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A Semidefinite Program for Distillable Entanglement

Eric M. Rains

Abstract—We show that the maximum fidelity obtained by a fication turns the semidefinite program intéirzear program. In
positive partial transpose (p.p.t.) distillation protocol is given by  the case of asymmetric Werner states, this linear program can be
the solution to a certain semidefinite program. This gives a number solved exactly, showing that the upper bound of [5] is tight in
of new lower and upper bounds on p.p.t. distillable entanglement h S . VI sketch hni f duci
(and thus new upper bounds on 2-locally distillable entanglement). t e_‘t case. Section S_ etches atechnique for producing asymp-
In the presence of symmetry, the semidefinite program simplifies totic lower bounds, which we then use to strengthen the hashing
considerably, becoming a linear program in the case of isotropic lower bound [3] in the p.p.t. case. We also use this technique to
and Werner states. Using these techniques, we determine the p.p.t.partially resolve a conjecture of [9] by determining the p.p.t. dis-

distillable entanglement of asymmetric Werer states and “maxi- jjap|e entanglement of “maximally correlated” states. Finally,
mally correlated” states. We conclude with a discussion of possible in Section VII, we consider possible applications of semidefinite
applications of semidefinite programming to quantum codes and ! P pp

1-local distillation. programming to the problems of quantum codes and 1-local dis-
tillation. In particular, using the techniques of Section V, we give
a new derivation of the linear programming bound for quantum
codes [13], [8], [10].

Index Terms—Entanglement distillation, quantum communica-
tion, semidefinite programming.

. INTRODUCTION Il. OPERATORS SUPEROPERATORS ANDOPERATIONS

NE of the central problems of quantum information |f v is a Hilbert space, we denote By(V) the space of Her-

theory is entanglement distillation [3], [11]: the promitian operators of¥. We also letP(V) ¢ H(V) denote the
duction of (approximate) maximally entangled states from @nvex cone of positive semidefinite Hermitian operators; we
collection of nonmaximally entangled states. Of particulagill freely write A > Btomeand—B € P(V). Astate is then
interest are 1-locally distillable entanglement and 2—Iocallyn element o‘P(V) of tracel. Quantum information theory can
distillable entanglement (the amount of entanglement that cga thought of as studying the behavior of these concepts under
be distilled using local operations and a one-way (two-waydnsor products.
classical channel). Nearly all of the known upper bounds on 1-Gjven an operatori H(V @ W), we define the “partial
or 2-locally distillable entanglement actually apply to a |angFace”TrV(A) to be the (unique) operator (W) such that
class of operations, known as positive partial transpose (p.p.t.)
operations [11]. This motivates our present study of p.p.t. Tr(Try (A4)B) = Tr(A(1 © B)) (2.1)
dlsvt\'/”able entgnglement. . , forall B € H(W). Similarly, given a choice of basis fé¥", we

e study distillable entanglement via a more refined quan: = yefine the partial transposé™ by

tity, the “fidelity of distillation,” which measures how close one
can come to producing B -dimensional maximally entangled Te(A' (B 0)) = Tr(A(B © CY)) (2.2)

state from a given input. In Theorem 3.1 below, we show tha .
the fidelity of p.p.t. distillation can be expressed as the solﬂv—thereB € H(V), C € H(W), andC" is the transpose df

. ! e V\fith respect to the chosen basis. Both of these transformations
tion to a certain semidefinite program (see [14] for a survey Q ; . s
extend by linearity to non-Hermitian operators as well.

semidefinite programming). Then any feasible solution to thé I . ; y "
dual problem (Theorem 3.3) gives us an upper bound on fidelip/.A positive o_peraFoC € P(V@W)is said to be “separable
IFit can be written in the form

of distillation.
The rest of the paper is devoted to an exploration of the conse- C= Z A; @ B; (2.3)
guences of this semidefinite program. Section IV gives a number i
of results that hold in general, including a new bound combiningjth A, € P(V), B; € P(W); in other words
the bounds of [9] and [5], and a theorem (Corollary 4.3) to the
effect that maximally entangled states cannot be used to "acti- CePV)aPW). (2.4)
vate" fidelity of p.p.t. distillation. In Section V, we show that thesimilarly, C is said to be p.p.t. if
semidefinite program simplifies in the presence of symmetries; -
in some cases (e.g., isotropic states, Werner states), this simpli- CeP(VeW)nPV eW) . (2.5)
Note that this does not depend on the choice of badiE iwe
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urally identified withH(V @ V'); to a superoperato¥ corre-
sponds the unique operat@f V) such that

Tr(BY(A)) = Tr(Q¥)(A @ B)). (2.7)
We also define the adjoint superoperafor by
Tr(AV*(B)) = Te(BY(A4)). (2.8)
Note that
W(A) =Try (ALY AD 1)) (2.9)
U*(B) =Ty (QU)(1 ® B)) (2.10)

and, if & : H(V) — H(V') andUy: H(V') — H(V"), then
QU2 0W1) = (VT @ 1)(R(V2)) = (1@ U2)(2(¥1))
=Try (V1) @ 1y )(1y @ Q(T2))). (2.11)

Of particular interest is the (self-adjoint) superoperator—
At; in that case, we find

Q) = Z (v; ® vi)(vj ® Uj)T > 0.

%)

(2.12)

A superoperator is said to be “positive™lf(A) > 0 when-
everA > 0, and “trace-preserving” i*(1) = 1; equivalently,
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¢ l-local: ¢; = (P(V@ V) @O0p(W, W)HNOp(Ve W,
VieWw").

« 1'-local: C; = (Op(V, VY@ P(W@W'))NOp(V @ W,
V'iow").

* separableCs = (P(VRV)@P(W oW ))NOp(VeWw
Ve W).

s pptiCr = Op(V @ W, V' @ W) n Op(V @ W
V/ ® W/)FVV@WV’.

We also have the class of 2-local operations, defined by allowing
arbitrary compositions of 1-local and-Ibcal operations. For a
different approach to defining these classes, see [11]. We recall

C.C Cl, CirCcCy C C$ c Cr (215)

with all inclusions strict in general. (The clags not discussed
in [11], is simply the closure of the class of local operations
under convex linear combinations (i.e., shared randomness).)
Note that each of these classes is closed under tensor products
(unlike, say, the class of operations taking p.p.t. operators to
p.p.t. operators).

From a physical perspective, the only natural classes are those
of (¢, 1, ', 2)-local operations. The difficulty, however, is that
in none of these cases do we have an effective way to decide
whether a given operation belongs to the class; this is especially
true in the case of 2-local operations. Thus, the class of sepa-
rable operations is important as a simplification of the class of

Try- (£2(W)) = 1. A superoperator is “completely positive” if it 2-local operations, while the class of p.p.t. operations is impor-

satisfies any of the following equivalent conditions:
« 1) 1y ® W is positive.
e 2) For all Hilbert space®, 1y @ W is positive.
» 3) There exist operatord; € Hom(V, V') such that

T(A) = Z A;AAL (2.13)

e 4) For any (some) basis df, the partial transpose

Q) is positive semidefinite.

