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Some Results on Type IV Codes Over

Stefka Bouyuklieva

Abstract—Dougherty, Gaborit, Harada, Munemasa, and Solé have pre-
viously given an upper bound on the minimum Lee weight of a Type IV
self-dual -code, using a similar bound for the minimum distance of bi-
nary doubly even self-dual codes. We improve their bound, finding that the
minimum Lee weight of a Type IV self-dual -code of length is at most
4 12 , except when = 4, and = 8 when the bound is4, and
= 16 when the bound is8. We prove that the extremal binary doubly

even self-dual codes of length 24 = 32 are not -linear. We
classify Type IV-I codes of length16. We prove that all Type IV codes of
length 24 have minimum Lee weight4 and minimum Hamming weight 2,
and the Euclidean-optimal Type IV-I codes of this length have minimum
Euclidean weight8.

Index Terms—Type IV codes over rings, self-dual codes, -linearity.

I. INTRODUCTION

A binary code is said to beZ4-linear if it is the Gray image of
a linearZ4-code. In [7], Fields and Gaborit have shown that any
extremal doubly even self-dual code of length48 is not Z4-linear,
and the putative extremal doubly even self-dual codes of lengths72
and96 cannot be constructed as the Gray images of linear codes over
Z4. In this correspondence, we prove that no doubly even self-dual
[n; n=2; 4bn=24c + 4] code forn � 24; n 6= 32, isZ4-linear.

Type IV self-dual codes overZ4 have been introduced in [5] as
self-dual codes with even Hamming weights. The authors proved that
the Gray image of such a code is a binary doubly even self-dual code.
Using the well-known bound for this type of binary codes, proven
by Mallows and Sloane [11], they have shown that the minimum Lee
weightdL of a Type IVZ4-code of lengthn is bounded by

dL � 4 1 +
n

12
:

We prove that no Type IV self-dualZ4-code of lengthn � 12; n 6=
16, and minimum Lee weight4bn=12c+4 exists. This result improves
the bound from [5].

Theorem 1.1: If C is a Type IVZ4-code of lengthn � 12; n 6= 16,
and minimum Lee weightdL then

dL � 4
n

12
:

For the other minimum weights, we prove the following theorem.

Theorem 1.2: If C is a Type IVZ4-code with minimum Lee weight
dL, minimum Hamming weightdH , and minimum Euclidean weight
dE , then

dH =
1

2
dL dE � 2dL:
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A Type IV-I (resp., Type IV-II) codeC is Lee-optimal, Euclidean-
optimal, or Hamming-optimalif C has highest minimum Lee, Eu-
clidean, and Hamming weight among all Type IV-I (resp., Type IV-II)
codes of that length, respectively. Theorem 1.2 shows that a Type IV
code is Lee-optimal iff it is Hamming-optimal.

The highest minimum Lee, Euclidean, and Hamming weights of
lengthn are denoted bydL(n), dE(n), anddH(n), respectively. In
[5], the parametersdL(n), dE(n), anddH(n) for lengths up to24
have been listed in two tables (for Type IV-I and Type IV-II codes).
For Type IV-I, it was not known ifdH(16) = 2 or4, dE(16) = 4 or8,
dL(24) = 4 or 8, anddE(24) = 8 or 12. We prove that all Type IV-I
codes of length16 have minimum Hamming weight2, but there exists
a code of this length with minimum Euclidean weight8. Table I is the
updated table for Type IV-I codes.

To prove the result for Type IV-I codes of length16, we give the
complete classification of these codes.

Definitions and preliminary results used in this correspondence
are given in Section II. Nonlinearity of theZ4 extremal doubly even
self-dual codes of lengthn � 24; n 6= 32 and Theorem 1.1 are proved
in Section III. In Section IV, we consider the connection between the
minimum distances of the residue and torsion codes of a Type IV
code. The classification of Type IV-I codes of length16 is given in
Section V. In the last section, we prove that the highest minimum Lee,
Hamming, and Euclidean weights for Type IV-I code of length24 are
4, 2, and8, respectively.

