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Abstract—Support vector (SV) machines are linear classifiers
that use the maximum margin hyperplane in a feature space
defined by a kernel function. Until recently, the only bounds on
the generalization performance of SV machines (within Valiant’s
probably approximately correct framework) took no account of
the kernel used except in its effect on the margin and radius.
More recently, it has been shown that one can bound the relevant
covering numbers using tools from functional analysis. In this
paper, we show that the resulting bound can be greatly simplified.
The new bound involves the eigenvalues of the integral operator
induced by the kernel. It shows that the effective dimension
depends on the rate of decay of these eigenvalues. We present an
explicit calculation of covering numbers for an SV machine using
a Gaussian kernel, which is significantly better than that implied
by previous results.

Index Terms—Covering numbers, entropy numbers, kernel ma-
chines, statistical learning theory, support vector (SV) machines.

I. INTRODUCTION

SUPPORT vector (SV) machines [5], [6] are learning algo-
rithms based on maximum margin hyperplanes [4] which

make use of an implicit mapping into feature space by using a
general kernel function in place of the standard inner product.
Consequently, one can apply an analysis for the maximum
margin algorithm directly to SV machines. However, such a
process ignores the effect of the kernel. Intuitively one would
expect that a “smoother” kernel would somehow reduce the
capacity of the learning machine thus leading to better bounds
on generalization error if the machine could attain a small
training error.

In [15], [16] it has been shown that this intuition is justified.
The main result there (quoted later) gives a bound on the cov-
ering numbers for the class of functions computed with SV ma-
chines. This bound along with statistical results in [3] and [11]
results in bounds that explicitly depend on the kernel used. The
intuitive idea that eigenvalues of kernels must have something to
say about generalization performance has also been previously
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explored by others in a different analysis framework: see the
(simultaneous and independent) development in terms of regu-
larization theory in [14] and [7]. One can also recover a depen-
dence of covering numbers on eigenvalues in a different setting:
in [13] it was shown how the eigenvalues of the empirical gram
matrix can bound the empirical covering numbers and in turn
how generalization results can be obtained that way. The cov-
ering number bounds of the present paper do not depend on the
particular data observed.

In the traditional viewpoint of statistical learning theory, one
is given a class of functions , and the generalization perfor-
mance attainable using is determined via the covering num-
bers (precise definitions are given in what follows).
Many generalization error bounds can be expressed in terms of

. The main method of bounding has been to
use the Vapnik–Chervonenkis dimension or one of its general-
izations (see [1], [2] for an overview).

In [15], [16], the class is viewed as being generated by an
integral operator induced by the kernel, and properties of this
operator are used to bound the required covering numbers. The
result is in a form that is not particularly easy to use (see (15)
and (16)).

The main technical result of this paper is a covering number
bound based on this result that is amenable to direct calculation.
We illustrate the new result by bounding the covering numbers
of SV machines which use Gaussian radial basis function (RBF)
kernels with variance . The result shows the influence of the
variance on the covering numbers: the covering number bound
decreases when increases. More generally, the main result
makes model order selection possible using any parameterized
family of kernel functions, since it describes how the capacity
of the class is affected by changes to the kernel.

For and , define the spaces

where the -norms are

for

for

For , we write and the norms are defined
similarly.

For and a subset of a metric space, an-cover for
with respect to the metric is a subset of the metric space

for which every has a satisfying .
The -covering number of with respect to the metric de-
noted is the size of the smallest-cover for . Given
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points , we use the shorthand
. Suppose is a class of functions defined on .

The normwith respect to of is defined as

To simplify notation, we use to denote both the space and
the metric induced by the norm in that space. The input space is
taken to be , a compact subset of .