Clearly 2)=> 1), and 3)=— 2) is straightforward. To see 1)

= 4), it suffices to observe that

QW) = (1y @ U)(Q(1) > 0. (2.14)

Finally, 4) — 3) follows by taking an eigenvalue decom-

tant as the smallest class containing the 2-local class for which
we can effectively decide membership. For instance, all of the
known upper bounds on 2-locally distillable entanglement are
really bounds on p.p.t. distillable entanglement; to a large ex-
tent, this even applies to upper bounds on 1-locally distillable
entanglement. Similarly, a lower bound on p.p.t. distillable en-
tanglement provides a limit on how far the current methods can
take us.

Ill. FIDELITY OF DISTILLATION

For any intege > 0, we define the “maximally entangled”
state®(K) € H(CK @ CX) by

. Z (e;@¢;)(e;@e;)'. (3.1)

1<i, <K

B(K) = %Q’@CK) -

position of (V)'v. Since the operators we will be dealingGiven any other statg, the “fidelity” of p is defined by
with in the sequel are mostly completely positive, we define

Q) = QI)'v, and use this to identify the space of
superoperators with{(V @ V’). Thus, the set of completely

positive superoperators is identified with(V' @ V'). An “op-

F(p) = Te((K)p). (3.2)

Definition 1: Letp € P(V QW) be a state, and létf > 0 be

eration” is defined to be a completely positive, trace-preservi@g integer. The “fidelity of-state p.p.t. distillation’?1(p; K)
superoperator; we denote the (convex) set of operations frigrdefined by

ViV’ by Op(V, V)1

On tensor product spaces, there are several classes of oper-
ations of interest, which can be defined in terms of the conve

setsP andOp as follows:
* elocal:C. = Op(V, V') @ Op(W, W').

IThis differs somewhat from the definition of operation given in [11], in that
we are assuming operations to be “nonmeasuring,” but by the main result of tha

Fr(p; K) = max F(¥(p)) (3.3)

Wherew ranges over all p.p.t. operations frok(V ® W) to
H(CK ® CK).
Remark: We can defind,, F1, I, etc., similarly.

{his is a refinement of the concept of distillable entangle-

paper, this incurs no loss of generality when studying entanglement distillatisnent; indeed, we can define (see [3], [11]) the following.
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Definition 2: Let p be as above. The p.p.t. distillable entanSince(1+ K ®(K)')/2 are orthogonal projections, we find that
glementDr(p) of p is defined to be the supremum of all positive(¥)! is positive if and only if

numbersr such that

lim Fr(p®™; |2™]) = 1.

n—oo

Thus, a study oft is likely to provide insights intdr, as
we shall indeed find below.

We first observe that the optimization problem definifg
can be rewritten as an optimation over operators.

Theorem 3.1:For any state and any positive intege’
Fr(p; K) = max Te(Fp) (3.4)
whereF ranges over Hermitian operators such that
0< F<1,

-1/K < F' <1/K. (3.5)

Proof: LetW be the operation maximizing(\¥(p)) in the
definition of Fr-(p; K). Clearly, if we compos& with any op-

erator of the fornUU @ U, this leaved"(¥(p)) unchanged. The

same must then be true after averaging dvéeK) (“twirling”
[3]). We may thus assum& = T o ¥, whereT’ is the twirling
superoperator. We find

T(A) = Tr(AP(K))P(K)
o THAQ — (E))(1 - 2(K));
T(A) must have the form®(K) + (1 — ®(K)), and since

Te(T(A)) = Te(A) and Ti(T(A)S(K)) = Tr(AD(K))

(3.6)

(3.7)
we can solve for andb. It follows that
UT)=d(K)@P(K)+ K1 (1-9(K))

o(1 - ®(K)) = Q' (T). (3.8)
But then we compute
Q) = (ToW) = (T2 1)((T)) (3.9)

= (2(K)) © 2(K)
F o V(1= B(K)) © (1~ B(K))
SettingF" = ¥*(®(K)), we obtain

(3.10)

YV =Fo®K)+ (1-Fe(1-9(K)). (3.11)

K?2-1
This operator is positive if and only # > 0 and(1 — F) > 0.
We also find

W) =F" @ ®(K)"

+ 1-FHe(l-oK)") (312

K?2—-1

= 7 WE +FN) o 1+ Ke(K)")/2
L]

_i_i—‘

(1/K - F"Y® (1 - K&(K)") /2.
(3.13)

=

-1

-1/K <F' <1/K. (3.14)

The theorem follows by noting
F(¥(p)) = Tx(Fp). (3.15)
|

Definition 3: An operator that satisfies the inequalities (3.5)
will be said to beprimal feasiblefor Fr-(p; K); if it maximizes
Tr(Fp), it will be said to beprimal optimal

We will use this result to definéy(p; K) for all positive-real
values of K; for an interpretation, see the remark following
Corollary 4.3 below.

Theorem 3.2: The functionFT is convex inp and concave in
1/K; thatis, for0 < » <1

Fr(mpr + (1 = m)p2; K) < 7hr(p1; K)+(1—7)Fr(p2; K)

(3.16)
Fr(p; (K1K2)/(mK> + (1 — m) K1)
2 wkr(p; K1) 4+ (1 —m)Fr(p; K2).  (3.17)
In particular,Fr- is continuous in both variables.
Proof: Let £ be primal optimal for
Fr(npy + (1 —m)p2; K).
Then
Fr(npy + (1 —m)p2; K)
= Te(F(rp1 + (1 = m)p2)) (3.18)
= 7 Tx(Fp1) + (1 — ) Tx(Fpo) (3.19)
< wFr(py; K) + (1= m)Fr(p2; K). (3.20)

Similarly, let F; and F» be primal optimal forFr(p; K;) and
Ir(p; K»), respectively. ThemFy + (1 — «) L5 is primal fea-
sible for Fr(p; (K1 K>2)/(wK2+ (1 —m)K4)), thus, giving the
second inequality. O

The above optimization problem is an instance of what is
known as “semidefinite programming” (SDP) [14]. That is, it
involves the optimization of a linear function subject to the con-
straint that certain operators (depending linearly on the vari-
ables) must be positive semidefinite. This has several conse-
quences, including the computational one that semidefinite pro-
grams can be solved in polynomial time (typically polynomial
in the dimension, although special structure can greatly reduce
this). Another consequence is that there is a notion of duality for
SDPs.

