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Broad-Band Fading Channels: Signal Burstiness and
Capacity
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Abstract—Médard and Gallager recently showed that very
large bandwidths on certain fading channels cannot be effectively
used by direct sequence or related spread-spectrum systems. This
paper complements the work of Médard and Gallager. First, it is
shown that a key information-theoretic inequality of Médard and
Gallager can be directly derived using the theory of capacity per
unit cost, for a certain fourth-order cost function, called fourthegy.
This provides insight into the tightness of the bound. Secondly,
the bound is explored for a wide-sense-stationary uncorrelated
scattering (WSSUS) fading channel, which entails mathematically
defining such a channel. In this context, the fourthegy can be
expressed using the ambiguity function of the input signal. Finally,
numerical data and conclusions are presented for direct-sequence
type input signals.

Index Terms—Channel capacity, fading channels, spread spec-
trum, wide-sense-stationary uncorrelated scattering (WSSUS)
fading channels.

I. INTRODUCTION

A PROMINENT feature of wireless media is time-varying
multipath fading. A fading channel is a very different

entity from an additive Gaussian noise (AGN) channel. If the
channel changes rapidly, then it may be better to adopt nonco-
herent techniques for reliable communication instead of having
a structure to measure and track the channel accurately. Ref-
erences [15], [18], and [25] present examples of noncoherent
receiver structures that achieve capacity for certain channels.
Another important fact is that for pure Rayleigh-fading chan-
nels, the output signal has mean zero for any input signal. Thus,
the input signal only affects the second-order statistics and
higher order statistics of the output. In contrast, the input signal
directly affects the mean of the output signal for AGN channels.
Owing to these differences, principles of signal design used
for additive Gaussian noise channels do not directly apply to
fading channels [2].

Even though wireless channels have been used for a long
time, they are not as well understood as the additive Gaussian
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noise channel. At the same time, there has been substantial work
on the capacity of such channels. In this paper, we are interested
specifically in the case in which neither the transmitter nor the
receiver knows the channel but both know the statistics of the
channel. An important aspect of our assumption is that we do
not assume feedback to the transmitter. In particular, this rules
out power control. Note that there can also be the case where
there is no knowledge of the statistics of the channel. Lapidoth
and Narayan [16] give a comprehensive treatment of such chan-
nels and Biglieriet al. [3] give a detailed survey of capacity-re-
lated results on fading channels.

Broad-band channels are a special case of channels with a
large number of degrees of freedom. In a seminal work, Gal-
lager [9] discussed energy-limited channels, i.e., channels where
the energy per degree of freedom is very small. He showed
that the reliability function per unit energy can be computed
exactly for all rates if there is a finite capacity per unit en-
ergy. Telatar [26] specialized Gallager’s results to the Rayleigh-
fading channel and obtained the capacity divided by energy as
a function of bandwidth and signal energy, concluding from
this that the infinite bandwidth Rayleigh fading channel has the
same capacity as the infinite bandwidth additive WGN (AWGN)
channel. Verdú [27] considered capacity per unit cost for general
cost functions and derived a simple expression for the capacity
per unit cost for memoryless channels for certain cost functions.

Kennedy [15] considered the capacity per unit time of
diffuse wide-sense-stationary uncorrelated scattering (WSSUS)
fading channels. Using an -ary frequency-shift-keying (FSK)
signaling set and under the assumptions that certain bandwidth
considerations are met and no intersymbol interference (ISI)
exists between blocks over which this input is transmitted,
Kennedy derived the reliability function using the optimum
demodulator and showed that for the infinite-bandwidth
WSSUS fading channel, the capacity is the same as that for
the infinite-bandwidth AWGN channel with the same average
signal-to-noise ratio (SNR). Jacobs [14] presented the latter
result in a simpler context, and [8, Sec. 8.6] gives a nice
discussion of early work on fading channels.

Viterbi [28] clearly exhibited a loss in channel capacity due to
the randomness of fading. He considered-ary orthogonal sig-
naling normalized in such a way that the transmitted signal is not
bursty in the time domain. That is, the symbol duration increases
in proportion to the number of bits per symbol, to maintain con-
stant transmit power. The received signal is due to a combina-
tion of the tone that is transmitted and the stochastic fading. The
fading itself can be viewed as amplitude modulation. The ca-
pacity for the digital part is, in the large limit, equal to the
mutual information rate between the stochastic signal and sto-
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chastic signal plus white noise, less the capacity of the amplitude
modulated channel (see [28, p. 418]). In particular, the channel
capacity tends to zero as the doppler spread tends to infinity, as-
suming a diffuse doppler spectrum. The paper explains that the
uncertainty or randomness of the fading subtracts directly from
the capacity of the channel. This gives intuitive appeal to the use
of the relation

which is used in Appendix A of this paper to give an alternative
proof of a key inequality.

Médard and Gallager [10], [19] analyzed a broad-band
channel with WSSUS fading. They consider a time–frequency
expansion of the input signal. A constraint is imposed that
is satisfied by direct-sequence code-division multiple-access
(DS-CDMA) type signals—namely, each coefficient in the
signal expansion is assumed to satisfy , where
is a bound on and is a bound on the peakedness of
the distribution of . They showed that the mutual information
per unit time between the input and the output for a broad-band
system is upper-bounded by a constant times. The interpreta-
tion of this bound is as follows: as the spread factor increases
without bound, , which is inversely proportional to the spread
factor, decreases to zero, and therefore, the mutual information
per unit time between the input and the output decreases to
zero. The intuitive explanation given for the poor performance
of DS-CDMA is that spreading the energy too thinly does not
allow the channel to be measured accurately enough, which
ultimately limits the performance of DS-CDMA.