Let be a kernel satisfying the hypotheses
of Mercer’s theorem (see Theorem 2). Given points

as the input data, we will map the input data
into a feature space (which is in fact a Hilbert space) via a
mapping . We let , and denote by the
hypothesis class implemented by SV machines on an-sample
with weight vector (in feature space) bounded by

(1)

and the hypothesis class on is defined as

(2)

Here, is the inner product in . Let be
the eigenvalues of the integral operator

and denote by , the corresponding eigenfunctions.
(The eigenvalues are real and nonnegative because of the as-
sumptions on —see the next section.) For translation invariant
kernels (such as ), the eigenvalues
are given by

(3)

for , where is the Fourier transform
of (see [15], [16] for further details; and see Section IV for
an explanation of ). For smoother kernels, the Fourier trans-
form decreases faster. (There are fewer“high-frequency
components.”) Thus, for smooth kernels,decreases to zero
rapidly for increasing.

Theorem 1 (Main Result):Suppose is a kernel satisfying
the hypothesis of Mercer’s theorem. Let the hypothesis class

, eigenfunctions and eigenvalues be defined as
above. Suppose

(4)

Then, for , the minimum

always exists. Define

(5)

Then

(6)

where the supremum is taken over all-tuples of data points,
i.e., .

Although the left-hand side of (6) depends on, the in-
equality remains true for all . The quantity is an upper
bound on theentropy numberof , which is the functional
inverse of the covering number. In this theorem, the number
has a natural interpretation. If is independent of , then
from (5) we can obtain

Hence, for a given value of, can be viewed as theeffec-
tive dimensionof the function class. Clearly, this effective di-
mension depends on the rate of decay of the eigenvalues. As
expected, for smooth kernels (which have rapidly decreasing
eigenvalues), the effective dimension is small. In the following,
we write for .

Before proceeding with the formal part of the paper, we
very briefly outline (for those unfamiliar with the setting) the
learning model used in order to motivate the results. More
details can be found in [15] and references therein or in several
recent textbooks such as [2]. The setting is learning from
examples. The learning machine is given a training sequence

where the are drawn independently
from some unknown probability distribution . The are
given by some teacher (think of it as a function so ).
Of course, is not known, the aim being to learn it. Algorith-
mically, one can minimize theempirical risk

of some estimate but what one would really like to minimize
theexpected risk

(Here we are using the “squared loss”; other choices are pos-
sible.) An important theoretical question then is: “If for some,

is small, does this mean is as well?” It turns out
that one can bound the difference between and
in a probabilistic sense, and such bounds are in terms of the
covering numbers of the class of hypotheses from whichhad
the possibility of being drawn from—a better bound being ob-
tained using smaller covering number estimates. The particular
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covering numbers needed are those used in the statement of the
main theorem above.

The remainder of the paper is organized as follows. We start
by introducing notation and definitions (Section II). Section III
contains the main result (the proof is in Appendix A). Section IV
contains an example of the application of the main result. Sec-
tion V concludes the paper.

II. DEFINITIONS AND PREVIOUS RESULTS

Let be the set of all bounded linear operators
between the normed spaces and (defined
over the field of complex numbers), i.e., operators such that the
image of the (closed) unit ball

(7)

is bounded. The smallest such bound is called theoperator norm

(8)

The th entropy number of a set , for , is

there exists an-cover for in the

metric containing or fewer points (9)

In case of ambiguity, we will sometime write to
explicitly indicate the metric that the covering number is taken
with respect to. (The function can be thought of as
the functional inverse of the function where

is the metric induced by .) Theentropy numbers of an
operator are defined as

(10)

Note that , and that is well defined for all
if is acompact operator, i.e., if is compact.

In the following, will always denote a kernel, and and
will be the input dimensionality and the number of training

examples, respectively, so that the training data is a sequence

(11)

Let denote the logarithm to base.
Given a class of functions , the generalization performance

attainable using can be bounded in terms of the covering num-
bers of . More precisely, for some set , and for

, define theuniform -covering numberof the
function class on as

(12)

where is the -covering number of with respect
to . Many generalization error bounds can be expressed in
terms of (see, for example, [2], [3], [12]).

Assume is a measurable space, given some
and a function we define

if the integral exists and

(See, e.g., [8] for the definition of the essential supremum.) For
, we let

We sometimes write .
Suppose is a linear operator mapping a normed

space into itself. We say that is an eigenvector
of if for some scalar , . Such a is called the
eigenvalueassociated with . When is a function space (e.g.,

), the eigenvectors are, of course, functions, and
are usually calledeigenfunctions. Thus, is an eigenfunction
of if . In general, is
complex, but in this paper all eigenvalues are real (because of
the symmetry of the kernels used to induce the operators). The
inner product in is defined as .