II. PRELIMINARIES

A linear codeC of lengthn overZ4 is an additive submodule of
Zn4 . There are three different weights for codes overZ4, namely, the
Hamming weight, the Lee weight, and the Euclidean weight. The Lee
weights of the elements0; 1; 2; and3 of Z4 are0; 1; 2; and1; respec-
tively, and the Lee weight of a codeword is the rational sum of the Lee
weights of its components. The Euclidean weights for the elements of
Z4 are0; 1; 4; 1; respectively. The Euclidean weight of a codeword is
the rational sum of the Euclidean weights of its components. The usual
Hamming weight of binary or quaternary vectorv is the number of its
nonzero components, and it is denoted bywH(v). In the case where all
the codewords of a binary code have weight a multiple of4 the code is
said to be doubly even.

We say that twoZ4-codes areequivalentif one can be obtained from
the other by permuting the coordinates and (if necessary) interchanging
two elements1 and3 of certain coordinates. Codes differing by only a
permutation of coordinates are calledpermutation-equivalent.

Any code overZ4 is permutation-equivalent to a codeC with a gen-
erator matrix of the form

Ik A B1 + 2B2

O 2Ik 2D
(1)

whereA, B1, B2, andD are(1; 0)-matrices. We say that a code with
generator matrix (1) has type4k 2k . The binary[n; k1] codeC1 with
generator matrix

( Ik A B1 ) (2)

is called theresidue codeof C. The binary[n; k1 + k2] codeC2 with
generator matrix

Ik A B1

O Ik D
(3)
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TABLE I
THE HIGHEST MINIMUM WEIGHTS FORTYPE IV-I Z -CODES

is called thetorsion codeof theZ4-code.
Several weight enumerators are associated with a code overZ4. In

this correspondence, we deal with the symmetrized weight enumerators
(swe), given by

sweC(b; c) =
x2C

b
n (x)+n (x)

c
n (x)

whereni(x) is the number of componentsi of x.
We define an inner product inZn

4 by

x � y = x1y1 + � � �+ xnyn(mod4):

The dual codeC? of C is defined as

C
? = fx 2 Zn

4 jx � y = 0 8 y 2 Cg:

C is self-dual ifC = C?. Note that self-dual codes overZ4 exist for
all n > 0.

Self-dual codes overZ4 with even Hamming weights are called Type
IV. Basic properties of Type IV codes over rings of order4 are proved
in [5].

Theorem 2.1 [5]: LetC be a code overZ4. Suppose thatC1 and
C2 have generator matrices given by (2) and (3), respectively. IfC is
Type IV, then there exists a unique(1; 0)-matrixB such that

Ik + 2B A B1

O 2Ik 2D
(4)

is a generator matrix ofC. Moreover, we have

1) C2 = C?1 ,

2) the residue codeC1 contains the all-ones vector, and

wH(x � y) � 0(mod4)

for anyx andy 2 C1,

3) the number of2’s in each row ofIk +2B is even, and the matrix
B is symmetric.

Conversely, ifC1 andC2 are binary codes with generator matrices
given by (2) and (3), respectively, and if the conditions 1)–3) are satis-
fied, then theZ4-codeC with generator matrix (4) is a Type IV code.

We recall that the Gray map� is a distance-preserving map from
Zn

4 (Lee distance) toZ2n
2 (Hamming distance). Therefore, the min-

imum (Hamming) weight of the binary Gray imageC = �(C) is the
minimum Lee weight of theZ4-codeC. We will use the following def-
inition of the Gray map. Two maps� and
 fromZ4 toZ2 are defined
as

c �(c) 
(c)

0 0 0

1 0 1

2 1 1

3 1 0

and the Gray map�: Zn

4 ! Z2n
2 is given by

�(c) = (�(c); 
(c)) ; c 2 Zn

4 :

We will use a linearity condition which is equivalent to [9, The-
orem 5].

Theorem 2.2: If C is aZ4-code, its Gray image�(C) is linear if
and only ifx1; x2 2 C1 ) x1 � x2 2 C2, where “�” stands for the
Hadamard product.

To prove some restrictions on the minimum distance of the residue
code, we need the following theorem.

