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Covering Numbers for Support Vector Machines
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Abstract—Support vector (SV) machines are linear classifiers explored by others in a different analysis framework: see the
that use the maximum margin hyperplane in a feature space (simultaneous and independent) development in terms of regu-
defined by a kernel function. Until recently, the only bounds on larization theory in [14] and [7]. One can also recover a depen-

the generalization performance of SV machines (within Valiant's d f ; b . | i a diff  setting:
probably approximately correct framework) took no account of ence of covering numbers on eigenvalues in a ditierent Setting:

the kemel used except in its effect on the margin and radius. iN [13] it was shown how the eigenvalues of the empirical gram
More recently, it has been shown that one can bound the relevant matrix can bound the empirical covering numbers and in turn
covering numbers using tools from functional analysis. In this how generalization results can be obtained that way. The cov-

paper, we show that the resulting bound can be greatly simplified. - jnq nymber bounds of the present paper do not depend on the
The new bound involves the eigenvalues of the integral operator ;
particular data observed.

induced by the kernel. It shows that the effective dimension C : . o ]
depends on the rate of decay of these eigenvalues. We present an N the traditional viewpoint of statistical learning theory, one
explicit calculation of covering numbers for an SV machine using is given a class of functiong, and the generalization perfor-

a Gaussian kernel, which is significantly better than that implied mance attainable using is determined via the covering num-
by previous results. bersN (¢, F) (precise definitions are given in what follows).

Index Terms—Covering numbers, entropy numbers, kernel ma- - Many generalization error bounds can be expressed in terms of
chines, statistical learning theory, support vector (SV) machines. N (e, F). The main method of boundink(e, F) has been to

use the Vapnik—Chervonenkis dimension or one of its general-
|. INTRODUCTION izations (see [1], [2] for an overview).

In [15], [16], the classF is viewed as being generated by an
. . ) ’“integral operator induced by the kernel, and properties of this
ithms based on maximum margin hyperplanes [4] whic erator are used to bound the required covering numbers. The

make use of an impl'icit mapping into feature space by usingr ult is in a form that is not particularly easy to use (see (15)
general kernel function in place of the standard inner produ%d (16))

Consequently, one can apply an analysis for the MaxIMUMyy e main technical result of this paper is a covering number

margin a_lgorlthm directly to SV machines. ngever, such @t/aund based on this result that is amenable to direct calculation.
process |gnore“s ihe effeSt of the kernel. Intuitively one wou e illustrate the new result by bounding the covering numbers
expect that a smoqther ker_nel would sqmehow reduce g g\ machines which use Gaussian radial basis function (RBF)
capacity of _thellearnlng machlne thu; leading to be_tter bou nels with variance?. The result shows the influence of the
on_g_enerallzanon error if the machine could aftain a sm riance on the covering numbers: the covering number bound
training error. decreases whes?® increases. More generally, the main result

In [15], [16] it has been shown that this intuition is justifiedy, o5 model order selection possible using any parameterized

The main result there (quoted Iater_) gives a bound on the C?é{Fnily of kernel functions, since it describes how the capacity
ering numbers for the class of functions computed with SV m f the class is affected by changes to the kernel

chines. This bound along with statistical results in [3] and [11 = -

or0 < oo andd € N, define the spaces
results in bounds that explicitly depend on the kernel used. The <P oo < P
intuitive idea that eigenvalues of kernels must have something to g}‘f ={xe R¢: |l2]]¢e < o0}

say about generalization performance has also been previously
where thep-norms are

UPPORT vector (SV) machines [5], [6] are learning algq-
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m pointszy, ..., x,, € ¢¢ we use the shorthanX™ = always exists. Define
(x1, ..., T,,). SUPPOSEF is a class of functions defined &tf.
The ¢4 normwith respect taX™ of f € F is defined as A A\ >

P € = 6RuCy | jk <71 = ’”) + > A (5)

[/ llexr := max | f(z)]- =t
o Then

To simplify notation, we uséX”™ to denote both the space and
the metric induced by the norm in that space. The input space is sup N (e;, Fr,, 1% ) <n (6)

taken to bet, a compact subset 6.
Letk: X x X — R be a kernel satisfying the hypothesewhere the supremum is taken overilituples of data points,
of Mercer's theorem (see Theorem 2). Given points ie,X™ € A™.

