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Some Results on Type IV Codes OveZ,

Stefka Bouyuklieva

Abstract—Dougherty, Gaborit, Harada, Munemasa, and Solé have pre-
viously given an upper bound on the minimum Lee weight of a Type IV
self-dual Z,-code, using a similar bound for the minimum distance of bi-
nary doubly even self-dual codes. We improve their bound, finding that the
minimum Lee weight of a Type IV self-dual Z,-code of lengthn: is at most
4|n/12], except whenn = 4, andn = 8 when the bound is4, and
n = 16 when the bound is8. We prove that the extremal binary doubly
even self-dual codes of lengtin > 24, n # 32 are not Z,-linear. We
classify Type IV-1 codes of length16. We prove that all Type IV codes of
length 24 have minimum Lee weight4 and minimum Hamming weight 2,
and the Euclidean-optimal Type V-1 codes of this length have minimum
Euclidean weight8.

Index Terms—Type IV codes over rings, self-dual codesZ,-linearity.

|. INTRODUCTION

A binary code is said to bé,-linear if it is the Gray image of
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A Type IV-I (resp., Type IV-Il) code”' is Lee-optimal Euclidean-
optimal, or Hamming-optimalif C' has highest minimum Lee, Eu-
clidean, and Hamming weight among all Type IV-1 (resp., Type IV-II)
codes of that length, respectively. Theorem 1.2 shows that a Type IV
code is Lee-optimal iff it is Hamming-optimal.

The highest minimum Lee, Euclidean, and Hamming weights of
lengthn are denoted byi; (n), dp(n), anddx(n), respectively. In
[5], the parameterdr(n), dr(n), andds(n) for lengths up to24
have been listed in two tables (for Type IV-I and Type V-1l codes).
For Type IV-I, itwas not known il (16) = 2 or4,dz(16) = 4 or 8,
dr,(24) = 4 or8, anddr(24) = 8 or 12. We prove that all Type IV-I
codes of lengti 6 have minimum Hamming weigl, but there exists
a code of this length with minimum Euclidean weighfTable | is the
updated table for Type IV-1 codes.

To prove the result for Type IV-I codes of lengtlé, we give the
complete classification of these codes.

Definitions and preliminary results used in this correspondence
are given in Section Il. Nonlinearity of th&, extremal doubly even
self-dual codes of length > 24, n # 32 and Theorem 1.1 are proved
in Section Ill. In Section IV, we consider the connection between the

a linear Z,-code. In [7], Fields and Gaborit have shown that anghinimum distances of the residue and torsion codes of a Type IV

extremal doubly even self-dual code of lengt® is not Z,-linear,
and the putative extremal doubly even self-dual codes of lerigths

code. The classification of Type IV-I codes of lendth is given in
Section V. In the last section, we prove that the highest minimum Lee,

and96 cannot be constructed as the Gray images of linear codes okgimming, and Euclidean weights for Type IV-I code of lengthare
Z,. In this correspondence, we prove that no doubly even self-dugl2, and8, respectively.

[n, n/2, 4 n/24| + 4] code forn > 24, n # 32, is Z,-linear.
Type IV self-dual codes oveZ, have been introduced in [5] as

self-dual codes with even Hamming weights. The authors proved that
the Gray image of such a code is a binary doubly even self-dual codeA linear codeC" of lengthn over Z,
Using the well-known bound for this type of binary codes, provegg

Il. PRELIMINARIES

is an additive submodule of
. There are three different weights for codes offer namely, the

by Mallows and Sloane [11], they have shown that the minimum I‘qu"amming weight, the Lee weight, and the Euclidean weight. The Lee

weightd;, of a Type IV Z,-code of length: is bounded by

<1+ 5])

We prove that no Type IV self-dual,-code of lengthe > 12, n #
16, and minimum Lee weight|n/12] 44 exists. This result improves
the bound from [5].