We will make use of Mercer’s theorem. The version stated
below is a special case of the theorem proven in [9, p. 145].

Theorem 2 (Mercer):Suppose is a sym-
metric kernel (i.e., ) such that the integral
operator

(13)

is positive (i.e., for all , ; for sym-
metric this is equivalent to for all ). Let
be the eigenfunction of associated with the eigenvalue

and normalized such that and let denote its
complex conjugate. Suppose is continuous for all .
Then

1) ;

2) holds for all ,
where the series converges absolutely and uniformly for
almost all .

We will call a kernel satisfying the conditions of this theorem a
Mercer kernel.

Note that in an early version of [15] we made use of an in-
correct additional conclusion of Mercer’s theorem to the effect
that any Mercer kernel satisfies (4) (we propagated the error
from [9, p. 145]). Steve Smale (private communication) has
shown one can construct a counterexample to such a statement.
In [10], a re-derivation of the main result of [15] is made without
the need for (4) to hold. The idea is to replaceby

and proceed as in the original argument.
The bottom line is that all of the results of the present paper
then hold for kernels for which may be infinite as long as

is finite for all . For simplicity of presentation, we have as-
sumed here and thus and the results are
explicitly stated in terms of and . We are unaware of any
kernel used in practice for which is infinite.

In [15], an upper bound on the entropy numbers was given in
terms of the eigenvalues of the kernel used. The result is in terms
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of the entropy numbers of a scaling operator. The notation
denotes the sequence .

Theorem 3 (Entropy Numbers for ): Let
be a Mercer kernel satisfying (4). Choose for
such that , and define by

(14)

with , where is a sequence in
and a real number, respectively. Then

(15)

This result leads to the following bounds for SV classes.

Theorem 4 (Bounds for SV Classes):Let be a Mercer
kernel satisfying (4). Then for all

(16)

where is defined as in Theorem 3. Notice that while
depends on , its upper bound does not.

Combining (15) and (16) gives effective bounds on
since

These results thus give a method to obtain bounds on the en-
tropy numbers for kernel machines. In (15) and (16), we can
choose and to optimize the bound. The key technical
contribution of this paper is the explicit determination of the
best choice of and .

We assume henceforth that is fixed and sorted in non-
increasing order, and for all . For , we define the
set

(17)

In other words, is the set of such that the

is attained at .
Let

(18)

III. T HE OPTIMAL CHOICE OF AND

Our aim in this section is to show that the infimum in (16)
and the supremum in (15) can be achieved and to give explicit
expressions for the sequence and number that achieve
them. The main technical theorem is as follows.

Theorem 5: Let be a Mercer kernel satisfying
(4). Suppose are the eigenvalues of . For any

, the minimum

(19)

always exists, and

where
when

when
(20)

This choice of results in a simple form for the bound of
(16) in terms of and .

Corollary 6: Let be a Mercer kernel satis-
fying (4) and let be given by (14). Then for any

, the entropy numbers satisfy

(21)

with

This corollary, together with (16), implies Theorem 1.

Proof Outline

The proof of Theorem 5 is quite long and is in Appendix A.
It involves the following four steps.

1) We first prove that for all

(22)

exists, whenever are the eigenvalues of a Mercer
kernel.

2) We then prove that for any

(23)

3) The next step is to prove that the choice of and
described by (19) and (20) are optimal. It is separated into
two parts:

a) for any , and any ,

holds;
b) for any , and any ,

also holds.
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4) Finally, we show that and
when is chosen according to (20).

IV. EXAMPLE

We illustrate the results of this paper with an example. Con-
sider the kernel where .
(Here, .) For such kernels (RBF kernels),
for all . Thus, by Mercer’s theorem, the class (1) can be
written as

(See, for example, [6] for a more detailed explanation of this
point—it is the fundamental basis of viewing SV machines
in feature space.) One can use the fat-shattering dimension to
bound the covering number of the class of functions (see,
for example, [2]).