For a Hermitian operatad, we define the positive par ;.
and negative parti_ to be the unique positive operators such
that

Ay —A_=A

A A_=0. (3.21)

We also defingA| = Ay + A_.
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Theorem 3.3:For any state € H(V © W) and any positive Proof: If Dy andD- are dual optimal fot'T-(p;; K) and
real numberk L1 (p2; K), then
1 .
Fr(pi K)= _min  Tr(p—D)s+ - TtD']. (3.22) Fr(mpy + (1 —7)pa2; K)

o o < Te(mpy + (1= s — D1 + (L= m)Ds)
mw -7 -7 -7
Proof: Let ' be an operator satisfying the constraints - pL P2 ! 2+

above. Then for any operatass B, C, we have + 1 Tr |7 DY + (1 — ) D} (3.33)
K
Te(Fp) =Tr(A) +1/K Te(B+ C)

< w(Te(pr — Di)+ + Te [ D)

~T((—p+ A+ B -CHF) + (1= m)(Te(pa — Do)y + Tx D)) (3.34)

= A - 1) - TBW/E - ) = 7Fr(pr: K) + (1) Fe(ps; K). (3.35)

~ r(C1/K +F")). (3.23) Similarly, if D is dual optimal for
If A>0,B>0,C >0, and Frip; (K K»)/(n Kz + (1 — m)K1))

A>p—-(B-0O)F (3.24) then
then the last four terms are all nonnegative, and we have Fr(p; (K1K2)/(mK2 + (1 — m)K1))
Te(Fp) < Te(A)+ 1/KTe(B+C)  (3.25) _Te(p— D)y + <7r - Ki) Tv | DY
and, thus, (3.36)
Fr(p; K) < Te(A) + 1/K Te(B + C). (3.26)

1
=7 <Tr(p -D)y + e Tr |Dr|>
In fact, by the theory of duality for SDPs, this inequality can be !
made tight, to wit

Fr{p; K) = jn}%nc Tr(A)+ 1/K Tr(B + C) (3.27)

T 2 nF(p; K1) + (1 - m)F(p; K2). (3.38)

minimizing over operators satisfying the constraints. Upon .

adding a variableD with D = (B — C)!, the constraints
become

(1= <Tr(p _ D)y + Ki2 v |DF|> (3.37)

IV. GENERAL RESULTS
T
A, B, C20 Azp-D B+C=D. (328  |emmad4.1:Foranyinteger > 1, and anyK > 0

We, thus, find Fr(®(d); K) = min(1, d/K).

Fr(p; K) Proof: For K >d, takeF =d/K, D=%(d). ForK <d,
take F' = &(d), D = 0. O

= 1nin< min  Tr(A) + 1 min  Tr(B + O)) . Theorem 4.2:For any stateg; andp», and anyK’, K’ > 0

D A>0 K B,c>0
Azp—D B—C=D" Fr(p1; K'Y Fr(ps; K/K')

(3.29) < Fr(p1 @ p2; K) < Fr(p1; K/Tx|p3]). (4.1)

But we readily see that Proof: For the first inequality, lett; and 5 be primal
) _ optimal for Fr(py; K'), and Fr(ps; K/K'); thenF, @ LIs is

120 Tr(4) =Tr(p = D)+ (3.30) primal feasible fotFT-(p; @ p2; K), giving the inequality.
Azp—D For the second inequality, leD be dual optimal for
Juin - Ti(B+C) =Tr | D] (3.31) Fr(pi; K/Tr|p3|). Then, takingD’ = D @ p2, we have
B—C=D" Fr(p1 @ p2; K)
roving the theorem. O 1
Proving < Tr((p1 @ p2) = (D @ p2))4 + 2= T (D @ p2)'| (4:2)
Definition 4: An operatorD € H(V ® W) such that -
_ Tt |ps | r
Fr(p; K)=Tr(p— D)4 + % Tr |DY| (3.32) = Trlpr = D)y + — = T[] (4.3)
— . T
will be said to bedual optimalfor Fi-(p; K). = Fr(p1; K/ Tr|pa ). (4.4)

Thus, given any operatdp, we obtain bounds on fidelity of .

distillation, and conversely any such bound can in principle beIn particular, if Fr(p2; Tr |pL|) = 1, then equality holds in
shown by choosing a suitable operafor For instance, The- this theorem, takingk’ = K/Tr|p5|. Since this is true for
orem 3.2 could also be proved as follows. ®(d), we obtain the following.
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Corollary 4.3: For all integersi, all K > 0, and any state Theorem 4.7:For any state, any X' > 0, and any trace-
preserving superoperatdrsuch that botl and¥'™ are positive

Fr(p ® @(d); dK) = Fr(p; K). (4.5)
Fr(¥(p); K) < Fr(p; K). (4.14)
Remark: This gives us another way to defidé (p; K') for _
eneralkK > 0. For rationalkX > 0, we can define Proof:
9 ' ' (First proof) LetF be primal optimal foZ’(¥(p); K). Then
Fr{p; p/q) = Fr{p @ ®(q); p) (4.6) U*(F)is primal feasible foF'(p; K), so
which is well defined by the theorem. Since the resulting func-£1(V(p); K) = Te(L£'V(p)) = Te(V*(Fp) < IT(p; K).
tion is nonincreasing ik, there is a unique way to extend it (4.15)
to a left-continuous function af’, which must then agree with )
our earlier definition. (Second proof) LeD be dual optimal fottr(p; K). Then
Another example is wheps is p.p.t.; therilx [pf| = 1. We  FT(¥(p); K) < Te(¥(p) — ¥(D))4 + 1/K Tr[¥(D)"|
have the following. (4.16)
Corollary 4.4: For all K >0, any state, and any p.p.t. state <Tr¥((p—D)y) +1/K Tewr(|DY)
0 (4.17)
Fr(p@ s K) = Fr(p; K). 4.7) =Tr(p— D)y +1/K Tr|D"| (4.18)
= Fr(p; K). (4.19)

Corollary 4.5: For anyK >0 and any state
Here we used the facts that for a positive superopetatand
an arbitrary operatop

Proof: By the theorem, we have, writing= ®(1) ® p Te(U(p)y) < Te(W(py)) and Tx(|¥(p)]) < Tr(¥(|p])-

min(1, 1/K) < Fr(p; K) < min (1, Tr|p*|/K). (4.8)

min (1, 1/K) = Fr(®(1); K)Fr(p; 1) (4.20)
< Fr(p; K) < Fr(®(1); K/Tx |p"]) U
= min(1, Tr |p" |/ K). (4.9) Remark: It follows from this that we cannot improve on the