T":lt’ f’ m;" €A aiéthe wpat.da}ta% Wf W:'_:.:Eapi the mput_data Although the left-hand side of (6) depends o1 the in-
into a feature spacs (which is in fact a Hilbert space) via aequality remains true for alln. The quantitye} is an upper

hmapr:;}ng?. V|Ve Ie_ta: i: @(f{:)a%ndscil/enotehp)ﬂ:}gw (X™) thle bound on theentropy numbenof Fg_, which is the functional
YPOINESIS class Implemented by SV Machines omesampIe . o se of the covering number. In this theorem, the nurmher

with weight vector (in feature spac§ bounded by, has a natural interpretation. if = d is independent of, then

Fra(X™) = {X™ > (w, 81), ..., (w, B)): 2 € X, from (5) we can obtain

X"ex™ wes, ||w| <R} (1) 1\ ¥
(:n(]:Rw) = O <—>
and the hypothesis clags;,, on A™ is defined as "

d
> N e, Fry, X"} =0 <1)>
Fro=U U Frxm. @ > 2, (4 P ) (
m=1 X™mcxm™

Hence, for a given value af, j can be viewed as theffec-
Here,(-, -} is the inner product i. Let \; > A, > --- > 0 be tive dimensiorof the function class. Clearly, this effective di-

the eigenvalues of the integral operator mension depends on the rate of decay of the eigenvalues. As
expected, for smooth kernels (which have rapidly decreasing
Ty: Lo(X) — La(X) eigenvalues), the effective dimension is small. In the following,
we write 5* for j7.
Ty [ /Y/%‘(w vy dy Before proceeding with the formal part of the paper, we

very briefly outline (for those unfamiliar with the setting) the
and denote by, (-), n € N the corresponding eigenfunctionslearning model used in order to motivate the results. More
(The eigenvalues are real and nonnegative because of thedg$ails can be found in [15] and references therein or in several
sumptions ork—see the next section.) For translation invariariecent textbooks such as [2]. The setting is learning from
kernels (such ak(z, y) = exp((z — y)?/0?)), the eigenvalues examples. The learning machine is given a training sequence

are given by (Z1, ¥1), - - -, (®m, ym) Where thez; are drawn independently
from some unknown probability distributio®. The y; are
Ai = V21 K(jwo) (3) given by some teacher (think of it as a functiorgge= f(x;)).

Of course,f is not known, the aim being to learn it. Algorith-
for j € Z, whereK (w) = F[k(z)](w) is the Fourier transform mically, one can minimize thempirical risk
of &(-) (see [15], [16] for further details; and see Section IV for .
an explanation ofyy). For smoother kernels, the Fourier trans- A TS
form F'(jwo) decreases faster. (There are fewer“high-frequency Remp(f) := Z(yz = [(2:)
components.”) Thus, for smooth kernelg,decreases to zero
rapidly for increasing. of some estimatg but what one would really like to minimize
the expected risk

R(f) = Ep((yi - f(2:))*).

above. Suppose (Here we are using the “squared loss”; other choices are pos-
sible.) An important theoretical question then is: “If for sofhe

i=1

Theorem 1 (Main Result)Suppose: is a kernel satisfying
the hypothesis of Mercer’s theorem. Let the hypothesis class
Fr, €igenfunctions),, () and eigenvalue§);); be defined as

Cr = Sup [nllLa < o0 (4) Remp(f) is small, does this meaR( f) is as well?” It turns out
N that one can bound the difference betwe&n,,(f) and R(f)
Then, forn € N, the minimum in a probabilistic sense, and such bounds are in terms of the
1 covering numbers of the class of hypotheses from wifitiad
% = min {j: At < <>\1 : 2 )\j) ’ } the possibility of being drawn from—a better bound being ob-
n tained using smaller covering number estimates. The particular
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covering numbers needed are those used in the statement offtktiee integral exists and
main theorem above.

The remainder of the paper is organized as follows. We start Ifll 2 (xy = ess sup | f(z)].
by introducing notation and definitions (Section Il). Section IlI zex
contains the main result (the proofis in Appendix A). Section 'YSee, e.g., [8] for the definition of the essential supremum.) For
contains an example of the application of the main result. Se_lc-s p < oo, we let
tion V concludes the paper.

Lp(X) :={f: & = R: || fll1,(x) < oo}
[I. DEFINITIONS AND PREVIOUS RESULTS

Let £(F, F) be the set of all bounded linear operatdrs We sometimes writd,, = LZ’(X)' :

between the normed spadés, || - || ) and(F, || - || ) (defined Supposel’: F — FEis a linear operator mapping a normed

over the field of complex numbers), i.e., operators such that t acgE into itself. We say that: € L is an eigenvector
image of the (closed) unit ball of 7" if for some scalar\, Tx = Az. Such a\ is called the

eigenvaluaassociated witlx. WhenZ is a function space (e.g.,
Ug :={z € E:||z||p <1} (7) E= L, (X)), the eigenvectors are, of course, functions, and
are usually calle@igenfunctionsThus,,, is an eigenfunction
is bounded. The smallest such bound is calledfferatornorm of 7: L:(X) — Lo(&X) if T4, = At¢,. In general X is
complex, but in this paper all eigenvalues are real (because of

||| == sup | Tl (8)  the symmetry of the kernels used to induce the operators). The
wete inner product inL, (') is defined as f, g) = [, f(7)g(7)dr.
Thenth entropy number ofaseé C E, forn € N, is We will make use of Mercer’s theorem. The version stated

below is a special case of the theorem proven in [9, p. 145].
en(M) :=inf{e > 0: there exists an-cover forM in the