Theorem 1.1:If C'is a Type IVZ,-code of lengtl. > 12, n # 16,
and minimum Lee weight,, then

For the other minimum weights, we prove the following theorem.

n

L < 4|
do <413

Theorem 1.2:1f C'is a Type IVZ,-code with minimum Lee weight
dr,, minimum Hamming weight z, and minimum Euclidean weight
dy, then

dy = %dL dp < 2d..
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weights of the elements 1, 2, and3 of Z, are0, 1, 2, and1, respec-
tively, and the Lee weight of a codeword is the rational sum of the Lee
weights of its components. The Euclidean weights for the elements of
Z4 are(), 1, 4, 1, respectively. The Euclidean weight of a codeword is
the rational sum of the Euclidean weights of its components. The usual
Hamming weight of binary or quaternary vectois the number of its
nonzero components, and it is denoteddy(v). In the case where all
the codewords of a binary code have weight a multipl¢ tife code is
said to be doubly even.

We say that twdZ, -codes arequivalenif one can be obtained from
the other by permuting the coordinates and (if necessary) interchanging
two elementd and3 of certain coordinates. Codes differing by only a
permutation of coordinates are callpermutation-equivalent

Any code overZ, is permutation-equivalent to a codewith a gen-
erator matrix of the form

(

whereA, By, B2, andD are(1,0)-matrices. We say that a code with
generator matrix (1) has tyg&*2*2. The binary[n, k1] codeC with
generator matrix

I,
o

A
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TABLE |
THE HIGHEST MINIMUM WEIGHTS FORTYPE IV-l Z,-CODES
Length | dr(n) Codes dy(n) Codes dg(n) Codes
4 4 B 2 DPI5) 4 DF3]
8 4 D§*[5] 2 DE 5] 4 P [5)
12 4 all codes 2 all codes[p] 8 Ky5[9)
16 4 the six codes 2 the six codes 8 CGand ¢
20 4 all codes[5] 2 all codes[5] 8 Ko[5]
24 4 all codes 2 all codes 3 Ky 8 Ky
is called thetorsion codeof the Z,-code. and the Gray map: Z; — Z3" is given by
Several weight enumerators are associated with a codeZven ‘ , .
this correspondence, we deal with the symmetrized weight enumerators o(c) = (B(c), (), c€Zy.
(swe), given by We will use a linearity condition which is equivalent to [9, The-
swec (b, ¢) = Z pra(@)tns () na(e) orem 5].
z€C Theorem 2.2:If C'is a Z,-code, its Gray image(C) is linear if
wheren; (x) is the number of componentf . and only ifa1, 2 € C1 = 1 # 23 € C, Where %” stands for the
We define an inner product ify’ by Hadamard product.
/ To prove some restrictions on the minimum distance of the residue
Ty =Ty 4o+ Ty (mod4). code, we need the following theorem.
The dual code’* of C' is defined as Theorem 2.3 [6]: If C'is aZ4-code whose Gray image is a linear
L ., , binary code then the codewords, us, ..., v, € C; for which
Cr={e€Zi|lx-y=0VyeC} wr(ui) < 2d2,i = 1, ..., t, have disjoint support, and for each
codewordu € Cy we haveu xu; = 00ru *u; = u;, 1 =1,..., ¢t

C'is self-dual ifC' = C'*. Note that self-dual codes ov&, exist for
alln > 0. For Type IV self-dualZ,-codes we have

Self-dual codes over, with even Hamming weights are called Type
IV. Basic properties of Type IV codes over rings of ordeare proved
in [5].

Theorem 2.1 [5]: Let C' be a code oveZ,. Suppose thaf’, and
C3 have generator matrices given by (2) and (3), respectively. i
Type IV, then there exists a uniqyg, 0)-matrix B such that

Theorem 2.4 [5]: If C'is a Type IV Z,-code then its Gray image
¢(C) is a doubly even self-dual binary code.

Self-dual codes over, with the property that all Euclidean weights
are divisible by eight are called Type Il. Self-dual codes which are not
Type Il are called Type I.