Telatar and Tse [25] considered specular multipath channels
with multipath components subject to time-varying delays
and with no ISI, such that each channel can be approximated
by a time-invariant system. They showed that the capacity
of an infinite-bandwidth WSSUS channel is the same as the
capacity of an infinite bandwidth AWGN channel with the
same average SNR and that with DS-CDMA-type input the
mutual information between the input and the output varies
inversely with the number of effective diversity paths. Biglieri
et al. [3, pp. 2636–2638] give a nice exposition on the subject
of bandwidth scaling, including a unifying discussion and
physical interpretations of results of [10], [18], [19], [25], [28],
and other works. The paper of Gantiet al.[11] considers several
of the concepts considered here, such as channels with memory,
capacity per unit cost, wide-band limit, and spread-spectrum
signaling, though the focus of that paper, namely mismatched
decoding, is considerably different.

A central theme in [10], [19] is that burstiness in time–fre-
quency is necessary to achieve capacity in broad-band fading
channels. To expound on this further, we define the notion of
fourthegy of an input signal, which is related to the number of
diversity paths of Kennedy. A key inequality of [10] shows that
the capacity per unit fourthegy of Rayleigh-fading channels is
finite. We show that the inequality can be proved by using the
notion of capacity per unit cost. An implication of the inequality
is that if the mean fourthegy of the input signal is small, so
will be the number of bits that can be transmitted reliably. The
fourthegy of a signal is roughly proportional to the sum of the

squares of the local energy in time–frequency bins. For fixed
power, nonbursty signals, the fourthegy per unit time tends to
zero, and hence, by the basic inequality, so does the informa-
tion rate. We show that the fourthegy is a function of the signal
ambiguity function and this aids us in evaluating the fourthegy
directly for DS-CDMA-like signals. This avoids imposing con-
straints on the fourth moment of coordinate values for a decom-
position of the continuous-time signals, as in [10], or an asymp-
totic analysis based on peak-value constraints in time–frequency
bins, as in [24]. Numerical bounds are given on the information
rates possible for DS-CDMA-type signals.

Another contribution of this paper is making the notion of the
WSSUS channel model mathematically precise. For complete-
ness, we also discuss in Section IV-C the amount of informa-
tion that can be transmitted per unit energy for a WSSUS fading
channel, using a similar approach.

The organization of this paper is as follows. Section II briefly
reviews the notion of capacity per unit cost, and presents the
capacity per unit fourthegy for a vector memoryless Rayleigh
channel. Section III presents the basic definitions and a math-
ematical foundation for WSSUS fading channels, and is inde-
pendent of Section II. Section IV points out that the definition of
fourthegy and the basic bound on information per unit fourthegy
identified in Section II carry over to the WSSUS channel model
described in Section III. Section IV goes on to describe several
properties of fourthegy, and complementary results are given.
The basic inequality is applied in Section V to DS-CDMA sig-
nals over broad-band WSSUS fading channels. We conclude in
Section VI with some discussion. All capacity computations are
in natural units for analytical simplicity. One natural unit, nat, is

b. It is also to be understood that
has the complex normal distribution with mean
and variance , if and are independent Gaussian random
variables with means and , respectively, and with
variance each.

II. FOURTH MOMENT INFORMATION BOUND FOR A VECTOR

RAYLEIGH CHANNEL

In this section, the theory of capacity per unit cost is applied
to derive a basic information inequality for a vector Rayleigh-
fading channel.

A. Background: Capacity Per Unit Cost

We briefly review the notion of capacity per unit cost in
this section, following [27]. Consider a discrete-time channel
without feedback and with arbitrary input and output alphabets
denoted by and , respectively. An code is
one in which the block length is equal to; the number of
codewords is equal to ; each codeword ,

, satisfies the constraint ,
where is a function that assigns a cost to
each input symbol, and the average probability of decoding
the message is at least . Given and ,
a nonnegative number is an -achievable rate with cost per
symbol not exceeding if for every there exists such
that if , then an code can be found
whose rate satisfies . Furthermore, is
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said to be achievable if it is-achievable for all . The
maximum achievable rate with cost per symbol not exceeding
is the channel capacity denoted by . Results in information
theory about the capacity of an input-constrained memoryless
channel imply that is given by

where the supremum is taken to be zero if the set of distribu-
tions therein is empty. The capacity per unit cost is then the
maximum number of bits per unit cost that can be transmitted
through the channel. Verdú [27] showed the capacity per unit
cost for a memoryless channel satisfies

(1)

Verdú [27] also showed that if there is a unique input symbol
“ ” with zero cost, then the capacity per unit cost is given by
minimizing a ratio of the divergence between two measures and
the cost function

(2)

In particular, it follows that

(3)

The relation (3) is interesting in itself, even though it does not
involve the capacity per unit cost. Only basic measurability
assumptions are required for the above results, as shown by
Verdú [27]. The assumption that there is a unique, zero-cost
input symbol was explored by Gallager [9] in the context
of reliability functions per unit cost. The assumption greatly
simplifies the computation of , since the supremum in (2)
is over the input space, rather than over the space of probability
distributions on the input space.

In many contexts, the capacity per unit cost for a given
channel with constrained input signal bandwidth is equal to the
limit of the capacity (in bits per second) divided by cost per
second (e.g., power) for the same channel in the limit as the
bandwidth of the channel tends to infinity, with the cost per
second fixed. Reference [27] illustrates this with the AWGN
channel. One can explain this in the following manner. Suppose
that there is a discrete-time memoryless channel (DTMC) such
that use of the original channel with input signals constrained
to bandwidth is equivalent to using the DTMC times per
second. In particular, suppose that the cost for an input signal
for the original channel is equal to the cost of the equivalent
signal for repeated use of the DTMC channel, and that there is a
unique zero cost input for the DTMC. Then the original channel
and the DTMC have the same capacity per unit cost. Given a
code for the DTMC which achieves a given information rate
per unit cost, by varying the number of usesof the DTMC
per second, we obtain a code that has a given cost per unit
time, and the same ratio of information per unit cost. While the
assumptions of this explanation are rarely exactly satisfied, it
at least offers a heuristic explanation for why capacity per unit

cost is often equal to the infinite bandwidth limit of capacity
divided by cost per second.