: Loo(X x X)i -
metric|| - ||z containingn or fewer point$. (9) Theorem 2 (Mercer):Supposes € Lo (X' x &) is @ sym

metric kernel (i.e.k(z, ') = k(2', x)) such that the integral
In case of ambiguity, we will sometime writg (M, || - [|z) to  OPeratorli: La(A) — La(X)

explicitly indicate the metric that the covering number is taken

with respect to. (The function — ¢, (M) can be thought of as T f(-) = / k(- w)f(y) dy (13)
the functional inverse of the function— A (e, M, d) where X

d is the metric induced byf - [|z.) Theentropy numbers of an s positive (i.e., for allf € La(X), (Ti.(f), f) > 0; for sym-

operator? € £(F, I') are defined as metrick this is equivalent toy; > 0 for all i). Let); € Ly(X)
) be the eigenfunction df;, associated with the eigenvalig #
nll) := en(T(Uk))- (10) ¢ and normalized such thiity;||7, = 1 and lety); denote its

Note thate; (7) = ||T’||, and that,,(T) is well defined for all $(t)1mplex conjugate. Supposfg is continuous for allj € N.
n € Nif T is acompact operatari.e., if T(Ug) is compact. en
In the following, & will always denote a kernel, andland 1) (\(7)); € f1;
m will be the input_dimensionality and_ the numb_er of training 2) k(x, y) = > jen At (@) (y) holds for all (z, y),
examples, respectively, so that the training data is a sequence  where the series converges absolutely and uniformly for

4 almost all(z, y).
(xlv y1)7 st (xrnv yrn) S R X R (11) . . . . .
We will call a kernel satisfying the conditions of this theorem a

Let log denote the logarithm to bage Mercer kernel

Given a class of function®’, the generalization performance Note that in an early version of [15] we made use of an in-
attainable usingr can be bounded in terms of the covering numezorrect additional conclusion of Mercer’s theorem to the effect
bers of F. More precisely, for some set, andz; € X for that any Mercer kernel satisfies (4) (we propagated the error

¢t = 1, ..., m, define theuniform e-covering numbeof the from [9, p. 145]). Steve Smale (private communication) has
function classF on X as shown one can construct a counterexample to such a statement.
o In[10], a re-derivation of the main result of [15] is made without
N (e, F) == o N (6, F, X ) (12) the need for (4) to hold. The idea is to replakgby I; =

sup,cx A;|¢;(x)|? and proceed as in the original argument.
whereN (¢, F,£X") is thee-covering number of with respect  The bottom line is that all of the results of the present paper
to #X™ . Many generalization error bounds can be expressedthen hold for kernels for whicki’;, may be infinite as long as

terms of V™ (¢, F) (see, for example, [2], [3], [12]). l; is finite for all j. For simplicity of presentation, we have as-
AssumeX’ is a measurable space, given somg p < oo sumedC;, < oo here and thuséj = Clz)‘j and the results are
and a functionf: X — R we define explicitly stated in terms of’,, and ;. We are unaware of any

kernel used in practice for whidh is infinite.

o Py L/p In [15], an upper bound on the entropy numbers was given in
11z, vy == | (@)I” d() terms of the eigenvalues of the kernel used. The resultis interms
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of the entropy numbers of a scaling operatarThe notation = Theorem 5: Letk: X' x X — R be a Mercer kernel satisfying

(as)s € £, denotes the sequente,, ao, ...). (4). Supposé\;, A, ... are the eigenvalues @%.. For anyn €
) N, the minimum
Theorem 3 (Entropy Numbers fé(.X)): Letk: A x X —R .
be a Mercer kernel satisfying (4). Choosg > 0 for j € N ) A
such thatv/A;/as), € £2, and defined: ¢, — 45 by g7 = min g Ji Ajes < n? (19)
[ ist d
A(23); = (Raagz,); (14) always exists, an
inf ~sup B((as)s, n, 4) < B((ay)s, n, %)
with R4 := Cil|(\/A;/a;);lle., Wwhere(z;); is a sequence in ria's)s:(\//\_s/as)sw JeN
4> andxz; a real number, respectively. Then where o
VAL wheni < j*
aj\i a; = 7 (20)
al4) < sup 6 [(Va/a) [, (55) a9 z <_AA) . wheni > j*.

This result leads to the following bounds for SV classes. Th_|s choice ofa,), results in a simple form for the bound of
(16) in terms ofn and(A;);.
Theorem 4 (Bounds for SV Classed)et k£ be a Mercer

kernel satisfying (4). Then for all € N Corollary 6: Letk: X x & — R be a Mercer kernel satis-

fying (4) and letA: ¢, — ¢5 be given by (14). Then for any

en(Fros ™) < R inf en(A) (16) n € N, the entropy numbers satisfy
B O R, w2 R inf en(A)

(as )s : (\/x/(l,s )s €ly
whereA is defined as in Theorem 3. Notice that whilg g, )

depends onr, its upper bound does not. < 6C ” <)\1- )f Z N @)
= Eald | — 5
Combining (15) and (16) gives effective bounds on imj 41
N™(e, Fr,) since with
0 (Frys £2) < " (co, Fra) < . L Ao