Proposition 2.5 [5]: A Type IV codeC' over Z, is Type IV-II if

Ly +2B A B 4) and only if all the Hamming weights @, are multiples o8.
0 2I, 2D

is a generator matrix af’. Moreover, we have l1l. ON THE NON-Z4-LINEARITY OF EXTREMAL TYPE Il CODES
_ 1
)G = 01 ' _ Let C be an extremal binary doubly even self-dual code of length
2) the residue cod€’; contains the all-ones vector, and 2n which is the Gray image of a linedf,-codeC'. Since¢(—c) =
_ (v(e), B(c)), it follows thatC is fixed under the “swap” map that
w2 *y) = 0(mod4) interchanges the left and right halves of each codeword. In other words
foranyx andy € C, o=1Ln+1)2,n+2) - (n, 2n)

3) the number o?’s in each row off;,, +2 B is even, and the matrix ] ] ]
B is symmetric. is an automorphism af. Let C'; andC’; be the residue and the torsion

Conversely, ifC, andC are binary codes with generator matrice§0des of theZ4-cc3deC. With ?m we denote the fixed SUbfoqe of
given by (2) and (3), respectively, and if the conditions 1)-3) are satidndera, namely,Co = {v € C:a(v) = v}. Obviously,v € Cs iff v

fied, then theZ,-codeC with generator matrix (4) is a Type IV code. !5 a codeword irC andv = (’}‘1- U2y vy Upy UL, U2y 00n, Op) IE T
is the map fronC, to Z3 defined byr(v) = (vi, va, ..., vy,), then

We recall that the Gray mag is a distance-preserving map from¢;, == (C, ). For the cod&’; we haveC; =4 (C) wherey: Z3" — Z%
73 (Lee distance) to&Z3" (Hamming distance). Therefore, the min-is defined by
imum (Hamming) weight of the binary Gray image= ¢(C') is the

minimum Lee weight of theZ, -codeC'. We will use the following def- Y(v) = (V1 + Vpt1,V2 + Vng2, ooy Un + V2n).
inition of the Gray map. Two map$ and~ from Z, to Z, are defined
as Theorem 3.1 [2]: If C is a binary self-dual code of leng#m with
¢ Ble) (o) an automorphisna of order2 without fixed points ther(; is a self-
0 0 ’0 orthogonal code of length andC is its dual code.
1 0 1 Corollary 3.2: If C is a binary doubly even self-dual code of length
2 1 1 2n with an automorphisna of order2 without fixed points therCy
3 1 0 contains the all-ones vector.
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Proof: Since all weights irC, are divisible by four, all weights where the vectors, «s, ..., «; of lengthd; are linearly independent.
in Cy are evenand sb € C; = Cy. O Sinces > 3 andC, contains the all-ones vector, its minimum distance

. . dy i mostH: 2r. Accordin Theorem 2.2
Letn = 12m +4r, r = 0, 1, 2, and let the minimum distance 6f 1is atmostm + 2r. According to Theore

be4m +4. Then the minimum distance 6%, has to be at leagtn + 2. (i, yi) * (1, 0) = (25, 0) € C4, i=3,..., s
Corollary 3.3: If C is an extremal doubly even self-dual code oft follows that the vector§l, 0), (x3, 0), ..., (x5, 0) generate a sub-
length2n = 24m + 8¢ > 24 which is Z4-linear, then the minimum code ofC> with dimensions— 1 and minimum distance at least. +2.
distance ofC is at leastim + 4. Hence the vectors, z3, ..., . generate ad;, s — 1, > 2m + 2]
Proof: Let ui, us, ..., u, € C; be the codewords for which code. Using the Griesmer bound, we have
wy (u;) <4m—+4, i=1, ..., t. If t > 1, without loss of generality, we P
can takeu; = (1---10---0) with 4m+4 > wy(ur) > 2m+2 > 4. dy > Z —‘ Zm + 2 {
According to Theorem 2.3, the cod& has a generator matrix with i=0 2!
first row u; of the form .o
S~ | 2m+ 2
oo (1111 00---00 =3m+3+21 5 {
Lo &) =2
s—3
It follows that(110---0) € Ci- = C. which contradicts the min- =3m+3+ Z —‘ m+1 [
imum distance of”;. Hencet = 0 and the minimum distance @f, i=1 2'