B. The Information Bound for a Vector Rayleigh-Fading
Channel

A single use of a discrete-time memoryless vector Rayleigh-
fading channel is given by the following equation:

(4)

where is the channel input in , is the output of
the channel, is additive Gaussian noise distributed as

, and is an matrix of jointly circularly
symmetric mean-zero Gaussian random variables, for some

. In addition, , , and are assumed to be mutually
independent. The columns of are denoted by (so

), and the complex conjugate transpose of
is denoted by .
Let denote the output signal without the additive

noise term . The conditional covariance of given is
given by

...
...

.. .
...

The cost function we consider is which in
this specific case is

where are the eigenvalues of . We call the
fourthegy of the vector , relative to the channel. The name is
motivated by the fact that is fourth order in , and that it
is a positive sounding name (like energy) rather than a negative
sounding name, like cost.

Let denote the capacity per unit cost where cost is mea-
sured by the fourthegy .

Proposition II.1: The capacity per unit fourthegy for the dis-
crete-time memoryless vector Rayleigh-fading channel is

. In particular, for any

(5)

Proof: We will prove that

(6)

where

Once (6) is proved, (2) will imply the expression given for,
(3) will imply (5), and the proof will be complete. Conditioned
on , is a mean-zero Gaussian random vector with
covariance matrix having
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eigenvalues . This covariance matrix is Hermitian
and can therefore be diagonalized by a linear transformation of
space by a unitary matrix. That transformation leaves the distri-
bution of invariant, it transforms the conditional distribution
of given into a vector of independent complex normal
random variables with respective variances , and
it preserves the value of the divergence . Therefore,

where is defined by

(7)

Using the fact for each , we have

(8)

This proves (6) with “ ” replaced by “ .” To complete the
proof, scale by for some . Note that this scales the
eigenvalues by . Therefore,

Thus, (6) is established, and the proof is complete.

Notes:

1) Inequality (5) is a key inequality of [10], [19]. Proposi-
tion II.1 shows that the inequality (5) is asymptotically
tight for an on–off signal, as the on probability tends
to zero and the on signal value is scaled toward zero. In-
equality (5) is applied to a WSSUS channel model in Sec-
tions IV and V, but in the spirit of Médard and Gallager,
one can make, right away, for a simple channel and input
scaling, the argument that capacity goes toas the band-
width goes to . Suppose the channel is block-fading
in frequency: there are frequency bands that fade in-
dependently. The fourthegy for the total input is the sum
of the fourthegies over the individual bands. If energy is
spread evenly across thebands, then the fourthegy per
band scales as as , so the total fourthegy
scales with bandwidth as . Moreover, if the channel
also decorrelates in time, then the fourthegy for a con-
stant power input over an interval of lengthis asymp-
totically linear in . Hence, for channels that decorrelate
sufficiently in time and input signals that are evenly dis-
tributed in time and frequency, the overall fourthegy per
unit time, and hence the mutual information per unit time,
is finite and tends to zero as as .

2) Scalar Channel: For the scalar Rayleigh-fading channel
with the fourthegy is given by

. In other words, the fourthegy is
proportional to the fourth power of the signal magnitude.

Thus, the capacity per unit fourth moment of the dis-
crete-time scalar Rayleigh fading channel is proportional
to the capacity per unit fourthegy of the same channel,
and therefore, is finite. It is interesting to compare the
capacity per unit fourth moment of the discrete-time
scalar Rayleigh-fading channel with the capacity per unit
fourth moment of the discrete-time AWGN channel. A
single use of the AWGN channel is given by
where . For this case it is evident that

so the capacity per unit fourth moment for the AWGN
channel is infinite.

3) Alternative Proof: An alternative proof of (5) along the
lines of [3], [28] is given in Appendix A.

III. T HE WSSUS FADING CHANNEL

A wireless channel can be reasonably modeled as a time-
varying linear channel. The observed output can be rep-
resented by

(9)

where is the input, is the time-varying channel
impulse response function, and is white Gaussian noise.
Owing to the high complexity of such channels, a stochastic
characterization is useful. Considering a single tone transmitted
to a moving receiver with isotropic scattering, Clarke [5]
showed that the complex envelope of the signal at the receiver
is a complex-valued wide-sense stationary (WSS) Gaussian
random process with the zeroth-order Bessel function as the
autocorrelation function. The magnitude at each time instance
has the Rayleigh distribution. Bello [1] analyzed random
time-varying linear channels and gave a statistical characteriza-
tion in time and frequency variables. Usually, for fixed

is assumed to be a WSS process, i.e., ,
and . We can also have

uncorrelated for different values of. This is called
uncorrelated scattering (US). Often these two simplifying
features are combined (see [7]), leading to the consideration of
WSSUS fading channels. For a WSSUS channel, the second
moments of have the form

(10)

Finally, it is often assumed that the random processis a
complex Gaussian random process. See, for example, the urban
propagation model or the GSM propagation model [7].

In this paper, we assume thatis WSSUS, Gaussian, and
mean zero. The second variable,, indexes the path delays, and
we also assume that unless , where

is a bound on the maximum delay spread of the channel.
Such a model, for suitable choices of , fits empirical mea-
surement data and has been used extensively in evaluating the
performance of various systems like GSM, ATDMA, IS-95, etc.,
as mentioned in the COST and CODIT studies [7]. The channel
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model allows for two extreme cases, namely, specular where
there is a set of distinct paths, and diffuse where there is a con-
tinuum of irresolvable paths. The general WSSUS model allows
for a mixture of these two extremes [20].

A nice feature of a WSSUS channel is that the ratio of the
mean output energy (excluding the additive noise) to input en-
ergy does not depend on the choice of input signal. This ratio is
called the energy gain, , and is given by

(11)

We generally assume that is finite. We refer the reader to
Proakis [22, Ch. 14] for a detailed treatment of WSSUS fading
channels.

We have introduced the WSSUS channel model in standard
engineering terminology. In the remainder of this section, we
describe how the channel can be put on a firm mathematical
foundation. The assumption of uncorrelated scattering means
that the process is white-noise-like as a function
of , as evidenced by the delta function in (10). Also, the
observed output signal has AWGN. Despite being
white-noise-like as a function of, it can be shown that the
required integrals involving are ordinary square-in-
tegrable random variables, in the same way that white noise
integrals yield square integrable random variables.

