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A Broad-Band Power Spectrum Analyzer
Based on Twin-Channel Delayed Sampling

Domenico Mirri, Member, IEEE,Gaetano luculano, Gaetano Pasivlember, IEEE,
Fabio Filicori, Member, IEEE,and Lorenzo Perettdyiember, IEEE

Abstract—This paper describes a power spectrum analyzer the associated filtering algorithms do not introduce any band-
whose bandwidth is not limited by the mean sampling time. The width limitation when used to deduce the mean power. The
procedure is based on the estimation of the spectral components s nqwidth limitation is in this case due uniquely to the

of the autocorrelation function of the input signal through the . .
simultaneous random sampling of the given input signal and its bandwidth of the sample and hold (S/H) device. In spectral

randomly “delayed copy.” The samples are therefore randomly analysis the quantities to be measured are, however, not
taken in a double-dimension space, time, and delay. By using only related to the set of sampled signal values (as in the

a random process in the time domain with a recursive mean case of the wattmeters), but also to their time allocation.
previously introduced by the authors in order to avoid any 14 this end, a finely controllable sampling time spacing has

bandwidth limitation due to the sampling strategy, it is shown b introd di basically “random” i trat
both theoretically and through simulation that the estimate of een introduced In a basically ‘random = sampling strategy.

the power spectral components is asymptotically unbiased on the In this way a simultaneous sampling of both the given input
unique hypothesis of a synchronized random sampling in the signal z(¢) and its “delayed copy’(t — ) can be carried

delay domain, i.e., the sampling delays are uniformly distributed out and the autocorrelation function of the signal can be
in an interval equal to the period of the input signal. The agtimated. This procedure, which allows us to evaluate the
simulation results confirm the theoretical findings. . : . . . .
power spectrum of the input signal, is described in Section II.
Index Terms—Autocorrelation, performance analysis, power |n Section lll, the criterion for the performance analysis is
spectrum, random sampling. carried out together with the theoretical findings, while in
Section IV the simulation results are given and discussed.

I. INTRODUCTION

T HE potential advantages of particular random type sam- Il. MEASUREMENT METHOD

pling strategies in the implementation of broadband dig- Let us consider the Fourier series of a finite spectrum
ital wattmeters have already been pointed out [1], [2]. Iperiodic signalz(t) with period7: = 1/f1
fact, we introduced two sampling techniques. One is described

by the following additive model which defines a discrete B w X, oi2mk it 3
parameter continuous random process with a recursive mean a(t) = Z k€ (3)
TS: k=—M

tw_i = to+ (w—i+ Y, )Ts (1) Wwith k integer, where the spectral coefficiedfs = | Xy|e/#*

o ~can be derived from

wherew marks a sequence of sampling instants aadjeneric
value of the sequence,,_; is a sampling instanty, the X, — 1 +1/2 (#)e—I2mRAL gy (@)
initial shift, T's a constanty,,_; a random variable uniformly k= Ty J 1,2 e )

distributed in the interval (0, 1). The other is described by this
additive model which defines a recursive random process When the signal is real, i.ez(t) = z*(t), we can write
X_; = X; because the conjugate of an integral is the integral
of the conjugate due to the additive property of the integral.
where Y/, is a random variable uniformly distributed inBY recalling the frequency shifting property [3], the Fourier
the interval (0,~1.5). We theoretically demonstrated andransform of the signak:(t) can be expressed as follows:
experimentally verified that these sampling strategies with

tw—i =tw_i—1 +(1+Y,_;)Ts ()

+M

X(fy= > Xus(f - kf) (5)
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The autocorrelation function of the real signdt) is given Therefore the autocorrelation function, periodic with the same