is atleastim + 4. Sinces > 3m+1+A—I,wehaves—3 > 3.2/ 4142 -1 = 4.2 > |

Theorem 3.4: The extremal doubly even self-dual codes of lengthnd, therefore,
n > 24, n # 32, are notZ,-linear. }
Proof: Let C' be aZ,-linear doubly even self-dual binary code drz3m+3+Ats—3-1
of length24m +8r, r € {0, 1, 2}, m > 1, and minimum weight! = >3m+A-1+3m+14+A-1=06m+14+2(4-1).
_4m+4. Then,C, isa self-orthogone{_ll2m—|—_4r, s, dy >4m+4], and We consider the following three cases.
its dual cod&”; has length 2m+4+, dimensionl 2m+4r—s > 6rm42r,
and minimum distance at lea®t: +2. Using the Griesmer bound [2], 1) { > 2. Then

we have 44—1221—1233117126m—|—7>6m—|—27’;
12m—44r—s—1 2 + ..
12m + 4r > Z ] '”27: [ a contradiction
=0 2) 1 =1.Then4 > m + 1 > 2 andm = 2 or 3. It follows that
12m+4r—s—1
m+1 )
=3m+3+ ; —‘ 9i—1 { A—II—‘mg_l{—l:l::uh26m+3.
12mtdr—s—2 4 If r =0o0rl1, we havel; > 6m +2r. Letr = 2. ThenC; must
=3m+3+ Z —‘ m —1: { be a[12m+8, s > 3m+2, 6m+4] code. Ifm = 2, C; will be
=1 2 a binary code of lengtB2, dimension at leas§, and minimum
N e / . _— i distancel6. But codes with these parameters do not exist [1]. In
Let2' <m+1 <27 andd =37, [ [. Obviously the casen = 3, C is a binary{44, s > 11, 22] code, which is
L1941 1 impossible.
y _ (—i
A2 Z—‘ 9i [_ Z—‘Q + 27 [ 3) I =0.Inthiscase?2 > m +1 > 1 andm = 1. It follows that
=t =t A—1l=0andd; > 6m+1=7,butd is even and sd, is
t i . . at leas8. If r = 0, we havel; > 6m, which is a contradiction.
=) 27+)=2-141=>A4-122 -1 Whenr = 2, C, should be 420, 20 — s, > 4] code and hence
=1 s > 6 [1]. Itfollows that(' is a[20, s > 6, d; = 8 or10] code.
Sincel2m+4r —s—2>6m+2r—2>6-2'+2r —2>1 According to Brouwer’s table/; = 8 ands = 6, 7, or 8. So
the vectordl, w3, ..., x5 generate &, =8, s — 1 > 5, > 4]
Lm4+4r2>23m+34+A4+2m+4r —s5-2-1 code. But codes with these parameters do not exist.
=1m+dr+1l+A-I-s In the caser = 1, C is a doubly even self-dugf2, 16, 8] code.
=>s23m+1+A-1>3. There are five inequivalent codes of this type. It is proved that the code
C82in [3, Table A] is the Gray image of the unique Type &{-code
Letz,y € Cyandx +y = 0. Then of length16 and minimum Lee weigtt (see [5]). O
wap(l+a+y)=12m+4r —wp(z) —wn(y) The extended Hamming code is the unique extremal binary

< 12m 4+ 4r — 2(4m + 4) = 4m + 4r — 8 < 4m  doubly even self-dual code of lengh and it is the Gray map image
of the unique Type IVZ,-code of lengtht [5]. There are exactly two
and soy = 1 4+ =. Hence (i has a generator matrix of the form inequivalent binary doubly evefi6, 8, 4] codes, namelyd;s and
00---00 11.--11 2es. Both of them areZ, -linear. The first one is the Gray map image
1111 00---00 of the }Jnique Type IV-l1Z4-code qf lengtl8, and the second one of
G, = o " the unique Type IV-IZ4-code of this length (see [5]).