The following will be used instead of in order to sum-
marize the channel statistics, and then the connection back to

will be made. Let be a finite measure on with support
. This measure is the power gain distribution across

different path delays. The total gain is . Let
be a positive-definite function for fixed which has

and which is jointly measurable in . The
function , for fixed, is the normalized autocorrela-
tion function for the set of paths with delay. We shall give a
description of a WSSUS fading channel with power gain distri-
bution and normalized autocorrelation function .

Proposition III.1: Given and , there
exists on some probability space a family of jointly Gaussian,
measurable random processes with
finite average energy such that for all and a.e.

(12)

Proof: Refer to Appendix B.

The channel is said to be diffuse if has a density .
In this case, the function described at the beginning of the
section is given by

so that

The channel is said to be specular if there is a countable set of
path delays and positive constants so
that for any set

In this case, the function described at the beginning of the
section is given by

In general, the measure can have both discrete and contin-
uous components.

The notation is used in Appendix A, and
avoids the use of generalized functions. The is
also used quite often in other sections of the paper for ease of
exposition. In the next section of this paper, we also use the no-
tation , primarily to maintain compatibility with the
literature.

On the basis of Proposition III.1, we can write the observed
output of the WSSUS channel for a finite energy inputas

(13)

where is complex Gaussian white noise with one-sided power
spectral density . A standard mathematical interpretation of
this (see, for example, [17], [21], [29]), that avoids the use of
generalized random processes is that the observed signal is

defined by

where is a standard complex Wiener process. The
process takes values in , the set of continuous com-
plex-valued functions on the interval . The signal in the
following proposition can be taken to be for a fixed finite
energy input signal .

Proposition III.2: Let and let be a measurable
Gaussian random process with and let

be the covariance function of . Let

for (14)

where is a standard complex Weiner process and .
Then has associated nonnegative eigenvalues
and eigenfunctions such that

and and are each absolutely continuous with respect
to the other with the Radon–Nikodym derivative given by

(15)

where the coordinates of are given by
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The coordinate is under and
under .

Proof: Refer to Appendix C.

Since for the fading channel model depends on the
input signal , the eigenvalues also depend on. In the
analysis that follows, we will be scaling the input and letting the
scale factor either tend to zero or to infinity. Scaling the input
does not change the eigenfunctions, but scales the eigenvalues
by the square of the scale factor for. A consequence of Propo-
sition III.2 is that

(16)

where is given by (7).

IV. FOURTH MOMENT INFORMATION BOUND FOR A

WSSUS CHANNEL

A. Definition of Fourthegy and the Information Bound

In this section, a bound analogous to (5) is proved, using es-
sentially the same proof, for the WSSUS channel model (9) de-
scribed in the previous section. The notation and assumptions
of the previous section are in force. In particular, for each fi-
nite-energy input signal , the covariance function of
the output signal is given by

(17)

As noted in Appendix B, we can also considerto be the kernel
of an integral operator, also called, and the eigenvalues associ-
ated with are the eigenvalues of that operator, and are denoted
by .

Define the fourthegy of the input by

(18)

An equivalent expression for is where
denotes the kernel convolution of with itself. Equation

(17) yields a third expression: . This defini-
tion is consistent with the definition of fourthegy for a vector
Rayleigh channel given in Section II-B. As before, scaling the
input by a given factor scales the fourthegy by the fourth power
of the factor. Some basic properties of are given in the next
subsection. The following theorem gives the key bound on in-
formation per unit fourthegy.

Theorem IV.1:For any measurable input random process
that has finite energy with probability one

(19)

where is the output random process and the expectation is
carried out with respect to the measure of.

Proof: Let

In view of (16), the relations in (8) hold with “” replaced by
“ .” Thus,

(20)

so the theorem follows from (3).

Various complements to Theorem IV.1 are given in Sec-
tion IV-C. Applications of the theorem are given in Section V.

B. Properties of Fourthegy

Let denote the Fourier transform of for each
fixed. For fixed, is the power spectral density of

the channel fading for delay. Using

in (18) yields

(21)

where is the symmetric ambiguity function [4] of the
signal which is defined as

(22)

Thus, (21) can be rewritten to yield a fourth useful expression
for

(23)

where , called the channel response function, is given
by

An important property of ambiguity functions is the volume
invariance property [4, p. 153]

(24)

Since for all , is bounded
above as follows:
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The expression (23) shows that captures both time and
frequency aspects of the signal. For example, it can be shown
that and ,
where is the Fourier transform of , as follows. By (23)

and the ambiguity function has the following property [4, p.
154]:

Using this gives

Therefore,

with

Similarly,

where

A drawback of the definition of fourthegy is that, unlike the
definition of energy, it involves the channel. However, applying
the Cauchy–Schwartz inequality to (23) yields

(25)
The right-hand side of (25) is the product of two terms, the first
involving only the input signal, and the second involving only
the channel. Perhaps the first term on the right-hand side would
be a good channel-independent notion of fourthegy, but it seems
too complicated to work with.

Recall that in Section III a general alternative way to describe
the statistics of a WSSUS channel was given, involving a power
gain distribution and normalized autocorrelation function

. If we were to follow through with that general notation
in this section we would see that the channel response function
is best considered as the measure given by

where

and the fourthegy is the integral of the ambiguity function
squared with respect to this measure, i.e.,

C. Complements

Various complements to the other results of this section are
given in this subsection. First, we note that Kennedy [15] de-
fined the number of effective diversity pathsto be the recip-
rocal of . In [15], is the -ary FSK waveform while
here it is the on signal for on–off keying. Thus, Kennedy’s
increasing without bound implies that decreases to zero
and the result of the error exponent for-ary FSK going to zero
in [15] is mirrored by the mutual information between the input
and the output going to zero.