by [4] period 7} of the signal, has its largest magnitude at periodic
R(r) = (z(t)z(t — 7)) intervals r = Q, +77, _:|:2T1, e _
YE By substituting (7) into (9) we obtain
=T z(B)x(t — 7)dt 1 /2 2
LJ-T/2 X2 = — / z(O)z(t—7) cos(2rk fi7) dt dr.
+M 5 a2 Sy
_ Z |Xk|26j27rkf1‘r (14)
k=M This double integral in the time and delay domain can be
+M numerically computed as the average of a numbérof
= Z | X1|? cos(2rmk fi7) (7) samples randomly taken in the double-dimensigrm) space
k=M by using the following formula where the integer marks a
and it still contains all the information concerning the signadleneric value of the output:
power spectrum components, i.€X;|>. The mean value is N1
identified by the symbo{-). The frequency allocation of each | X5 ol = 1 Z (twi)2(t—i — Te i) COS(2TE f1To0s)
spectral component of(¢) and R(r) is the same; besides the ’ N~ ’
phase angle of each spectral component@j disappears in | Nl
the evaluation ofR(7), which therefore results in a real even — Z T(twi)T(tw—i — Twi)
function of 7. For = 0 we obtain the well-known Parseval N —0
formula eI2Tk 1T | o—i2Tk 1T
+M ’ [ 2
R(0) = <372(t)> = kZM |ch|2 (8) fork=0,1,---, M (15)
which represents the mean power associated to the input sigredording to a Monte Carlo-like statistical approach for inte-
x(t). gral evaluation [5]. In particular, eaéth sampling point in the
Because also the autocorrelation function is a discrefe 7) space is randomly generated according to the sampling
spectrum signal with period;, we can write strategy defined by (1) and the following formula for the delay:
T1/2
X2 = 1 /+ v R(r)e2kNT g Twi = Zwila (16)
Ty mype
1 T2 being 7.; the ith random delay used to deduce thgh
=— R(7) cos(2nk fi7) dr. (9) output estimatel’y a generic value, and,,; independent
i oz random variables uniformly distributed in the interval 0 to 1.

Due to the frequency shifting property [3], the Fourier transfhe properties of this approach are outlined in the following
form of the autocorrelation function (7), i.e., the power densiection.
spectrumS( f) of the signalz(¢), can be expressed as follows:

W ) lll. PERFORMANCE ANALYSIS
S(f) = > |Xul’6(f - kf) (10) . _
e The estimated:th power spectral component of the input

where alsoS(f) is a real nonnegative and even functionSlgnal through (15) is a function of the variablgg w and

This function measures the distribution of poweraifr) as of the vectors of the two independent, uniformly distributed,

\ . .__random variabled”,, = {Y,,_;}, Z. = {Z.:} used to obtain
a function of frequency [4]. The autocorrelation funcnonthe output labeled withy, i.e., [Xpu|? = f(to, w, Yur Zu).

representing the inverse Fourier transform of the powerdens:llxe labeling marke identifies a generic discrete output of
rum n Xpr follows: .
spectrum, can be expressed as follows the instrument for eachth spectral component; therefore the

R(r) = /+°° S(f)e 247 df. (11) integer w is. random in nature because it can be cons.idered
oo randomly picked up from a sequence &% + 1 successive
Since potential measurement occasionsh( < k < +h), each of
+o0 which has an equal chance of being selected. The valug of
R(0) = (¢*(t)) = / S(f)df (12) is not knowna priori and one is led to interpret any value of
] - to as an outcome of a random variable with a continuous set
we can write of values uniformly distributed in some generic time interval
R(r)| = ‘/+oo S(f)e I df‘ T which encompasses all the possible realizatignﬁf/@ <
oo to < 4+7T/2, T being unknown). Therefore, we introdu¢g
+oo , as a continuous random variable uniformly distributed in the
< / 1S(f)e*™ 7| df time intervalZ’ andw as a discrete one uniformly distributed
fooo in the interval2h +1. On the hypothesis of a random sampling
:/ S(f)df = R(0). (13) strategy defined according to (1), the independent random
—oo variables of the vectol’,, are uniformly distributed in the
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interval 0 to 1; from (16) we deduce that also the independent TABLE |

random variables of the vectdf,, are uniformly distributed BIAS AND STANDARD ERROR (THEORETICAL AND SIMULATED) OF THE
in th int | SIMULATED MEASUREMENTS FORSINUSOIDAL INPUT SIGNALS