These results thus give a method to obtain bounds on the en-
tropy numbers for kernel machines. In (15) and (16), we cdris corollary, together with (16), implies Theorem 1.
choose(a; ), andj to optimize the bound. The key technical
contribution of this paper is the explicit determination of th&roof Outline
best choice ofa,), and;. The proof of Theorem 5 is quite long and is in Appendix A.
We assume henceforth th@, ). is fixed and sorted in non- | inyolves the following four steps.

increasing order, and, > 0 for all s. Forj € N, we define the
set 1) We first prove that for ath € N

4= {(as)s: up (al 'A'ai)% _ (a1714a1>%} (17) J = min {J Ajgr < <)\1 '71—'2-)\])7} (22)

€N
exists, wheneve();); are the eigenvalues of a Mercer
In other words A4, is the set of a, ), such that the kernel.

2) We then prove that for any € N

(alag---ai)? ; B(( ) )
Sup in sup As)s, 1, 1
eN " (QS)S:(V)\s/as)scfz JEN

<inf inf  B((as)s n, j§). (23)

is attained at = j. T JEN (a,),€4;
Let
3) The next step is to prove that the choice(ef), andj
) ai---a;\3 described by (19) and (20) are optimal. Itis separated into
B((as)sa n, j) = H ( V )‘s/as)s ‘ ( n J) . (18) two parts:

a) for anyjo < j*, and any(a;), € A;,,

B((a5)57 m, JO) >B(( )57 7J*)
holds;
b) for anyjo > j*, and any(as)s € A;,,

[1l. THE OPTIMAL CHOICE OF (a;)s AND j

Our aim in this section is to show that the infimum in (16)
and the supremum in (15) can be achieved and to give explicit ) »
expressions for the sequengeg ), and numbey* that achieve B((as)s: n jo) 2 B((a5)s; 7, 57)
them. The main technical theorem is as follows. also holds.
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4) Finally, we show thata?), € A; and(y/A;/a%), € 4o
when(a?), is chosen according to (20).

243

We can now use (5) to give an upper bound-gnSince the\;
decay so rapidly the tal>;” . |,

A; in (5) is dominated by the

first term. We obtain the following bound:

IV. EXAMPLE

=0 (j*n7f761 exp (—%2 G+ + 1))) .

We illustrate the results of this paper with an example. Co&ubstituting (27) shows that

sider the kernek(z, y) = k(z — y) wherek(z) = == /7",
(Here,d = 1.) For such kernels (RBF kerneld)®(z)|l., = 1

loge, = O (log logn + logo — (o logn) %) . (28)

for all z € X. Thus, by Mercer’s theorem, the class (1) can bé/e can get several results from (28).

written as

Fr, ={&8— (W, 2):2€ S, [|&]le, <1, [lwlle, < Ru}-
(See, for example, [6] for a more detailed explanation of this
point—it is the fundamental basis of viewing SV machines
in feature space.) One can use the fat-shattering dimension to

bound the covering number of the class of functidng, (see,
for example, [2]).

Theorem 7: With Fg_, as above, ifn > 16R2 /e? > 1

Rw\’ 4eRy,
log N™ (¢, Fr,) < 48 <—) log? <M) (24)
€ €

In order to determine the eigenvaluesiaf, we need to pe-
riodize the kernel. This periodization is necessary in order to
get a discrete set of eigenvalues sii¢e) has infinite support
(see [15] for further details). For our purposes, we can assume a
fixed period2 /wq for somewy > 0. Since the kernel is trans-
lation-invariant, the eigenfunctions afg(x) = /2 cos(nwox)
and soC;, = v/2 [15]. The/2 factor comes from the require-
ment in Theorem 2 thd}y;|l,, = 1. The eigenvalues can be
computed and are

The relationship betweene,, and »n. For fixed =, (28)
shows that

log1/e, = Q (log% n)
which implies

log N'™ (¢, Fr,) = O <1og% <%>>

which is considerably better than Theorem 7. Note that
(29) does not depend an. This is a consequence of using
(16) which also has no dependenceenOne can obtain a
dependence im if instead of (16) one uses [15, eq. (49)].
As explained in [15], for moderate decay rateg &f); the
bounds obtained are no better by doing so.

(29)

The relationship betweeng,, and o2, Here o2 is the vari-
ance of the Gaussian functions. Wheh increases, the
kernel function will be wider, so the clas&g, should

be simpler. In (28), we notice that if decreases;,, de-
creases for fixedh. Similarly, if o increasesyp decreases
for fixed ¢,,. Since the entropy numbers (and the covering
numbers) indicate the capacity of the learning machine, the

el e more complicated the machine, the bigger are the covering
Aj = Varoe 7T numbers for fixed,,. Specifically, we see from (28) that
Settinge, = V2710, ¢ = %g o2, the eigenvalues can be written log1/e, = (a%)

as
and that

log N (e, Fr,) = O(1/0). (30)

Figs. 1 and 2 illustrate the bounds on the effective dimension
j* (for 02 = 1) as a function of ande, respectively.