Second, the astute reader will note that Theorem IV.1 does
not mention the notion of capacity per unit fourthegy for the
WSSUS fading channel model, unlike Proposition II.1. The
reason is that the bound given in Theorem IV.1, essentially a
converse half of a coding theorem, has a clean proof and is all
that is needed for the applications of the next section. Still, for
completeness, we pursue the notion of capacity per unit four-
thegy here. To begin with, we claim that equality actually holds
in (20). To prove this, note that since
for , Taylors formula yields

(26)

where

for

Using (16) and (26) yields

(27)

where satisfies

(28)

Thus,

The eigenvalues are scaled byif is scaled by , so
as , which, in turn, shows that equality holds in (20)

as claimed.
One consequence of this claim is simply that the bound of

Theorem IV.1 is tight in the sense that the ratio of the right-hand
side to the left-hand side tends to one for an on–off input process
in which the on probability tends to zero and the on signal is
scaled toward zero.

Another consequence is that we can apply (2) to conclude
that the capacity per unit fourthegy of the WSSUS channel is
equal to . However, this result requires repeated indepen-
dent use of the WSSUS channel to form a discrete-time memo-
ryless channel. Intuitively, if the channel memory has a reason-
able decay rate, one can simulate repeated independent use of
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Fig. 1. Ambiguity function of a typical signal.

the WSSUS channel by using a single WSSUS channel and sig-
naling in time intervals well separated by guard bands. Hence, it
can be shown under reasonable conditions that information can
be reliably sent at rates arbitrarily close to nats per unit
fourthegy over a single WSSUS channel. The bound of Theorem
IV.1 shows that higher rates are not possible.

The third and final item in this subsection concerns the ca-
pacity per unit energy for the WSSUS channel. This capacity,
denoted by , is given by

where is the energy of the input waveform
. The discussion of the previous paragraph applies for the pos-

itive part of the coding theorem.
Note that and

Therefore,

and fixing an arbitrary but nonzero, finite-energy signalwe
have that

Therefore, we have established that , and for any
random input signal , . Fur-
thermore, the capacity can be approached by using any nonzero

input as the on input for the on–off keying scheme with the en-
ergy tending to infinity and the average energy tending to zero.
We should note that is exactly the same as the capacity per
unit energy of an AWGN channel with the same gain and noise
characteristics. In view of the heuristic connection between ca-
pacity per unit cost and capacity with infinitely many degrees
of freedom discussed at the end of Section II-A, this is exactly
as expected from the results of [14], [15], and [25].

V. DS-CDMA SIGNALS OVER BROAD-BAND

FADING CHANNELS

Before deriving the actual ambiguity function for DS-CDMA
signals, we intuitively explain why the capacity of DS-CDMA
signals over diffuse WSSUS fading channels tends to zero as
the spreading increases. The ambiguity function of a typical
DS-CDMA signal is shown in Fig. 1. The ambiguity function
looks like a thumb-tack. From the volume invariance property
stated in (24) and assuming that the energy of the signal is
normalized to be , we can compute the dimensions of the
thumb-tack. The dimensions of the stump are as follows:
height, which is (normalized) energy squared, is, length
along the delay axis is the inverse of the Gabor bandwidth
which is for DS-CDMA-like signals, and the width along
the Doppler axis is the inverse of the Gabor time width
which for DS-CDMA-like signals is . The dimensions of the
box are as follows: (normalized) height is , length along the
delay axis is , and width along the doppler axis is . Thus,
most of the volume of the thumb-tack is contributed by the
box. Heuristically, it is reasonable to expect to decrease
to as , i.e., as the bandwidth of the DS-CDMA signal
is increased. This happens if is continuous with com-
pact support. This is typical for the channel response function
as illustrated in Fig. 2. For example, if
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Fig. 2. A typical channel response function.

for all , then has support
along the delay-axis and along the Doppler-axis.
Thus, we expect the rate of information that can be reliably
transmitted with DS-CDMA signals over (nice) Gaussian
WSSUS fading channels to tend to zero as the spreading factor
increases.

Fig. 1 is actually a generic picture for any signal. Specializing
to frequency-hopping-like signals or to -ary FSK signals, we
find that the length of the stump along the delay axis is inversely
proportional to the width of the individual frequency slots. Since
that width of the frequency slots is fixed irrespective of their
number, the bound does not decrease to zero for such signals.
This is in conformance with [15], [10], and [25].

As another means of looking at the difference between
DS-CDMA and frequency-hopping CDMA performance, we
look at the distribution of the signal energy across the time–fre-
quency grid. Roughly speaking, the fourthegy function is a sum
over time and frequency bins of the local signal energy squared.
Thus, the choice of the distribution of the local signal energy
has a significant impact on the value of the fourthegy. It is most
convenient to illustrate this for . Using
this correlation function it can be shown by expanding out in
detail and using properties of the Fourier transform that

local energy

The equivalence of with the sum of the local energy-
squared holds if we imagine the signal to assume approximately
constant values in balls of unit radius in the time–frequency
plane. We also have that

Fig. 3. A typical signal energy distribution pattern for DS-CDMA signal.

Suppose a time–frequency bin is selected at random, uniformly
over the bins corresponding to a durationobservation of
a signal of bandwidth . This induces a probability distribution
of the local energy of the transmitted signal. The mean is the
energy per unit time–frequency. The variance of the local en-
ergy of is equal to the fourthegy per unit time–frequency (i.e.,
the mean square local energy) minus the square of the mean
local energy. Fig. 3 illustrates the signal energy distribution of
DS-CDMA signals. It is clear that DS-CDMA signals distribute
the signal energy evenly, in other words, in a nonbursty manner.
Assuming that the signals are fixed power signals, the energy is
proportional to the duration of the signal. Let be the band-
width of the signal. For DS-CDMA signals, the sum of the local
energy squared is given by

local energy

Therefore, as the spreading increases, the fourthegy decreases,
and so also the mutual information decreases. The variance of
the local energy of these signals is zero. Fig. 4 illustrates the
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Fig. 4. A typical signal energy distribution pattern for frequency-hopping
CDMA (FH-CDMA).

signal energy distribution for frequency-hopping CDMA (FH-
CDMA) signals. Note that for such signals, the distribution is
not even and is, in fact, bursty with large regions on the time–fre-
quency grid having no energy. For FH-CDMA signals the sum
of the local energy squared is given by

local energy

Thus, it is clear that the fourthegy of an FH-CDMA-like signal
does not decrease with an increase in the bandwidth. The vari-
ance of the local energy for such signals is not zero.