Proof of Theorem 1.1:Let C' be a Type IVZ,-code of length
Z Ys n = 12m + 4r, r € {0, 1, 2}, m > 0, and minimum Lee weight
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dr, = 4m+ 4. Thenits Gray imagé = ¢(C') is a binary doubly even It follows thatn(x) + ns(x) = ni(x1) + ns(x1). But the number
self-dual[24m + 8r, 12m + 4r, 4m + 4] code. We proved that theseof 1's and3’s in this vector is equal to the number Bf in the binary
codes are naf,-linear form > 2 and form = 1, » = 0, 2. Hence, vectorzy = vj, +---+wvj, +vj, +---+ v}, wherev; is theith

no Type IV Z,-code of lengthe > 12, n # 16, with minimum Lee row of the matrix (2). Since’ is a nonzero codeword i, its weight

weight4 + 4|n /12| exists. is at least/, . Hencej (x1) 4+ n3(x1) > di and
There exists a unique Type I1¥,-code of lengthl6 and minimum
Lee weight8, a unique Type IV code of length, and two Type IV wr(z) >ni(x) + ns(x) = ni(z1) + ns(xr) > di > 2do
codes of lengtt8 and minimum Lee weight. There are exactly four wi(x) > w(z) > 2ds.
inequivalent Type IV codes of lengil2 and all of them have minimum - -
Lee weight4 [S]. So we proved that minimum Lee weight 6fis exactly2d,. O
IV. ON THE RESIDUE AND TORSION CODES Theorem 1.2 follows directly from the above proposition. Using it

] ) ) ~_and the bound for the minimum Lee weight of Type IV codes, we have
In this section, we present some connections between the minimyyga following.

weights of a Type IV code and the minimum distances of its residue
and torsion codes. Corollary 4.4: If C'is Type IV code of length. > 12, n # 16 then

Proposition 4.1: If C' is Type IV Z,-code and the minimum dis- du(C) < 2[n/12).
tance of its torsion code i& then the minimum distance of its residue -
code( is at leastd..

Proof: Obviously, the minimum distance 6f; is at leastt. This
proves the proposition in the case whien= 2.

Letd, > 4 and letus, us, ..., ux € C7 be the codewords for  There are five inequivalent Type IV-II codes of length. These
whichwrr(u;) < 2d2, i = 1, ..., t. If ¢ > 1, without loss of gen- codes are the five codes in [12], whose residue codes have no code-
erality, we can taker; = (1---10---0) with wg(u1) > d2 > 4. words of Hamming weightt. Only one of them has minimum Lee
According to Theorem 2.3, the cod& has a generator matrix with weight8, namely,5_f5. This code is Lee-optimal, Euclidean-optimal,

V. TYPE IV CODES OFLENGTH 16

first row u; of the form and Hamming-optimal.
11---11 00---00 LetC be a Type IV-1 code of length6. Then the residue codg, is a
G = < 0 a ) . doubly even binary code of lengtls, containing the all-one vector, and
! satisfying the conditiomw i (2 * y) = O(mod 4) for all x andy in C.
Itfollows that(110- - - 0) € Cf- = C. which contradicts the minimum If the minimum distance of’; is 8 then all codewords o’ except
distance of”,. Hencet = 0 and the minimum distance 6f, is atleast the zero and the all-ones vectors have wefghind C' is Type IV-II
2ds. 0 code. Hence, the minimum distancef is 4 and its dimensioft; is
. n atleast. Letx € C4 be a codeword of weight. Up to equivalence,
Corollary 4.2: There is no Type IV code of type . o = (1111000000000000). ThenC, has a generator matrix of the

Proof: Let C' be Type IV code of typel . Hence, the residue form
code( is a binary doubly even self-dual code of lengthrand the
torsion cod&”’, coincides with(C'; . Then, for the minimum distance of 1111 00---00
this code, we havé, = d; > 2d, which is impossible. O G = <0000 G )

Proposition 4.3: If C'is Type IV code and the minimum distance of , . L )
ts torsion code igla, thend(C) = 2da, dir(C) = da = L 4, (C'), whereG’ generates a doubly even bindi, & — 1, > 4] code. We

4 (C) < 4ds. consider three cases.

Proof: In [13], Rains has proved that the minimum Hamming 1) k¥; = 2. Then
weight of any self-dual code oveét, is equal to the minimum distance
of its torsion code. So we need to prove the result only for the minimum
Lee and Euclidean weights.

