essary definitions and observations that will allow us to formwaluce the amount of key update messages under member dele-
late the KEK distribution on the tree as an optimization problertion. In this method, a given group is divided into clusters that
Section V presents our formulation of the problem based aine locally controlled by a cluster controller (CC). Each cluster
member deletion statistics and shows that the KEK distribhas its own SEK and KEKs. Hence, any membership change
tion on the rooted trees is an optimization problem. Section Y4 contained within the cluster. This strategy relies on a set of
presents a concrete example of a rooted tree tledficsentwith  “trustable” intermediate nodes that can act as CCs. The CCs
respect to user storage but has user collusion problem. control the intercluster communications.

Throughout this paper, we will use the term Group Controller In [1], a key distribution scheme based on core-based trees
(GC) to denote the entity that manages the key distributig@BT) was proposed. The tree structure is also assumed to be a
problem. We will denote the group size By. We now describe physical one in nature. Hence, every intermediate tree node rep-
the non-tree-based KEK distribution schemes. resents a member of the group. Any group member of the tree
is permitted to distribute the SEK and KEK shared by the entire
group. Clearly, allowing any member to distribute the SEK and
KEK reduced the computational overheads at the GC. However,

We noted that since every member of the group shares grmitting any member to distribute the SEK and KEK required
same SEK, when the group membership changes, the SpKcing same amount of “trust” on every member. Such an as-
needs to be updated. One inefficient but secure way to updatgnption is too restrictive in practice.
the SEK is to allow the GC to share a unique KEK with every Two independent seminal papers [28], [29] presented
member. When there is a change in group membership, the GOted-tree-based KEK distribution schemes that are based on
uses the individual KEK of every valid member to encrypt theuilding a virtual or logical tree hierarchy for key distribution.
new SEK and update all the valid members. The cost of SEKiese rooted trees do not depend on any trust assumption
updates grows linearly with the group sixe about the logical node. The virtual tree-based solutions have

In [13], a proposal called Group Key Management Protoctstd to a family of solutions with seemingly differeafficient
(GKMP) was proposed. In this scheme, the entire multicagalues for the number of keys to be updated under member
group shares the same SEK and a group KEK. It is alsieletion. We now present the review of the rooted-tree-based
implicitly assumed that every member of the group shareskay distribution.
unique KEK with the GC. When a new entity sends a “join”
request, the GC first establishes a shared KEK denoted’ KEK
unique to that member. The GC generates a new SEK denoted
SEK’ and a KEK’ that will be distributed to the entire group.
The GC then encrypts the SEKand the KEK' with the old The first use of rooted-tree-based key distribution approach
KEK of the entire group and transmits. Every member excefar secure multicast communication was independently pro-
the newly admitted one can decrypt the message and extpased in [28] and [29]. A rooted binary tree was used in [28]

II. NON-TREE-BASED KEK DISTRIBUTION SCHEMES

Ill. REVIEW OF THE ROOTED-TREE-BASED KEY
DISTRIBUTION SCHEMES
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Root key selectively send a messageto members\s, ..., My by the

Ko following transmission:
GC—> M;), M(;, M7, Mg: {m}szz.

If, however, the keyKs s is invalidated for any reason, GC
needs to update the invalidated k&g » before being able to
use acommon key for membevs,, Mg, M7, andMs. Thetree
structure allows this operation to be completed with two update
messages. The GC can do so by first generating a new version of
K> -, denotedK> », and then performing two encryptions, one

K32 = Node Keys

Kor Koo Koz Kos  Kgs Koo Koz Kos <—Leaf Keys

M, M, M, M, M; M, M, Mg =— Members

Fig. 1. The logical key tree of [6]-[8], [28], and [29]. with K3 and the other WLIH(14 The fOllOWing two messages
are needed to update ké§s > to the relevant members of the
. group:
and key graphs were used in [29]. Both these approaches N
construct a logical tree or a key graph based on the size of the GC — Ms, Mo: {K22} K,
group without making any assumptions regarding the relation- GC — My, Mg: {KQ'Q}KM_

ship among the keys used. The key storage requirements of the

GC of these two schemes grow @ N) while the key update o

communications as well as the storage requirements of e Mémber Deletion in Rooted Trees

users grow asO(log n). We now discuss the rooted tree-based Since the SEK and the root KEK, are common to all the

key distribution schemes. members in the group, they need to be invalidated each time
a member is deleted. Also, since more than one KEK may be
A. Distribution of Keys on the Tree shared with other valid members, they need to be updated. In

Fig. 1 presents a rooted binary key distribution tree for'%?. e"ef“ where t'here. is bulk member dele'tlc.)n, the GC has to:
group with eight members. The logical tree is constructed sut |.dent|fyall the invalid keys, b) find Fhe minimal number of
that each group member is assigned to a unique leaf node of\fﬁgd keys that_can be used tp transmit the updated keys, and c)
tree. Every node of the logical tree is assigned a KEK. The date the valid T“e!mbers V\.”th the new keys. .

of KEKs assigned to the nodes along the path from a leaf no ,The general principle behind the member deletion feray

to the root are assigned to the member associated with that [€af” 2in Fig. 1) is discussed below using memidr in Fig. 1

node. For example, membé#; in Fig. 1 is assigned key en-2san example. Membar, is indeXEd by the set of fogr keys
crypting keys{Ko, Ko, K11, Koi}. {Ko, Ka.1, K11, Ko.1}. Deleting membef/; leads to inval-

Since the root ke, is shared by all the members, if there ié’dating these four keys and SEK, generating, N new key

h - bersh b dt date th encrypting keys, and updating the appropriate valid members
no change in group membershifio can be used to update the o shared the invalidated keys with memBér. Wheni/; is

SEK for all the members. We note that some of the tree-bas .
key distribution schemes [8] use the root key as the session eted, the following updates are necessary. a) all the member
as well as the group KEK. In the security area, use of same K d new root kefo and new session key SEK, b) members
for different functionality is often prohibited to prevent securit 2-M, need to updatg K.}, and ) membens; needs to
breaches. update{y..}.