A. Bound on DS-CDMA Capacity Per Unit Time

So far, we have given two qualitative arguments to explain
how the capacity of DS-CDMA signals decreases as the
spreading increases. From this point onwards, the objective is
to justify this with quantitative/numerical results. The informa-
tion rate for DS-CDMA is less than or equal to the product of
the fourthegy per unit time of DS-CDMA times the maximum
information per unit fourthegy for the channel. By Theorem
IV.1, the second term is bounded by , so that

Information Rate (29)

In the rest of this section we restrict our attention to diffuse
WSSUS channels.

In view of (23), a good first step in calculating the mean four-
thegy of DS-CDMA signals per unit time is to compute the mean
magnitude squared of the ambiguity function of a
DS-CDMA signal. The DS-CDMA signals are given by

(30)

where are independent and identically distributed (i.i.d.),
zero-mean, complex-valued, random variables and, with
support and energy , is the chip waveform. All mo-
ments and integrals that appear are assumed to be finite.

Expanding yields that

where is the ambiguity function of . The support
of is , so the support of along the -axis is

, and, therefore,

if

This observation, and the independence and zero-mean assump-
tions on the ’s yields that

Therefore,

(31)

By (23), the mean fourthegy is the integral
of times the channel response function. The
next step is to use this fact and the expression (31) to bound

above. For simplicity, take a separable channel, i.e.,
a channel for which each path fades similarly. Thus, assume
that

or, equivalently, that , where is the
Fourier transform of and is the Fourier trans-
form of . Therefore,

and

where

and

Assume without loss of generality (since can be varied) that
; in other words, . Finally,

assume that constant modulus symbols are used, meaning that
is constant. Note that

and
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(from ). Using (23), (31), and the fact
yields the following upper bound:

(32)

Note that

(33)

and

Since and , it follows that

Therefore,

(34)

The ratio of received signal power to noise spectral den-
sity is , where is the received signal power given by

, and . Of course, (data
rate), where is the received energy per bit. Combining (29)
and (34) yields the following corollary to Theorem IV.1.

Corollary V.1: The information rate for DS-CDMA sig-
naling with constant modulus symbols transmitted over a
separable WSSUS fading channel satisfies the following:

Information Rate

(35)

If is band-limited with bandwidth less than , i.e., if
the maximum doppler frequency is less than (which would
be common in practice) then the sampling theorem yields

where is the coherence time of the channel defined some-
what arbitrarily by

The delay power density is said to be uniform if

Corollary V.2: Suppose that the maximum doppler fre-
quency is finite and less than , and suppose the delay power
density is uniform. Then the information rate for DS-CDMA
signaling with constant modulus symbols transmitted over a
separable WSSUS fading channel satisfies the following:

Information Rate (36)

The corollaries imply that for fixed power, DS-CDMA sig-
nals convey less information per unit time, as the spreading in-
creases (i.e., as ). In fact, the rate is proportional to ,
and hence inversely proportional to the bandwidth over which
the signal is spread.

The bounds in Corollaries V.1 and V.2 hold for any time-lim-
ited chip waveform (time-limited to the chip duration). Tighter
bounds can be obtained for specific chip waveforms. In the rest
of this section, we will specialize to the case of a rectangular
chip waveform for which

where . For a rectangular chip waveform it is
clear that . Using this, rather than the
weaker but more general bound in
(31) yields the following modification to (34):

(37)

With the uniform power density assumption, Corollaries V.1 and
V.2 can be modified as follows.

Corollary V.3: The information rate for DS-CDMA sig-
naling with constant modulus symbols and a rectangular chip
waveform transmitted over a separable WSSUS fading channel
with a uniform power density satisfies the following:

Information Rate

(38)

Corollary V.4: Suppose that the maximum doppler fre-
quency is finite and less than , and suppose the delay power
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Fig. 5. Upper bound (39) for variousa with = 2� 10 Hz.

density is uniform. Then the information rate for DS-CDMA
signaling with constant modulus symbols and a rectangular
chip waveform transmitted over a separable WSSUS fading
channel satisfies the following:

Information Rate (39)

B. Numerical Results

The bounds on information rate for DS-CDMA signals
given in Corollaries V.1–V.4 depend strongly on the correlation
function, or equivalently the doppler spectrum, of the channel.
In particular, needs to be finite for the
bound in (35) and (38) to be finite. Frequently in the literature,
the doppler spectrum is assumed to be the Clarke spectrum,
which corresponds to a uniform distribution of received power
over all angles of arrival in two dimensions. For such spectrum,
the correlation function tends to zero as , so that is
infinite. Therefore, the bounds given in Corollaries V.1–V.4
are infinite for the Clarke spectrum. Moreover, it is shown in
Appendix D that for DS-CDMA signaling over
a channel with the Clarke spectrum. Thus, the approach of
considering fourthegy per unit time is not fruitful for the case
of the Clarke spectrum. The numerical results reported in this
section are thus for channels for which the correlation decays
more quickly than for the Clarke spectrum.

For the first set of channels it is assumed that 1 s
and the maximum doppler frequency is 200 Hz. The
family of channel correlation functions considered is given by

for

If converges to , this spectrum converges to the Clarke spec-
trum, whereas if is near , the spectrum has much milder sin-
gularities, so that the correlation function decays much more
quickly. The value for is assumed to be 2 10 Hz. This
numerical value arises, for example, for a system with a bit rate

of 10 kbit/s operating with 3 dB. The data rate 10 kbits/s
is roughly the minimum data rate, and the value 3 dB is roughly
the value of , targeted for third-generation cellular systems
such as the emerging wide-band CDMA systems proposed for
UMTS. We also take bandwidth . Fig. 5 displays the upper
bound (39) for different values of. A region of interest in the
figure is the set of bandwidths such that the upper bound falls
below the capacity of an AWGN channel with the same. As
expected, the upper bound converges to infinity astends to .