(25)

)‘j = 616_c2j2 .
From (19), we know that

L
AL A\ 7
)‘j-l-l < < n2 )

impliesj* < j. But (25) shows that this condition on the eigen-
values is equivalent to

1
J 7
clcfcz(j"'l)z <n”7 <c{ exp <—02 Z L2>>
=1

which is equivalent to

V. CONCLUSION

We have presented a new formula for bounding the covering
numbers of SV machines in terms of the eigenvalues of an inte-
gral operator induced by the kernel. We showed, by way of an
example using a Gaussian kernel, that the new bound is easily
computed and considerably better than previous results that did
not take account of the kernel. We showed explicitly the effect
of the choice of width of the kernel in this case.

The “effective dimension,’*, can illustrate the character of
kernel expansions clearly. For a smooth kernel, the “effective
dimension”j* is small. The value of* depends om which
in turn depends on. Thus,;* can be considered analogous to
existing “scale-sensitive” dimensions, such as the fat-shattering
dimension. A key difference is that we now have boundgifor
that explicitly depend on the kernel.

The bounds obtained apply to any dimensibkowever, re-
peated eigenvalues become generic for isotropic translation in-
variant kernels. Itis possible to obtain bounds that can be tighter

(26)

2
e +1)2 > . 1nn+%2(j+1) (25 +1)

20 +1)i(i+2)>2hn

S 12lnn 1/3
wdo? '
< 12Inn 1/3 41
7= wio? )

which follows from

Hence,

(27)
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in some cases, by using a slightly more refined argument; see
[15].
141
APPENDIX A
PROOF OFTHEOREM 1
12 Step One
As indicated in Section 1, we will first prove the existence
of 7, which is defined in (22).
107 Lemma 8: Suppose\; > Ao > --- > 0 is a nonincreasing
sequence of nonnegative numbers #nd,_.., A; = 0. Then,
j* for all n € N, there existg € N such that
8- PYREEPY *
A < <T) . (31)
X
6- Proof: LetP; = Alf_&: . Observe that (31) can be written
aspP; < niz and hence for alk there is g such that (31) is true
iff lim; ... % = 0. But
41 J :
p. = A _ A 1 N < Aj1
P VRERDY AL A T oM
J =2
o] since(};); is nonincreasing. Sinckm; . A; = 0, we get
, o2 o lim; ., F; = 0. Thus, for anyn € N there is a; such that
' ' n ‘ (31) is true. O
Fig. 1. j* versusn for a Gaussian kernel. Corollary 9: Suppose is a Mercer kernel and}, the asso-
ciated integral operator. X, = A;(Z%), then the minimurny
from (22) always exists.
Proof: By Mercer's theorem,();); € ¢ and so
14 lim; .., A; = 0. Lemma 8 can thus be applied. O
Step Two
Lemma 10: Supposed; and B((as)s, n, j) are defined as
12 in (17) and (18)(+v/A;/a%)s € 42, j* and(a?), € A, satisfy
B((aX)s, n, 7*)=inf inf B((a,)s n, J). 32
((a2)sy m, 7) = nf ot ((as)s; n, j).  (32)
L10 Then
inf sup B((as)s, 7, )
_ (as)s: (VAs/as) €tz jEN
i . . p
g < of b B(as)s m g). (39)
Proof: Since(v/As/a*)s € €2
inf sup B((as)s, 7, )
6 (as)s: (VA /a,) Cls jEN
< sup B((a3)s, n, ). (34)
JjeN
4 But (a}), € Aj-, following the definition ofA; and equality
(32) we get
sup B((a:)m n, J) :B((a:)& n, J*)
JjeN
e T2 =inf inf B((as)s, n,j). O
1e-13 1e-11 1e-09 1e-07 1e-05 .1e—2 .1 1.1e2 JeN (a,).€4;
€

In fact, we can show that inequality (33) is an equality. The
Fig. 2. j* versuse for a Gaussian kernel. Singe can be interpreted as an nroof is in Appendix B.
“effective dimension,” this clearly illustrates why the bound on the coverinB . . .
numbers for Gaussian kernels grows so slowly a<). Even where = 109, It is now easier to calculate the optimal bound of the entropy

j* isonly13. number using Lemma 10.
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Step Three
In this step, we will prove that the choice 6f%), andj*

given in Theorem 5 are optimal. We will first prove a useful Z

technical result.