Theorem 2.3 [6]: If C is aZ4-code whose Gray image is a linear
binary code then the codewordsu1; u2; . . . ; ut 2 C1 for which
wH(ui) < 2d2; i = 1; . . . ; t, have disjoint support, and for each
codewordu 2 C1 we haveu � ui = 0 or u � ui = ui, i = 1; . . . ; t.

For Type IV self-dualZ4-codes we have

Theorem 2.4 [5]: If C is a Type IVZ4-code then its Gray image
�(C) is a doubly even self-dual binary code.

Self-dual codes overZ4 with the property that all Euclidean weights
are divisible by eight are called Type II. Self-dual codes which are not
Type II are called Type I.

Proposition 2.5 [5]: A Type IV codeC overZ4 is Type IV-II if
and only if all the Hamming weights ofC1 are multiples of8.

III. ON THE NON-Z4-LINEARITY OF EXTREMAL TYPE II CODES

Let C be an extremal binary doubly even self-dual code of length
2n which is the Gray image of a linearZ4-codeC. Since�(�c) =
(
(c); �(c)), it follows thatC is fixed under the “swap” map� that
interchanges the left and right halves of each codeword. In other words

� = (1; n+ 1)(2; n+ 2) � � � (n; 2n)

is an automorphism ofC. LetC1 andC2 be the residue and the torsion
codes of theZ4-codeC. With C� , we denote the fixed subcode ofC
under�, namely,C� = fv 2 C: �(v) = vg. Obviously,v 2 C� iff v
is a codeword inC andv = (v1; v2; . . . ; vn; v1; v2; . . . ; vn). If �
is the map fromC� to Zn

2 defined by�(v) = (v1; v2; . . . ; vn), then
C2=�(C�). For the codeC1 we haveC1= (C) where :Z2n

2 !Zn

2

is defined by

 (v) = (v1 + vn+1; v2 + vn+2; . . . ; vn + v2n):

Theorem 3.1 [2]: If C is a binary self-dual code of length2n with
an automorphism� of order2 without fixed points thenC1 is a self-
orthogonal code of lengthn andC2 is its dual code.

Corollary 3.2: If C is a binary doubly even self-dual code of length
2n with an automorphism� of order2 without fixed points thenC1

contains the all-ones vector.
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Proof: Since all weights inC� are divisible by four, all weights
in C2 are even and so1 2 C1 = C?

2 .

Letn = 12m+4r; r = 0; 1; 2; and let the minimum distance ofC
be4m+4. Then the minimum distance ofC2 has to be at least2m+2.

Corollary 3.3: If C is an extremal doubly even self-dual code of
length2n = 24m + 8r � 24 which isZ4-linear, then the minimum
distance ofC1 is at least4m + 4.

Proof: Let u1; u2; . . . ; ut 2 C1 be the codewords for which
wH(ui)<4m+4; i=1; . . . ; t. If t�1, without loss of generality, we
can takeu1 = (1 � � � 10 � � � 0) with 4m+4>wH(u1)� 2m+2� 4.
According to Theorem 2.3, the codeC1 has a generator matrix with
first row u1 of the form

G1 =
11 � � � 11 00 � � � 00

0 G0

1

:

It follows that(110 � � � 0) 2 C?

1 = C2 which contradicts the min-
imum distance ofC2. Hence,t = 0 and the minimum distance ofC1

is at least4m+ 4.

Theorem 3.4: The extremal doubly even self-dual codes of length
n � 24; n 6= 32; are notZ4-linear.

Proof: Let C be aZ4-linear doubly even self-dual binary code
of length24m+8r; r 2 f0; 1; 2g; m� 1, and minimum weightd=
4m+4. Then,C1 is a self-orthogonal[12m+4r; s; d1�4m+4], and
its dual codeC2 has length12m+4r, dimension12m+4r�s�6m+2r,
and minimum distance at least2m+2. Using the Griesmer bound [2],
we have

12m+ 4r �

12m+4r�s�1

i=0

2m+ 2

2i

=3m+ 3 +

12m+4r�s�1

i=2

m+ 1

2i�1

=3m+ 3 +

12m+4r�s�2

i=1

m+ 1

2i
:

Let 2l < m+ 1 � 2l+1 andA = l

i=1
em+1

2
d. Obviously

A �

l

i=1

2l + 1

2i
=

l

i=1

2l�i +
1

2i

=

l

i=1

(2l�i + 1) = 2l � 1 + l) A� l � 2l � 1:

Since12m+ 4r � s� 2 � 6m+ 2r � 2 � 6 � 2l + 2r � 2 > l

12m+ 4r � 3m+ 3 +A+ 12m+ 4r � s� 2� l

=15m+ 4r + 1 + A� l� s

) s � 3m+ 1 +A � l > 3:

Let x; y 2 C1 andx � y = 0. Then

wH(1+ x+ y) = 12m+ 4r � wH(x)� wH(y)

� 12m+ 4r � 2(4m+ 4) = 4m+ 4r � 8 � 4m

and soy = 1+ x. Hence,C1 has a generator matrix of the form

G1 =

00 � � � 00 11 � � � 11

11 � � � 11 00 � � � 00

x3 y3

� � � � � �

xs ys

where the vectors1; x3; . . . ; xs of lengthd1 are linearly independent.
Sinces > 3 andC1 contains the all-ones vector, its minimum distance
d1 is at most6m+ 2r. According to Theorem 2.2

(xi; yi) � (1; 0) = (xi; 0) 2 C1; i = 3; . . . ; s:

It follows that the vectors(1; 0); (x3; 0); . . . ; (xs; 0) generate a sub-
code ofC2 with dimensions�1 and minimum distance at least2m+2.
Hence the vectors1; x3; . . . ; xs generate a[d1; s � 1; � 2m + 2]
code. Using the Griesmer bound, we have

d1 �

s�2

i=0

2m+ 2

2i

=3m+ 3 +

s�2

i=2

2m+ 2

2i

=3m+ 3 +

s�3

i=1

m+ 1

2i
:

Sinces � 3m+1+A�l, we haves�3 > 3�2l+1+2l�1 = 4�2l > l

and, therefore,

d1 � 3m+ 3 + A+ s� 3� l

� 3m+A � l+ 3m+ 1 + A� l = 6m+ 1 + 2(A� l):

We consider the following three cases.

1) l � 2. Then

A� l � 2l � 1 � 3 ) d1 � 6m+ 7 > 6m+ 2r;

a contradiction

2) l = 1. Then4 � m+ 1 > 2 andm = 2 or 3. It follows that

A� l =
m+ 1

2
� 1 = 1 ) d1 � 6m+ 3:

If r = 0 or 1, we haved1 > 6m+2r. Let r = 2. ThenC1 must
be a[12m+8; s � 3m+2; 6m+4] code. Ifm = 2,C1 will be
a binary code of length32, dimension at least8, and minimum
distance16. But codes with these parameters do not exist [1]. In
the casem = 3, C1 is a binary[44; s � 11; 22] code, which is
impossible.

3) l = 0. In this case,2 � m + 1 > 1 andm = 1. It follows that
A � l = 0 andd1 � 6m + 1 = 7, butd1 is even and sod1 is
at least8. If r = 0, we haved1 > 6m, which is a contradiction.
Whenr = 2, C2 should be a[20; 20� s; � 4] code and hence
s � 6 [1]. It follows thatC1 is a[20; s � 6; d1 = 8 or10] code.
According to Brouwer’s table,d1 = 8 ands = 6; 7; or 8. So
the vectors1; x3; . . . ; xs generate a[d1 = 8; s� 1 � 5; � 4]
code. But codes with these parameters do not exist.

In the caser = 1, C is a doubly even self-dual[32; 16; 8] code.
There are five inequivalent codes of this type. It is proved that the code
C82 in [3, Table A] is the Gray image of the unique Type IVZ4-code
of length16 and minimum Lee weight8 (see [5]).

The extended Hamming codee8 is the unique extremal binary
doubly even self-dual code of length8, and it is the Gray map image
of the unique Type IVZ4-code of length4 [5]. There are exactly two
inequivalent binary doubly even[16; 8; 4] codes, namely,d16 and
2e8. Both of them areZ4-linear. The first one is the Gray map image
of the unique Type IV-IIZ4-code of length8, and the second one of
the unique Type IV-IZ4-code of this length (see [5]).