The tree-based structure also induces a natural hierarchicathe following observations can be made toward the rooted-
grouping among the members. By assigning the members to ape-based key distributions.
propriate nodes, the GC can form desired hierarchical clusters. since each member is assigri@dt log, V) = log, Nd?
of members and selt_ectl\{ely update, if needed, the keys of the keys, deletion of a single member requitest+ log, N)
group. For example, in Fig. 1, membe¥, Mg, M7, andMg keys to be invalidated.
exclusively share the kel{, . The GC can use the kdy, > to .
selectively communicate with these members. The GC may de-
cide such clustering of the members on the tree based on appli-
cation-specific needs. Indeed, the GC can reacR’alsubsets
of users in a group of siz&'. In order to be able to selectively
disseminate information to a subset of group members, the GC* For ad-ary tree with deptth = log, NV, the GC has to
has to ensure that the common key assigned to a subset is not Store

Since each node of the rooted tree is assigned a key, and
every member sharésg,; N nodes with at least one more
member, the total number of KEKs to be updated under a
member deletion itog,; N.

assigned to any member not belonging to that subset. T414+dtd®4 . tdh= dN+1) -2

Using the notatio{m} x to denote the encryption of mes- (d—1)
sagem with key K, and the notationd — B: {m/}x to de- number of keys. Settind = 2 leads to the binary tree for
note the secure exchange of messaggom A to B, GC can which the required amount of storag@@;“l)_Q — 2N,

This result can be independently checked by noting that

1Recent literature presents approaches that make certain assumptions about a binary tree withNV leaves ha®@ N — 1 nodes. Hence
the relationship among the keys oniaary tree and significantly reduce the ’
group controller key storage requirements [6]-[8] while maintaining the user ~ th€ GC has to store the SEK as well(@sV — 1) KEKSs,

key storage and the update communicatiodgkg , V). leading to2N keys.
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0 in the rooted trees leads to a natural constraint that can be used to

compute this optimal value. We also show that the optimization
problem arising in the context of key assignment is abstractly
equivalent to the optimal codeword-length selection problem.

We first define the necessary terminology and proceed to for-
mulate the necessary optimization problem.

A. Cover-Free Key Distribution

Ks

Ke In assigning keys to members, the GC needs to ensure that

every valid member can be securely reached under member
deletion. The GC also needs to make sure that illegal collab-

In [7], [8], binary rooted-tree-based key distributions whiclration among two or more members does not enable them to
requiré the GC to store a total dflog, N distinct keys were coverall the keys as&gngd to a valid member. This cover-frge
proposed. For d-ary tree, the approach in [7], [8] will require Property has b.een. used in the context of broadcast encryption
dlog, N keys to be stored at the GC. However, the number 8f‘d 'tra|t'or tracing in [11], [14]. In the contgxt of tree-based key
keys that need to be updated under a single member deletiordigtribution, the cover-free property requires that regardless of

mains atog, N as in [28], [29]. Hence, the results in [8] reducd®W many members are being deleted (or how many collude)
the storage requirements of GC by simultaneously, every valid member should be able to securely

Fig. 2. A generic key distribution tree.

AN +1)—2 d(N +1—(d—1)log; N)—2 communicate with the GC. We formally define the cover-free
—g-q g N= T 1 property among sets below.
1) Definition: Given a collection of setqSi, ..., Sy}, a

number of keys without increasing the key storage requiremet;“;n

el . -nohempty seb; is said to bek, «) cover-free if
at the end user node. When the tree is binary, the reduction in

storage due to approach in [7], [8]26N — log, V). For large k
N, the reduction in storage (8(V), but it comes at the cost of s\ U sy
additional security problems under multiple member deletion, J=LigAi

) . ) —— e 2 3)
discussed later in Section VI. |5i]
where,0 < o; < 1,1 < k < N.Wheng; = 0, there is no
cover-free key distribution for key sét. For cover-free condi-
We first show the need to optimize the rooted tree usingt@an, c« > 0.
worst case example. Consider the binary rooted tree shown in
Fig. 2. Every member is assigned to a unique leaf node. \Be User Indexing and Key Indexing
assume that the group size¥s In this tree, thg average number | o Xp1Xp_2Xn_3---Xo denote the binary user index
of keys to be updated after a member deletion is computed 3%ID) string whereX;'s take the value®” or “1.” In order to

IV. PRELIMINARY OBSERVATIONS

N-1 delete a member, the GC has to have a lookup table that con-
El (G+1)+N N 1 tains a unique UID and the list of cryptographic keys assigned to
=5 i+ (2)  the member to be deleted. Deleting a specific member involves