- p.p.t. fidelity by using trace-preserving superoperatbrsuch
that both and ' are positive. In fact, one can show using the
Asymptotically, the theorem becomes the following. techniques of Section V that any such operator that produces

. isotropic output t in fact be p.p.t.
Corollary 4.6: For any pair of stateg;, p2 ISOIrOpIC OUIPUEL MUSE Infact be p.p

r Lemma 4.8: For any state, the functionk Fr(p; K) is non-
Dr(p1) + Dr(p2) < Dr(p1 @ p2) < Dr(p1) + log, It |pz |. decreasing irk, while the function

(4.10)

i (KFr(p; K) - 1)/(K - 1) (4.21)
In particular . . o
is nonincreasing i .
Dr(p @ ®(d)) = Dr(p) + logy(d) (4.11) Proof: We first considet F-(p; K). Writing I/ = K I,
and for any p.p.t. statg/ we have
Dr(p@¢') = Dr(p). (4.12) KIt(p; K) = max Tx(£”p) (4.22)

Remark 1: SubtractingDr(p;) from the inequality, we ob- with £ subject to the constraints
tain the boundDr(p) < log, Tr|pr|_ of [5]. (But see Theorem 0< F' <K, 1<FT<1 (4.23)
4.13 below.) See also [16], for an independent rederivation.

Since increasingy increases the feasible set, the maximum
W8annot decrease. Dually

KFr(p; K) =min K Tr(p — D)y + Tt DY (4.24)

Remark 2: For other classes of operations, (4.11) is kno
only whenD(p) > 0 [3].

Since Definition 1 maximizes over all p.p.t. operations, we
can obtain relations between different valuep ahd (integral) \which is nondecreasing i for any choice ofD.
K by composing with appropriate p.p.t. operations. The nextror(x Fy-(p; K)—1)/(K — 1), we proceed similarly; taking
two results extend this. We recall from [9] that for a superopef~ — (K F — 1)/(K — 1), we have
ator ¥, U is defined by

(p) = T(p")". (4.13)

Note thatQ(¥!) = Q(¥)'wew’ and thus¥ is p.p.t. if and ,
only if & andW! are completely positive. “1/(K-1)<F <1 —2/(K—-1)< F'' <0. (4.26)

(K Fr(pi K) = /(K = 1) = max Te(F"p)  (4.25)

with F” subject to the constraints
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These constraints become harder to satisfi{dacreases, and Itisinstructive to translate the relative entropy bounds of [15],

thus the maximum cannot increase. Dually [9] in terms of the dual SDP. We recall the definition
(KFr(p; K)—1)/(K —1) S(pllo) = =Tr(p(logy p — log, o)) (4.39)
= Irgn(K Tr(p — D)4 +Tr|DY| - 1)/(K —1). (4.27) and the following result.
But Lemma 4.10 [4, Theorem 2.2]Let p, o € P(V), with p a
1 ( ( ) DY - 1) state. Fo0 < ¢ < 1 andn € Z*, define
—— (KTr(p— D)+ +Txr|D| -1
K-1 " T (€) := 1 log, H}i)ll Tt (6" P) (4.40)
1 n
=% 1 (K Te(p— D)4 +Tr(DV) +2Te(D")_ —1)  where P ranges over projection operators di¥™ such that
1 liminf v, (e) > S(p||o) (4.41)
=% -1 (K Te(p— D)y —Te(p— D) +2Te(DV)_) nmee .
(4.29) limsup v, () < 1« S(pllo). (4.42)
1
="Tr(p— D)+ + 1 (Te(p— D) +2Te(DY) ). Remark: In [4], this is stated only whemn is a state; scale

(4.30) invariance gives the result in general. Also, if bethnd o are
_ _ _ _ diagonal, we may restrid? to be diagonal as well; this is just
This, of course, is nonincreasing i, so we are done. U the analogous result of classical information theory.

For integerK,, this corresponds to composition by the fol- e then have the following theorem.

lowing p.p.t. operations. Theorem 4.11 [9]: For any state and any p.p.t. state
Lemma 4.9: Let 1,(f) denote the isotropic state Dr(p) < S(p||o). (4.43)
1- Proof: We need to show that for any > S
L(f) = fo(d) + 5t (1 —e@)  @31) 2> S(plle)
- limsup Fr (p®"; an) < 1. (4.44)
of dimensiond and fidelity f. If f < 1/d, then for allK > 0 n—oo
Choosey betweenz and S(p||o), and consider the dual SDP
Fr(la(f); K) =1/K. (4.32)  pound with
Otherwise, forl0 < K < d D — oungon (4.45)
o fd—1 B ' '
Fr(la(f); K) = 1/K + d—1 (1-1/K) (4-33) ThenDis p.p.t., sal /K Tr |DF| = 2v==)" _ 0; the first term
and fork > d is bounded belovi by the following lemma. O
fd Lemma 4.12:Let p ando be arbitrary states, and lgtbe a
Fr(La(f); K) = 5 (4.34) nonnegative real number. Then
: Xn yn _Kn
Proof: For the first claim, také” = 1/K, D = I,(f), at hff;ip Tr (p°" —270™") <1 (4.46)
which pointD! > 0, soTr |D'| = 1. For the second claim, whenevery > S(p||o).
take Proof: Let P,(y) be the projection onto the positive part
d(d)—1
F=1/K + % (1-1/K) 4.35) ©°f
- pom — v (4.47)
D == (1+da(d)). (4.36)
d? -1 Then we need to show that
Finally, for the third claim, tak n__ oyn_@n
inally, for the third claim, take ) Fo(y) =T ((p°" — 2¢"67) P, (y))
F=o(d) i (4.37) =Tr (p“"Pa(y)) — 29" Tx (6“" P, (y))  (4.48)
D =1,f). (4.38) is bounded belovt. Fix « and consider the statemefit (y) >

. .. 1— e For this to be true, we must certainly have
In each case, the lower bound coming fradfhagrees with ‘ y

the upper bound coming fro, and thus both¥” and D are Tr (p°" Pa(y)) 21—¢ (4.49)
optimal. 0 Tr (69" Py(y)) <2707 (4.50)

Remark: In particular, we have Letting »(¢) be the largest value af such that these inequali-
Fr(Iy(f); d) = max(1/d, f). ties simultaneously hold for infinitely many, we conclude by

Lemma 4.10 that
The fidelity of an entangled isotropic state cannot be increased 1

by p.p.t. operations. y(e) = 17— 5llo)- (4.51)
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In particular, ify > S(p|lo), then there exists such that  Theorem5.1:Let ¥ be atrace-preserving superoperator with

y > y(e), SO both ¥ and¥'! positive. Then, for any state = ¥(p) and any
) K > 0,if Fis primal optimal and) dual optimal forFr(p; K),
hjffo‘ip Faly) <1—e (4.52) o arel*(F) and ¥(D). In particular, if &2 = ¥, we may