In the same Interval. AT DIFFERENT FREQUENCIESBETWEEN 1 kHz AND 1 GHz

An appropriate characterization of the output uncertainty

. . .. N, =100 N, =10
can be obtained by evaluating the statistical parameters _of : N : : : :
~ 5 g 2 Frequency (MHz) Bias Theoretical | Simulated Bias Theoretical | Stmulated
| X#w|*, i.€e., the mean valué/ {| X;,,|°} and the mean square | sdemor | ad error | sdoeror | sid.emor
error B2 = M{(|Xsw|? — | X&[>)2}. In order to incorporate B S N S s
all thea priori chances into the instrument's performance, the—g; ST T T T TR T me e
number of the output states, i.€4 + 1, must be sufficiently M ST T So00 T ST T e T o T
large and theoretically tend to infinite. Therefore we must— o 36107 | 39107 | 37907 | 1010 | 12107 | 1210
consider the asymptotic statistical parameters of the output, 1w 7410° | 39107 | 39107 | 60007 | 12107 | 12107
i.e., the asymptotic means{|X.|*} and the asymptotic 1 Gz A9I0T [ 30T [ 3707 | 52007 | 12107 | 12107
mean square error (mge¥ = M{(|Xu.|? — | Xz]?)?}.
—
It can be shown (see the Appendix) that, on the hypothesis, . , 4
of a delayr,; uniformly distributed in a time interval equal
to the period?; of the input signal, the asymptotic bias is v
null (A14)
Xpwl? b = | X 17
M 1 Xkw!|™ p = [Xi]" 17)
1.0E-4
Therefore the asymptotic mean square error coincides with the
asymptotic variance, which can be expressed as follows (A31):
Var{|Xk7w|2}
2 2
+M +M
1 9 0.0E+0 T AL T
T aN < Z X+ + Z XrXak—r 10 100 1000 N 10000
r=—M r=—M
+M Fig. 1. Estimate of the asymptotic variance \é&ra function of the number
1 2y 2 2
+1 Z {Re[X7’XkX;k+r:| + | X2 X } of the samples for each measurement.
r=—M

SIn@((r + k) fi ) sin¢((r + k)N f1Ts) 1 dependent. A very small (theoretically zero) bias is confirmed
153 sin@((r + k) f1Ts) N by observing that the error associated to “measured” values
X[t (18) (i.e., simulated) are within the expected range correspondent
to three times the standard error.

On the hypothesis thaf;7, = » with » an integer (i.e., a Fig. 1 shows the shape of the asymptotic variance as a

synchronous sampling strategy) we obtain function of the numbetV of sampling values used to esti-
mate the spectral component of a periodic sinusoidal signal
+M +M . . .
Var{|X |2} _ 1 Z X2 X, 2 with an amplitude of 1 V andf = 1 kHz; the continuous
Fow 2N~ " ZM " curve represents the corresponding theoretical values for the
r=— U=—

5 asymptotic variance according to (18). Clearly, simulated and
1 w 5 theoretically quantities are in very good agreement.
TaN Z X7 (19) In Fig. 2(a) theoretical and simulated results are compared
" in the case of the power spectrum measurement, With-
N, = 103, of a 1-V sinusoidal signal with frequency variable
from 1 kHz to 1 GHz; Fig. 2(b) and (c) shows, respectively,
A power spectrum analyzer based on the operating princiglee corresponding values for the bias and the variance.
defined by (15) was simulated by assumiiig ~ 100 pus; Fig. 3(a) shows in a semilogarithmic scale the theoretical
each spectral component was estimated by consideling and simulated power spectral components of a square-wave
random samplings of the input signal. It is important to observegether with the correspondent value of bias. It is interesting
that the results were essentially the same independent of thebserve that, according to the theory, the variance relative
random sampling strategy adopted (1) or (2). Table | shows the dc component is approximately twice that of the other
the asymptotic bias and standard error of a periodic sinusoidamponents.
input signal with an amplitude equal to 2 V at different
frequencies from 1 kHz to 1 GHz estimated by considering
N = 10% samples. In order to evaluate the asymptotic bias
and standard error, each measurement simulation was repeatéd power spectrum analyzer based on the estimation of
10° and 10 times. These results are not, in practice, frequentlye spectral components of the autocorrelation function of