Hence, the average number of keys to be invalidated growsdesletmg’ and po_sybly updating, some of the keys assigned to
. . . “that member. Since the GC should be able to securely com-
O(N) for this model. However, in [6]-[8], [28], and [29] a vir- . : . )
. municate with every valid member, after deleting one or more
tual tree was built based on the group si¥e Every member . .
. . members, every member should be assigned a unique set of keys
was assigned keys based on the observation that foembers, . .
) - : (keys need to be in one-to-one correspondence with the UID of
log,; N keys are sufficient for d-ary rooted tree. For this model, : .
that member). Hence, if we concatenate the set of keys assigned
the average number of keys to be updated growis@sV . )
) to a member and form a key index (KIBgvery member should
From the results in [6]-[8], [28], and [29], we note that th .
. ave a unique KID.
average number of keys to be updated is almost equal to

average number of keys that are assigned to the deleted memberIthough the KID and the UID need to be in one-to-one

(except for the leaf node key). Hence, the average numbercog’respondence, a KID needs to satisfy additional constraints
. , A

: at a UID does not need to satisfy. We first illustrate this by
keys to be updated (or stored by a user) can be considered agall. - ole. Consider the al habéts 1} used for UID gen-
efficiency parameter for these multicast key distribution modef3 bie. P 9

The goal of this paper is to develop a systematic approach ration and the key$K, K»} used for KID generation. The

compute the optimal value of the average number of keys to pe s "01" and "10" can be generated and assigned uniquely to
P P g Y o different members. The KIDK; K> and K> K1, however,
updated by GC (or stored by a user). In order to compute the

. annot be assigned to two different members. If we do assign
optimal value of the average number of keys to be generated Y. 1o two different members. the kevs assianed to a member
the GC, we study the member deletion process. We show thattt e ' y 9

ability of the GC to reach every member under member deletiorfin forming the KID, we ignore the root key and the session key that are
common to all the members. Unless explicitly mentioned,we also ignore these
2We will discuss the approach of [8] in Section VI. two keys in all the computations that follow.
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can be completely covered by the keys assigned to the othengths satisfy the Kraft inequality sin¢€2—2.4) = 0.5 < 1).
memberAlthough this is a special type of set covering resultin§ince no KID is a prefix of another, if a key set of a single
from the permutations of the keys, this is crucial in defining theember is deleted, there is at least one key in each of the re-
KIDs. From this example, we note the following property of thenaining key sets that is not contained by the key set of the
KIDs: Any permutation of the keys forming a KID will lead to deleted member. Hence, a single user deletion does not invali-
a KID that is completelycoveredby the original KID. We use dateall keys of other members and the key assignment is prefix-
this property in formally defining the KID. free. However, it can be verified that in the above given example,
the union of any two sets of KIDs will cover the keys forming
:fweother KIDs. Hence, collaboration or deletion of two or more
members will compromise the keys of all other members.
Hence, the prefix-free property and Kraft inequality are only

Definition: Key index (KID) of a member; is a string
generated by the concatenation of the keys assigned to
memberM;, taken in any orderlf the number of keys assigned

to member}; is denoted byl;, then there ard;! possible : .
. ; : necessary for being able to reach a valid member under member
different KID strings that can be generated using tHegeys. deletion

Given a KID, a!l th? KIDs that are .generate_d by permuting We note that this result can be explained by the fact that the
and concatenating its keys are equivalent with respect to ﬁge

cover-free property. If the set of keys generating KIB raft inequality is a property exhibited by the tree structure and

Gy ant o S ey e K ened S DTl e T orenict lnce e
by S, we denote KIQ = KID if S, = Ss. ghep

to safeguard against failure of the key distribution scheme under
From Fig. 1, the memben{; is assigned four KEKs member deletion or user collusiowe present an example [8]

{Ko, K21, K11, Ko1}. Since Ko is common to all the later in Section VI.

members, it can be ignored in defining the KIDs. Hence, the

KID of M; is K21 K1 1Ky1. Since there are six different waysD. Making KIDs Cover-Free

to concatenate these keys, there are five additional KIDs generif 5 KID assignment is cover-free, it has to be prefix-free.

ated by permuting and concatenating the keys forming KIDs @fe showed that prefix-free does not imply cover-free. We now
M. This equivalence among the KIDs generated by permutiigse a questiomow to construct a prefix-free KID assignment
a set of keys is a feature that separates the conventional Ulpsthe tree that is also cover-fredf? order to provide a con-

from KiDs. dition that a KID is cover-free, we need to consider the defini-
i i tion of the cover-free condition given earlier. Since every valid
C. Key Indexing and Kraft Inequality member needs to be able to securely communicate with the GC