Theorem 7: With as above, if

(24)

In order to determine the eigenvalues of, we need to pe-
riodize the kernel. This periodization is necessary in order to
get a discrete set of eigenvalues since has infinite support
(see [15] for further details). For our purposes, we can assume a
fixed period for some . Since the kernel is trans-
lation-invariant, the eigenfunctions are
and so [15]. The factor comes from the require-
ment in Theorem 2 that . The eigenvalues can be
computed and are

Setting , , the eigenvalues can be written
as

(25)

From (19), we know that

implies . But (25) shows that this condition on the eigen-
values is equivalent to

(26)

which is equivalent to

which follows from

Hence,

(27)

We can now use (5) to give an upper bound on. Since the
decay so rapidly the tail in (5) is dominated by the
first term. We obtain the following bound:

Substituting (27) shows that

(28)

We can get several results from (28).

The relationship between and . For fixed , (28)
shows that

which implies

(29)

which is considerably better than Theorem 7. Note that
(29) does not depend on. This is a consequence of using
(16) which also has no dependence on. One can obtain a
dependence in if instead of (16) one uses [15, eq. (49)].
As explained in [15], for moderate decay rates of the
bounds obtained are no better by doing so.

The relationship between and . Here, is the vari-
ance of the Gaussian functions. When increases, the
kernel function will be wider, so the class should
be simpler. In (28), we notice that if decreases, de-
creases for fixed . Similarly, if increases, decreases
for fixed . Since the entropy numbers (and the covering
numbers) indicate the capacity of the learning machine, the
more complicated the machine, the bigger are the covering
numbers for fixed . Specifically, we see from (28) that

and that

(30)

Figs. 1 and 2 illustrate the bounds on the effective dimension
(for ) as a function of and , respectively.

V. CONCLUSION

We have presented a new formula for bounding the covering
numbers of SV machines in terms of the eigenvalues of an inte-
gral operator induced by the kernel. We showed, by way of an
example using a Gaussian kernel, that the new bound is easily
computed and considerably better than previous results that did
not take account of the kernel. We showed explicitly the effect
of the choice of width of the kernel in this case.

The “effective dimension,” , can illustrate the character of
kernel expansions clearly. For a smooth kernel, the “effective
dimension” is small. The value of depends on which
in turn depends on. Thus, can be considered analogous to
existing “scale-sensitive” dimensions, such as the fat-shattering
dimension. A key difference is that we now have bounds for
that explicitly depend on the kernel.

The bounds obtained apply to any dimension. However, re-
peated eigenvalues become generic for isotropic translation in-
variant kernels. It is possible to obtain bounds that can be tighter
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Fig. 1. j versusn for a Gaussian kernel.

Fig. 2. j versus� for a Gaussian kernel. Sincej can be interpreted as an
“effective dimension,” this clearly illustrates why the bound on the covering
numbers for Gaussian kernels grows so slowly as� # 0. Even when� = 10 ,
j is only 13.

in some cases, by using a slightly more refined argument; see
[15].

APPENDIX A
PROOF OFTHEOREM 1

Step One

As indicated in Section III, we will first prove the existence
of , which is defined in (22).

Lemma 8: Suppose is a nonincreasing
sequence of nonnegative numbers and . Then,
for all , there exists such that

(31)

Proof: Let . Observe that (31) can be written

as , and hence for all there is a such that (31) is true
iff . But

since is nonincreasing. Since , we get
. Thus, for any there is a such that

(31) is true.

Corollary 9: Suppose is a Mercer kernel and the asso-
ciated integral operator. If , then the minimum
from (22) always exists.

Proof: By Mercer’s theorem, and so
. Lemma 8 can thus be applied.

Step Two

Lemma 10: Suppose and are defined as
in (17) and (18), , and satisfy

(32)

Then

(33)

Proof: Since

(34)

But , following the definition of and equality
(32) we get

In fact, we can show that inequality (33) is an equality. The
proof is in Appendix B.