=—M

IV. SIMULATION RESULTS

V. CONCLUSIONS
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Var{)? rl O: theoretical values correspondent value of bias.
| +: simulated results
4E-3 4 asymptotic variance was deduced on the unique hypothesis of
1 a synchronized random sampling in the delay domain, i.e., the
‘ sampling delays are uniformly distributed in an interval equal
| sibded - 1 to the period of the input signal. By using a random process in
EI L2 F +9 % siFgzgeFseeg the time domain with a recursive mean or a recursive random
¥ process previously introduced by the authors in order to avoid
any bandwidth limitation due to the sampling strategy, the
020 theoretical findings were in very good accordance with the
+ - 1 - .
’ simulated ones.
0 10 k 20
(©)

APPENDIX

Fig. 2. Comparison between theoretical and simulated results in the case of

the power spectrum measurement, wkh= N, = 103, of a 1-V sinusoidal
signal with (a) frequency variable from 1 kHz to 1 GHz, (b) correspondin

values for bias, and (c) variance.

By substituting (1) and (3) into (15) and taking into account
£16), we obtain

+M  +M

the input signal through the simultaneous random samplind-X, «|” = N > Y XXt htotes)

r=—M u=—M

of the given input signal and its randomly “delayed copy”

was introduced. Therefore the samples are randomly taken
in a double-dimension space, time, and delay. In order to
evaluate the performance of the proposed method irrespec-
tive of each measurement occasion, the asymptotic statistical
properties of the output must be considered. It was shown
that the asymptotic bias is null and the expression of the

N—-1

. Z 6j27r(1’+'u)(—i+Yw,i)flTS

=0

|:Cj277(’Uk)Zwi f1Ta + e I2m(utk) Zuwi f1Ta

2
(A1)
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For the evaluation of the statistical mean of this quantity it &2 + 1) terms as follows:
necessary to consider the simultaneous random contributions

of the variablesy, ¢y, and of the vector¥’,, = {Yy—i }, Zy = +h
{Z.u:}. To this end it is convenient to recall the following M{e*™ow} = Z Prob{w = k}e/ 2k
relationships. By considering the characteristic function of a k=—h
continuous random variabl& uniformly distributed in the 1 T omak
interval 0-1, we obtain [6] 2k +1 ’g:] ¢
1 6]'271'<)z(h-|—1) _ 6—j27rah
. 1 . = J2ra
M j2maY 1 _ / j2ray d 2h +1 cJ -1
{@ } ; f(y)e Y 1 sin(ma(2h + 1))
et C2h+1 sin(ro)
J2mo _sinda(2h + 1)) (Ad)
_ i sin(mra) o sinda)
) yixes
=" sinda) (A2)

where Propw = k} = 1/(2h + 1) is the uniform point
probability of the discrete variable. If « is an integer, the
where « is a real number and(y) = 1 is the uniform fes‘%“ of (Ad) become§ identicgll_y equal to one.
probability density. Further, a continuous random variagle Finally, the expression of a finite sum must be recalled
uniformly distributed in the intervaltZ/2 has the following

characteristic function: f\z—:l iomai TN 1
¢ = oiZra _ 1
/ =0 e’ 1
+1/2 :
M{CjQﬂ'atO } _ f(t)ejQTF(lt dt _ Cjﬂ'oz(Nfl) Slll(7TOcN)
-7/2 sin(7a)
_ l eimal _ —jmal _ ejﬂ_(y(N_l)N SII'-IC(OéN) . (A5)
T J2mo singcv)
_sin(raT)
~ 7l If o is an integer the sum in (A5) becomes identically equal
= singa?) (A3) 1o N.

Now, we can easily deduce the statistical mean value of
i i » ) |)1’k,,1,,|2 from (Al). Taking into account the independence
where f(¢) = 1/T"is the uniform probability density. The ot 5| the random variables involved, from (A1) we deduce
characteristic function of a discrete random variableuni- 35 shown in (A6) at the bottom of the page. By supposing
formly distributed in the intervaith can be expressed takingeach random delay,,; (16) uniformly distributed in a time
into account the properties of the geometric progressions wittierval equal to the period of the input signdly = 71,