We noted that in order for GC to securely communicate wittnder deletion of one or more members, even if all(tNe— 1)
every valid member under member deletion, every membmembers are deleted, the remaining single member should be
should be assigned a unique UID as well as a KID. For a kegcurely reachable. In terms of the parametersy) given ear-
assignment on the rooted trees, cover freeness is the requies; settingk = (N — 1) leads to the cover-free condition for
ment that the KID (UID) of a member should not befix the valid membei; with key setS; as
of the KID (UID) of any other member. On the rooted tree,

this condition can be mathematically stated using the Kraft S\ ’\Ul S
inequality. QPR PP S (5)
——— =~
Theorem 1 (Kraft Inequality for KIDs):For ad-ary rooted |5i

key tree with; members and KIDs satisfying the prefix cony,,

2 ) ) ith 0 < «; < 1. Sincew; > 0, the lowest possible value of
dition, if we denote the number Of. keys formmg the KID ofm is % with the physical interpretation that the sgtshould
memberA; by I;, for a secure multicast group witN' users, have at least one key that is different from the union of all other

the set{l;, I, ..., [y} satisfies the Kraft inequality given by key sets
N In order to construct the tree-based key assignment scheme
Z d7h <1, (4) thatsatisfies this condition, we consider the manner in which the
i=1 members are assigned to a logical tree. In a logical tree of [28],
Conversely, given a set of numbels, ls, . .., L} satisfying [29] each member is assigned to a unique leaf node. There is a

o ! ; unique path from the leaf to the root of the tree. Every member
this inequality, there is a rooted tree that can be constructed su .

X . - Shares all the keyexceptthe leaf node key with at least one
that each member has a unique KID with no prefixing.

] ) : more member. Hence, choosing the leaf node keys to be distinct

Proof. Well known, and available in [9] and [12). O will make sure that the key s&t of member)M; has at least one

While this prefix-free condition is necessary and sufficient faglement that is not covered by the union of all other key sets.
indexing a member using UID, this is only a necessary conditionHence, if wechoose all the leaf node keys to be distinct
for the KID to be cover-free. We first illustrate this differencerooted-tree-based prefix-free KID assignment wilheeessary
Consider the set of keygi, K2, K3, K4} used to form the and sufficientto: a) prevent user collusion from completely
KIDS{K>K3K4}, {K1KsK4}, { K1 KoKy}, and{K; K> K3} disabling the secure communication, and also b) reach a valid
assigned to membefd;, M-, M3, andM,, respectively. It can member under deletion of arbitrary number of members. Since
be verified that no KID is a prefix of another. Also, the KIDthere areNV leaf nodes, the number of keys to be stored by the
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GC grows asO(N) when there is no additional relationship Definition: Thed-ary entropyH, of the member deletion is
among keys. N
With these preliminary observations, we now show how to Hy=- Z pilogyp; (6)
=1

minimize the average number of keys to be regenerated by the . - .
GC under member deletion. wherep; is the probability of deletion of membel;. A word

of caution is in place since this formula of entropy is often used
V. PROBABILISTIC MODELING OF MEMBER DELETION to describe the rates in the source coding literature. We use it in

_ the context of its physical interpretation which is the amount of
Using/; to denote the lengthof the KID of membet\l;, we  ncertainty about the member deletion statistics.

note that in the rooted-tree-based key distribution model [28],

[29], member); shared; number of KEKs with two or more Since the member deletion event and the leaf node key dele-

other members. This count includes the rooted KEK and efon event have identical probabilities, tHeary entropy of the

cludes the leaf node key of membi. In the event the member member deletion event is the same as the entropy of the leaf key

M; is deleted, the number of keys to be updated isfalstence, deletion event. Similarly, the entropy of KID deletion is iden-

if we can minimizel;, this will minimize the user key storage. tical to the entropy of member deletion. We will use the term
In the rooted-tree-based key distribution of [28], [29], eachntropy of member deletion event instead of entropy of leaf key

member sharekg, N keys (excluding the root key and thedeletion or entropy of KID deletion since they are equivalent.

SEK) with two or more members. At the time a member is N summary, a main outcome of these observations is that the

deleted log, N keys are to be updated and communicated g1tropy of the KID deletiois identical to theentropy of member

other members. The only key that needs not be updated und@letionwhich is a physically observable process, and can be

member deletion is the leaf node key of a deleted membgPMmpletely characterized once the entropy of member deletion

Hence, we note that the user key storage and the keys toih&nown.

updated under member deletion grows@dog, N) for the

rooted-tree-based key-distribution schemes in [28], [29] th

do not make use of the physical process of member deletion inWhen a membed/; is deleted with a probability;, the group

assigning the keys. We now show that the use of the statistgtroller has to generate and updatéeys that were shared

of the member-deletion process will enable us to further reduséth other members. Hence, on average, the GC has to generate

the user key storage and hence the key update requirementadnsf update

the rooted-tree-based models [28], [29].

gt Assigning Optimal Number of Keys per Member

N
A. Relating Statistics of Member-Deletion Process to the Key ; pili ()

Distribution on the Rooted Tree o
Let p; denote the probability of deletion of membaf; ¢ number of keys. This is also the average number of keys that a

. Y . . ember needs to be assigned. As noted earlier, we have chosen
We assume that this probability is computable either emplrlcalj:\]{) g

or is knowna briori. This paper does not make an attemo t t to count the session key and the root key that are updated
' wna priort. ThIS pape . emptip, every member deletion. The GC has to find an optimal key
develop methods for computing. Noting that every time a