The remainder of the numerical results are for the channel
correlation given by a two-sided exponential

This correlation function decays more quickly than the varia-
tions of the Clarke spectrum considered above. Again, assume
a uniform power density. The upper bound in (38) and the in-
equality yield

Information Rate

(40)

Fig. 6 displays this bound for several different values of, with
2 10 Hz and 1 s as before.

In future years, even more sensitive transmission systems will
be sought, so that smaller values of may be relevant. As an
example of how this changes the bounds, Fig. 7 shows the same
upper bound for the same correlation function as in Fig. 6, ex-
cept that is halved to 10 Hz. Here we find that the band-
width at which the upper bound falls below the AWGN channel
capacity is approximately half of the same value for the larger

. Detrimental effects of overspreading are indicated in Fig. 6
for a bandwidth of 8 MHz, and are indicated in Fig. 7 for a band-
width of 4 MHz. These bandwidths are in the range of currently
emerging third-generation commercial systems.

The bound (40) can also be used to produce a lower bound
on for a given bandwidth and data rate, as illustrated in
Fig. 8. The figure is based on a 20-MHz DS-CDMA system
using 1000 Hz and 1 s. Data rates from 8 to
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Fig. 6. Upper bound (40) for variousF with = 2� 10 Hz.

Fig. 7. Upper bound (40) for variousF with = 10 Hz.

256 kbits/s are considered. For each data rate, the bound (40)
implies a lower bound on . As noted in Section IV-C, it is
known that must be at least 1.6 dB (same as for a non-
fading AWGN channel). The larger of these two lower bounds
is pictured for each data rate. Note that the requiredis con-
siderably larger for the smaller data rates. Fig. 8 is qualitatively
the same as a figure based on extensive system engineering and
simulation for the emerging WCDMA standard for UMTS [13,
Fig. 10.4].

The focus of this section is on upper bounds on the
information rate of DS-CDMA as the bandwidth is increased,
for fixed power. Another interesting limit is the case that the

doppler spread tends to infinity for fixed bandwidth. Viterbi
[28] showed that for FSK that is not bursty in the time domain,
the information rate converges to zero in this limit. This fact
is reflected in Figs. 6 and 7 because for practical systems
the dominant term in (40) is the last one, which is inversely
proportional to . The remaining terms in the bound (40) do
not converge to zero as , but an alternative analysis
applied to the expressions for fourthegy per unit time with
assumed to be a rectangular pulse can be used to show that the
information rate indeed converges to zero as . Since
the remaining terms are very small for practical systems, the
details are omitted.
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Fig. 8. Lower bound on requirement for different data rates for DS-CDMA system with bandwidth 20 MHz,F = 1000 Hz, andT = 1 �s for two-sided
exponential correlation function.

C. Specular Multipath Channels

In this subsection, we concentrate on specular WSSUS
multipath fading channels. Since we are considering a Gaussian
channel it is sufficient to specify the correlation function

. For an -path specular WSSUS multipath channel
the following form for holds:

(41)

where are the time offsets of the various mul-
tipath components. Thus, is given by

where is the Fourier transform of . Therefore,
is given by

Finally, the following expression for holds:

(42)

where

(43)

with

Before going into detail, let us pause briefly to summarize how
we will proceed to bound from above. Roughly speaking,
if there are many paths each with approximately the same en-
ergy, and if the total average received energy is fixed, then
scales as . Considering DS-CDMA-type signals for small
enough , we can expect the diagonal terms to dominate
in the right-hand side of (42). Since there are onlydominant
terms, we can expect the mutual information between the input
and the output to be small for large spreading factors. In the rest
of the subsection we make this statement precise.

Let

then the terms in the right-hand side of (42) fall into two groups.
i) . From (31) we have that

Let
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be the inverse Fourier transform of . Note that
. Considering individual terms gives

Parseval

Therefore, we have

ii) . Then we have where is an
integer not equal to or , and . Define

Then the contribution of such terms to is given by

where is given by

For simplicity, consider the case in which the chip waveform is
a rectangular pulse, the channel is separable, and the gain is.
Then

and

In this case, we can upper-bound as

Thus,

Now, letting tend to , we get

(44)
If it is now assumed that all paths have equal energy, then

and

Therefore, the capacity per unit time is inversely proportional
to the number of paths. Specializing to the case of [25] with
Gaussian fading and realizing that

and

where is the coherence time of the channel as defined
in [25], we can extend their upper bound on the capacity per
unit time for very large spreading factors, namely, ,
to channels with ISI. Hence, we can conclude that if there are
many multipath components, then the information rate that can
be transmitted reliably with DS-CDMA-like signals is small.

VI. DISCUSSION

This paper reinforces the conclusions of Médard and Gal-
lager [19] that signals need to be bursty in time and/or frequency
to be able to achieve constant information rates per unit power
over very-wide-band WSSUS fading channels. Smooth signals
like those used in direct-sequence spread-spectrum systems do
not have enough fourthegy per unit energy to achieve signifi-
cant values of reliably communicated bits per unit energy for
a WSSUS fading channel. In particular, detrimental effects of
overspreading on the required energy to interference ratio are
observed in Section V-B for a channel and modulation scheme
not far from currently emerging CDMA systems operating at
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their lowest data rates. This loss in capacity for DS-CDMA sig-
nals has also been observed in practice [13, p. 245] where it is
stated that, “The main reason why the depends on the bit
rate is that the [control channel] is needed to keep the physical
layer connection running and it contains reference symbols for
channel estimation and power control signaling bits. The
performance depends on the accuracy of the channel … estima-
tion algorithms.”