) assume that’ is U*-invariant andD is ¥-invariant.
as required. O
Corollary 5.2: LetG be any closed subgroupbf{ k)U/(1),

Remark: Similarly, using the fact that?.(y) is optimal anq |et) be aG-invariant state; that is, a state such that for all
among projections, we can conclude from the other half of -

Lemma 4.10 thatim,,_.., F,,(y) = 1 wheny < S(p|lo).
We also have the natural conjecture that the lemma can be UpUt = p. (5.1)

strengthened to, salim,, .., I, (y) = 0 wheny > S(p||o). ) _ )
) Then for anyK > 0, there exists primal optimat’ and dual
This, of course, suggests that we should remove the requiggtimal D invariant undeiG. If we further have
ment thato be p.p.t.; the same proof then gives the following -
statement. Uop'Us = (5.2)

Theorem 4.13:For any stateg ando for somel/y € U(k) ® U(l) with UyGUy = G, then we may
further take

< 5 Tr|ol]. .
Dr(p) < S(pllo) +log, Tr|o | (4.53) U FU = F 5.3)
Wheng is p.p.t., we recover the previous bound, while when trrt
o = p, we obtain the bound of [5] (see the remark following UoDlo =D (5-4)
Corollary 4.6 above). Note that we could also have obtained Proof. Let ¥ be the superoperator
this result using [9, Theorem 1], based on the fidelity bound of ;
Corollary 4.5; this is essentially just the dual of the above ptoof. P:p vea UpU (5.5)
The proof given above was chosen to emphasize the fact that

any bound on p.p.t. distillable entanglement can in principle llgjegratlng with respect to the uniform probability measure on

. This is trace-preserving;local (thus p.p.t.), and satisfies
deduced from the dual SDP bound. ¥ = U* = U2, The first claim thus follows from the theorem.

If we define - Similarly, if ¥ is the superoperator
B(p, o) := 5(pllo) 4 logy Tr|o” | (4.54)
o' L (W(p) + UpW(p)tUy] 5.6
then we have the following. Pz ( ) 0¥ (p) 0) (56)
then the theorem applies . O

Theorem 4.14:For any stateg and o, and any trace-pre-
serving superoperatdr with both & and '™ positive Remark: In particular, ifp is real, then we can také; = 1T,
allowing us to forcel” and D to be real as well. Ip = Ugp'U,

B(¥(p), (o)) < B(p, o). (4.55) g b= Uor'Us

for somely, we will say thatp is pseudoreal.
For any other statg’ and real numbed < p < 1

, , To apply this, it will be helpful to work in greater generality

B(pp + (1 =p)p', o) <pB(p, o) + (1 = p)B(p', o). (4.56) initially. Suppose simply that is a Hermitian operator invariant
Finally, we have in general under a subgrouf C U(k); we would like an efficient repre-
/ N P sentation op in which it is still straightforward to test positivity.
Bloop, oo 0_) B Ble, o) +B(e', ). . (4.57) Clearly, p is invariant under if and only if p commutes
Proof: Indeed, thiss true for each of the functiohig||o)  with every element ofa. But thenp in fact commutes with

andlog, Tr[o"| individually, so must be true for their surill  the algebraC[G] of linear combinations of elements 6. In
In general 3 is not convex ino. In particular, we cannot as- other words,» must be an element of the centralizer algebra

sume that a local maximum @ is necessarily a global max- 4 of C[G]. From representation theory, we have the following
imum. This is likely to make it very difficult to explicitly com- 1€mma.

putemin, (B(p, o)), although one can still, of course, obtain | emma 5.3: There exists a unitary change of basis exhibiting
bounds from any given value of. an isomorphism

Cla] = @ (Mat(dy, C) @ 1, ) (5.7)

for appropriate constants, andm, such that
If the statep has a large group of local symmetries, we can

V. EXPLOITING SYMMETRIES

2 .
greatly simplify the primal and dual SDPs, in several cases to Z dy = dim(C[G]) (5.8)
the point of beindinear programs. The key observation is that, A
by the proof of Theorem 4.7, we have the following theorem. Z mady = k. (5.9)
A

2M. Horodecki, P. Horodecki, and R. Horodecki (personal communication)
have pointed out a third proof via [6, Theorem 2J; it is reasonably straightfoln the same basis, the centralizer algebra is given by
ward to show that the new bound satisfies their criteria for an upper bound to
distillable entanglement. @i (1g, ® Mat(my, C)). (5.10)
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In particular, the statg is determined by a set of Hermitian S(z,y) =B <(d +Dz—(d-1y x4+ y) (5.19)
operators,, with dimensionsn ; furthermore p is positive if ’ 2 T2 ) '
and only if p, is positive for each\. Pseudoreality conditions Proof: LetF be primal optimal foft(I( £)©"; K) such

also carry over readily: in an appropriate basis, they produgyt 1 is invariant underS,, and G?. The representatlons of
conditions of the form ap real, b)px = px', or €) px quater-  this group are in one-to-one correspondence with the integers

nionic. Finally, we have the trace identity 0< A <mn,withdy = (7)(d?2 — 1)* andm,, = 1. Writing
Tr(po) Z d\Tr(pron). (5.12) By =d\Fy (5.20)
In particular, our S|mpI|f|cat|0n of'- above can be viewed as Bz, y) = Z Bz (5.21)
a special case of this, based on the following two examples.
we have
Example: Let G; be the subgroup df (d?) consisting of op- o
erators/ @ U. Any G;-invariant operator can be written in the Tt (F1a(f Z daFx (p°") (5.22)
form
_ n—A 2 A
p = 2®(d) + y(1 — (d)) (5.12) = EA: Bafr (1= f)/(d” = 1)) (5.23)
withp 2 01ty 2 0. = B(f, (1= N/ - 1). (5.24)

Partial-transposing the above example, we get another @fe next observe that< F iff 0 < B(x, ) andF < 1 iff

ample.
o B(z, y) -<Zd)\a:" MA=(z+(d* - 1)y)".  (5.25)
Example: Let G,, be the subgroup of/(d?) consisting of

operatord/ @ U. Any G ,-invariant operator can be written in Similarly, the partlal transposE" is invariant undess,, and

the form = y G . Again the representations are indexedby A < 7, with
p=75 (1+do(d)") + 5 (1 - do(d)") (5.13) S G

2 2 Jo—(" d°+d d°—d 26

with p > 0iff =, y > 0. A=y > 2 (5.26)

The following is another important example. mh =1. (5.27)

Example: Letp be a state of dimensioh Then the statg®*  Defining
is invariant under the symmetric grodp, acting by permuting

