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A Table of Upper Bounds for Binary Codes

ERIK AGRELL, ALEXANDER VARDY, AND KENNETH ZEGER

Abstract— Let A(n,d) denote the maximum possible num-
ber of codewords in an (n, d) binary code. We establish 4 new
bounds on A(n,d), namely A(21,4) < 43689, A(22,4) < 87378,
A(22,6) < 6941, and A(23,4) < 173491. Furthermore, using
recent upper bounds on the size of constant-weight binary
codes, we reapply known methods to generate a table of
bounds on A(n, d) for all n < 28. This table extends the range
of parameters compared with previously known tables.

Keywords— Binary codes, constant-weight codes, Delsarte
inequalities, linear programming, upper bounds.

I. INTRODUCTION

N (n,d) binary code is a set of binary vectors (or code-
words) of length n such that the Hamming distance
between any two of them is at least d. An (n,d,w) con-
stant-weight binary code is an (n,d) binary code in which
all codewords have the same number w of ones. The size of
a code is its cardinality. The maximum possible sizes of bi-
nary codes and constant-weight binary codes are denoted
A(n,d) and A(n,d,w), respectively. Known methods to
bound A(n,d) often assume that bounds on A(n,d,w) are
known. Motivated by the recently published [1] tables of
upper bounds on A(n,d, w), we compute bounds on A(n, d)
for all lengths n < 28. This generates TableI, which is the
main result of this correspondence. The table gives up-
per bounds for longer codes than existing tables; it also
includes several updates to bounds in these tables.

The latest published table of upper bounds on A(n,d) is
[5, p- 248], for the range n < 24 and d < 10. A wider range
of parameters is included in [4, Table II]. Updates to the
combination of the upper bounds in [4] and [5] are given
in boldface in TableI. Specifically, we establish four new
bounds on A(n,d) for n < 24, namely A(21,4) < 43689,
A(22,4) < 87378, A(22,6) < 6941, and A(23,4) < 173491.
Superscripts in TableI indicate the method used to obtain
each upper bound, where integers refer to theorem numbers
in this correspondence while S refers to bounds for specific
parameters (discussed in the last paragraph of the next
section). The best known lower bounds are included for
completeness; these are taken from [9].

Online versions of the tables of bounds on A(n,d) and
A(n,d,w) are available at [2]. We welcome reports of any
updates, which will be recorded at [2] upon verification.
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II. A TABLE OF BOUNDS ON A(n,d)

We start with a brief review of known upper bounds on
A(n,d) that are referenced in TableI. The following bounds
are due to Plotkin [12].

THEOREM 1.
A(n,d) < 2A(n—1,d)

A < 2|50
A(n,d)

ifn < 2d

IN

2n, ifn=2d.

Johnson [10, p. 532] showed that the sphere-packing bound
can be improved as follows.

THEOREM 2. For every positive integer ¢,

o <o ((75) o+ ()

. (")) = (P 1A —1,25,25 — 1)) _1'

L("5))
The best known bounds on A(n, d, w) are tabulated in [1,2].
One useful result of Theorem2 is A(24,4) < 344308. This
was known to Johnson [8, Table I] in 1971, but has been
overlooked in later tables [4,5].

The distance distribution of a binary code € is defined as
the sequence 4; = |[{(c1,¢2) € € x € : d(e1,¢2) = i}|/|F|
for i = 0,1,...,n, where d(-,-) is the Hamming distance.
It is known that A(n,d) = A(n + 1,d + 1) if d is odd.
Furthermore, for any (n,d) binary code with even d, there
exists another (n,d) binary code with the same number
of codewords, in which all codewords have even weight.
Hence, the search for A(n,d) can be limited to those codes
for which d is even and A; = 0 for all odd ¢. The linear
programming bound was introduced by Delsarte [6], who
showed that the distance distribution of any code satisfies

D> AiP(i) > 0
=0

for k=0,1,...,n, where Py(x) is the Krawtchouk polyno-
mial of degree k, given by:

rer = 20 () (75)

J

As discussed above, it would suffice to consider only even
values of d, while assuming that A; = 0 except for 4y and
Ads Agy2,- -5 As|ny2 - Thisleads to the following theorem.

Erratum: In Theorem 2, the denominator "\Ifloor {n-1
\choose \delta} \rfloor" should be "\Ifloor (n-1)/\delta \rfloor"
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TABLE I
A TABLE OF BOUNDS ON A(n,d). BOLDFACE DENOTES UPDATES TO (4, 5].

n d

4 6 8 10 12 14
6 41 21
7 81 21
8 161 21 21
9 204 41 21
10 401 61 21 21
11 728 121 21 21
12 1445 241 41 21 2T
13 2563 328 41 21 21
14 5123 643 8! 21 21 21
15 10242 1283 161 41 21 21
16 20482 2562 321 41 21 21
17 2720 — 32763 256 — 3405 36 — 375 6! 21 2!
18 5312 — 65521 512 — 6801 64 — 725 10! 41 21
19 10496 — 131041 1024 — 12884 128 — 1444 20! 41 21
20 20480 — 262081 2048 — 23724 256 — 2793 401 6! 21
21 36864 — 436894 2560 — 40965 5128 42 — 485 8! 41
22 73728 — 873781 4096 — 6941* 10243 50 — 885 121 41
23 147456 — 1734913 8192 — 137744 20483 76 — 1504 241 41
24 294912 — 3443082 16384 — 241064 40962 128 — 2802 481 6!
25 524288 — 5991854 16384 — 481483 4096 — 64254 176 — 5494 52 — 565 8!
26 || 1048576 — 11983701 32768 — 861324 4096 — 103364 270 — 10294 64 — 985 141
27 || 2097152 — 2396740! 65536 — 162400* 8192 — 178043 512 — 17643 128 —169% 28!
28 || 4194304 — 4793480! 131072 — 291269 16384 — 32205 1024 — 32003 178 — 2883 56!

THEOREM 3. For every positive even integer d,

A(n,d) < 1+ Lmax(Ad +Agpo+ -+ AQLn/QJ)J (1)
subject to the constraints
0 < A; < A(n,d,i), i=d, d+2,...,2|n/2]
[n/2]
. n

j=d/2

In some cases, the right-hand side of (2) can be slightly
increased, as in the following theorem [3, Theorems 5, 8].

THEOREM 4. The distance distribution of an (n,d) bi-
nary code of odd size M satisfies

[n/2]
. 1-M (n

Z A2 P(2§) > T<k>7 k=1,2,...,|n/2]
j=d/2
while if M = 2 (mod 4), then for at least onel € {0,...,n}
[n/2] n

. 2—M + 2P (1

S agipizy) 3 CEDW IO -y .

j=d/2

Finally, some bounds hold only for specific values of n
and d. The following bounds, that do not follow from Theo-
rems 1-4, are included in TableI. A(13,6) < 32 was proved
by linear programming in [10, pp.538-540], using con-
straints specifically derived for these parameters. In a sim-
ilar manner, van Pul [13, pp.32-39] proved A(18,8) < 72,
A(21,10) < 48, and A(22,10) < 88, while Honkala [7, pp.
25—27] obtained A(25,12) < 56 and A(26,12) < 98. The
bounds A(17,6) < 340, A(21,6) < 4096, A(17,8) < 37,
and A(21,8) < 512 have been derived in [3], apparently by

linear programming, although the specific inequalities used
in the optimization are not disclosed in [3]. The bounds
A(11,4) < 72 and A(12,4) < 144 have been established
in [11] with the help of a computer-assisted search method
(thereby proving a long-standing conjecture).
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