Numerical evaluation of the upper bounds on the information
rate for direct-sequence spread-spectrum-like signals shows that
these bounds are informative for large bandwidths which are
close to the bandwidths for future broad-band systems. The nu-
merical bounds suggest that for ultra-wide-band systems (20–50
MHz or more and for data rates in the tens of kilobits per second)
DS-CDMA-type signaling is inefficient. This may well explain
why most proposals for ultra-wide-band systems call for pulse-
position modulation or on–off modulation with long off periods,
which are highly bursty in the time domain.

A caveat to these conclusions is that they are based on nu-
merical examples for a few specific channel correlation func-
tions. For some correlation functions, such as that for the two-di-
mensional isotropic scattering (Clarke’s spectrum), the upper
bounds on capacity are infinite.

APPENDIX A
ALTERNATIVE PROOF OF(5)

The following alternative proof of the basic inequality (5) was
suggested by a reviewer. The proof uses the equation

which was exploited by [28], as discussed in the Introduction,
and highlighted by [3]. The notation , , and used
in this appendix is the same as in Section II-B. Sincedepends
on and only through the product , it follows
that . Since is a mean zero vector, its
covariance matrix is given by . Here, is
the matrix evaluated at , and the expectation in
is with respect to . Since is obtained from by the addition
of Gaussian noise, the mutual information is less than
or equal to what it would be if were Gaussian with the same
covariance. This and the inequality applied to
the eigenvalues of yield

On the other hand, for a given, is the output of a Gaussian
additive noise channel with input , so that

Therefore, writing for the eigenvalues of and using
the inequality ,

so that (5) is proved.

APPENDIX B
PROOF OFPROPOSITIONIII.1

First we define a family of random processes, all on the
same probability space, and we will defineby letting .
Define

if

where for each is a mean-zero Gaussian random process
with autocorrelation function

Suppose that the are independent for distinct values of,
and that whenever for some

(45)

The above requirements are consistent since (45) implies

as required.
Let be the collection of all continuous functions on

with compact support. Let and let . We show
that

converges in as . It suffices to show that
is a Cauchy sequence or equivalently that
exists and is finite. Now

where
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if and

and, otherwise, . Without loss of gener-
ality we have assumed that . So the measure given
by converges weakly to the measure

and converges in .
If and

where

if for some , and, otherwise, .
So

where

for

and is defined similarly. But uniformly and
uniformly, so

Thus, we have described a limiting procedure allowing us to
construct a random variable for each with

and so that

(46)
We thus take to be the definition of .

For the specific case of for and
fixed, we can define

Relation (12) is a consequence of (46). If , then
is mean-square continuous, so by results of [6, pp.

61–62] there exists a separable and measurable version of
. Moreover

(47)

Let be the Hilbert space of measurable mean-zero Gaussian
random processes on the underlying probability space with
norm . The mapping defined by

is an isomorphism from , which is a dense subset of
, to . The mapping can, therefore, be extended

to an isomorphism for all of into , which we
again call . For any in , we define to
be . Note that is a measurable Gaussian
random process, (47) holds, and (12) continues to hold.

APPENDIX C
PROOF OFPROPOSITIONIII.2

Since is a measurable Gaussian random process with finite
mean energy, the measure induced byon the Borel subsets
of is absolutely continuous with respect to the measure
induced by [17, Theorem 7.16]. This result does not require
that be mean-square-continuous. We shall now present a proof
of this fact, and at the same time identify the Radon–Nikodym
derivative.

Let denote the space of complex-valued square in-
tegrable functions on with inner product given by

The autocorrelation function of is the kernel of a linear
operator on , which we again call , defined by

The operator is symmetric (i.e., ) and
nonnegative (i.e., ). Also, for an arbitrary com-
plete, orthonormal basis of

so that has finite trace given by

Hence, is also a compact operator and, by the
Hilbert–Schmidt theorem, it has a complete orthonormal
basis of eigenfunctions and associated eigenvalues
[23]. Therefore, , and also, .
The observations have the same information
content up to sets of measure zero as , where is
defined by mean-square integration

To see this, start with the fact that for each,

mean square sense

where denotes the indicator function of the interval .
Mean square convergence implies almost sure convergence
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along a subsequence, and only needs to be recovered for
rational values of since it is sample continuous. Thus, up to
sets of measure zero, the information in is indeed the
same as that of . Under , the ’s are independent with
distributed as for each , and under , the

’s are i.i.d. with distribution .
The Radon–Nikodym derivative for observations

[29] is given by

By general theory, the sequence is a martingale
under the measure of . Direct computation shows that if
is a number with , then is
uniformly bounded in , where the expectation is taken under
the measure of . Hence, the sequence is a uni-
formly integrable martingale. It therefore converges in the
sense with its limit being given by (15). Moreover, by gen-
eral theory, is equal to the Radon–Nikodym derivative of the
measure of with respect to that of [29, Proposition 1.4,
p. 212 and Proposition 7.6, p. 33]. Finally, since is strictly
positive with probability one (in fact, it is bounded below), it
follows that the two measures are equivalent. See [12, Ch. VII,
Sec. 4] for more references and information related to the rep-
resentation (15).

APPENDIX D
CLARKE SPECTRUM

In this appendix, we concentrate on the behavior of the ca-
pacity per unit fourthegy bound for the Clarke spectrum. The
Clarke spectrum is commonly used for the design and analysis
of systems. From the discussion in Section V-A, we expect the
bound to be infinite for the Clarke spectrum, and our objective
here is to show this. As a specific example, consider a sepa-
rable channel with a uniform distribution of power among the
multipath elements. The channel considered hasas the max-
imum doppler spread and is the multipath delay spread.
The power spectral density indexed by path delay can
be written as

Consulting Fig. 1, it is clear that thestumpregion contributes the
most to the fourth moment cost. Moreover, also grows
without bound in that region. Therefore, it suffices to consider
the following integral:

In the region considered we can approximate as

as

where it is implicitly assumed that and . By
(31)

Thus,

as

Therefore,

(48)

as . Thus, tends to infinity as but only
as . Therefore, the bound on the information rate given
by the capacity per fourthegy result is infinite.
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