. . assignment that will minimize the average number of keys to
member is deleted, all the keys aSS|gn§d to that member 8reeupdated over the duration of the session. However, as noted
deleted, we make the following observations. earlier, any key assignment needs to satisfy the Kraft inequality.
« Since every member is assigned to a unigue leaf node, ateince, the optimization problem arising from the multicast key

every leaf node is also assigned a unigque key, probabilifystribution on the rooted tree models of [28], [29] is

p; of deletion of a membel/; is identicalto the proba- N

bility of deletion of the leaf node key assignedi. Hgn > pil; (8)

. . i=1

» Since every member has a unique KID and the KIDs aE"ﬁbject to the constraint

formed by concatenating the keys assigned to a member, N

the probability of deletion of membe¥/; is identical to Z db <1, 9)

the probability of deletion of the KID of membeé; . P

Hence, we note that the probability of deletion of a member is Tl?lls problem can be written as a Lagrangian optimization
identical to the probability of deletion of its node key as well alroblem as

N N
its KID. Given the knowledge about the probability of member . N i
deletion, we define thentropy of member deletidoy the fol- et ; pili A z_; d ! (10)
lowing formula. where\ is a Lagrangian multiplier. This optimization problem

4Reduction of the key storage requirements of the group controller as a sipidentical to the well-known optimal codeword-length selec-
linear function of group size was presented in [5] using pseudorandom furiion problem [9] for prefix coding in the context of information
tions. In our study, we assume that the keys are distinct and have no relationﬁhigory This problem is well-studied and the optimal strategy

among them. . . .
SRecall that the number of KEKs except the root KEK is noted as the Iengtw.eldS the Shannon entropy of the random variable belng coded

6We use the term deletion in general to denote deletion, voluntary leavirf® the optimal deeword .Iengt.h [9]. Since the aijtra.Ct mathe-
and revocation under compromise. matical formulations are identical, we can use identical argu-
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ments to derive the optimal number of keys to be assigned to a2) In order to prove this, we note that the KIDs need to be
member on the rooted tree. The derivation is standard [9], and  unique with a minimum possible number of keys. Hence,
leads to the following conclusion. if there is only one member with the largest number of
In the context of key distribution on the rooted trees, the  keys on the rooted trees, then we can reduce the largest
optimal number of keys to be updated is the entropy of the  number of keys held by at least one and still ensure that
member deletion procedale summarize this result as Theorem allmembers have a unique set of keys assigned. However,
2 without repeating the proofs [9]. this reduction will contradict the optimality of the indi-
vidual KID lengths. Hence, at least two members should

Theorem 2: Letp; denote the probability of deleting member be assigned the largest number of keys.

M;. Let the group size bé&/. Let the degree of the rooted tree )
of key distribution [28], [29] bel. Then, for a rooted-tree-based 3) The proof follows by bounding the average pumbef of
key distribution satisfying at least the Kraft inequality, the op- keys to be regenerated by the GC+ 3,7, pil}). Itis

timal average number of KEKssdenoted by>™ | p; log, pi, given below.
to be assigned to a member, is given by dhary entropy I;* = [—log, pi]
N
Hq= _Zpilogdpi (11) —log,p; <" < —logypi+1
=l X . 1* —) X . .
of themember deletioevent. Including the root key and SEK, —piloggpi <pili < —piloggpi + pi
the optimal average number of keys per member is given by N N N N
H, + 2. For a membe#/; with probability of deletiorp;, the - Z pilogyp; < Z pili™ < — Z pilogy pi + Z Di
optimal number of keys to be assigned (excluding the root key i=1 i=1 i=1 i=1
and the session key) is computed from (10) as N
;" = —log, pi. (12) Hy< > pili* < Ha+1. (14)
The number of keys assignhed to memb£&rwith deletion prob- =1 ) _
ability p;, including the SEK and the root key, is given by Hence, the KID length will be_at mo;t one unit more than
2 the entropy of member deletion. Since the SEK and the
I +2=—logyp; +2 =log, o (13) root KEK are common to all the members, we note that

the average number of keys to be updated is at most three
Although the UID and the KID assignments need to satisfy more than the entropy of member deletion event.

a set of different requirements, the following features of key

assignment are a direct consequence of the optimization res@fsMaximum Entropy and the Rooted-Tree-Based Key

and hold for optimal KIDs as well as UIDs. Assignment

Lemma 2: We now interpret the rooted-tree-based key distribution re-

1) A member with higher probability of deletion should béults reported in [7], [8], [28], and [29] with respect to the re-

given fewer keys compared to a member with lower pro§Ults derived in the previous subsection.
ability of being deleted. Ip; > p;, then We showed that the average number of keys to be updated by

the GC is
li(= —logypi) <lj(= —logyp;)-
N
2) There must be at least two members with the longest KID _ o
strings. Hy = ; pilogy pi.