Lemma 11:SupposeA; and (
(as)s € Aj,. Then we have

(al_

Proof: Since(a;); € A,,, the following inequality must
be true fork € N:

Ai

>

.= a;
i=jo+1

(39)

Z)\>O

i=jo+1

(al"'ajg"'aj0+k)ﬁ<(al"'a/jg)% (36)
n - n
which implies
Jjo+k
(al...ajo...aj0+k)<(al...ajO)T
n - n
=
&
G i € (BT YEEN. (37)
Set
1
r(/} _ (al...ajo)jo '
n
Then (37) can be rewritten as
Ajo+1 """ Ajo+k < 1/1k, VkeN. (38)

Hence, the left-hand side of (35) can be rewritten as

oo oo

= 11
a2 B
3oave 3 et 3 ()
i=jo+1 * i=jo+1 i=jo+1 v
(39)
From (38), we getij,+1 < %, SO
1 1
>0
aJZ0+1 z/}Q

Suppose— — # < 0 for somei € N. We will separate the
sum into several parts. Set

ko = Jo

kn, = max {n >l 2 < #7

I, = max {n > ko1 3 > %7
Vie{kmo1+1, ..., n}} )

where we sek,,, andl,,, to oo if the max does not exist. Since
(A\;); is a nonincreasing sequence, from (40) we know

1 1 1 1
Ail 53— 3 ) 2 A+ | 53— =
<a3 w2>— +<a3 w‘z)
Vie{kmo1+1, ..., L} ceN
1 1 1 1
Ail 5 — == Aiee |l 35— 0
<a3 w2>> <2 w‘z)
Vie{ln,+1, ..., kn}, Vee{l,...,i—1}

A;); are defined as above,
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for m € N. Hence, ifl,,, is finite,

i \ <1 1 )
ilz 02
t=km_1+1 @ ”(/)
l E
s 1 1 s 1 1
il A o
2> <a2 w)*’ 2 <a2 w2>
i=ky_1+1 g i=l,,+1 g
k
i 1 1
. Y (Z-5) (41)
t=Kpm_1+1 Z

And if ,,, is infinite, this inequality is clearly true. We will ex-

ploit the inequality of the arithmetic and geometric means
14zt + x> mla ~~a:m)%, forz; > 0. (42)

Now (42) implies that for anyo + 1 < j < k,,, we have

Z %2 J—’fo>< I

j*lko
) (43)
as
1=kg+1

i=ko+1l ¢
which together with (38) gives

J J .
1 1 1 j—ko
X Ew)-X et @
i=kg+1 i=kg+1
Hence, for any,,, finite or infinite,
k
i 1 1
42 <a_72_ﬁ>20' (45)
1=kgo+1 4

Now, for all %,,,, using (41) and (45) repeatedly, we get

i’é x(l 1)
ilgz e
i=ko+1 LA
ky Ko
1 1 1 1
- X M) X *i(@‘ﬁ)
i=ko+1 i=km—1+1
k1
1 1 1 1
2 3 () Y ()
i=ko+1 g i=kop_1+1 g
M1 1 1
> A Z <—2——2>+-- + A, Z —2——2>
i=ko+1 @ 4 i=h 141 a; P
k
s 1 1
> 2 A, Y <g—ﬁ)zo
i=ko+1 g
for all m € N. Hence,
2 i viE-LYso (46)
4 a? Y?) ~
i=jo+1 v
Noticing (39), inequality (35) is true. O

Now, let us prove the main result.

Lemma 12: Let A; andB((a
Then we have

B((a})s, n, j*) = inf inf
(@), m, 57) jéIéN (aS)ISHCAj0

s)s» 1, j) be defined as above.

B((as)57 n, jO)v (47)
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where
N when: < j5*
af = < AA>— o (48)
M , wheni > j*
PV VAN
j*:min{j: Aj1 < < ! 3 J) } (49)
n

Proof: The mainideaisto compat#®((a,)s., n, jo) with
B*((a})s, n, 5*) and show

B*((as)s, n. jo) =

for all jo € N and any(a,),
B((as)s, n, j), we know

B2((CL5 sa n, JO <Z

and
R ) £y

For convenience, we set

A oA\ T
()

Hence,
BQ((GS)S’ n, JO) - BQ((G:)S’ n, J*)

o>

B Ai(al---%)x

B S Y LT L
a: n

=1 ¢

Part a): For the Conditionj, < j*:
BQ((GS)Sv n, 70) BQ(( )87 n, 1 )

Jjo
S
= S(—=
a; n
=1 z

B*((a)s, m, §)
€ Aj,. From the definition of

i=j 41

Rewrite (50)

(50)

oo

AR

i=jo+1

2
)\i (a1~~~aj0)%
2

ai n

ot N fag-eeag, = ot
*{Z 2 ()T - X AZ}
i=jo+1 * i=jo+1
Mo\ £l e
+{ Jo <%) et Z A
i=jo+1
— A+ Z Ai
i=jr+1
=FE, +E;+ Es. (51)
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We will show E; > 0, E> > 0, andE5 > 0.

To ProveE; > 0: Since); > 0 anda; > 0, we exploit
the inequality of the arithmetic and geometric means (42) again.

Hence
) L
Jo Jo e
a%"'a?o 7o ; )\1...)% o
—jo| =2
n? n?

El ZJO 2 2
al...ajo

AT (AN, \
:j0<_1 21) _j0<71 21) 0,
n n

To ProveE; > 0: Applying Lemma 11 show#; > 0.