i | M M ' ' N-1 ‘
M{|Xk,w|2} = N Z Z X,,X,U,M{63277(7’+'U)f1t0 }M{eﬂﬂ("-l-u)wflTs} Z e i2r(r+u)ifiTs
r=—M u=—M =0
. M{CjQTF(’I"FU)Yw—iflTS} |‘M{e_j2ﬂ—(u_k)zwiflTA} + M{e_jQﬂ—(u—i—k)melTA }]
2
+M +M . N—1
1 , sind(r +uw)(2h + 1) f1Ts) o ()i
=— X, X, sind(r T 3 J2r(r+u)ifiTs
D T CeanT ¥ S PR
S . e=Imu=RNTa ging(u — k) fiT4) + e 97 WrMNTA ging (4 + k) f17T
LT+ W A Ts S|nq(7’+u)f1Ts)|: q( )f1T4) . q( ) f1 4):|
r=tM +M .
. . P’ . e T g N T
= 3 Y X X Sind(r 4 u) AT) SING(r + ) (2h + 1) fi Ts)e TN VAT sind(r + wN A1 Ts)
=M u=—M sind(r +u) f1Ts)

Jr(r+u) 1 Ts {G_M(u_k)ﬁn sind((u — k) f1T4) + e ™AL sing(u + k)flTA):|
e .

5 (A6)
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i.e., f1iT4 = 1), i.e., the variability range of the time-delay isconsider the asymptotic mean defined by
synchronized with the input signal, we have

ML) = Jim ()

1, foru=Fk
0, elsewhere

(A7)

no matter the value of;7;. By referring to the first term of
(A6) we can write (A11) as shown at the bottom of the page.

. . B lling that
whereu andk are integers. On the further hypothesis that alsoy recafing tha

the mean sampling peridfis is synchronous with the period
T, i.e., Ts = mT; with m a positive integer, by recalling that L sind(r +w)(2h + 1) f1T5s)
. osin(r(r +w)2h + 1) /1 Ts)
= lim
. . h—o0 7r(7’ + U,)(2h + 1)f1TS
sing((r + u) /1) =sinc(m(r + u) _[1 forr=-—u
:{17 forr = —u 10 forr#—u

sind(utk)f1T4) =sindutk) = {

(A12)

0, elsewhere (A8)

we obtain (A13) as shown at the bottom of the page. It is

wherer and« are integers, and that (A5) evident that, When the vqriability range _of the delay ; is
synchronized with the period, by taking into account (A7),

the nonnull contributions are only far = £ and therefore

e—jﬂ'(r—l—u)(N—l)rn Slnq(7 + U’)Nm) -1 (A9)
sing(r + »)m) X X

8 {] K f) .

=X (AL4)

for any integerm, we can write S
Therefore, the asymptotic bias is in every case null.

Now we consider the asymptotic mean square epRoof

M{|ka|2} = |Xx|? (A10) | X |2 which coincides with its asymptotic variance since the
asymptotic bias is null. In fact, we have

When the synchronous sampling satisfies instead the condition

_ sam . E? = M {(Xnl - 1X:2)2)
T, = mIs with m a positive integer, or the mean sampling pe- — -
riod 7’s is asynchronous [remaining in any case synchronized =M {|)~(k7w|4} — 2| Xk |® M{| Xk, o} + | Xi|*
the variability range of the delay,, ; and so (A7) is always oo -
verified], it must be considered in general the asymptotic = J\_/;[{|X’“:w|4} — | X[
behavior. To this end all the possibéepriori chances of the _ Var{|Xk7w|2}. (A15)

output state, i.e., the number of the output stat®s+ 1),
must be incorporated by considerihgsufficiently large and
theoretically tending to infinity. Thus, in the following, weThus, in order to evaluate the asymptotic varianc¢)wa|2,

r=+M +M
%{|Xk,w|2} = Z Z X, X, sind(r 4+ u) f1T) [;}Erolo sind(r + u)(2h + 1) f1Ts) | eI TN =D A Ts
r=—Mu=—M
sind((r + w)N f1Ts) {e—jw(u—k)flTA sind(u — k) f1T4) + e—Im(utk) fiTa sind(u+ k) f1T4)
SinC((T + U,)flTs) 2

} . (A11)

. M —jm(u—k) f1Ta g _ , —gm(utk) f1Ta g ,
M{|Xk,w|2}: Z IXU,IQ{G sind(u—k)f1iTa)+ ¢ smo((u+k)f1TA)} (A13)