3) Since the number of KEKs to be regenerated by the GC ) )
needs to be an integer and the valuethf may not be We now try to find the maximum value of the average number

an integer, thérue average number of keys per membefPf keys to be generated. This problem is posed as

differs from H, by a finite value. In fact, it differs from N
the true value by at most one digit . If the member deletion max Hy=-> pilog,pi (15)
probabilities arel-adic then the optimal value of the keys i=1
to be regenerated is exacity,. subject to the condition
Sketch of the Proofs: N
1) The logarithm being a monotone functiongif > p;, 2 pi=1. (16)

then'logd pi > logap;. Hence—logq bi < —logapj, This problem can be posed as the Lagrangian optimization
leading tol; (= —log,pi) < l;j(= —log,p;).8 Probie P : grang p
problem with respect to the variahe

7Excluding the root key and the session key. N N

8Since the members with higher probability of being deleted are assigned X
fewer keys in this strategy, the GC can adaptively react to any possible coordi- H]lq?x o Z Pi 1Ogd pit A Z pi—1 17)
nated attack effort by members to increase the frequency of rekeying by simply i=1 i=1
forcing deletion by leaving and joining at very high rates. The GC will be ablﬁlhere)\l is a Lagrangian multiplier. Some algebra yields the

to assign a lower number of keys to members with higher probabilities of bein . . 1
deleted. In the traditional models [28], [29], there is no explicit mechanism §?)|Ut'0n to this problem ag; = N The members of the group

include this knowledge into the key distribution. have equal probability of being deleted. For this value of the



POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2831

probability of member deletion, the maximum entropy value ighere
given by N
N D(pllq) = ) _ pilogy L)
Hy(max) = —Z N~ tlog, N7! =log, N. ; “
i=? - ) . is the information divergence [9], which is a measure of how
When the member deletion probability f; isp; = N™", the  far apart are two distributions. Hence, on average, the redun-
optimal number of keys to be assignedith) is log, V. dant number of keys assigned due to incorrect probabilities is

However, the schemes in [7], [8], [28], [29] assiiey, N p(p||q). This is stated as a theorem below.
keys per member on the tree. Since we showed that the entrop

is the average number of keys to be assigned to a member, anfheorem 4:Let p; and g; denote the true and assigned
the entropy is maximized when all the members have the saffdetion probabilities of membet;, respectively. The average
probability of being deleted, the key assignments in [7], [8lumber of redundant keys to be assigned on the rooted-tree-
[28], [29] correspond to the strategy of assigning maximal apased key distribution i®(p||q), where
erage number of keys to every member. N

In terms of the design of the rooted-tree-based schemes, what D(p|lq) = Z p; log, 2.

. . . qi

we have shown is that when there is no prior knowledge about —
the probabilities of member deletion, the assignmenbgf VN
number of keys per member corresponds to the optimal stratqgy

that assumes the worst case in terms of the average number o ) )
key assignments. This can be written as the following—min We now relate the hardware bit generation rate to the entropy

Pounds on Avage KeylLength

problem: of member deletion. We noted that the average number of KEKs
N N to be regenerated by the GC is given by the entropy of member-
. " . deletion process. Since the total number of keys to be generated

Hzlo?X {Hﬁn {; pili +A <; d 1) } by the GC also includes the session key SEK, on average, the

N total number of key digits generated by the GClig-H,;). If we
+ A Z pi—1 . (18) assume all the keys have identical Iengthanq QC generatds
= digits per unit of time, then the number of digits to be generated

The following theorem summarizes the problem and the soltﬂy the GC and the key length are related by the inequality

tion. B> L(1+ Hy). (21)

Theorem 3: For ad-ary rooted-tree-based multicast key diSHence, the average key length is bounded by
tribution scheme witllv members and a membéf; with prob-
ability of deletionp;, the average number of keys to be regen- I < B )
erated by the GC is upper-boundedlby, N up to addition of ~ 1+ Hy
a constant (the session key). This upper bound is reached whefyhen a membeit; with deletion probabilityp; is deleted,
the entire group has identical probability of being deleted.  from (14), the GC needs to updafe — log, p;) keys. Since
—log, p; will attain its maximum value whem, attains its
D. Impact of Using Incorrect Probability on Key Length smallest value; = pmm, the maximum number of keys need
In Fig. 2, we presented the effect of an unbalanced roott®ibe updated when a memh&#; with probability of deletion
tree on the number of keys to be assigned and to be invalidat2d= Pmix iS deleted. Hence, the bound on key length is
We note that this quantity can be completely characterized using B
basic results from information theory as well. Let us assume that L< [ET— (23)
the true deletion probability of membaé; is p; and the used ¢ Puain
probability of deletion for membel/; is ¢;. Hence, the optimal ~ Combining (22) and (23), we have the following.

number of keys to be assignedif), denoted by; ,is givenby  Theorem 5: For a rooted-tree-based multicast key distribu-
[i* =[—log, ¢, —log, g < [i* < —log,q +1. (19 tion scheme in [28], [29], yvith a group size 6f and member
[~ loga 4] Bad Ba (19) deletion probabilitiegp; }2Y;, if the bit generation rate of GC

On average, the number of keys that are assigned due to thiSdng, then the sustainable key length that can be updated in unit
correct computation, denoted by is bounded above and belowtjme is
L< min{ B B } . (24)

by
1 + de 1-— 1Ogdp1nin

(22)

N
C=>" pi[-log,q]
=1

N ‘ N ‘ F. Relationship to the One-Way-Function-Based Key Selection
Z Di <10gd ?”{) SC< Z Di <10gd & —logypi + 1) Schemes on the Tree