(52)

To ProveFEs > 0: In order to provel’s > 0, let us define
the function

1
) AL\ e
9(4) =J< 1n2 J) + Y A
i=j+1
We will show thatg(y) is a nonincreasing function of, for

(53)

7 < j*. Set
Ao\ 7 A oA\ 7T
ﬁj = < n2 J) ) ﬁjfl = <TJ>
we have
9 =1 —9() =0 —DBi-1+ X —iB;
’ =N =) =3B = i) (54)
Noticing 31 \; = /3%, (54) can be modified to

9(i = 1) - 9(3)
=377V (8] - B - 921

Sincej < j*, following (49), we get

1
Ny de o\ T
Aj 2 <%) ) Vi<g*.

~ 1)) (55)

(56)

So

e
S )‘1"')‘]'71 i TiG-1)
= n2

AN\ T

1) C=p

Making use of the formula
(57)
we obtain

=P =B—B8i1) Y BB

=1
> BIZ1(B; — Biz1)-
Together with3;_; > 0 and (55), we obtain
(Aj = Bj-1) =3 (Bj = Bj-1) 2 0.
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Since();/a?) > 0, using the inequality of the arithmetic and

Hence,

geometric mean (42) again, we get

j—1)> g(4). L
9 —1) = 9(4) iA—> o\
Sincejy < j*, we get et ai = ai - af n? Dy

) " Since(as)s € A;,, we getD;, > D, for anyi # jo and
E3 = g(jo) — 9(4") 2 0. (58) JO)\ o\
10 Ay 3
A 1< <TJ>

Combining the above results, we get
holds based on (49). Hence,

B*((as)s; n, jo) — B*((al)s, m, ) 20, Vjo < j". Y
(59) P >0+(D;, — Dy Z ?
Part b): For the Conditionj, > j*: Rewrite (50) i=1
1
. " % >(D; D A
B2((a5)s, s jo) = BX(a2)ss . 5°) Diy = D) p =
1,
_ Z—+ > ;- (alni%)% >(Diy = D) 5= i"Nrn 20 (62)
I e S Let us conside?, now. If P> > 0, thenF; > 0.

So let us prove that; > 0 is also true wher» < 0. Ob-
servinga? = D!/Di~1 andD;, > D, for anyi # jo, the last

Jo 0o
)\7; - )\7 T
Z Z element of%»

i=j 41 i=jo+1 '
. : D, D\t

Jo N Jo Mo | =22 =1 =\ 20 —-1]<o.
_ Z )\_; (a1 --.CL]O)JO _j*A_ Z )\7 Jo < a]zo ) Jo << Djo ) =
¢ O/i n

=t Using a similar method as before, suppdsé — 1 > 0 for
somei € (j*, jo). We separaté into several parts. Set

=5 paagnh S
X E()T e X ko = jo+1
i=jo+1 * i=jo+1
: . Djo
=5+ F. (60) Iy = minqn < ky,: 2 1<0,

We will show £y > 0 andfh > 0. Viedn, ..., ky, — 1}}

To Provel; > 0: For convenience, we set
k3

DZ _ (al ... aZ)
" Vie {n, ...,zm_l_1}}. (63)
Iy can be rewritten as ) ] ] ]
Since(\;); is a nonincreasing sequence, from (63) we know

J* Jo Jo D. D
i As - . Jo
>t o | Pn—ita= 3 A A”(ai )MZ“(% )

Vie {bmyt, ooy lm — 1}, ceN
J
= Djozy_j[\ )\i<aj20—1>>)\i_c<aj20—1>
Vi€ {lmy ooy b — 1}, Vee {1,....i—1}. (64)

Jo ) )
I Z A\, <D]0 _ 1) =P+ P. (61) Using (64), we have

ko, —1
> ()

T

D;
km = Inin{n<lm 1 ——1>0
a?

2

Let us consider”; at first i=Kpp1
-5 ln—1 Ky —1
J s D; - D;
Ai jo jo
PL=(Dj, +Djo =Dj) Y = —j"A ZAI”;; <a§ 1>+)\lm zl: <a? 1)
i=1 ) 1=FKm+1 =tm
J J km 1
i Aq _ Dj,
S OF S USRI g “x. 3 (G- (9
* =1 ¢ i=Kpmt1 ’
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Hence,
Jo
D.
02P= Y <af; —1)&
=gl S
k1—1 ko—1
= > (Zo)ae X (B o)y
i=j*+1 z i=k
By —1 ko—1
D, D,
> Y (B X (B ).
i=je+l N i=k1 i
If
ko—l
D/.
MY <a—; - 1) >0
1=k1 g
we get
k1—1
n> > (Z-1)
i=j"+1 N
If
ko—1
D/.
Ny <a—f; - 1) <0

i=ky
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In order to showr; > 0, we just need to show

7" A 41(Djy = Dj+) <Dj*
+)\,'*+ll
Df ’ Djo

)T_1 > 0. (68)

WhenD;. = Dy,

Do\ T
| (5)
Inequality (68) holds.

WhenD;, > D;-, setting®y = D;lo and¢, = D% the
inequality (68) can be rewritten as
1

"X 41(Djy, = D)
D;

—-1| =0.