Obviously, ify € Cs is a vector of weightl» then2y is a codeword
in C' of Hamming weightd., Lee weight2d., and Euclidean weight
4d>. Hence, the minimum Hamming, Lee, and Euclidean weights of  and since’; satisfies the conditions of Theorem 2.1, the c6tle
this code are at moshk, 2d2, and4ds, respectively. with a generator matrix

Letn;(x), i = 0, 1, 2, 3, be the number of componentsofe C
that arei in Z,. Suppose thag € C andni(y) = n3(y) = 0. Itis

G = 1111000000000000
7\ 0000111111111111

easy to see that (x + y) + ns(x + y) = ni(x) + nz(x). 1111000000000000
We consider a generator matii of C in the form (1). Letr be a 0000111111111111
nonzero codeword from'. If nq(x) = ns(x) = 0 thenz € 2C, and 2200000000000000
wrr(x) > do,wr(x) = 2wi(x) > 2ds. 2020000000000000
Now letn (x)+ns(xz) > 1.Inthis caser = x, +x; wherez; # 0 0000220000000000
is a linear combination of some of the first rowswv., ..., vy, of G 0000202000000000
with coefficientsl or 3, andzxs is a vector from2Cs. Then .
w1 =iy 44 iy, + 305, o+ 30y, 0000200000000020
where{i(, ..., 45, } N {j1, ..., js, } =0 and

is the unique Type IV-I code of lengil6 of type4?2*2. For this
{ity ooy da YU {1y ooy Jan ) C L .o, B ) code,d; = 2 anddr = 4. We denote it byC(".
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2) k1 = 3. In this case(’; contains a codeword # « of weight TABLE I
4. Up to equivalencey = (0000111100000000). Then swe COEFFICIENTS FOR THETYPE |V-I CODES OFLENGTH 16 (PARTIAL)

-3 1T T )
(B & Bls | o e [T L5 e

PRl - 1l 2048 | T2 | B2 | hEs 1}

1111000000000000

NVEL | L6 | 192 | 2048 | 40 | 444 | 544 | 3328

G = 0000111100000000 Pl ii G4 | HOds | 40 | 444 | 513 (ML
0000000011111111 o ae | aed | 20ds | 24 | Z2o | 576 | 4608

50 g |02 | o4 | 24 | 220 | 528 | KaTe

U6 | g | 128 | 2048 | 24 | 200

andC' is equivalent to a code with generator matrix l

i | DlEsd

laa 1100000000 100

Since the interchanging the two elemehtnd3 of certain coor-

ala 0011000000010 dinates gives equivalent codes, we can take the diagonal elements
2al0000111111001 of B to be(’s. So, up to equivalence, we have the following pos-
000 2000000000200 sibilities for the matrixB:
000 0200000000200
000 0020000000020 0000 0110 0110
000 0002000000020 0000 or 1010 or 1001
000 0000200000002 0000 1100 1001
. 0000 0000 0110
000 0000000002002

- . . ) We denote the corresponding codes(y’, C®, andC(®).
wherea = 0 or 2. The minimum Hamming weight of this code P g y

is 2. If « = 0, the corresponding codg&® has minimum Eu-  Remark: Obviously, if we take for the matri
clidean weightt, and ife = 2, the codeC'® hasdy = 8.

3) k1 > 4. Upto equivalence, the codd, with a generator matrix /0000 0101 0101
0011 1010 1001
or or
1111000000000000 0101 0101 0000
o - 0000111100000000 0110 0010 1100 o011 w011
0000000011110000
0000000000001111 or 0000 or 0011
1001 1100
1010 1100

is the unique binary16, &, > 4, 4] code which satisfies the
conditions of Theorem 2.1. In this casg, is equivalent to the ) ] () () (6)
code with a generator matrix in the form (this form is more conv@ obtain codes equivalent , O, or ¢,

venient for us) In Table Il, we give some of the coefficients of the symmetrized

weight enumerators of these six codes.