2

u=—M
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we must first deduce from (A1) the terpy, ,|*

+M +M +M +M
4
Xk, wl* = N2 Z Z Z Z XXy
r=—Mu=—Mr'=—Muvw=—M
. X X ,Cj27r(r+u+r'+u')f1(t0+wT5)
—1N-1
. Z Z —i27[(r+uw)it(r +u )i 11 Ts
=0 /=0
2R Y 4O )Y, AT
|:Cj277[(’Uk)Zwi1f1TA + Cj277[(u+k)zwi1flTA:|

2

e—i2nl(W' k) Zi 1 Ta | =27 [(u'+k) Z o] /1 Ta
2
+M +M +M +M

ST 2 XX,

r=—Mu=—Mr'=—M uw=—)7
XX ,61277(7+u+7 +u )fl(tg—l—wTS)
r Ay
N—1N-1

ST ST el 0O T

=0 =0
. Cj?ﬁ[(r—l—'u,)yw,i+(1"+'11,’)Yw77-/]f1T5

) |:efj27r[(u7k)Zw-+(u'7k)Z“,7-/}f1TA

+ ijQTF[(ufk)ng +(u’+k)Zw7-/1f1TA
+ e—jQW[(’u—I—k)Zwi—|—(u,—k)Z,“,7-/1f1TA

+ efj27r[<u+k>zm+<u'+k>sz1f1TA} )

(A16)

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 5, OCTOBER 1998

The asymptotic mean at the second member can be evaluated
taking into account (A4). In fact we have

M{Cj27r(1*+'u,+1”—|—'u,,)'wflTS }

—

sind(r +u+7" +u')(2h 4+ 1) fiT5s)

=1 :
neso  sing((r +u+ 7' + ) [, Ts)
_J1 forr4+u=—-0("+1)
= {0 fOf 7’+U, 7& _(7,/ +U,/) (A18)
By substituting into (A17) we have
+M  +M +M +M
u{Gut=gm XY Y%
r=—Mu=—Mr'=—M W =M
r+u=—(r"+u’)
N—-1N—-1
P K X X Z Z C73’27"0""“)(14*i,)flTs
i=0 /=0

. M{eﬁw(”"'u)(yw—i -y

. [1\4{6—1'277[(u—k)zﬂ,7-+(u’—k)zm,1f1 T, }

,;/)flTs}

—I—M{c 32 [(u—k) Zopi (0 +E) Z i flT4}
+M{ — 32 (A R) Z i (0 —R) Z 00 flTa}
+ M{ — g2 (k) i (k) Z 0 flm}}

1

(A19)

This mean value can be expressed as the sum of two tkfms

Successively, its asymptotic mean ValM{IXk »|*} can and M, obtained by considering separately the contributions
be deduced taking into account the independence of all tiﬁ’é i =1 andi # ¢ in the double sum with respect toand

random variables involved

+M +M +M +M

w38 3 3 xx,

r=—Mu=—Mr'=—M v =—N7
Xy Xy M{ 2k 0] '}

—

M {ej27r(r+u+r'+u’)wf1TS}

—1N—

. Z Z —j2m[(rpu)iH (7 )i |1 T

=0 /=0
MY Y AT )

) [M{e—jQﬂ'[(u—k)Zm+(u’—k)Zw-/}f1TA}
+M{ —j2m[(u—k) Zpi+ (' +k) Z s 1 f1Ta

+ M{67j27r[(u+k)Zw-+(u'7k)Z flT4}
+ M{ —j2n[(utk) B+ (' +k) Z 1 1 f1 Ta H
1

(A17)

’. These two terms must be real because the variance is real
in accordance to (A15). Thus, we can write

M {|Xk,'w|4} = Ml + M2 (AZO)
where
+M +M  +M +M
TR S 3ID D S A
r=—Mu=—Mr'=—M =M
1—|—u=—(1 +u/ )
N-—1
. X?"X'u’ |:M{e—127r(11+11 —2k) 7., 1T
=0