! r
the tensor factors. I’ is a genericS,,-invariant operator, then Sx =dy\(F7) (5.28)
the blocksy’, are in one-to-one correspondence with the degree Sz, y) = Z Sz My (5.29)
n representations @& L, (C), in such a way thas®"™ maps to
the image op in the corresponding representation. we obtain the condition

If p itself has symmetries, then we can simplify further. If <d2 d 2 —d >n
Yy

Az, y) is a homogeneous polynomial in two variables, theﬂE 5 ¥ + 5
we write L R PR
+ —
< <= . (5.
Alz, y) = 0 (5.14) _S(w,y)_K< 5ot u) (5.30)
to denote the condition that has nonnegative coefficients; sim- Finally, the relation betweefi(z, y) andB(x, y) obtains by
ilarly noting that
r Y )"
A, y) < Bla,w) 5.5 (o) =10 (FF (5 (vran(@r)+§ -anr)) )
means thaB(z, y) — A(z, y) has nonnegative coefficients. (5.31)
Theorem 5.4:For any real numbe® < f < 1, K > 0, and —Tr <F <(d + Do —(d- 1y o(d)
any integersl > 1,n > 0 2
®Kn. — _ 2 XRn
Fr(La(f)™"; K) = max B(f, (1= f)/(d* = 1)) (5.16) SERIG g d))> ) 5.32)
whereB(z, y) and S(«x, y) range over homogeneous polyno-
mials of degreer such that _pf(d+Dz—(d-1y z+y
B . ) (5.33)
0 =Bz, y) 2 (x + (&* = Dy)" (5.17) -
1 (d?+d  d2—d \" o ,
K 5 * + 5 Y Remark: For d = 2, this linear program appeared in [7] as

an upper bound on the fidelity of separable distillation; the ob-
servation that it provides lmwer bound on p.p.t. distillation is
new.

1 <d2+d d? —
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Similarly, we get the following. thato possess the symmetriesoiWhenp is isotropic, we learn
nothing new (the earlier bound [7], [15], [9] is unchanged), but

5:Fi <p< i . . !
Theorem 5.5:Fix a real numbef) < p < 1 and an integer when,p is Werner, we obtain the following.

d > 2, and letW,(p) denote the Werner state

1—p P Corollary 5.7: Fix a real numbef) < p < 1 and an integer
Wy(p) = (1+7(21)) + (1-7(21)) (5:34) 4~ 2. Then

d2+d a2 —d
whereT'(21) = d®(d)'. Then Dr(Wa(p)) <min B(Wu(p), )
21-p) 2p
Qn. _
Ir (Wd(p) 7K) —llglag,(B< 2 +d "2 —d (535) 0, OSPS%
where ] 1tplog, (p) . L
0 < B( )< <d2+d d?2—d )" (5.36) o H1—p)logy(1—p), 5Sp<5+3
z,y) = z+ Y . -
2 2 log, (42) +plog, (42), 3+i<p<i.
1
- o (@ =y (5.46)
. Proof: By the above argument, we may assume=
25w, y) 2 2 (w4 (@ = Dy)" (5.37) Wa(p). Now
p 1-p
—(d— B(Wa(p), Wa(p')) = plog, <—) +(1—p)log, < )
Ble,y) =S <(d+ Dz . (d 1)y7 x;ry> (5.28) 7 1
1, p<i
Corollary 5.6: For the antisymmetric Werner stat®,(1), + 22 1) 1 (5.47)
1+=—— ss<p <l
we have . _ o
P d+2 5 39 We find that the optimap’ satisfies
r(Wa(1); K) = min " AR (5.39) P, OSPS%
1 1 1 1
d+2 p=q 72 75Pp=3tg (5.48)
Dr(Wwy(1)) = log, <T) . (5.40) (d—2) L
d+2—dp? st+;<p<1
For any state i Plugging in, we obtain the stated bound. O
Fr(p @ Wu(1); K) =Fr <p; m) (5.41)  Remark 1: We observe that this bound is differentiable and

convex for0 < p < 1, and tight forp = 1.
Dr(p @ Wy(1)) = Dr(p) + Dr(Wa(1)).  (5.42)

Remark 2: The above bound has recently been indepen-
Proof: We observe that

dently derived in [1], as the regularized relative entropy of

d+2 . i
Te |[Wy(1)F| = ; . entanglement; that |s,1
. . ®n
Thus, if we show that(Wy(1); ¢£2) = 1, the proof of Corol- dm - min S (r=" o) - (5.49)

lary 4.3 will apply to give (5.41); taking = ®(1) gives (5.39), This suggests that the bounds of Theorems 4.11 and 4.13 may
and the equations fabr- follow immediately. It, thus, remains yeqy|arize to the same bound.

to show T (Wy(1); “2) > 1 (since the other inequality is im-

mediate). VI. HASHING ANALOGS
Taking o
24d\ [d—2 2 —d One of the few known lower bounds on distillable entan-
Blx = R S 5.43) glement is based on the “hashing” protocol [3]; it will be in-
(z, v) y (5.43)
2 d+2 2 structive to consider this bound (for p.p.t. distillation) via the
S(z, y) = d (—z+ (d> = 1)y) (5.44) present techniques. The key point of the hashing bound is that
d+2 on “low-weight” states, it gives fidelity close td, while on
we find

“high-weight” states, it gives fidelity close t@. This suggests
P <Wd(1); d;ﬁ) > B <07 d22 d) 1 (5.45) the reasoning behind the following proof.
B Theorem 6.1:Fix a fidelity 3 < f < 1and aninteged > 1.
D Then
Similar results apply to “iso-Werner” states—states whic[’pr( L))
are linear combinations df, 7(21), and®(d) (invariant under

1—
O ® O with O € O(d))—and Bell-diagonal states—states on > max <10g2 d+ flog, f+(1—f)log, _d+{’ 0) . (6.1)
C2*2 which are linear combinations df(2) ando,,®(2)o ;! _ _ .
for w € {z, y, #} Proof: Fix an integem > 0, and consider the s&t,, con-

Using Theorem 4.14, we can apply the argument of Corollaﬂiﬁtmg of tensor products
5.2 to conclude that when minimizing(p, o), we may insist P=0®i<i<nF; (6.2)
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with eachP; € {®(d), 1 — ®(d)}; note, in particular, tha®,
is a set of mutually orthogonal projections. Since
1 d—1 d+1

L I o<1 L [ e
@@= and “= < [1-e(@)| <

; (6.3)

we have

|PY| < d™"(d+1)"* (D) (6.4)

where we definevt (P) to be the number of factors equal to

1— ®(d).
Let us then define an operator
Fu(wy= Y P (6.5)
PEP,
wt (P)<w

We observe thak;, (w) is a projection, s@ < F,(w) < 1, and
that

Tr(Fn(w)(Ta(H)™) = Y

0<i<w

n —i i
(H)r=a-n ©o
which tends tal asn — oo as long as

w:= lim w/n>1-f. (6.7)
We also compute

mwrls ¥ wsar 3 (1)@

Pcp, O<i<w
wt(P)<w

(6.8)

If we takew < % then we obtain the limit

(d‘" ng <7z> (d + 1)%‘)

= —wlogyw — (1 — w)logy(1 — w)

1
lim — log,
n—oo 1

+ wlogy(d+ 1) — log,(d).