It is now easier to calculate the optimal bound of the entropy
number using Lemma 10.
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Step Three

In this step, we will prove that the choice of and
given in Theorem 5 are optimal. We will first prove a useful
technical result.

Lemma 11: Suppose and are defined as above,
. Then we have

(35)

Proof: Since , the following inequality must
be true for :

(36)

which implies

(37)

Set

Then (37) can be rewritten as

(38)

Hence, the left-hand side of (35) can be rewritten as

(39)
From (38), we get , so

Suppose for some . We will separate the
sum into several parts. Set

(40)

where we set and to if the does not exist. Since
is a nonincreasing sequence, from (40) we know

for . Hence, if is finite,

(41)

And if is infinite, this inequality is clearly true. We will ex-
ploit the inequality of the arithmetic and geometric means

for (42)

Now (42) implies that for any , we have

(43)

which together with (38) gives

(44)

Hence, for any , finite or infinite,

(45)

Now, for all , using (41) and (45) repeatedly, we get

for all . Hence,

(46)

Noticing (39), inequality (35) is true.

Now, let us prove the main result.

Lemma 12: Let and be defined as above.
Then we have

(47)
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where
when

when
(48)

(49)

Proof: The main idea is to compare with
and show

for all and any . From the definition of
, we know

and

For convenience, we set

Hence,

(50)

Part a): For the Condition : Rewrite (50)

(51)

We will show , , and .

To Prove : Since and , we exploit
the inequality of the arithmetic and geometric means (42) again.
Hence

(52)

To Prove : Applying Lemma 11 shows .

To Prove : In order to prove , let us define
the function

(53)

We will show that is a nonincreasing function of, for
. Set

we have

(54)

Noticing , (54) can be modified to

(55)

Since , following (49), we get

(56)

So

Making use of the formula

(57)

we obtain

Together with and (55), we obtain
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Hence,

Since , we get

(58)

Combining the above results, we get

(59)

Part b): For the Condition : Rewrite (50)

(60)

We will show and .

To Prove : For convenience, we set

can be rewritten as

(61)

Let us consider at first

Since , using the inequality of the arithmetic and
geometric mean (42) again, we get

Since , we get for any and

holds based on (49). Hence,

(62)

Let us consider now. If , then .
So let us prove that is also true when . Ob-

serving and for any , the last
element of

Using a similar method as before, suppose for
some . We separate into several parts. Set

(63)

Since is a nonincreasing sequence, from (63) we know

(64)

Using (64), we have

(65)
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Hence,

If

we get

If

we can use (64) and (65) repeatedly. Finally, using (42) and
again, we can get

with

(66)

Combining (62) and (66), we have

(67)

In order to show , we just need to show

(68)

When

Inequality (68) holds.

When , setting and , the
inequality (68) can be rewritten as

Noticing

(69)

we only need to show

(70)

Since , the left-hand side of (70) becomes

Making use of (57) again, we obtain

(71)

Observe the numerator and the denominator both have
elements represented as . But we know since

, hence from (71), we obtain
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So

Hence,

(72)

is proved for with all .

To Prove : Using Lemma 11 again, we get

(73)

Combining (72) and (73), we get

(74)
Combining (59) and (74), (47) is proved true.

Step Four

We supposed that in the above proof. Now let
us show it. First, for , from (20)

Second, for . From (56), we get

Thus, .
We can also show

(75)

When and are given, and are determined. So
is a constant. By Mercer’s theorem,

and thus is finite. So (75) is finite. Hence
is proved.

Conclusion

Following the proof above, we get the following corollary.

Corollary 13: Suppose and are defined
as in (17) and (18). Then we have

(76)

where

when

when
(77)

(78)

Theorem 1 is then established.

APPENDIX B
PROOFTHAT (33) CANNOT BE IMPROVED

Lemma 14: Suppose and are defined as
above. Let and . Suppose and exist.
Then

(79)

Proof: Let us prove

(80)

Choose an to realize the infimum on the left-hand side;
then , where is the that realizes the inner
supremum. Then

We have already proved

So, (79) is proved to be true.
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