1000110000001000 The six codes have different enumerators, so they are inequivalent.

0100001100000100 Theorem 5.1: There are exactly six inequivalent Type IV-I codes of
0010000011000010 length16.
0001000000110001

In all cases, the minimum Hamming weight 6fis 2. The codes
C® andC® have minimum Euclidean weight So we proved the

and thenC» will be the code with a generator matrix following theorem.

Theorem 5.2: For Type V-l codesd (16) = 2 anddg(16) = 8.

1000110000001000 Remark: An independent classification of the Type IV codes over
0100001100000100 Z4 of length16 has been done by Harada and Munemasa (see [10]).
0010000011000010 They have used the classification of the doubly even self-dual binary
0001000000110001 codes of lengtf32 [3].

0000100000001000

0000010000001000 VI. OPTIMAL TYPE IV CODES OFLENGTH 24
0000001000000100 Proposition 6.1: If C'is Type IV code of lengtt24 then the min-
0000000100000100 imum distancel. of its torsion code ig.

0000000010000010 Proof: Suppose thafs > 4. According to Proposition 4.1, the
0000000001000010 residue cod€’; should be adoubly even self-orthogofal, %1, di >
0000000000100001 8] code whose dual cod€, has parameter@4, 24 — kq, d2 > 4].
0000000000010001 Using Brouwer’s table [1] and Corollary 4.2, we have< &k < 11
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andd; = 8. Up to equivalencey = (1111111100---0) € C;. We
can take a generator matrix 6f in the following form:

11111111 00---00
G, = 0] D
E F

where the matrixO D) generates the subcode®f of all codewords
with 0’s in the first eight coordinates. 98 generates a self-orthogonal

[16, s, > 8] code, and, therefora, < 5 (see [5]). The matrix¥ with

the all-ones vector of lengthgenerates the coder, with parameters
[8, k1 — 5, 4]. If « € C# then(z, 0) € Ci- = C». Hence, the

773

The Hadamard product of the last two rows has wefgihich
contradicts Theorem 2.1.

3) s > 4. Up to equivalence,
vz = ws = (11110000) and v4 = ws = (11001100).

The vectors(11111111), (11110000), (11001100),y1, y2, ys
are linearly dependent and so we can take= 0. According
to Theorem 2.1,

wr ((0, v, w;) * (11110000, 21, 00000000))=wg(v; x v1)=4

dual distance of 'z is at leastt and so it is equivalent to the extended

Hamming code. It follows that, — s = 4 and, thereforek; < 9 and
s > 2. Hence,

11111111 00000000 00000000
00000000 11111111 00000000
00000000 00000000 11111111
00000000 U3 ws
G, = ..
00000000 Vs W
11110000 @ Y1
11001100 Ty Y2
10101010 3 Ys
The vectors
1, v3, ..., vs, T1, T2, 3 and 1, ws, ..., ws, Y1, Y2, Y3

generatd3, 4, 4] codes. We consider the following three cases.

1) s = 2. Up to equivalence?; has a generator matrix of type

11111111
00000000
00000000
11110000
11001100
10101010

00000000
11111111
00000000
11110000
11001100
10101010

00000000
00000000
11111111
11110000
11001100
10101010

The Hadamard product of the last two rows has wefgivhich
contradicts Theorem 2.1.

2) s = 3. Then the vectord1111111, 11110000, y1, y=, ys are
linearly dependent, so up to equivalenge= 0. HenceC; has
a generator matrix of type

11111111
00000000
00000000
00000000
11110000
11001100
10101010

00000000
11111111
00000000
11110000
11110000
11001100
10101010

00000000
00000000
11111111
11110000
00000000
11001100
10101010

fori = 3, 4, which is impossible. O

Corollary 6.2: dr(24) = 4,dm(24) = 2, anddz(24) = 8.

Proof: The vectorz € C> of weight2 has Lee weightt, Ham-
ming weight2, and Euclidean weigld. Hence/d.(C) < 4,dy(C) <
2,anddr(C) < 8 for any Type IVZ,-codeC of length24. It follows
thatd, (C') = 4 anddy (C) = 2. The codel(1» ¢ K- (see [5]) has
minimum Euclidean weight and, thereforefz(24) = 8. |
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