+ 2M { eIl 2 i |

(A21)

and, due to the independence of the involved random variables
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for i # ¢ By changing in the last ternir, ») into (—», —u) it results
the complex conjugate of the first one
1 +M +M  +M +M
Mampim > > X L
r=—Mu==—Mr'=—M  '=—M M =— X, X5 Xy Xop—u
N—-1N-1
Y Y Y.Y —jom(r4u)(i—i’ ) 1 T, ™ M
Xy Xy X X Z >c ’ +2 3 X Y XX
1=0 Z,:(/) r=—M u=—M
( ) " ( ) +M +M
M { Y AT g v i) Y XX Y XiXg ]
i [M{G—pw(u—k)szlm } (M{e—j%r(u’—k)Zw-/flTA} r=—M u=—M
1 +M 2 +M 2
n M{e—j%('u’-l—k)zw-fflTA}) n M{e—jQW(U-l—k)melTA} =3N < > |X3|> +| > XX,
r=—M r=—M
i (M{e_jQﬂ'(u’_k)Zwi’flTA} (A24)
+ M{G—j%(u#k)zm,flr‘,})}' (A22)

Therefore, the quantity/; is real as provided by (15).

Now, let us remember that the variability range of the qu, by conS|der|ngM2. of (A22), in analogy with the
shift ~ has been assumed synchronized with the input sigif§F¥ious treatment regardint;, we can deduce that the first
so that fiT4, = 1. Consequently, in order to have nonnulProduct between brackets gives nonnull contributions only for
contributions taM; in (A21), in accordance to (A2) and (A7), =« = %k, the second one for = —u' = k, the third one
the first term between brackets in (A21) impose thatw’ = for v = —u’ = —k, the last one fon, =« = —k. Since the
2k, the second one + ' = 0, and the thirdu +«' = —2k. conditionr +u = — (' +u') and thus"+7" = —(u+u") must

Therefore, since the conditiort-« = —(' +w’) must always always be satisfied, in the four cases we obtain the following
be satisfied, in the three cases we obtain, respectively, f¥respondences:

following correspondences: + ' = —2k in the first case,
r+ " = 0in the second one, and+ ' = +2k in the last
one. Therefore, (A21) can be written as follows: wu=u =k —r+7 =—2k
u=—u=k—r+7 =0
u=—u=-k—=r+7 =0
1 +M  +M  +M +M w=u =k —r+7r =2k
My = Z Z Z Z X, Xou X Xy
r=—Mu=—Mr'=—M ' =—M
utu' =2k Thus, (A22) can be rewritten as follows:

r4r’' =—2k
+M +M +M +M

+2 Z Z Z Z X, XX X | M

;— ’ — 2y 2 2
r=—Mu=—Mr'=—M 1;:=:li\;[ MQ = W z:]w |:X7,XkX2k+7, + |X7| |Xk| :|
S —
! N—1N-1
. Z Z 2w +k) (i—') 1 Ts
+M  +M  4+M +M i=0 7o
7 =l
IS0 S5 DI SR S S
r=Mu=Mr'=M “ifu’:,;gk .M{ej2w(7’+k)}/qtvfif1Ts}M{e—jQﬂ'(T-l-k)Yw_i’fl Ts}
r4r’ =2k M
+M +M 1 21y |2 .
1 . T [X,, Xil? + X, (X} Xk_,,}
=% Y X Xne > XuXoiu e T:z;M | X |7 | X | (Xz) X
r=—M u=—M Ne1 N—1
il W Z Z —j2m(r—k)(i—i") f1Ts
b s s : c
+2 Z X X Z XuXy i=0 ;/_q
r=—M u=—M i;éi’
™ w " M j2mw(r—k)Y.,,_; f1Ts M —i2x(r=k)Y,,_;s [1Ts
+ > X Xor > XuX5p| (A23) e e :

r=—M u=—M (A25)
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We observe that changinginto —r in the second term of the w

1 2 yx* 2 2
sum, it results the complex conjugate of the first one. Thus T3 Z {RG[X"XkX%JH’} + [ 7 X }
also M is real. By taking into account (A2), we obtain r=-M _
siné((r + k)N fiTs) 1 )

1 ™ -siné((r + k)f1T5)< - =

My = oN? Z SinCz(T + k) 1T SinCZ((T +k)f1Ts) N
r=—M — |4X7k|4 (A31)
AR X XEXG |+ X 21X
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