Proof of Theorem 1.1:Let C be a Type IVZ4-code of length
n = 12m + 4r; r 2 f0; 1; 2g; m > 0, and minimum Lee weight
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dL = 4m+4. Then its Gray imageC = �(C) is a binary doubly even
self-dual[24m+ 8r; 12m+ 4r; 4m+ 4] code. We proved that these
codes are notZ4-linear form � 2 and form = 1; r = 0; 2. Hence,
no Type IVZ4-code of lengthn � 12; n 6= 16, with minimum Lee
weight4 + 4bn=12c exists.

There exists a unique Type IVZ4-code of length16 and minimum
Lee weight8, a unique Type IV code of length4, and two Type IV
codes of length8 and minimum Lee weight4. There are exactly four
inequivalent Type IV codes of length12 and all of them have minimum
Lee weight4 [5].

IV. ON THE RESIDUE AND TORSIONCODES

In this section, we present some connections between the minimum
weights of a Type IV code and the minimum distances of its residue
and torsion codes.

Proposition 4.1: If C is Type IV Z4-code and the minimum dis-
tance of its torsion code isd2 then the minimum distance of its residue
codeC1 is at least2d2.

Proof: Obviously, the minimum distance ofC1 is at least4. This
proves the proposition in the case whend2 = 2.

Let d2 � 4 and letu1; u2; . . . ; ut 2 C1 be the codewords for
whichwH(ui) < 2d2; i = 1; . . . ; t. If t � 1, without loss of gen-
erality, we can takeu1 = (1 � � � 10 � � � 0) with wH(u1) � d2 � 4.
According to Theorem 2.3, the codeC1 has a generator matrix with
first row u1 of the form

G1 =
11 � � � 11 00 � � � 00

0 G0

1

:

It follows that(110 � � � 0) 2 C?

1 = C2 which contradicts the minimum
distance ofC2. Hence,t = 0 and the minimum distance ofC1 is at least
2d2.

Corollary 4.2: There is no Type IV code of type4 .
Proof: Let C be Type IV code of type4 . Hence, the residue

codeC1 is a binary doubly even self-dual code of lengthn and the
torsion codeC2 coincides withC1. Then, for the minimum distance of
this code, we haved2 = d1 � 2d2 which is impossible.

Proposition 4.3: If C is Type IV code and the minimum distance of
its torsion code isd2, thendL(C) = 2d2, dH(C) = d2 = 1

2
dL(C),

dE(C) � 4d2.
Proof: In [13], Rains has proved that the minimum Hamming

weight of any self-dual code overZ4 is equal to the minimum distance
of its torsion code. So we need to prove the result only for the minimum
Lee and Euclidean weights.

Obviously, ify 2 C2 is a vector of weightd2 then2y is a codeword
in C of Hamming weightd2, Lee weight2d2, and Euclidean weight
4d2. Hence, the minimum Hamming, Lee, and Euclidean weights of
this code are at mostd2, 2d2, and4d2, respectively.

Let ni(x); i = 0; 1; 2; 3; be the number of components ofx 2 C
that arei in Z4. Suppose thaty 2 C andn1(y) = n3(y) = 0. It is
easy to see thatn1(x + y) + n3(x + y) = n1(x) + n3(x).

We consider a generator matrixG of C in the form (1). Letx be a
nonzero codeword fromC. If n1(x) = n3(x) = 0 thenx 2 2C2 and
wH(x) � d2, wL(x) = 2wH(x) � 2d2.

Now letn1(x)+n3(x) � 1. In this case,x = x1+x2 wherex1 6= 0
is a linear combination of some of the firstk1 rowsv1; . . . ; vk of G
with coefficients1 or 3, andx2 is a vector from2C2. Then

x1 = vi + � � �+ vi + 3vj + � � �+ 3vj

wherefi1; . . . ; is g \ fj1; . . . ; js g = ; and

fi1; . . . ; is g [ fj1; . . . ; js g � f1; . . . ; k1g:

It follows thatn1(x) + n3(x) = n1(x1) + n3(x1). But the number
of 1’s and3’s in this vector is equal to the number of1’s in the binary
vectorx01 = v0i + � � � + v0i + v0j + � � � + v0j , wherev0i is theith
row of the matrix (2). Sincex01 is a nonzero codeword inC1, its weight
is at leastd1. Hence,n1(x1) + n3(x1) � d1 and

wH(x) �n1(x) + n3(x) = n1(x1) + n3(x1) � d1 � 2d2

wL(x) �wH(x) � 2d2:

So we proved that minimum Lee weight ofC is exactly2d2.