" 1
gi)‘jwrlj (€5 — L) 2 <I>{; A+l (B — o .
Noticing
D\ A (@1 — @)
Ajrqal J) 1| =2t <0 (69
VAR <Dj0 (1)6 <0 (69)
we only need to show
Aivnd % (B~ ) (70)
Al (0] — 1)

Since;-41 > Aj-4q, the left-hand side of (70) becomes
Ajand" @0 (Bh—BL) ity (26— )
Aje 4l ®L(RY — ®L) T IBL(BY — L)

we can use (64) and (65) repeatedly. Finally, using (42) afégking use of (57) again, we obtain

a? = Di/Di~1 again, we can get

Jr
0>P> Y < “—1) yo
Z

i=j*+1
i+
D,.
=\ qt Z <a—f;—1>
Z:]*—l—l T
1 7
> Xl D; —1
g+ <%’*+1' 'a§*+l> Jo
D!
;]
D \ T
> Nyl 1 ) -1
= <Dr+l
DT
> Nl < J ) -1, with 7€ {1 ko—1}
Djo
(66)
Combining (62) and (66), we have
A, D; — D
F = P1+P>11+1( Jjo J)
D
D\
Xl J -1 67
* I <Dj0> ( )

{
oy o (<1>0—<1>)2<1>l it

A
L) " J*
194 (00 — d1) 1BL(Bg — B.)

1=

) it
1

o S
ey e

. i=1
B i
1015 &) Tl
i=1
Lo g
D DL R
4=l
=— -
zzqﬂ —iplti-l
Jo1 —
>y e e
_k= =1
= . (71
Z Z (I)J —Z(I)l-l—z 1
k=1:i=1

Observe the numerator and the denominator both hiave [
elements represented @§'¢7. But we know®, > &, since
D;, > Dj;«, hence from (71), we obtain

Jjt 1 J
E E(I)J - Z(I)z 1 E E(I)J (I)l 1
k=1:1=1 k=1i=1

- > -
[ e . LJ .,
EEww pha

_ e et @y
el el e T
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So

LDy — 1) —
Hence,
FL=P,+P>0 (72)
is proved forjo = 5% + k with all £ € N.

To Provel, > 0: Using Lemma 11 again, we get

Fy > 0. (73)
Combining (72) and (73), we get
BQ((as)sv n, jo)—BQ((CL:)S, n, J*) ZO \V/JO >J*
(74)
Combining (59) and (74), (47) is proved true. |

Step Four

We supposed thdt}), € A;- in the above proof. Now let

us show it. First, forj > 5%, from (20)

Gl

* *
414y alq-al)
n Jr+l J
1

n

n

< N7 (
) ()
< Yy

i

B A A J‘_"‘_ aj - ah \ T
o ) T\ n )

Second, forj < 5. From (56), we get

1 1
afoeat\i ANAY
n o n? -

Thus’(a:)s € AJ*
We can also shown/)\, /at), € 4>

(@/a:)gzdi % =¢j*+% S

i=1 i=j"+1

(75)

Whenk(z, y) andn are given(\;); and;j* are determined. So
1

2
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Conclusion
Following the proof above, we get the following corollary.

Corollary 13: Supposed,; and B((a.)., n, j) are defined
asin (17) and (18). Then we have

B((a*(5* i) =inf inf B((as)s n j) (76
(@s(™)), m, ) = fnf inf  B((as)s, n, 5)  (76)
where
VA, wheni < j5*
aj = oo\ (77)
<—A1n ok ) . wheni > j*
Ao\ T
4% = min {J A1 < < ! 5 J) } . (78)
n

Theorem 1 is then established.

APPENDIX B
PROOF THAT (33) CANNOT BE IMPROVED

Lemma 14: Supposed; and B((a;)s, n, j) are defined as
above. Letj € Nand(a,), € A,. Supposg™ and(a’), exist.
Then

inf sup B((as)s, 1, J

(QS)S:(\/X/as)seéz JEN (( ) )
= inf inf  B((as)s, n, j)- (79
jof,  nf ((as)s, n, j). (79)

Proof: Let us prove

inf sup B((as)s, n, J

(@s)s: (VAs/as)s€lz jEN ((a,) )
> inf inf  B((as)s, n, j). (80)

T JEN (as)sCA;

Choose ar{a?), to realize the infimum on the left-hand side;
then (a¥), € A;-, wherej* is the j that realizes the inner
supremum. Then

inf sup B((as)s, n, j)
(as)s: (VAs/as)s Tz jEN

= sup B((a:)57 n, 7)
JCN

= B((a})s, n, j7) > inf

((ls )s EAj*

B((as)s, n, j)-

B((as)s, n, j*)

> inf inf
JEN (a.).€A;

We have already proved

inf sup B((as)s, 1, J
(@s)s: (VAs/as)s€lz jEN ({a,) )

<inf inf  B((as)s, n, j)-

< b nf Bl(as)s n, J)

So, (79) is proved to be true. O
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