=1 b =1 & In [28], [29], there is no specification about the manner in
H;+ D(pllg) <C < Hy+ D(pllg) +1 (20) which the KEKs are generated. New results on using pseudo-
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random one-way functions for KEK constructions on the rooted TABLE |

tree were reported in [2], [6]. A KEY DISTRIBUTION WITH COLLUSION IN [7], [8]
In[5], a hybrid scheme that combines the scheme that clusters ID Bit Xo | Koo | Ko1

a multicast group into clusters of sizé¢ and building a rooted ID Bit X; | K19 | K11

tree with a unique cluster at each leaf node was proposed. Each ID Bit Xy | Koo | Ko1

cluster member is assigned a unique key that is generated using

a pseudorandom function [17], [21] with a common seed [5] SK

thus, reducing the storage féf members of the cluster to a
single seed. Since each cluster is assumed to be of uniform si
M, for a group of sizeV, there are[ 2] clusters. Since each
cluster is assigned to a unique leaf node of the rooted tree
degreed, the depth or the height of the tree is

h = log, [%w . (25)

For the cluster of sizé4 = log,; IV, the number of keys to
be stored by the GC is

d"*l—1 dN-M
d—1  (d=1)M’

Since there cannot be any more entropy than that provided t
themember revocation everttur formulation based on entropy
will yield the lowest average cost of key generation when therc
are no additional relationships am(_)ng.keys. The only way to qu,—g_ 3. Key distribution in [7] and [8].
ther reduce the average communication or storage overhead in
key generation is to introduce relationships (for example, using.
pseudorandom functions) among the keys generated as in Eb
[6].

We do, however, note that in our formulation, since w
minimize the average number of keys assigned based on

. I . N
rr:cembegdejl\/(‘a[fuon”pl;ob?bll|t|e\:,6th? qpt]l\rfnalhKlDtlﬁnggﬂgld t_ Fig. 3 presents the corresponding binary tree for the key as-
0 rgegjl_ter o wi "eHarger than Ogdb Wf En te be € 'gnt signment. This rooted tree has the special structure that at any
probabiiityp; 1S Small. Flence, the hNumber oTkeys 1o be updateg, o, depth from the root, two new keys are used. At dépth

upon deletion of membeV/; will be quite large.
" X ) rom the root, the two new key& 1o . v—1y0 aNAK (10e, N—1
Hence, the use of additional relationships among the KEKg.. " icated times. For gfélmgﬁlg, ;%Odepth (tlv\fg J;ro}nzlthe

such as the manner in which they are generated, can hel Bt, KEKs Ko and K are duplicated across the tree twice.

further reducing the amount of keys to be stored by the G he total number of keys to be stored by GC in this scheme
Our approach, however, does not attempt to minimize the key,

_ ! ; S 2log, N. For ad-ary rooted tree, the total number of keys
storage of GC, which was one of the main results in [5]. to be s%ored by GC in this schemediog,, N. Every member

has to store onlyog, N keys (excluding the root key and the
session encryption key) and the GC needs to regeniexgfév
We now describe a rooted-tree-based key distribution schekeys under member deletion. Hence, this scheme is indeed an
[8] that satisfies the maximum entropy boufidg, V) for the optimal solution with respect to a single member deletion and
number of keys assigned to a member while attempting to midso has significantly less storage for the GC than that of sem-
imize the storage of the GCWe use this scheme [8] to illus- inal schemes.
trate that while a key distribution scheme may attain optimality Although the total number of keys to be stored by the GC
in user storage, it may not be collusion-free. is dlog, N, deletion of more than one member may bring this
LetX,, 1X, o---Xodenote a binary UID of the memberskey distribution scheme to halt. In the case of Fig. 3, this hap-
Each of the bitX; is either a zero or a one. There &fepossible pens if the membera/, and M- (or M; and Mg) need to be
different UIDs for this sequence. In [7], [8], the following directdeleted. The KID of membek{y is K2 K10Koo and the KID
mapping between the KIDs and the UIDs was proposed. In [0 memberi; is Ko K11 Ko1. The union of the keys forming
[8], whenN = 8§, log, 8 = 3 hits are needed to uniquely indexhese two KIDs includes all the keys used for key distribution
all eight members. The authors then proceeded to note that sinnghe tree. The corresponding keys to be deleted are shown in
each bitX; of the UID takes two values, these two values calfig. 4. Hence, if these two members need to be simultaneously
be mapped to a pair of distinct keys. For example, whgn deleted, the GC is left witho keyto securely communicate with

N _ . , . the rest of the valid members. The compromise recovery under
9Minimizing the GC storage with additional constraints has been studied in

[5], where additional assumptions have been made about the key generationsclmulta‘neou_S deletion a¥/, and M~ requires that thentire
there is an increase in the amount of keys also stored by every member.  group rekey itself

l+d+d 4+ +d" =

(26) oo Koi Koo Koi Koo Koi Koo Koi
M; M M3 My Ms Mg My

. Represents the valid keys

0,” it is represented by key;o, and when it is 1,” it is
resented by(;;. Table | reproduces the mapping between
the index (ID) bit number and the key mapping for the case in
for N = 8 where, the key paifk;o, K;1) represents the
possible values of the bi; of the member index.

VI. A ROOTED-KEY DISTRIBUTION WITH USERCOLLUSION
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TABLE I
VALUES OF k THAT SATISFY k = d*—1!

d=2|k=10or k=2|N=2or N=4
d>2 k=1 N=d

The firstthree steps are self-explanatory and the last step follows
from inductive expansion of inequalities &p. Hence, we have
shown that if atc = ko, ko < d*~1, thenVk > ko, k < d*1.