Theorem 1.2 follows directly from the above proposition. Using it
and the bound for the minimum Lee weight of Type IV codes, we have
the following.

Corollary 4.4: If C is Type IV code of lengthn � 12; n 6= 16 then

dH(C) � 2bn=12c:

V. TYPE IV CODES OFLENGTH 16

There are five inequivalent Type IV-II codes of length16. These
codes are the five codes in [12], whose residue codes have no code-
words of Hamming weight4. Only one of them has minimum Lee
weight8, namely,5 f5. This code is Lee-optimal, Euclidean-optimal,
and Hamming-optimal.

LetC be a Type IV-I code of length16. Then the residue codeC1 is a
doubly even binary code of length16, containing the all-one vector, and
satisfying the conditionwH(x � y) � 0(mod 4) for all x andy in C1.
If the minimum distance ofC1 is 8 then all codewords ofC1 except
the zero and the all-ones vectors have weight8 andC is Type IV-II
code. Hence, the minimum distance ofC1 is 4 and its dimensionk1 is
at least2. Let x 2 C1 be a codeword of weight4. Up to equivalence,
x = (1111000000000000). ThenC1 has a generator matrix of the
form

G1 =
1111 00 � � � 00

0000 G0

1

whereG0

1 generates a doubly even binary[12; k1 � 1; � 4] code. We
consider three cases.

1) k1 = 2. Then

G1 =
1111000000000000

0000111111111111

and sinceC1 satisfies the conditions of Theorem 2.1, the codeC
with a generator matrix

1111000000000000

0000111111111111

2200000000000000

2020000000000000

0000220000000000

0000202000000000

� � �

0000200000000020

is the unique Type IV-I code of length16 of type42212. For this
code,dH = 2 anddE = 4. We denote it byC(1).
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2) k1 = 3. In this case,C1 contains a codewordy 6= x of weight
4. Up to equivalence,y = (0000111100000000). Then

G1 =

1111000000000000

0000111100000000

0000000011111111

andC is equivalent to a code with generator matrix

1aa 1100000000100

a1a 0011000000010

aa1 0000111111001

0002000000000200

0000200000000200

0000020000000020

0000002000000020

0000000200000002

� � �

0000000000002002

wherea = 0 or 2. The minimum Hamming weight of this code
is 2. If a = 0, the corresponding codeC(2) has minimum Eu-
clidean weight4, and ifa = 2, the codeC(3) hasdE = 8.

3) k1 � 4. Up to equivalence, the code4d4 with a generator matrix

G1 =

1111000000000000

0000111100000000

0000000011110000

0000000000001111

is the unique binary[16; k1 � 4; 4] code which satisfies the
conditions of Theorem 2.1. In this case,C1 is equivalent to the
code with a generator matrix in the form (this form is more con-
venient for us)

1000110000001000

0100001100000100

0010000011000010

0001000000110001

and thenC2 will be the code with a generator matrix

1000110000001000

0100001100000100

0010000011000010

0001000000110001

0000100000001000

0000010000001000

0000001000000100

0000000100000100

0000000010000010

0000000001000010

0000000000100001

0000000000010001

:

TABLE II
swe COEFFICIENTS FOR THETYPE IV-I CODES OFLENGTH 16 (PARTIAL )

Since the interchanging the two elements1 and3 of certain coor-
dinates gives equivalent codes, we can take the diagonal elements
ofB to be0’s. So, up to equivalence, we have the following pos-
sibilities for the matrixB:

0000

0000

0000

0000

or

0110

1010

1100

0000

or

0110

1001

1001

0110

:

We denote the corresponding codes byC(4), C(5), andC(6).

Remark: Obviously, if we take for the matrixB

0000

0011

0101

0110

or

0101

1010

0101

0010

or

0101

1001

0000

1100

or

0011

0000

1001

1010

or

0011

0011

1100

1100

we obtain codes equivalent toC(4), C(5), orC(6).