But then, by Theorem 3.1, we conclude that

Dellu(1) 2 logs(d) +logs (5 )+ (1= loga(1 )

(6.9)
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p.p.t. distillable entanglement, and the conjecture was made that
this bound was tight (even for the 1-locally distillable entangle-
ment). We give a partial resolution of this conjecture.

Theorem 6.2:For any maximally correlated state
o= avijlit) (il
%)
the p.p.t. distillable entanglement is given by the formula
DF(pa) = B(Oé) = H(Oéll, 22, .. ) - S(Oé) (613)

Proof: That this is an upper bound was shown in [9], so
it suffices to prove the lower bound. We construct a protocol in
two steps.

First, suppose: possesses a transitive group of symmetries;
that is, a transitive grou@’ of permutations such that

(6.12)

—1

Qr(i)n(f) = g Vred, 1< j<k. (6.14)
(For instance, the operator
1 i —t
3 6
a=|F 1 (6.15)
G

wi ols. o

6
is symmetric under the transitive grodp of cyclic shifts.) We
decompose

a™ = 3" Apa(n) (6.16)

A€(0,1]

wherep, (n) is the orthogonal projection onto theeigenspace
of «®™. Thenp,(n) is symmetric under the transitive groG{y,
and thus has constant diagonal. If we similarly decompose

> AR(n) (6.17)

A€(0,1]

®Qn _
pa -

we find

P)\(TL) = ppx(n)' (618)

We can thus apply the following lemma B\ (n).

Lemma 6.3:Let p = ps be a maximally correlated operator
of dimensiornd x d such that? has constant diagonal. Then

(6.10)
wheneverl — f < w < g—ié Since this is decreasing over |pr| < TY(P). (6.19)
the range, we obtain the strongest bound by taking the limit as - d
w — 1 — f, proving the theorem. O Proof: We compute
r g e
Remark: Whend = 2, this is precisely the hashing lower Pt =" Bijlid) (il (6.20)

bound (albeit weaker, in that it applies only to p.p.t. distillation). 6

However, ford > 2, the new bound is strictly stronger.

This is a block matrix with one- and two-dimensional blocks;
we thus immediately compute that its eigenvalues @refor

This gives us a general technique for proving lower boungs. ; d, and=£|3;;| for 1 < i < j < d. Sinceg is positive,
on p.p.t.-distillable entanglement: approximate the given statg nave - -
as a linear combination of projections with well-controlled par-

tial transposes. Our primary application of this will be to “max-

1Bii” < BiiBys (6.21)

imally correlated states” [9]. We recall that a maximally corre-

lated operator is one of the form

0= pPa = Z iz id) (5.5

1<i, <k

(6.11)

for some positive Hermitian operatar and similarly for a max-

and, thus, the largest eigenvalue gf in absolute value is
maxi <;<d [3” We thus have

1 T

1<i<d
1<i<d

(6.22)

imally correlated state. In [9], an upper bound was given on the O
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Now, write
P(n,z)= > P(n)
2<A<L
ze = inf({z € (0, 1]: Tx(pP(n, z)) > 1 —€}). (6.24)
Then fore > 0, we find that since
Te(P(n, x.))

(6.23)

|P(n, zc)"| < yn (6.25)
we have
Dr(p) > lim lim —2 log, S 2 g 56
e—=0n—oo 7 dr
= log, d — S(a). (6.27)

Since
H(aq, azp--+) = H(1/d, 1/d, ...) =logyd
we have proved the theorem in the symmetric case.

Toreduce the general case to the symmetric case, we adapt the

distillation protocol for pure states given in [2]. Given a waerd
inthe numberg - - - k, we writewt, (w) for the number of times
1 appears inv. Then our first step is, given

P =) I o e

w,w \1<m<n

[waw) (w2 | (6.28)
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where
r; = Te(Bp). (6.36)
Proof: To any subsef C {1, 2, ...m}", we associate a

projection

Ps = Z ® Py, (6.37)

weS 1<i<n

which satisfies

IS I se (6.38)

weS 1<i<n
For eachd < € < 1 and each integet > 1, let 3,(¢) be the

minimum oversS of the largest eigenvalue oPL | subject to the
constraintIr(Psp®™) > 1 — e. Then

—log, 3
Dr(p) > lim iélf lim inf ~ 1082 Bule) (6.39)
€—> n—od n
(take ' = Ps). Since
Te(Psp™) = > [ rw (6.40)

weS 1<i<n

the theorem follows by the classical analog of Lemma 4[T0.

VIl. CLONES

to measurevt; for 1 < < k. Then the resulting (random) state

por 1S maximally correlated, and/ admits a transitive action of  In this section, we sketch a possible direction to take in ap-

Sy. Now plying the above techniques to 1-local questions (quantum codes
d distillati tocols).
Dr(pa) = lDr(p?f") > lE(D(pa/)) _ lE(B(o/)), and distillation protocols)
" " (6.29) Definition 5: An operator4 on (C*)®" is an “n-clone” if it

where E(-) is the expected value, and the inequality follow§an be written in the form
from the fact that the measurement is local, so cannot increase

the expected distillable entanglement. It thus suffices to show

that

E(B(d/)) = nB(a) + o(n). (6.30)

(7.1)

A=) A0m

where eachi; is a positive operator, or can be written as a limit
of such operators.

For a permutationr € S,,, () is the operator ofC*)®"

Now, the measurement has at mo&tdifferent outcomes, so it that permutes the tensor factorsbywhens = 21 € S, this

gives us at most log, n bits of information. But then

E(H(d)) 2nH(a) — klogyn (6.31)
E(S(o)) <nS(a) (6.32)

so we find
E(B(d")) > nB(a) — klogyn = nB(a) +o(n), (6.33)
as required. O

We also have the following general result.

Theorem 6.4:Fix a finite-dimensional Hilbert spadg, and
let

lyev = Z P

1<i<m

(6.34)

be a partition of the identity with th&; orthogonal projections.

For eachl < i < m, lets; be the largest eigenvalue QP! |.

Then for any state € P(V ® V'), we have
Dr(p)z Y rillogy i —logy s:)

1<i<m

(6.35)

agrees with our earlier notation.