This in turn implies that there is no integkr> kg for which

N = d¥ > d<. Since the integers satisfy partial order, and
d > 2is aninteger, if ford = dg andk = kg, ko < d’go—l, then

Koo Ko1 Koo Kop Koo Kop Koo Ko1
Mp My My M3 My Ms Mg My Vd > do, ko < d’éo_l < gk, (35)

We note that ford = 2, k = 1, 2, satisfyk = d*~1. When
d=2,if k =3,k < d**. Hence, the group siz& does not
Fig. 4. Deletion of membera/,, My in [7], [8]. satisfy inequality (24). From inequality (28), we can conclude

that for a binary tree, if the group size is more than four, there
and their variations also allow the members to collaborate attl-
compromise the system. We now interpret the user collusion orff We setd = 3 andk = 2, we have
the rooted tree in [7], [8]. o< loghlog

- Represents the revoked keys

A. Interpretation Based on Minimal Number of Key

: Hence, fork > 1, d = 3, there is no intege®V > 3 which
Requirements

satisfies the inequality (24). Making use of the fact that if
In Section IV-D, we noted that the sufficient condition for, < 3+#—1 thenk < 3¥—! < 4¥—1 < 51 ... we conclude that for

cover freeness requires that all theleaf nodes are assignedg > 2, the only value ofV for which N >d¥ holds isN =d.
distinct keys. Since the total number of keys to be stored inHence, we have shown that the key distribution in [8] will be
[8] is dlog, N for a group of sizeV, this model can be made collusion-free if the group size is identical to the degree of the
cover-free if rooted tree.
dlogg N = N @7) B. Another Interpretation of the Collusion Problem
N >d%. (28)  The second interpretation of the collusion problem in [8] is
At equality, the group sizeV should be a power of. Setting based on the notion of sets,_and is_also discussed under the cat-
N = d*, wherek is an unknown to be determined, leads to th§9°"Y Of complementary variables in [10], [28]. In complemen-
equation tary var{able approagh, every member_ of _the group is |dent|f|§d
by a unique key. This unique key is distributed to everyone in
kd =d* (29) the group excluding the member identified by that key. When a
I — i (30) member is deleted, the index of the member is broadcast. For the
- ) next session, all the valid members set the key corresponding to
We note thaf; = 1 satisfies this equation withV = d* = dfor the deleted member as the new session key. Under this model,
d > 2. Table Il summarizes the valuesiofhat satisfyc = ¢*—*  for a set ofV members, all the members will hag® — 1) keys
for different values ofi. that correspond to other members and no member will have the

The proof consists of two steps. The first step is to show thégY corresponding to itself. If we consider any two members,
if at k = ko, ko < d*~1, then for allk > ko, k¥ < d*—!, and the union of the keys stored by them will cover the keys stored

henceN < d% . The second part of the proof is to show that foby the entire group. Hence, this key assignment does not scale
d =2,k = 1, 2 are feasible solutions and fdr> 2, k = 1is beyond deletion of one member. The scheme in [8] can be in-

the only solution. terpreted as a complementary variable approach as detailed in
We first prove that ifi = ko, ko > 1, then what follows. X
If we use the notatioik;, k;) to denote the unique key pair
1 <ko (31) representing the two possible binary values taken by the UID bit
ko +1 < ko + ko = 2kg < 2% 2ko—1 = ko X, we note that the collusion or compromise of two members
‘ holding keysk; andk;, respectively, will compromise the in-
ko +2 <2(ko + 1) < 2%ko < 20H (32) tegrity of the key paifk;, k;). In ad-ary rooted-tree-based key

o 43 <2k 4 9) < (ke 4 1) < Bl < PF0+2 33 distribution in [8], each digit can takg p(_)ssible values between
043 <2ko+2) <2 Of ) < 9 < (33) (1, d) and the sum of these values is glvenfg%’—l). Let the
ko+1i<2ko+1) < < 2% < Qkoti—1 (34) value of thebth-bit location of a membe#/; be denoted as;.
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Then, a set ok: members can collude and compromise all the [6]
keys corresponding to the bit locatiorif

d(d — 1)
=

(71

by +bs+---+ b, =0mod (36)

[8]
VII. CONCLUSION AND DISCUSSION

This paper showed that the recently proposed [28], [29] )
rooted-tree-based secure multicast key distribution schemé¥!
can be systematically studied using basic information-theoretic
concepts. By using the member deletion event as the bagjsi]
of our formulation, we showed that the optimal number of
keys assigned to a member is related to émropy of the
member deletion statistics. We derived the necessary arb]
sufficient condition for the key assignment to be collusion-free
and in general “cover-free.” In particular, we showed that thém]
cover-free condition on the rooted trees requires that the ledf4]
node keys be all distinct when there is no additional relationship
among keys. Under this condition, the storage requirements
of the group controller is linear in group siz&. We then
proved that the currently available known rooted-tree-basett®]
strategies [28], [29] and their variations [7], [8] correspond
to the maximum-entropy-based key assignment among ajise]
the rooted-tree-based strategies. Hence, the key distribution
schemes in [7], [8], [28], and [29] correspond tarax—min
key assignment strategy. We also derived a relationship betwegry)
the average key length, probability of member deletion event

2 . 18]

and the hardware digit generation rate.
[19]
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