In Table II, we give some of the coefficients of the symmetrized
weight enumerators of these six codes.

The six codes have different enumerators, so they are inequivalent.

Theorem 5.1:There are exactly six inequivalent Type IV-I codes of
length16.

In all cases, the minimum Hamming weight ofC is 2. The codes
C(3) andC(6) have minimum Euclidean weight8. So we proved the
following theorem.

Theorem 5.2: For Type IV-I codes,dH(16) = 2 anddE(16) = 8.

Remark: An independent classification of the Type IV codes over
Z4 of length16 has been done by Harada and Munemasa (see [10]).
They have used the classification of the doubly even self-dual binary
codes of length32 [3].

VI. OPTIMAL TYPE IV CODES OFLENGTH 24

Proposition 6.1: If C is Type IV code of length24 then the min-
imum distanced2 of its torsion code is2.

Proof: Suppose thatd2 � 4. According to Proposition 4.1, the
residue codeC1 should be a doubly even self-orthogonal[24; k1; d1 �
8] code whose dual codeC2 has parameters[24; 24 � k1; d2 � 4].
Using Brouwer’s table [1] and Corollary 4.2, we have6 � k1 � 11
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andd1 = 8. Up to equivalence,v = (1111111100 � � � 0) 2 C1. We
can take a generator matrix ofC1 in the following form:

G1 =

11111111 00 � � � 00

O D

E F

where the matrix(O D) generates the subcode ofC1 of all codewords
with 0’s in the first eight coordinates. SoD generates a self-orthogonal
[16; s; � 8] code, and, therefore,s � 5 (see [5]). The matrixE with
the all-ones vector of length8 generates the codeCE with parameters
[8; k1 � s; 4]. If x 2 C?E then (x; 0) 2 C?1 = C2. Hence, the
dual distance ofCE is at least4 and so it is equivalent to the extended
Hamming code. It follows thatk1 � s = 4 and, therefore,k1 � 9 and
s � 2. Hence,

G1 =

11111111 00000000 00000000

00000000 11111111 00000000

00000000 00000000 11111111

00000000 v3 w3

� � �

00000000 vs ws

11110000 x1 y1

11001100 x2 y2

10101010 x3 y3

:

The vectors

1; v3; . . . ; vs; x1; x2; x3 and 1; w3; . . . ; ws; y1; y2; y3

generate[8; 4; 4] codes. We consider the following three cases.

1) s = 2. Up to equivalence,C1 has a generator matrix of type

11111111 00000000 00000000

00000000 11111111 00000000

00000000 00000000 11111111

11110000 11110000 11110000

11001100 11001100 11001100

10101010 10101010 10101010

:

The Hadamard product of the last two rows has weight6 which
contradicts Theorem 2.1.

2) s = 3. Then the vectors11111111; 11110000; y1; y2; y3 are
linearly dependent, so up to equivalence,y1 = 0. HenceC1 has
a generator matrix of type

11111111 00000000 00000000

00000000 11111111 00000000

00000000 00000000 11111111

00000000 11110000 11110000

11110000 11110000 00000000

11001100 11001100 11001100

10101010 10101010 10101010

:

The Hadamard product of the last two rows has weight6 which
contradicts Theorem 2.1.

3) s � 4. Up to equivalence,

v3 = w3 = (11110000) and v4 = w4 = (11001100):

The vectors(11111111); (11110000); (11001100);y1; y2; y3
are linearly dependent and so we can takey1 = 0. According
to Theorem 2.1,

wH((0; vi; wi) � (11110000; x1; 00000000))=wH(vi � x1)=4

for i = 3; 4; which is impossible.

Corollary 6.2: dL(24) = 4, dH(24) = 2, anddE(24) = 8.
Proof: The vectorx 2 C2 of weight2 has Lee weight4, Ham-

ming weight2, and Euclidean weight8. Hence,dL(C) � 4, dH(C) �
2, anddE(C) � 8 for any Type IVZ4-codeC of length24. It follows
thatdL(C) = 4 anddH(C) = 2. The codeK12 �K12 (see [5]) has
minimum Euclidean weight8 and, therefore,dE(24) = 8.
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