Theorem 7.1:Let A be ann-clone. Then, for all involutions
m € S,, and all setsS < {1, 2, ...n} that intersect each
2-cycle ofr exactly once, the following operator is positive:

(AT ())Ts. (7.2)

Proof: Since nonnegative linear combinations and limits
of positive operators are positive, it suffices to prove the re-
sult for A = A§™. In that case(AT(r))"s factors as a tensor
product of the following operators:

A, AT and ((A® A)T(21)'=. (7.3)

The first two are clearly positive; that the third is positive is a
special case of the following lemma. O

Lemma 7.2: For any operatod (not necessarily Hermitian),
the operator
((A@ AT)T(21))"™ (7.4)

is positive.
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Proof: We have
(A@ ANT(21))" = (4@ D)T(21)(AT 1))
=(Ae1)(T(21)*(AT@1). (7.5)
Since

T(21)"2 = dim(A)®(dim(A)) > 0

the result follows. O

For instance, le€ be a quantum code of lengthover an al-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

In other words, these are precisely the weight enumerators of
C [13], [8], [10]. In the full linear programming bound for
guantum codes, there is an additional inequality

1
Beo(z, y) — dim(C)
To prove this, we simply exten@' to a self-dual cod&+ by
encoding half of®(dim(C)) into C'. We then have

Acle,y)20.  (7.15)

A (@, y, u, v) = Ag(z, yu + Ac(y, z)v - (7.16)
SO

SC‘Jr (.’L’, Y, U, U)

phabet of sizé, and consider the following average over codes

equivalent toC"

— SC(.Z‘, y) - SC(—.Z‘,y) w4 Sc(l', y) +SC‘(_$7 y) v

2 2
W(C) = Ecrnc(Per @ Pev). (7.6) (7.17)
This is clearly a 2-clone, so we conclude that the following opBc+ (z, ¥, u, v)
erators are positive: 1
= (hT(C) Ac(z, y)u
we)y  we)y werent. (7.7)
1
We also find thati (C) is invariant under operators of the + <BC(977 v) - Tm(0) Ac(z, y)) v (7.18)
form U @ U, with U in the semidirect product df,, acting on
U(k)®™. Thus, using the techniques of Section V, we concludélc+ (@, ¥, u, v)
that the three given operators are positive if and only if the 1
following three polynomials have nonnegative coefficients: ~ dim(0) Ac(z, y)u
1-7(21)  1+T(21)\“" 1
P — <W(C) <x 2D, >) ) + (Bc@c, D)~ gy At y>) . (7.19)
(7.8) Inparticular, the polynomiaBc (z, y)—ﬁ(c) Ac(z, y) must

Be(z, y):=Tr (W(C)F < <aﬁ é T(21)

+y <1_ é T(21)>>®n> F) (7.9)

Aoz, y):=Tr ((W(C)T(21))F <<a: é T(21)

v (1- 7)) ®> F) |

(7.10)
Using the fact thalr( MY NY) = Tr(M N), we find
Sz, y) = AL (“y, y‘“’) (7.12)
2 2
Bof(e, 4) = A <u o ”) (7.12)
Ac(e, ) = Ac (””;y, y) (7.13)
where
cla, y) = Te(W(O) (= +yT'(21))"") (7.14)

have nonnegative coefficients.

We can thus extend the linear programming bound to higher
order invariants [12] by using the relevant symmetry group to
decompose the operators attached to

Wi(CH) = Ecrcr PS! (7.20)

by Theorem 7.1. Note that sin¢&;(C*)T'(x) = W;(C™) for
™ € S,,, we have only | + 1 operators to consider.

Another application of the clone concept is to 1-local oper-
ations. Fix a Hilbert spac¥, ® Vg, and consider the 1-local
operation

V=>4 085 (7.21)

whereBB; are operations, and; are completely positive super-
operators such that,; 4, is an operation. Then, as remarked in
[3], we can extend’ to an operation on the larger Hilbert space
Vi @ V™ by simply taking

v =3 A 0B (7.22)

Note that this depends not just dn but also on the specific
decomposition (7.21). The following is straightforward.

Lemma 7.3:For any 1-local operatiof, any integer. > 1,
and any vector € V4 ® V4, the operator

o, ((|v><v| o1) (\If(n) (@(Vao Vﬁ?n))»
is ann-clone.

(7.23)
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Using Theorem 7.1, we obtain a number of semidefinitenegen tracing away the other copy &%, we find thatl takes
constraints thatl'® must satisfy; these constraints can, iy(1/d?) to I (1/K?). On the other hand, we have
principle, be used to obtain bounds on 1-local distillation. (For
instance, the argument of [3] can be restated in these terms,
although we have not done so.) Unfortunately, the resulting
semidefinite programs tend to be fairly complicated, and thif¥ée thus obtain a contradiction, and the theorem followsL]

further ideas would seem to be needed. We also note that th&emark: From [11], it follows that

cloning argument is quite fragile; if we define an “activated”

fidelity

Fi(p; K) = limsup Fy(p @ ®(d); dK)

d—oo

Fu(la(f); K) 2 1/K? +

after Corollary 4.3, then we can no longer directly use cloning

to bound the corresponding distillable entanglement.

We close with the following new application of the cloning [

argument.

Theorem 7.4:Fix a pair of integerd < K < d. Then for all
fidelities1/d < f < 1, we have the strict inequality

fd—1
d—1

Fi(ly(f); K) < 1/K + (1-1/K).  (7.25)

Proof: Suppose we had equality. A protocélattaining

(2]

(3]

(4]

this bound would certainly have to be p.p.t.; thus, if we apply [5]

this protocol tol,(f’), the output fidelity will take the form

F(f") = af’ + b for some constants andb, or equivalently

d—f'd fld—1

AN / /
F(f')=—— p R (7.26)
for constantsg/’, &. Evaluating thisaf’ = 1/d, f' = 1, we find
ad <1/K V<1 (7.27)

On the other hand, gt = f, we have

B d—fd fld-1

F(f)y=(1/K) 71 PR (7.28)

Since the coefficients are both positive, we conclude éhat
1/K, ¥ = 1. In particular, must takel,(1) = ®(d) to
Ix(1) = ©(K).

Now, consider the action 0f® on the stateb(d) @ % 1.
Since U takes the pure state(d) to the pure stat@(K), we

conclude thatt® must take®(d) ® 3 14 to a state of the form

®(K) @ X; by symmetry, we conclude th&f = + 1. But

(6]
(7]
(8]
(9]

[10]
[11]
(12]

[13]

(14]

[15]

[16]

d+1-K 1

F(1/d*) = e

(7.29)

fd?—1

S (1= 1/K?)

(7.30)

(7-24)  wheneven < K < d. Is this lower bound tight?
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